文档库 最新最全的文档下载
当前位置:文档库 › FIR低通滤波器

FIR低通滤波器

FIR低通滤波器
FIR低通滤波器

目录

1.课程设计目的 (1)

2.课题设计要求 (1)

3.设计原理 (1)

3.1数字滤波器的优点 (2)

3.2 FIR数字滤波器的窗函数设计方法 (2)

4.实验程序及结果 (7)

4.1 实验程序 (7)

4.2 实验结果 (9)

5.心得体会 (11)

6.参考资料 (12)

FIR低通滤波器的设计

1.课程设计目的

1、加深对数字信号处理理论方面的理解,提高学生用程序实现相关信号处理的

能力。

2、使学生掌握C或MATLAB实现数字信号处理中频谱分析的方法和步骤。

3、使学生掌握用MATLAB实现IIR和FIR滤波器的设计方法、过程,为以后的设

计打下良好基础。

4、掌握窗函数法FIR低通滤波器的设计。

2.课题设计要求

1、既要有设计的理论内容,也要有每一步的MATLAB处理结果。

2、应用MATLAB平台,采用函数法设计一FIR低通数字滤波器:

Ωp=2π*103(rad/sec),Ωst=2π*3*103(rad/sec),Ωs=2π*104(rad/sec),阻带衰减不小于-50db。

3、应用MATLAB平台。

3.设计原理

随着通信与信息技术的发展,数字信号在该领域显得越来越重要。同时数字信号处理在语音、自动控制、航空航天和家用电器领域也得到了广泛应用,它已成为当今一门极其重要的学科和技术。在数字信号处理中起重要作用并获得广泛应用的是数字滤波器,数字滤波器是数字信号处理的基础。Matlab(Matrix laboratory)是美国Math Works公司推出的具有强大数值分析、矩阵运算、图形绘制和数据处理等功能的软件,现在广泛应用到教学、科研、功能工程设计领域。随着Mallab软件信号处理软件箱的推出,Mallab已成为信息处理,特别是数字

信号处理(DSP )应用中分析和设计的主要工具。就Mallab 信号处理中的滤波器设计而言,简化了滤波器设计的难度。

3.1数字滤波器的优点

所谓数字滤波器是指输入、输出均为数字信号,通过一定运算关系改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的器件。与模拟滤波器相比,数字滤波器的优点是:

(1) 精度和稳定性高;

(2) 系统函数容易改变,所以灵活性高; (3) 不要求阻抗匹配; (4) 便于大规模集成。

数字滤波器包括有限长脉冲响应滤波器(FIR filter )和无限长滤波器(IIR filter ),它们的系统函数分别为: 错误!未找到引用源。

错误!未找到引用源。错误!未找到引用源。

从结构上看,FIR 数字滤波器采用非递归结构,IIR 数字滤波器采用递归结构。IIR 数字滤波器的相位要求很高,而FIR 很容易做到严格线性相位特性,因此介绍FIR 数字滤波器的设计方法有一定的实用意义。

3.2 FIR 数字滤波器的窗函数设计方法

FIR 数字滤波器的设计是选择有限长度(长度为H )的单位脉冲响应h(n),使其传输函数H(e jw

)=e

jwn

N n n h --=∑1

)(满足技术要求。FIR 数字滤波器的设计问题就

是要求所设计的FIR 数字滤波器的频率响应H(e jw )去逼近所要求的理想滤波器的响应H d (e jw )。从单位取样序列来看,就是使所设计的滤波器的h(n)逼近单位取样响应序列h d (n)。而且

错误!未找到引用源。错误!未找到引用源。 错误!未找到引用源。

设理想低通滤波器的传输函数为H

d

(e jw),它的表达式如下:

错误!未找到引用源。

边界频率w c是不连续点,相应的单位取样响应

错误!未找到引用源。

可见,理想低通滤波器的单位取样响应h d(n)是无限长的,n从-∞到+∞,且是非因果序列。

为了从h d(n)得到一个因果线性相位的FIR滤波器,必须利用有限长度N的窗函数w N(n)对h d(n)进行截取,截取后的冲击响应函数h(n)可表示为:

此时h(n)为关于τ=

21

N

偶对称的有限因果序列。当N为奇数时,所设计的FIR 数字低通滤波器为I型滤波器;当N为偶数时,为Ⅱ型滤波器。

而h(n)表示的滤波器频率特性为:

H(e jw)是否能够很好的逼近H d(e jw)取决于窗函数的频谱特性W(e jw)。

若将理想滤波器的频率响应写成:

其中幅度频率特性:

此时,h(n)滤波器的频率特性可表示为:

由此可以得到所设计的滤波器的幅度频率特性为:

实际对FIR滤波器的H(ω)有影响的只是窗函数的幅度频率特性W

(ω)。

R

实际中的FIR滤波器的幅度频率特性,是理想低通滤波器的幅度频率特性和窗函数的幅度频率特性的复卷积。复卷积给H(ω)带来过冲和波动,所以加窗函数后,对滤波器的理想特性的影响有以下几点:

1)Hd(ω)在截止频率的间断点变成了连续的曲线,使得H(ω)出现了一个过渡带,它的宽度等于窗函数的主瓣宽度,主瓣宽度越宽过渡带就越宽。

2)由于窗函数的旁瓣的影响,使得滤波器的幅度频率特性出现了波动,波动的幅度取决于旁瓣的相对幅度。旁瓣范围的面积越大,通带波动和阻带波动就越大,也就是说阻带的衰减减小。而波动的多少,取决于旁瓣的多少。

3)增加窗函数的长度,只能减少窗函数的幅度频率特性W(ω)的主瓣宽度,而不能减少主瓣和旁瓣的相对值,该值取决于窗函数的形状,即增加取决函数的长度N只能相应的减小过渡带,而不能改变滤波器的波动程度。

为了满足工程上的需要,可以通过改变窗函数的形状来改善滤波器的幅度频率特性,而窗函数的选择原则是:

1)具有较低的旁瓣幅度,尤其是第一旁瓣的幅度;

2)旁瓣的幅度下降的速率要快,以利于增加阻带的衰减;

3)主瓣的宽度要窄,这样就可以得到比较窄的过渡带。

通常上述的几点难以同时满足。当选用主瓣宽度较窄时,虽然能够得到比较陡峭幅度频率响应,但是通带和阻带的波动明显增加;当选用比较小的旁瓣幅度时,虽然能够得到比较平坦和匀滑的幅度频率响应,但是过渡带将加宽,因此实际中选用的窗函数往往是它们的折中。在保证主瓣宽度达到一定要求的条件下,适当牺牲主瓣宽度来换取旁瓣的波动减小。以上是从幅度频率特性设计方面对窗函数提出的要求,实际中设计FIR数字滤波器往往要求是线性相位的,以此要求w(n)满足线性相位的条件,即要求w(n)满足:

