文档库 最新最全的文档下载
当前位置:文档库 › 概率论期末考试试题

概率论期末考试试题

概率论期末考试试题
概率论期末考试试题

1.全概率公式贝叶斯公式

1.某保险公司把被保险人分成三类:“谨慎的” 、“一般的”和“冒失的”。统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和 0.3。并且它们分别占投保总人数的20% , 50% 和 30% 。现已知某保险人在一年内出了事故,则他是“谨慎的”保险户的概率是多少?

解:设 A i、 A2、 A3分别表示“谨慎的”“一般的”和“冒失的”保险户, B 表示“发生事故” ,由贝叶斯公式知

P(A1 | B)

P( A1)P(B | A1)

P( A1 )P( B | A1) P( A2 )P( B | A2 ) P( A3) P(B | A3) 0.20.050.057

0.20.050.50.150.30.30

2.老师在出考题时 ,平时练习过的题目占60%. 学生答卷时 , 平时练习过的题目在考试时答对的概率为90% , 平时没练习过的题目在考试时答对

的概率为 30%,求 :

(1)考生在考试中答对第一道题的概率;

(2)若考生将第一题答对了, 那么这题是平时没有练习过的概率.

3. 在蔬菜运输中,某汽车运输公司可能到甲、乙、丙三地去拉菜的概率依次为0.2,0.5,0.3 。在三地拉到一级菜的概率分别为10% , 30%,70% 。

1)求能拉到一级菜的概率;2)已知拉到一级菜,求是从乙地拉来的概率。

解: 1、解:设事件 A 表示拉到一级菜,B1表示从甲地拉到, B2

表示从乙地拉到,

B3表示从丙地拉到

则 P(B1)0.2 , P(B2 )0.5 ; P(B3)0.3P( A B1) 0.1 , P(A B2) 0.3 , P(A B3)0.7

则由全概率公式得

3

P(A/ B ) =0.20.1 0.50.30.30.70.38 —(7分)

P( A)P(B )

i i

i 1

(2)拉的一级菜是从乙地拉得的概率为

P( B2

P(B2) P( A B2)0.50.3

0.3947 —————————(

A)

0.38

10 分)

P( A)

2.一维随机变量

5. 设随机变量X 在区间 [0,1]上服从均匀分布,求随机变量

Y=e 2X的密度函数 .

6. 已知X ~ N( ,

2),用分布函数法证明:Y X -~ N (0,1).

证明 : 设X ~ f x( x), YaX b ,则 a0 时,Y~f Y( y)=1f Y(y a b)

a

F Y ( y) P Y y X

y P X y F X ( y)

( y)2

1

y2

f Y ( y) F Y ( y) F X ( y) f X ( y)e 2 2 e 2

22

Y ~ N (0,1)

7.设随机

7.变量 X 的密度函数

c

x

1

f ( x)

1 x

2

x

1

求( 1) c 的值;( 2 )

P{ X

1

} ;( 3)EX

(4)

X 的分布函数 .

2

+

1得:

解: (1) 由密度函数的性质

f(x)dx

-

+

+

c

1

c

f(x)dx

dx

1

1 x 2

dx

-

-

-1

1 x 2

1

( 4

故 c=

-------------------------------- 分)

1

1 1

1

1 1

(2)

P{ X

2 dx

2 ----------

( 7

} 1

arc sin x | 1

3

2

2 1 x 2

2

+

+

x 1

x

(3)EX=

xf(x)dx

dx

dx 0 ---( 10 分)

x 2

1 x 2

-

- 1 -1

0 x

0 8.设连续型随机变量

X 的分布函数为

F ( x )

A

x 0

x

1 ,

1

x

1

求 :(1) 系数 A; (2)X 的分布密度 f(x); (3)

P 0

X 0.25

1

x

1

解: (1)A=1;(2)

f ( x)

2

x

;(3)0.5

其它

3.二维随机变量

10. 设( X , Y )的分布为

X

Y

- 1

1

- 1 1/ 8 1/ 8

1/ 8 0

1/ 8

1/ 8

1

1/ 8 1/ 8

1/ 8

证明 X 与 Y 不相关,也不独立。

证明:

cov ( X , Y ) =EXY-EXEY -------- ( 1 分)

而 EXY=0EX=0 , EY=0-------------- cov( X , Y)

XY

DX DY

下证独立性

(3 分)

0 故 X 与 Y 不相关。 -------- ( 5 分)

P{ X 0,Y 0} 0 P{ X 0} 1/ 4 P{Y=0}=1/4 -------

(8 分)

P{ X 0,Y 0} P{ X 0} P{ Y

0}

故 X 与 Y 也不独立。 ---------------- ( 10 分)

11. (X,Y) 服从区域 D 上的均匀分布 ,

D

{( x , y ) x 2 y 2

4} ,证明 X 与 Y 不独立也不相关 .