W(n)=W(N-1-n)

所以,窗函数不仅有截短的作用,而且能够起到平滑的作用,在很多领域得到了应用。

表一、六种窗函数基本参数比较

窗函数窗谱性能指标加窗后滤波器性能指标

旁瓣峰值/dB 主瓣宽度

/(2π/N)

过滤带宽Δω

/(2π/N)

阻带最小衰减/dB

矩形窗-13 2 0.9 -21

三角窗-25 4 3.05 -25

汉宁窗-31 4 3.1 -44

海明窗-41 4 3.3 -53

布拉克曼窗-57 6 5.5 -74

凯泽窗-57 5 -80

Ⅰ、Ⅱ型理想低通滤波器的单位冲激响应h d(n)计算的MATLAB的实现例程如

例程Ⅰ、Ⅱ型理想低通滤波器的单位冲激响应h d(n)计算

function hd=ideal_lp(Wc,N)

%compute the ideal lowpass fiter unit pulse respondence hd(n)

%wc:cutoff frequency

%N:window length

%hd:unit pulse respondence

alpha=(N-1)/2;

n=0:1:N-1;

m=n-alpha+eps;

hd=sin(Wc*m)./(pi*m);

例:设计一FIR低通数字滤波器Ωp=4π*102(rad/sec),Ωst=4π*3*102(rad/sec),Ωs=4π*103(rad/sec),阻带衰减不小于-50dbB。

解(1)求各对应数字频率

通带截止频率为π

π

ω2.02=ΩΩ=Ω

=

s

p s

p

p f

阻带起始频率为 错误!未找到引用源。 阻带衰减相当于 δ2=50dB

求h d (n)。设错误!未找到引用源。为理想线性相位滤波器

首先由所需低通滤波器的过渡带求理想低通滤波器的频率Ω c

()2

10

82

1*=Ω+Ω

=

Ωπst p

c

其对应的数字频率为

错误!未找到引用源。 由此可得

错误!未找到引用源。 错误!未找到引用源。

其中,τ为线性相位所必须的移位,我们已经知道应满足错误!未找到引用源。。 (3)求窗函数。由阻带衰减δ2错误!未找到引用源。确定窗形状,由过渡带宽确定N 。

由于δ2 =-50dB ,查上表可选海明窗,其阻带最小衰减-53dB 满足要求。所要求的过渡带宽 错误!未找到引用源。

由于海明窗过渡带满足 错误!未找到引用源。 所以

错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。

错误!未找到引用源。错误!未找到引用源。 (4)求h(n)。由海明窗表达式ω(n)确定FIR 滤波器的h(n)。 海明窗 错误!未找到引用源。 错误!未找到引用源。 所以

(5)由h(n)求H(e jω),检验各项指标是否满足要求。如不满足要求,则要改变N,或改变窗形状,然后重新计算。

4.实验程序及结果

4.1 实验程序

%exa5-9_hammlow.m,for example 5-9

%use hamming window to design lowpass digital filter

clear all;

Wp=0.2*pi;

Ws=0.6*pi;

tr_width=Ws-Wp;

N=ceil(6.6*pi/tr_width)

n=0:1:N-1;

Wc=(Ws+Wp)/2;

hd=ideal_lp(Wc,N);

w_ham=(hamming(N))';

h=hd.*w_ham;

[db,mag,pha,w]=freqz_m2(h,[1]);

delta_w=2*pi/1000;

Ap=-(min(db(1:1:Wp/delta_w+1)))

As=-round(max(db(Ws/delta_w+1:1:501)))

subplot(221)

stem(n,hd)

title('理想单位脉冲响应hd(n)')

subplot(222)

stem(n,w_ham)

title('海明窗w(n)')

subplot(223)

stem(n,h)

title('实际单位脉冲响应hd(n)')

subplot(224)

plot(w/pi,db)

title('幅度响应(dB)')

axis([0,1,-100,10])

%------------------------------------------------- function[db,mag,pha,w]=freqz_m2(b,a)

%滤波器幅值响应(绝对、相对)、相位响应

%db:相对幅值响应;

%mag:绝对幅值响应;

%pha:相位响应;

%w:采样频率;

%b:系统函数H(z)的分子项(对FIR,b=h)

%a:系统函数H(z)的分母项(对FIR,a=1)

[H,w]=freqz(b,a,1000,'whole');

H=(H(1:1:501))';

w=(w(1:1:501))';

mag=abs(H);

db=20*log10((mag+eps)/max(mag));

pha=angle(H);

4.2 实验结果

N=17,Ap=0.0655,As=45.

5.心得体会

通过两星期的数字信号处理课程设计,我复习了MATLAB编程语言的基本概念、语法、语义和数据类型的使用特点,加深了对课堂所学理论知识的理解,掌握了运用结构化程序设计的基本思想和方法,更重要的是培养了自己的自学能力。

在平时的数字信号处理实验课中我们不少接触MATLAB编程语言,但在这次编写程序以及调试的过程中遇到了很多困难,一次问我通过去图书馆查找资料,请教同学,在自己一点点改善程序,最终编写出一些比较完善的程序,这使我在这次课程设计中学到了很多知识,使我对数字信号这门课程有了更加的了解和掌握。

在这一周的学习中的学习是我对数字信号处理这门课程有了进一步的理解。经过查阅相关资料,逐步的掌握了滤波器的设计过程,使我加强了对实际问题的动手和思考和解决问题的能力。但也暴露了自身的许多不足,如自主解决问题的能力有所欠缺,这在以后学习过程中需要更好的加强。在这一周中每天都是忙碌的,但我觉得很充实,自己学到很多东西,也加深我对数字信号处理的学习兴趣。数字信号里边的公式虽多,但理解了它、掌握了它,就会发现其中也是有规律可循的。这次的课程设计中培养了我如何去学习和掌握新知识的能力,这对以后的学习和工作都有很大的帮助。