12. 设随机变量 (X,Y) 服从区域 D 上的均匀分布,其中

D={(x,y)|x 2+y 2

1}, 求:

(1)X 与 Y 的边缘密度函数; ( 2)判断 X 与 Y 是否独立。

1 x 2

x

1

1 y 2

y 1

解: (1) f

X

(x)=

,f Y (y)=

0 其它

其它

(2) X 与 Y 不独立。

4.中心极限定理

13. 某车间有同型号机床 200 部,每部开动的概率为 0.7,各机床开关独立,开动时每部要耗电 15 个单位,问至少要供应该车间多少单位电能,

才能以 95% 的概率保证不致因供电不足而影响生产 . ( (1.64)=0.95,

42 ≈ 6.48).

解:

X 用表示任一时刻车间有同型号机床

X ~ B(200,0.7)

,则

EX 140, DX 42 ——( 3 分)

假定至少需要 m

单位电能,则

有:

P( X

m ) 0.95

由中心极限定理可得:

15

m )

P(

X

140 m

140

m

140

15 ( 15

0.95

P( X

) ) ———( 8 分) m

15

42

42 42

140

所以

m

2265 ,

从而有:

15

1.64

42

故至少需准备 2265 单位电能—————( 10 分)

14.某学院校园网中家属区每晚约有 400 台电脑开机 , 而每台电脑约有

4

的时间登入互联网 , 并且假定各台电脑是否上互联网彼此无关 , 计算其

5

中至少 300 台同时在互联网上的概率 . (

(2.5)=0.99379)

15.某计算机有 120 个终端,每个终端在一小时内平均有

3 分钟使用打印机,假定各终端使用打印机与否相互独立,求至少有

10 个终端同时使用

打印机的概率。 ( (1.68)=0.95352, 5.7 ≈ 2.3874)

解:每个终端使用打印机的概率为

p=1/20 ,设同时有

X 个终端使用,则 X ~ B(120,1/20) , EX=np=6, DX=npq=5.7 ,

由于 n=120 很大,由中心极限定理,近似地 X ~ N(6,5.7)

∴ P(X ≥ 10)=1-F(10)=1-

(

10 6

)=1-

(1.68)=1-0.95352=0.04648

5.7

16. 某种电子元件的寿命服从指数分布,已知其平均寿命为 100 小时,将 3 个这样的元件串联在一个线路中,求:在 150 小时后线路仍正常工作

的概率。

解:由题可知 0.01

( 2 分)

-----------

则某电子元件的寿命超过

150 小时的概率为

p P{ X

150} 1 F (150)

e 1.5 ----------- (8 分)

故三个串联 150 小时仍正常的概率为

3

4.5

p e

-------- (10 分)

5.极大似然估计

x

f (x; ) 1 e

x

0 ),

17.设总体 X 的密度函数为

(

其它

若 ( X

1 , X

2 , , X n ) 为来自总体的一个样本

, 求未知参数

的最大似然估计值 .

X 的分布密度为 f (x)

x

1

0 x

1,

,X 2 , , X n 为来自总体的一个样本

18. 设总体

其他

,若

X 1 ,

求未知参数 的最大似然估计。

n

1

解:似然函数 L(X 1, X 2, ? X n ,)=

x i

i 1

n d ln L 0

lnL=nln θ +ln( θ -1)

ln X i ,由

i 1

d

解得所求最大似然估计量

?

n

n

ln X i

i

1

19.

X 1, X 2 , , X n

X

的 一

个 样 本 ,

X 的概率

分 布

P{ X

k}

(1 p) k 1 p , k

1,2,3, , x 1, x 2, , x n 为来自总体 X 的一个样本观察值,求

p 的极大似

然估计值 .