6.参考资料

[1]、MATLAB7辅助信号处理技术与应用电子工业出版社

[2]、MATLAB信号处理与应用国防工业出版社

[3]、数字信号处理教程第三版清华大学出版社

[4]、数字信号处理与MATLAB实现清华大学出版社

[5]、应用MATLAB实现信号分析和处理科学出版社

FIR滤波器的设计

实验三:FIR 数字滤波器的设计 实验目的 1) 掌握用窗函数法,频率采样法及优化设计法设计FIR 滤波器的原理及方法。 2) 熟悉线性相位FIR 滤波器的幅频特性和相频特性。 3) 了解各种不同窗函数对滤波器性能的影响。 一、 实验内容 1. N=45,计算并画出矩形窗、汉明窗、布莱克曼窗的归一化的幅度谱,并比较各自的主要 特点。 clear all; N=45; wn1=kaiser(N,0); wn2=hamming(N); wn3=blackman(N); [h1,w1] = freqz(wn1,N); [h2,w2] = freqz(wn2,N); [h3,w3] = freqz(wn3,N); plot(w1/pi,20*log10(abs(h1)),'r-',w2/pi,20*log10(abs(h2)),'b-',w3/pi,20*log10(abs(h3)),'g-'); axis([0,1,-120,10]);grid; xlabel('归一化频率/\pi'); ylabel('幅度/dB'); title('三种窗口函数'); legend('矩形窗','汉明窗','布莱克曼窗',3); 归一化频率/ 幅度/d B 分析:阻带衰减和过渡带带宽是相互矛盾的,矩形窗过渡带带宽窄,但是阻带衰减比较少;布莱克曼窗过渡带带宽宽,但是阻带衰减比较大

2. N=15,带通滤波器的两个通带边界分别是ω1=0.3π,ω2=0.5π。用汉宁窗设计此线性 相位带通滤波器,观察它的实际3dB 和20dB 带宽。N=45,重复这一设计,观察幅频和相位特性的变化,注意长度N 变化的影响。 N=15; h= fir1(N-1,[0.3 0.5],'bandpass',hanning(N)); figure(1) freqz(h,1);axis([0,1,-60,10]); title('N=15,汉宁窗'); N=45; h= fir1(N-1,[0.3 0.5],'bandpass',hanning(N)); figure(2) freqz(h,1);axis([0,1,-60,10]); title('N=45,汉宁窗'); 00.10.2 0.30.40.50.60.70.80.91 -1000 -500 500 Normalized Frequency (?π rad/sample) P h a s e (d e g r e e s ) 00.10.2 0.30.40.50.60.70.80.91 -60 -40-20 0Normalized Frequency (?π rad/sample) M a g n i t u d e (d B ) N=15,汉宁窗

FIR数字滤波器设计函数

FIR 数字滤波器设计函数 1. fir1 功能:基于窗函数的FIR 数字滤波器设计——标准频率响应。 格式:b=fir1(n,Wn) b=fir1(n,Wn,'ftype') b=fir1(n,Wn,Window) b=fir1(n,Wn,'ftype',Window) 说明:fir1函数以经典方法实现加窗线性相位FIR 滤波器设计,它可设计出标准的低通、带通、高通和带阻滤波器。 b=fir1(n,Wn)可得到n 阶低通FIR 滤波器,滤波器系数包含在b 中,这可表示成: n z n b z b b z b --++???++=)1()2()1()(1 这是一个截止频率为Wn 的Hamming(汉明)加窗线性相位滤波器,0≤Wn ≤1,Wn=1相应于0.5fs 。 当Wn=[W1 W2]时,fir1函数可得到带通滤波器,其通带为W1<ω< W2。 b=fir1(n,Wn,'ftype')可设计高通和带阻滤波器,由ftype 决定: ·当ftype=high 时,设计高通FIR 滤波器; ·当ftype=stop 时,设计带阻FIR 滤波器。 在设计高通和带阻滤波器时,fir1函数总是使用阶为偶数的结构,因此当输入的阶次为奇数时,fir1函数会自动加1。这是因为对奇数阶的滤波器,其在Nyquist 频率处的频率响应为零,因此不适合于构成高通和带阻滤波器。 b=fir1(n,Wn,Window)则利用列矢量Window 中指定的窗函数进行滤波器设计,Window 长度为n+1。如果不指定Window 参数,则fir1函数采用Hamming 窗。 Blackman 布莱克曼窗 Boxcar 矩形窗 Hamming 海明窗 Hann 汉宁窗 Kaiser 凯瑟窗 Triang 三角窗 b=fir1(n,Wn,'ftype',Window)可利用ftype 和Window 参数,设计各种加窗的滤波器。 由fir1函数设计的FIR 滤波器的群延迟为n/2。 例如: n=32;wn=1/4;window=boxcar(n+1) b=fir1(n,wn,window)

fir低通滤波器设计(完整版)

电子科技大学信息与软件工程学院学院标准实验报告 (实验)课程名称数字信号处理 电子科技大学教务处制表

电 子 科 技 大 学 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间:14-18 一、实验室名称:计算机学院机房 二、实验项目名称:fir 低通滤波器的设计 三、实验学时: 四、实验原理: 1. FIR 滤波器 FIR 滤波器是指在有限范围内系统的单位脉冲响应h[k]仅有非零值的滤波器。M 阶FIR 滤波器的系统函数H(z)为 ()[]M k k H z h k z -==∑ 其中H(z)是k z -的M 阶多项式,在有限的z 平面内H(z)有M 个零点,在z 平面原点z=0有M 个极点. FIR 滤波器的频率响应 ()j H e Ω 为 0 ()[]M j jk k H e h k e Ω -Ω ==∑ 它的另外一种表示方法为 () ()()j j j H e H e e φΩΩΩ=

其中 () j H e Ω和()φΩ分别为系统的幅度响应和相位响应。 若系统的相位响应()φΩ满足下面的条件 ()φαΩ=-Ω 即系统的群延迟是一个与Ω没有关系的常数α,称为系统H(z)具有严格线性相位。由于严格线性相位条件在数学层面上处理起来较为困难,因此在FIR 滤波器设计中一般使用广义线性相位。 如果一个离散系统的频率响应 ()j H e Ω 可以表示为 ()()()j j H e A e αβΩ-Ω+=Ω 其中α和β是与Ω无关联的常数,()A Ω是可正可负的实函数,则称系统是广义线性相位的。 如果M 阶FIR 滤波器的单位脉冲响应h[k]是实数,则可以证明系统是线性相位的充要条件为 [][]h k h M k =±- 当h[k]满足h[k]=h[M-k],称h[k]偶对称。当h[k]满足h[k]=-h[M-k],称h[k]奇对称。按阶数h[k]又可分为M 奇数和M 偶数,所以线性相位的FIR 滤波器可以有四种类型。 2. 窗函数法设计FIR 滤波器 窗函数设计法又称为傅里叶级数法。这种方法首先给出()j d H e Ω, ()j d H e Ω 表示要逼近的理想滤波器的频率响应,则由IDTFT 可得出滤波器的单位脉冲响应为 1 []()2j jk d d h k H e e d π π π ΩΩ-= Ω ? 由于是理想滤波器,故 []d h k 是无限长序列。但是我们所要设计的FIR 滤波 器,其h[k]是有限长的。为了能用FIR 滤波器近似理想滤波器,需将理想滤波器的无线长单位脉冲响应 []d h k 分别从左右进行截断。 当截断后的单位脉冲响应 []d h k 不是因果系统的时候,可将其右移从而获得因果的FIR 滤波器。

FIR数字滤波器设计与使用

实验报告 课程名称:数字信号处理指导老师:刘英成绩:_________________实验名称: FIR数字滤波器设计与使用同组学生姓名:__________ 一、实验目的和要求 设计和应用FIR低通滤波器。掌握FIR数字滤波器的窗函数设计法,了解设计参数(窗型、窗长)的影响。 二、实验内容和步骤 编写MATLAB程序,完成以下工作。 2-1 设计两个FIR低通滤波器,截止频率 C =0.5。 (1)用矩形窗,窗长N=41。得出第一个滤波器的单位抽样响应序列h 1(n)。记下h 1 (n) 的各个抽样值,显示h 1 (n)的图形(用stem(.))。求出该滤波器的频率响应(的N 个抽样)H 1(k),显示|H 1 (k)|的图形(用plot(.))。 (2)用汉明窗,窗长N=41。得出第二个滤波器的单位抽样响应序列h 2(n)。记下h 2 (n) 的各个抽样值,显示h 2(n)的图形。求出滤波器的频率响应H 2 (k),显示|H 2 (k)|的 图形。 (3)由图形,比较h 1(n)与h 2 (n)的差异,|H 1 (k)|与|H 2 (k)|的差异。 2-2 产生长度为200点、均值为零的随机信号序列x(n)(用rand(1,200)0.5)。显示x(n)。 求出并显示其幅度谱|X(k)|,观察特征。 2-3 滤波 (1)将x(n)作为输入,经过第一个滤波器后的输出序列记为y 1(n),其幅度谱记为|Y 1 (k)|。 显示|X(k)|与|Y 1 (k)|,讨论滤波前后信号的频谱特征。 (2)将x(n)作为输入,经过第二个滤波器后的输出序列记为y 2(n),其幅度谱记为|Y 2 (k)|。 比较|Y 1(k)|与|Y 2 (k)|的图形,讨论不同的窗函数设计出的滤波器的滤波效果。 2-4 设计第三个FIR低通滤波器,截止频率 C =0.5。用矩形窗,窗长N=127。用它对x(n)进行滤波。显示输出信号y

fir低通滤波器设计报告

滤波器设计原理 本文将介绍数字滤波器的设计基础及用窗函数法设计FIR 滤波器的方法,运用MATLAB 语言实现了低通滤波器的设计以及用CCS软件进行滤波效果的观察。读取语音文件,并加入一定的随机噪声,最后使用窗函数滤波法进行语音滤波,将加噪后的语音文件转换为.dat文件使其能和ccs软件链接,输出个阶段的时域和频域波形。 根据数字滤波器冲激响应函数的时域特性。可将数字滤波器分为两种,即无限长冲激响应( IIR) 滤波器和有限长冲激响应(FIR) 滤波器。IIR 滤波器的特征是具有无限持续时间的冲激响应;FIR 滤波器冲激响应只能延续一定时间。其中FIR 滤波器很容易实现严格的线性相位,使信号经过处理后不产生相位失真,舍入误差小,稳定等优点。能够设计具有优良特性的多带通滤波器、微分器和希尔伯特变换器,所以在数字系统、多媒体系统中获得极其广泛的应用。FIR数字滤波器的设计方法有多种,如窗函数设计法、最优化设计和频率取样法等等。而随着MATLAB软件尤其是MATLAB 的信号处理工具箱和Simulink 仿真工具的不断完善,不仅数字滤波器的计算机辅助设计有了可能而且还可以使设计达到最优化。 FIR滤波器的窗函数法的设计 采用汉明窗设计低通FIR滤波器 使用b=fir1(n,Wn)可得到低通滤波器。其中,0Wn1,Wn=1相当于0.5。其语法格式为 b=fir1(n,Wn); 采用:b=fir1(25, 0.25); 得到归一化系数:

或者在命令行输入fdatool进入滤波器的图形设置界面,如下图所示 得到系数(并没有归一化) const int BL = 26; const int16_T B[26] = { -26, 33, 126, 207, 138, -212, -757, -1096, -652, 950, 3513, 6212, 7948, 7948, 6212, 3513, 950, -652, -1096, -757, -212, 138, 207, 126, 33, -26 }; FIR滤波器的设计(Matlab) 技术指标为:采用25阶低通滤波器,汉明窗(Hamming Window)函数,截止频率为1000Hz,采样频率为8000Hz,增益40db。 下面的程序功能是:读取语音文件,并加入一定的随机噪声,最后使用窗函数滤波法进行语音滤波,将加噪后的语音文件转换为.dat文件使其能和ccs软件链接,输出个阶段的时域和频域波形。

fir低通滤波器matlab编程滤波前后图形

Matlab实现振动信号低通滤波 附件txt中的数字是一个实测振动信号,采样频率为5000Hz,试设计一个长度为M=32的FIR低通滤波器,截止频率为600Hz,用此滤波器对此信号进行滤波。 要求: (1)计算数字截止频率; (2)给出滤波器系数; (3)绘出原信号波形; (4)绘出滤波后的信号波形; 解答过程: 第一部分:数字截止频率的计算 数字截止频率等于截止频率除以采样频率的一半,即 n=600/5000/2=0.24第二部分:滤波器系数的确定 在matlab中输入如下程序,即可得到滤波器系数: n=32 Wn=0.24 b=fir1(n,Wn) 得到的滤波器系数b为 Columns 1 through 9 -0.0008-0.0018-0.0024-0.00140.00210.00750.01100.0077-0.0054Columns 10 through 18

-0.0242-0.0374-0.02990.00870.07560.15370.21660.24070.2166Columns 19 through 27 0.15370.07560.0087-0.0299-0.0374-0.0242-0.00540.00770.0110Columns 28 through 33 0.00750.0021-0.0014-0.0024-0.0018-0.0008 第三部分:原信号波形 将附件4中的dat文件利用识别软件读取其中的数据,共1024个点,存在TXT文档中,取名bv.txt,并复制到matlab的work文件夹。 在matlab中编写如下程序: x0=load('zhendong.txt');%找到信号数据地址并加载数据。 t=0:1/5000:1023/5000;%将数据的1024个点对应时间加载 figure(1); plot(t,x0); xlabel('t/s'); ylabel('幅值'); 运行之后就得到如下波形,即振动信号的原始波形图: 1.5 1 0.5 幅 值