证明:

09-10-1-概率统计A--期末考试试卷答案

诚信应考 考出水平 考出风格 浙江大学城市学院 2009— 2010学年第 一学期期末考试试卷 《 概率统计A 》 开课单位: 计算分院 ;考试形式: 闭卷; 考试时间:2010年 1 月24日; 所需时间: 120 分钟 题序 一 二 三 总 分 得分 评卷人 一. 选择题 (本大题共__10__题,每题2分共__20 分) 1、已知()0.87.0)(,8.0)(===B A P B P A P ,,则下列结论正确的是(B ) )(A 事件B A 和互斥 )(B 事件B A 和相互独立 )(C )()()(B P A P B A P += )(D B A ? 2、设)(1x F 和)(2x F 分别为随机变量1X 和2X 的分布函数,为使)()()(21x bF x aF X F -=为某一随机变量的分布函数,在下列各组数值中应取( A ) )(A 5/2,5/3-==b a )(B 3/2,3/2==b a )(C 2/3,2/-1==b a )(D 2/3,2/1-==b a 3、设随机变量X 服从正态分布),(2σμN ,随着σ的增大,概率() σμ<-X P 满足 ( C ) )(A 单调增大 )(B 单调减少 )(C 保持不变 )(D 增减不定 4、设),(Y X 的联合概率密度函数为?? ???≤+=其他, 01 ,1),(2 2y x y x f π,则X 和Y 为 ( C )的随机变量 )(A 独立且同分布 )(B 独立但不同分布 )(C 不独立但同分布 )(D 不独立 且不同分布 得分 年级:_____________ 专业:_____________________ 班级:_________________ 学号:_______________ 姓名:__________________ …………………………………………………………..装………………….订…………………..线… …………………………………………………… 年级:_____________ 专业:_____________________ 班级:_________________ 学号:_______________ 姓名________________ …………………………………………………………..装………………….订…………………..线………………………………………………………

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

北京邮电大学概率论期末考试试卷及答案

第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中随 机地取一个球,求取到红球的概率。 §1 .7 贝叶斯公式 1. 某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1) 该厂产品能出厂的概率,(2)任取一出厂产品, 求未经调试的概率。 2. 将两信息分别编码为A 和B 传递出去,接收站收到时,A 被误收作B 的概率为,

概率论期末考试试题

1.全概率公式 贝叶斯公式 1.某保险公司把被保险人分成三类:“谨慎的”、“一般的”和“冒失的”。统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.3。并且它们分别占投保总人数的20%,50%和30%。现已知某保险人在一年内出了事故,则他是“谨慎的”保险户的概率是多少? 解:设A i 、A 2、A 3分别表示“谨慎的” “一般的”和“冒失的”保险户,B 表示“发生事故”,由贝叶斯公式知 057 .030 .03.015.05.005.02.005 .02.0) |()()|()()|()() |()()|(332211111≈?+?+??= ++=A B P A P A B P A P A B P A P A B P A P B A P 2.老师在出考题时, 平时练习过的题目占60%. 学生答卷时, 平时练习过的题目在考试时答对的概率为90% , 平时没练习过的题目在考试时答对的概率为30%, 求: (1) 考生在考试中答对第一道题的概率; (2) 若考生将第一题答对了, 那么这题是平时没有练习过的概率. 3. 在蔬菜运输中,某汽车运输公司可能到甲、乙、丙三地去拉菜的概率依次为0.2,0.5,0.3。在三地拉到一级菜的概率分别为10%,30%,70%。 1)求能拉到一级菜的概率;2)已知拉到一级菜,求是从乙地拉来的概率。 解:1、 解:设事件A 表示拉到一级菜,1B 表示从甲地拉到,2B 表示从乙地拉到, 3B 表示从丙地拉到 则1()0.2P B =,2()0.5P B =;3()0.3P B = 1()0.1P A B =,2()0.3P A B =, 3()0.7P A B = 则由全概率公式得 3 1 ()()(/)i i i P A P B P A B ==?∑=0.20.10.50.30.30.70.38?+?+?=—(7分) (2)拉的一级菜是从乙地拉得的概率为 222()()0.50.3 ()0.3947()0.38 P B P A B P B A P A ??= ==—————————(10分) 2.一维随机变量 5.设随机变量X 在区间[0,1]上服从均匀分布,求随机变量 2X Y=e 的密度函数. 6. ).1,0(~-X Y ),,N(~X 2N σμ = σμ用分布函数法证明:已知 证明: 设 b aX Y x f X x +=),(~, 则0≠a 时,Y~ )(y f Y =a 1)(a b y Y f - {}{}) 1,0(~21 2)()()()()()(2 2)(22 2 N Y e e y f y F y F y f y F y X P y X y Y P y F y y X X Y Y X Y ∴π = σ πσ =σμ+σ=μ+σ'='=μ+σ=μ+σ≤=? ?? ???≤ σ μ -=≤=- σμ-μ+σ- 7.设随机 7.变量X 的密度函数