FIR数字滤波器设计及软件实现

实验五:FIR数字滤波器设计及软件实现 一、实验目的: (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 二、实验容及步骤: (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图1所示; 图1 具有加性噪声的信号x(t)及其频谱如图 (3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。 (4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 友情提示: ○1MATLAB函数fir1和fftfilt的功能及其调用格式请查阅本课本;

○ 2采样频率Fs=1000Hz ,采样周期T=1/Fs ; ○ 3根据图10.6.1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz ,阻带截至频率fs=150Hz ,换算成数字频率,通带截止频率 p 20.24p f ωπ=T =π,通带最大衰为0.1dB ,阻带截至频率s 20.3s f ωπ=T =π,阻带最小衰为60dB 。] ○ 4实验程序框图如图2所示。 图2 实验程序框图 三、实验程序: 1、信号产生函数xtg 程序清单: %xt=xtg(N) 产生一个长度为N,有加性高频噪声的单频调幅信号xt,采样频率Fs=1000Hz %载波频率fc=Fs/10=100Hz,调制正弦波频率f0=fc/10=10Hz. function xt=xtg N=1000;Fs=1000;T=1/Fs;Tp=N*T; t=0:T:(N-1)*T; fc=Fs/10;f0=fc/10; %载波频率fc=Fs/10,单频调制信号频率为f0=Fc/10;

FIR数字滤波器设计与软件实现(精)讲解学习

实验二:FIR 数字滤波器设计与软件实现 一、实验指导 1.实验目的 (1掌握用窗函数法设计 FIR 数字滤波器的原理和方法。 (2掌握用等波纹最佳逼近法设计 FIR 数字滤波器的原理和方法。 (3掌握 FIR 滤波器的快速卷积实现原理。 (4学会调用 MA TLAB 函数设计与实现 FIR 滤波器。 2. 实验内容及步骤 (1认真复习第七章中用窗函数法和等波纹最佳逼近法设计 FIR 数字滤波器的原理; (2调用信号产生函数 xtg 产生具有加性噪声的信号 xt ,并自动显示 xt 及其频谱,如图 1所示;

图 1 具有加性噪声的信号 x(t及其频谱如图 (3请设计低通滤波器,从高频噪声中提取 xt 中的单频调幅信号,要求信号幅频失真小于 0.1dB ,将噪声频谱衰减 60dB 。先观察 xt 的频谱,确定滤波器指标参数。 (4根据滤波器指标选择合适的窗函数,计算窗函数的长度 N ,调用 MATLAB 函数 fir1设计一个 FIR 低通滤波器。并编写程序,调用 MATLAB 快速卷积函数 fftfilt 实现对 xt 的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (5 重复 (3 , 滤波器指标不变, 但改用等波纹最佳逼近法, 调用MA TLAB 函数 remezord 和 remez 设计 FIR 数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:○ 1MA TLAB 函数 fir1的功能及其调用格式请查阅教材; ○ 2采样频率 Fs=1000Hz,采样周期 T=1/Fs;

○ 3根据图 1(b和实验要求,可选择滤波器指标参数:通带截止频率 fp=120Hz,阻带截 至频率 fs=150Hz, 换算成数字频率, 通带截止频率 p 20.24 p f ωπ =T=π, 通带最大衰为 0.1dB , 阻带截至频率 s 20.3 s f ωπ =T=π,阻带最小衰为 60dB 。 3、实验程序框图如图 2所示,供读者参考。 图 2 实验程序框图 4.信号产生函数 xtg 程序清单(见教材 二、滤波器参数及实验程序清单 1、滤波器参数选取 根据实验指导的提示③选择滤波器指标参数: 通带截止频率 fp=120Hz,阻带截至频率 fs=150Hz。代入采样频率 Fs=1000Hz,换算成 数字频率,通带截止频率 p 20.24 p f

FIR滤波器设计

数字信号与处理FIR滤波器设计 院系:机电工程学院 专业(班级):电子信息工程2班 姓名: 学号: 2010408 指导教师: 职称:副教授、助教 完成日期:2013 年11 月18 日

目录 1 引言 (1) 2 滤波器的简介 (2) 2.1 数字滤波器的发展 (2) 2.2数字滤波器的实现方法 (2) 2.3数字滤波器的分类 (2) 3.1 设计方法 (4) 3.2有限冲击响应滤波原理 (4) 3.3 FIR滤波器的结构图 (5) 3.3 FIR数字滤波器阶数计算 (5) 3.3 在matlab中算出滤波系数 (6) 3.4 FIR数字滤波器设计方法 (6) 3.5 程序功能顺序图 (8) 4 调试的步骤及调试过程中出现的问题以及解决方法 (10) 4.1 调试步骤 (10) 4.2调试结果 (13) 4.3调试问题解决 (14) 5 结论 (16) 6 设计心得体会 (17) 附录A 程序 (19)

FIR滤波器设计 1 引言 数字滤波器是数字信号处理中最重要的组成部分之一,数字滤波器是由数字乘法器、加法器和延时单元组成的一种算法或装置,可作为应用系统对信号的前期处理。用DSP芯片实现的数字滤波器具有稳定性好、精确度高、灵活性强及不受外界影响等特性。因此基于DSP实现的数字滤波器广泛应用于语音图像处理、数字通信、频谱分析、模式识别、自动控制等领域,具有广阔的发展空间。 随着计算机和信息技术的飞速发展,数字信号处理已经成为高速实时处理的一项关键技术,广泛应用在语音识别、智能检测、工业控制等各个领域。数字滤波器是对数字信号实现滤波的线性时不变系统。数字滤波实质上是一种运算过程,实现对信号的运算处理。 DSP数字信号处理是一门涉及许多学科而又广泛应用于许多领域的新兴学科。20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。传感器数字信号处理是利用传感器对模拟信号或数字信号进行采集并把其转换成计算机可识别的电信号,并利用计算机对信号进行处理以达到计算机辅助控制或是计算机自动控制的目的。 DSP 芯片是一种特别适合数字信号处理运算的微处理器,主要用来实时、快速地实现各种数字信号处理算法。用DSP 芯片实现FIR数字滤波器,不仅具有精确度高、不受环境影响等优点,而且因DSP 芯片的可编程性,可方便地修改滤波器参数,从而改变滤波器的特性,设计十分灵活。

FIR数字滤波器设计及MATLAB使用要点

数字信号处理课程设计 《数字信号处理》 课程设计报告 FIR数字滤波器设计及MATLAB实现 专业:通信工程 班级:通信1101班 组次:第9组 姓名及学号: 姓名及学号:

目录 一、设计目的 (3) 二、设计任务 (3) 三、设计原理 (3) 3.1窗函数法 (3) 3.2频率采样法 (4) 3.3最优化设计 (5) 3.3.1等波纹切比雪夫逼近准则 (5) 3.3.2仿真函数 (6) 四、设计过程 (7) 五、收获与体会 (13) 参考文献 (13)

FIR数字滤波器设计及MATLAB实现 一、设计目的 FIR滤波器:有限长单位冲激响应滤波器,是数字信号处理系统中最基 本的元件,它可以在保证任意幅频特性的同时具有严格的线性相频特性, 同时其单位抽样响应是有限长的,因而滤波器是稳定的系统。因此,FIR 滤波器在通信、图像处理、模式识别等领域都有着广泛的应用。滤波器设 计是根据给定滤波器的频率特性,求得满足该特性的传输函数。 二、设计任务 FIR滤波器设计的任务是选择有限长度的() H e满足一定 h n,使传输函数()jw 的幅度特性和线性相位要求。由于FIR滤波器很容易实现严格的线性相位,所以FIR 数字滤波器设计的核心思想是求出有限的脉冲响应来逼近给定的频率响应。 设计过程一般包括以下三个基本问题: (1)根据实际要求确定数字滤波器性能指标; (2)用一个因果稳定的系统函数去逼近这个理想性能指标; (3)用一个有限精度的运算去实现这个传输函数。 三、设计原理 FIR滤波器设计的任务是选择有限长度的() H e满足一定 h n,使传输函数()jw 的幅度特性和线性相位要求。由于FIR滤波器很容易实现严格的线性相位,所以FIR数字滤波器设计的核心思想是求出有限的脉冲响应来逼近给定的频率响应。 设计过程一般包括以下三个基本问题: (1)根据实际要求确定数字滤波器性能指标; (2)用一个因果稳定的系统函数去逼近这个理想性能指标; (3)用一个有限精度的运算去实现这个传输函数。 3.1窗函数法 设计FIR数字滤波器的最简单的方法是窗函数法,通常也称之为傅立叶级数法。FIR数字滤波器的设计首先给出要求的理想滤波器的频率响应()jw H e,设计 d

基于matlab的FIR低通高通带通带阻滤波器设计

基于matlab的FIR低通-高通-带通-带阻滤波器设计

————————————————————————————————作者:————————————————————————————————日期:

北京师范大学 课程设计报告 课程名称: DSP 设计名称:FIR 低通、高通带通和带阻数字滤波器的设计姓名: 学号: 班级: 指导教师: 起止日期: 课程设计任务书

学生班级: 学生姓名: 学号: 设计名称: FIR 低通、高通带通和带阻数字滤波器的设计 起止日期: 指导教师: 设计目标: 1、采用Kaiser 窗设计一个低通FIR 滤波器 要求: 采样频率为8kHz ; 通带:0Hz~1kHz ,带内波动小于5%; 阻带:1.5kHz ,带内最小衰减:Rs=40dB 。 2、采用hamming 窗设计一个高通FIR 滤波器 要求: 通带截至频率wp=rad π6.0, 阻带截止频率ws=rad π4.0, 通带最大衰减dB p 25.0=α,阻带最小衰减dB s 50=α 3、采用hamming 设计一个带通滤波器 低端阻带截止频率 wls = 0.2*pi ; 低端通带截止频率 wlp = 0.35*pi ; 高端通带截止频率 whp = 0.65*pi ; 高端阻带截止频率 whs = 0.8*pi ; 4、采用Hamming 窗设计一个带阻FIR 滤波器 要求: 通带:0.35pi~0.65pi ,带内最小衰减Rs=50dB ; 阻带:0~0.2pi 和0.8pi~pi ,带内最大衰减:Rp=1dB 。

FIR 低通、高通带通和带阻数字滤波器的设计 一、 设计目的和意义 1、熟练掌握使用窗函数的设计滤波器的方法,学会设计低通、带通、带阻滤波器。 2、通过对滤波器的设计,了解几种窗函数的性能,学会针对不同的指标选择不同的窗函数。 二、 设计原理 一般,设计线性相位FIR 数字滤波器采用窗函数法或频率抽样法,本设计采用窗函数法,分别采用海明窗和凯泽窗设计带通、带阻和低通。 如果所希望的滤波器的理想频率响应函数为)(jw d e H ,如理想的低通,由信号系统的知识知道,在时域系统的冲击响应h d (n)将是无限长的,如图2、图3所示。 H d (w) -w c w c 图2 图3 若时域响应是无限长的,则不可能实现,因此需要对其截断,即设计一个FIR 滤波器频率响应∑-=-=1 0)()(N n jwn jw e n h e H 来逼近)(jw d e H ,即用一个窗函数w(n)来 截断h d (n),如式3所示: )()()(n w n h n h d = (式1)。 最简单的截断方法是矩形窗,实际操作中,直接取h d (n)的主要数据即可。 )(n h 作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数为: ∑-=-=1 0)()(N n jwn jw e n h e H (式2) 令jw e z =,则 ∑-=-=1 0)()(N n n z n h z H (式3), 式中,N 为所选窗函数)(n w 的长度。

FIR滤波器设计实验报告

实验报告 课程名称:数字信号处理 实验项目:FIR滤波器设计 专业班级: 姓名:学号: 实验室号:实验组号: 实验时间:批阅时间: 指导教师:成绩:

实验报告 专业班级: 学号: 姓名: 一、实验目的: 1、熟悉线性相位FIR 数字低通滤波器特性。 2、熟悉用窗函数法设计FIR 数字低通滤波器的原理和方法。 3、了解各种窗函数对滤波特性的影响。 要求认真复习FIR 数字滤波器有关内容实验内容。 二、实验原理 如果所希望的滤波器理想频率响应函数为)(e H j ωd ,则其对应的单位样值响应为 ωπ= ωππ -?d e j ωn j d d e )(H 21(n)h 窗函数法设计法的基本原理是用有限长单位样值响应h(n)逼近(n)h d 。由于(n)h d 往往是无限长序列,且是非因果的,所以用窗函数(n)w 将(n)h d 截断,并进行加权处理,得 到:(n)(n)h h(n)d w ?=。h(n)就作为实际设计的FIR 滤波器单位样值响应序列,其频率函数)H(e j ω 为∑-=ω= 1 n n j -j ω h(n)e )H(e N 。式中N 为所选窗函数(n)w 的长度。 用窗函数法设计的FIR 滤波器性能取决于窗函数类型及窗口长度N 的取值。设计过程中要根据阻带衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。各类窗函数所能达到的阻带最小衰减和过渡带宽度见P342表7-3。 选定窗函数类型和长度N 以后,求出单位样值响应(n)(n)h h(n)d w ?=。验算 )()()]([)(ω?ωω==j g j e H n h DTFT e H 是否满足要求,如不满足要求,则重新选定窗函 数类型和长度N ,直至满足要求。 如要求线性相位特性,h(n)还必须满足n)-1-h(N h(n)±=。根据上式中的正、负号和长度N 的奇偶性又将线性相位FIR 滤波器分成4类(见P330表7-1及下表),根据要设计的滤波器特性正确选择其中一类。例如要设计低通特性,可选择情况1、2,不能选择情况3、4。