概率论与数理统计期末考试

一 填空 1.设随机变量X 服从)1,1(-R ,则由切比雪夫不等式有{}≤≥1X P 2. 设B A 、是两相互独立事件,4.0)(,8.0)(==A P B A P ,则._____)(=B P 3. .__________)3(,3)(,2)(=-==Y X D Y X Y D X D 独立,则、且 4. 已知._________)20(,533.0)20(4.06.0=-=t t 则 5. n X X X ,,,21 是来自正态总体),(2σμN 的样本,S 是样本标准差,则 ________)( 2 2 =σ nS D 6. 设._______}3|{|,)(,)(2≤>-==σμσμX P X D X E 则由车比雪夫不等式 7. 假设一批产品中一、二、三等品各占%10%20%70、、 ,从中随意取一种,结果不是三等品,则取到的是一等品的概率是____________. 8、m X X X ,,,21 是取自),(211σμN 的样本,n Y Y Y ,,,21 是来自),(2 22σμN 的样本,且这两种样本独立,则___ ___ Y X -服从____________________. 9. 设____}3|{|,)(,)(2≤>-==σμσμX P X D X E 则由车比雪夫不等式得. 10、已知.__________)12(2)(=-=X D X D ,则 11、已知分布服从则变量)1(___________),1(~),,(~22--n t n Y N X χσμ 12设随机变量X 服从)1,1(-R ,则由切比雪夫不等式有{}≤≥1X P 。 13.已知1 1 1(),() ,()432 P A P B A P A B ===,则()P AB = , ()P A B = 。 14.若()0.5,()0.4,()0.3,P A P B P A B ==-=则()P A B = 。 15.若随机变量X 服从(1,3)R -,则(11)P X -<<= 。 16.已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E (XY )= 。 17.设随机变量,X Y 相互独立,且X 服从(2)P ,Y 服从(1,4)N ,则(23)D X Y -= 。

四川大学概率统计往年期末试题

四川大学期末考试试题 (2008-2009学年第二学期) 一、单项选择题(每空2分,共10分) 1.设事件A 和B 独立,且,5.0)(,3.0)(==B P A P 则=)(B A P Y ( ) (A)0.8 (B)0.5 (C)0.65 (D)0.95 2.设随机变量X 的密度函数为+∞<<-∞=---x e x f x x ,61 )(625102π则 E(X)=( ) (A)5 (B)3 (C)-3 (D)-5 3.设X 有分布函数),(x F 令53-=X Y ,则Y 的分布函数为( ) (A)??? ??+3531y F (B))53(+y F (C) )353(-y F (D) ?? ? ??+35y F 4.设总体n X X X ,,,21Λ是独立同分布的随机变量序列,均服从参数为1的指数分布,令∑==n i i X n X 122 1,则?→?P X 2( ) (A)1 (B)2 (C)3 (D)4 5.设总体3212 ,,),,(~X X X N X σμ是来自X 的样本,记 32114 14121X X X Z ++=,3212313131X X X Z ++=,2125253X X Z += 这三个对μ的无偏估计量中,( )最有效 (A)1Z (B)2Z (C)3Z (D)无法判断 二、填空题(每空2分,共10分) 1.一个袋子中有3个红球,2个白球,从中任取3个球,则至少取得一个白球的概率是______; 2.设), 3.0,100(~B X 由切比雪夫不等式,≥<-)10|30(|X P _______; 3.设)4 3;914,1,1(~),(-N Y X 的二维正态分布,记Y X Z 32-=,则~Z _________分布; 4.设)(~λP X ,已知1)]2)(1[(=--X X E ,则=λ__________; 5.设总体)1,0(~N X ,321,,X X X 分别是来自X 的样本,

同济大学_概率论与数理统计期中试卷

同济大学 09 学年 第一学期 专业 级《 概率统计 》期中试卷 考试形式:( 闭卷 ) 一、填空题(共 30 分,每空2分): 1.事件C B A ,,中至少有一个发生可表示为 ,三个事件都发生可表示为 ,都不发生可表示为 . 2.设()4.0=A P ,()3.0=B P ,()4.0=B A P ,则() =B A P . 3.一袋中有10个球,其中3个黑球,7个白球. 每次从中任取一球,直到第3次才取到黑球的概率为 ,至少取3次才能取到黑球的概率为 . 4.设随机变量X 的分布函数()??? ?? ??≥<≤<≤--<=31318 .0114 .010x x x x x F ,则X 的分布列为 . 5.进行10次独立重复射击,设X 表示命中目标的次数,若每次射击命中目标的概率都是4.0,则X 服从 分布,其数学期望为 ,方差为 . 6.设连续型随机变量()λe X ~,)0(>λ,则=k 时,{}4 12= >k X P . 7.已知随机变量()2~P X ,则102-=X Y 的数学期望=EY ,方差=DY . 8. 已知随机变量X 的概率密度函数为()?? ?>-<≤≤-=2 ,20 2225.0x x x x f ,则X 服从 分布,设随机变量 12+=X Y ,则=EY . 二、选择题(共10 分,每小题 2 分) 1.设事件B A ,互不相容,且()()0,0>>B P A P ,则有 ( ) (A )()0>A B P (B )() ()A P B A P = (C )() 0=B A P (D )()()()B P A P AB P =

概率论与数理统计期末考试题及答案

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:, ()1/4, 020,2 x Ae x x x x ??

8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本, 1 1n i i X X n ==∑为样本均值,则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =, 求参数a 的置信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它 求:1){|21|2}P X -<;2)2 Y X =的密度函数()Y y ?;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为 1/4, ||,02,(,)0, y x x x y ?<<??

概率统计 期末考试试卷及答案

任课教师 专业名称 学生姓名 学号 密 封 线 X X 工业大学概率统计B 期末考试试卷(A 卷) } 分 分 108

求:(1)常数k ,(2)P(X<1,Y<3) (3) P(X<1.5); (4) P(X+Y ≤4) 解:(1)由()1)6(1 )(20 4 =--=???? +∞∞-+∞ ∞ -dx dy y x k dxdy xy f 即 解得24 1 = k 2分 (2)P(X<1,Y<3)=()dx dy y x )6241(1030--??=2 1 4分 (3) P(X<1.5)=()16 13 )6241(5.1040=--??dx dy y x 7分 (4)P(X+4≤Y ) =()9 8 21616241)6241(2202040=+-=--???-dx x x dx dy y x x 10分 4. 已知随机变量)3,1(~2N X ,)4,0(~2N Y ,且X 与Y 相互独立,设 2 3Y X Z += (1) 求)(Z E ,)(Z D ; (2) 求XZ ρ 解:(1)??? ??+=23)(Y X E Z E )(21)(3 1 y E X E += 021131?+?= 3 1 = 2分 =??? ??+=23)(Y X D Z D ()()2 2 22)23(23?? ? ??+-??? ??+=-Y X E Y X E EZ Z E =22 2)2 3()439( EY EX Y XY X E +-++ = 9 1 4392 2 -++EY EXEY EX 又因为()10192 2=+=+=EX DX EX 16016)(22=+=+=EY DY EY 所以DZ= 59 1 416910=-+ 6分 (2)),(Z X Cov ) ,(1 1Y X X Cov += =EX( 23Y X +)-EXE(23Y X +) EXEY -EX -EXEY +EX =21 )(31213122 233 1 ?==3 则XZ ρ= ()DZ DX Z X Cov ,= 5 5 5 33= 10分 5. 设二维随机变量),(Y X 的概率密度为 ?????≤≤≤≤=其它, 00,20,163),(2x y x xy y x f (1) 求X 的数学期望EX 和方差DX (2) 求Y 的数学期望EY 和方差DY 解:(1)dx x xf X E X )()(? ∞ +∞ -= ()()xyd dy y x f x f x x ? ? ==∞ +∞ -20 16 3 ,y dx x xf X E X )()(? ∞ +∞ -= = 分 27 12)163(2 2 =? ?dx xydy x x () ()分 549 3)712( 33)16 3 (22 2 22 2 22 =-====EX EX -EX =???∞ +∞ -DX dx xydy x dx x f x DX x X () ()分 72)16 3 (),()()(24 02====?? ???+∞∞ -+∞ ∞ -∞ +∞ -dy xydx y dy dx y x yf dy y yf Y E y Y ()()5 24 4323)163(),()(4034 02 2 22 2 =-====?????? +∞ ∞ -+∞∞ -∞ +∞-dy y y dy xydx y dy dx y x f y dy y f y EY y Y DY=()分 105 4452422 =-=EY -EY 6. 设随机变量X 的概率密度为) 1(1 )(2 x x f X += π,求随机变量 31X Y -=的概率密度函数。 ()()( )( ) ()() ( ) ()()()() ()()()()( )() ()() 分 分 解:10111311311315)1(111)1(16 2 3 2 2 33 3 3 3y y y f y y y f dy y dF y f y F y X y X y X y Y y F X X Y Y X Y -+-= --=----== ∴ --=-