FIR数字滤波器设计与实现

FIR 数字滤波器设计与实现 一.摘要:数字滤波器是一种具有频率选择性的离散线性系统,在信号数字处理中有着广泛的应 用。其中FIR 滤波器是一种常用的滤波器,它在保证幅度特性满足技术要求的同时,很容易做到严格的线性相位特性,在语音分析、图像处理、雷达监测等对信号相位要求高的领域有着广泛的应用,能实现IIR 滤波器不能实现的许多功能。 二.关键词:FIR 窗函数系统函数MATLAB 三.内容提要: 数字滤波器的功能就是把输入序列通过一定的运算变换成输出序列,因此数字滤波器的结构系 统中就必须包括一定数量和性能的运算器件和运算单元,而运算器件和运算单元的配置必须由数字滤波器的结构特点和性能特点来决定,因此在进行FIR 数字滤波器的设计之前,有必要介绍和总结FIR 数字滤波器的基本结构和相关特性(包括频响曲线(幅度和相位),单位冲激响应等),在介绍完其基本结构和相关特性后,就进行FIR 数字滤波器的设计和实现。 (一)FIR 滤波器的基本结构 在讨论任何一种滤波器时,都要着重分析其系统函数,FIR 滤波器的系统函数为: n N n z n h z H ∑-==1 0)()(。从该系统函数可看出,FIR 滤波器有以下特点: 1)系统的单位冲激响应h(n)在有限个n 值处不为零; 2)系统函数H(z)在|z|>0处收敛,极点全部在z=0处(稳定系统); 3)结构上主要是非递归结构,没有输出到输入的反馈,但有些结构中(例如频率抽样结构)也包 含有反馈的递归部分。 1.FIR 滤波器实现的基本结构有: 1) 横截型(卷积型、直接型) a.一般FIR 滤波器的横截型(直接型、卷积型)结构: 若给定差分方程为: 。则可以直接由差分方程得出FIR 滤波器结构如 下图所示: 这就是FIR 滤波器的横截型结构,又称直接型或卷积型结构。 b .线性相位FIR 滤波器的横截型结构

半带FIR低通滤波器

数字信号处理课程设计 设计题目半带FIR低通滤波器设计 题目编号 0205 学院名称电气学院 指导教师 班级 学号 学生姓名

目录 一.半带滤波器的概述 (1) 二.半带FIR滤波器的性质及设计方法 (1) 2.1半带FIR滤波器的性质 (1) 2.2半带滤波器的设计方法 (2) 2.3滤波器指标的确定 (3) 2.4手工计算 (4) 三.在MATLAB中仿真 (4) 3.1滤波器的系数 (4) 3.2半带FIR滤波器的频率特性曲线 (4) 3.3基于MATLAB的幅频响应曲线 (5) 四.滤波器的结构不同对性能指标的影响 (6) 4.1利用直接型结构构建滤波器 (6) 4.2利用级联型结构构建数字滤波器 (7) 五.参数字长对性能指标的影响 (8) 5.1参数字长取2位对性能指标的影响 (8) 5.2参数字长取8位对性能指标的影响 (8) 5.3参数字长取12位对性能指标的影响 (9) 5.4参数字长取14位对性能指标的影响 (9) 5.5结论 (9) 六.心得体会 (9) 七.参考文献 (10) 八.附录 (10)

半带FIR 低通滤波器的设计 一.半带滤波器的概述 在数字滤波器的设计过程中,为了能够有效地进行抽取滤波,往往采用多级抽取的方法,这就需要采用内插和抽取的原理。如果对滤波器进行M 倍抽取,则输出的采样频率是输入采样频率的I /M ;如果对滤波器进行M 倍内插,则输出的采样频率是输入采样频率的M 倍。 半带滤波器是一种基于抽取和内插原理的滤波器,它是一种特殊的低通FIR(有限冲激响应)数字滤波器——一种抽取因子为2的抽取滤波器,这种滤波器由于通带和阻带相对于二分之一Nyquist 频率对称,因而有近一半的滤波器系数为O 。由于系数为0的部分在运算的过程中不需要消耗运算量,所以运算量减少了一半,使实际滤波过程中的运算量大幅度减少。因此计算的效率高,实时性比较强,有利于滤波运算的实时实现,多速率信号处理中有着特别重要的地位,并且得到了广泛的应用。 二.半带FIR 滤波器的性质及设计方法 2.1半带FIR 滤波器的性质 图1为抽取因子为2的半带滤波器的框图,其中:)(z H h 为抽取滤波器,s f 为输入采样 率,2/1s s f f =为输出采样率。 图1 抽取因子为2的半带滤波器框图 现在考虑频率特性如图2所示的一种特殊的FIR 滤波器,即为半带FIR 滤波器,它具有如下的特性: (1)通带纹波p δ和阻带纹波s δ相等,即s p δδ=; (2)通带边频p F 和阻带边频s F 相对于4/s f 对称,即2/s s p f F F =+,用数字频率表示为:πωω=+s p 。 f s x(n) H h (z) f s 2 2/1s s f f =

FIR低通数字滤波器的设计要点

《DSP技术与应用》课程设计报告 课题名称:基于DSP Builder的FIR数字滤波器的设计与实现 学院:电子信息工程学院 班级:11级电信本01班 学号: 姓名:

题目基于DSP Builder的FIR数字滤波器的设计与实现 摘要 FIR数字滤波器是数字信号处理的一个重要组成部分,由于FIR数字滤波器具有严格的线性相位,因此在信息的采集和处理过程中得到了广泛的应用。本文介绍了FIR数字滤波器的概念和线性相位的条件,分析了窗函数法、频率采样法和等波纹逼近法设计FIR滤波器的思路和流程。在分析三种设计方法原理的基础上,借助Matlab仿真软件工具箱中的fir1、fir2和remez子函数分别实现窗函数法、频率采样法和等波纹逼近法设计FIR滤波器。然后检验滤波器的滤波效果,采用一段音频进行加噪声然后用滤波器滤,对比三段音频效果进而对滤波器的滤波效果进行检验。仿真结果表明,在相频特性上,三种方法设计的FIR滤波器在通带内都具有线性相位;在幅频特性上,相比窗函数法和频率采样法,等波纹逼近法设计FIR滤波器的边界频率精确,通带和阻带衰减控制。

Abstract FIR digital filter is an important part of digital signal processing, the FIR digital filter with linear phase, so it has been widely applied in the collection and processing of information in the course of. This paper introduces the concept of FIR digital filter with linear phase conditions, analysis of the window function method and frequency sampling method and the ripple approximation method of FIR filter design ideas and processes. Based on analyzing the principle of three kinds of design methods, by means of fir1, fir2 and Remez function of Matlab simulation software in the Toolbox window function method and frequency sampling method and respectively realize equiripple approximation method to design FIR filter. Then test the filtering effect of the filter, using an audio add noise and then filter, test three audio effects and comparison of filter filtering effect. Simulation results show that the phase frequency characteristic, three design methods of FIR filter with linear phase are in the pass band; the amplitude frequency characteristics, compared with the window function method and frequency sampling method, equiripple approximation method Design of FIR filter with accurate boundary frequency, the passband and stopband attenuation control.

FIR数字滤波器设计与软件实现

实验二:FIR数字滤波器设计与软件实现 一、实验指导 1.实验目的 (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。(3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 2.实验内容及步骤 (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图1所示; 图1 具有加性噪声的信号x(t)及其频谱如图 (3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。

(4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。(4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:○1MATLAB函数fir1的功能及其调用格式请查阅教材; ○2采样频率Fs=1000Hz,采样周期T=1/Fs; ○3根据图1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截至频率fs=150Hz,换算成数字频率,通带截止 频率 p 20.24 p f ωπ =T=π,通带最大衰为0.1dB,阻带截至频率 s 20.3 s f ωπ =T=π,阻带最小衰为60dB。 ○4实验程序框图如图2所示,供读者参考。

用窗函数法设计FIR数字低通滤波器要点

河北科技大学课程设计报告 学生姓名:学号: 专业班级: 课程名称: 学年学期 指导教师: 20 年月

课程设计成绩评定表 学生姓名学号成绩 专业班级起止时间 设计题目 指 导 教 师 评 指导教师: 语 年月日

目录 1. 窗函数设计低通滤波器 1.1设计目的 (1) 1.2设计原理推导与计算 (1) 1.3设计内容与要求 (2) 1.4设计源程序与运行结果 (3) 1.5思考题 (10) 1.6心得体会 (14) 参考文献 (15)

1.窗函数设计低通滤波器 1.1设计目的 1. 熟悉设计线性相位数字滤波器的一般步骤。 2. 掌握用窗函数法设计FIR 数字滤波器的原理和方法。 3. 熟悉各种窗函数的作用以及各种窗函数对滤波器特性的影响。 4. 学会根据指标要求选择合适的窗函数。 1.2设计原理推导与计算 如果所希望的滤波器的理想的频率响应函数为() ωj d e H ,则其对应的单位脉冲响应为 ()() ωπ ωωπ π d e e H n h j j d d ?- = 21 (4.1) 窗函数设计法的基本原理是设计设计低通FIR 数字滤波器时,一般以理想低通滤波特性为逼近函数() ωj e H ,即 () ?????≤<≤=-π ωωωωωαω c c j j d ,, e e H 0,其中21-=N α ()() ()[]() a n a n d e e d e e H n h c j j j j d d c c --= = = ??- -- πωωπ ωπ ωαωω ωαω π π ω sin 21 21 用有限长单位脉冲响应序列()n h 逼近()n h d 。由于()n h d 往往是无限长序列,而且是非因果的,所以用窗函数()n ω将()n h d 截断,并进行加权处理,得到: ()()()n n h n h d ω= (4.2) ()n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函 数() ωj e H 为 ()()n j N n j e n h e H ωω ∑-==1 (4.3) 式中,N 为所选窗函数()n ω的长度。 用窗函数法设计的滤波器性能取决于窗函数()n ω的类型及窗口长度N 的取

FIR数字滤波器课程设计报告

吉林建筑大学 电气与电子信息工程学院 数字信号处理课程设计报告 设计题目:FIR数字滤波器的设计 专业班级: 学生姓名: 学号: 指导教师: 设计时间:

目录 一、设计目的 (3) 二、设计内容 (3) 三、设计原理 (3) 3.1 数字低通滤波器的设计原理 (3) 3.1.1 数字滤波器的定义和分类 (3) 3.1.2 数字滤波器的优点 (3) 3.1.3 FIR滤波器基本原理 (4) 3.2变换方法的原理 (7) 四、设计步骤 (8) 五、数字低通滤波器MATLAB编程及幅频特性曲线 (9) 5.1 MATLAB语言编程 (9) 5.2 幅频特性曲线 (10) 六、总结 (11) 七、参考文献 (13)

一、设计目的 课程设计是理论学习的延伸,是掌握所学知识的一种重要手段,对于贯彻理论联系实际、提高学习质量、塑造自身能力等于有特殊作用。本次课程设计一方面通过MATLAB 仿真设计内容,使我们加深对理论知识的理解,同时增强其逻辑思维能力,另一方面对课堂所学理论知识作一个总结和补充 二、设计内容 (1)设计一线性相位FIR 数字低通滤波器,截止频率 ,过渡带宽度 , 阻带衰减dB A s 30>。 (2)设计一线性相位FIR 数字低通滤波器,截止频率 ,过渡带宽度 ,阻带衰减dB A s 50>。 三、设计原理 3.1数字低通滤波器的设计原理 3.1.1 数字滤波器的定义和分类 数字滤波器是指完成信号滤波处理功能的,用有限精度算法实现的离散时间线性非时变系统,其输入是一组数字量,其输出是经过变换的另一组数字量。因此,数字滤波器本身既可以是用数字硬件装配成的一台完成给定运算的专用的数字计算机,也可以将所需要的运算编成程序,让通用计算机来执行。 从数字滤波器的单位冲击响应来看,可以分为两大类:有限冲击响应(FIR)数字滤波器和无限冲击响应(IIR)数字滤波器。滤波器按功能上分可以分为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)、带阻滤波器(BSF) [4]。 3.1.2 数字滤波器的优点 相对于模拟滤波器,数字滤波器没有漂移,能够处理低频信号,频率响应特性可做成非常接近于理想的特性,且精度可以达到很高,容易集成等,这些优势决定了数字滤波器的应用将会越来越广泛。同时DSP 处理器(Digital Signal Processor)的出现和FPGA(FieldProgrammable Gate Array)的迅速发展也促进了数字滤波器的发展,并为数字滤波器的硬件实现提供了更多的选择。 数字滤波器具有以下显著优点: 精度高:模拟电路中元件精度很难达到10-3,以上,而数字系统17位字长就可以达到10-5精度。因此在一些精度要求很高的滤波系统中,就必须采用数字滤0.2c ωπ=0.4ωπ?<0.2c ωπ=0.4ωπ?<

相关文档
相关文档 最新文档