【期末复习】大学概率论与数理统计期末考试试卷 答案

20**~20**学年第一学期概率论与数理统计期末考试试卷(A 卷)答案 一.(本题满分8分) 某城市有汽车100000辆,牌照编号从00000到99999.一人进城,偶然遇到一辆车,求该车牌照号中含有数字8的概率. 解: 设事件{}8汽车牌照号中含有数字=A ,所求概率为()A P .…………….2分 ()()40951.010 91155 =-=-=A P A P .…………….6分 二.(本题满分8分) 设随机事件,,满足:()()()41===C P B P A P ,()0=AB P ,()()16 1==BC P AC P .求随机事件,,都不发生的概率. 解: 由于AB ABC ?,所以由概率的非负性以及题设,得()()00=≤≤AB P ABC P ,因此有 ()0=ABC P .…………….2分 所求概率为() C B A P .注意到C B A C B A ??=,因此有…………….2分 ()()C B A P C B A P ??-=1…………….2分 ()()()()()()()ABC P BC P AC P AB P C P B P A P -+++---=1 8 3 016116104141411=-+++--- =.…………….2分 三.(本题满分8分) 某人向同一目标进行独立重复射击,每次射击时命中目标的概率均为,()10<

概率论与数理统计-朱开永--同济大学出版社习题一答案

习 题 一 1.下列随机试验各包含几个基本事件? (1)将有记号b a ,的两只球随机放入编号为Ⅰ,Ⅱ,Ⅲ 的盒子里(每个盒子可容纳两个球) 解:用乘法原理,三个盒子编号为Ⅰ,Ⅱ,Ⅲ看作不动物,。两个球看作是可动物,一个 一个地放入盒中;a 球可放入的任一个,其放法有 313=C 种,b 球也可放入三个盒子的 任一个,其放法有313=C 种,由乘法原理知:这件事共有的方法数为11339C C ?=种。 (2)观察三粒不同种子的发芽情况。 解:用乘法原理,三粒种子,每一粒种子按发芽与否是两种不同情况(方法)。三粒种子发芽共有81 21212=??C C C 种不同情况。 (3)从五人中任选两名参加某项活动。 解:从五人中任选两名参加某项活动,可不考虑任选的两人的次序, 所以此试验的基本事件个数 1025==C n 。 (4)某人参加一次考试,观察得分(按百分制定分)情况。 解:此随机试验是把从0到100 任一种分看作一个基本事件,101=∴n 。 (5)将c b a ,,三只球装入三只盒子中,使每只盒子各装一只球。 解:可用乘法原理:三只盒子视为不动物,可编号Ⅰ,Ⅱ,Ⅲ,三只球可视为可动物,一 个一个放入盒子内(按要求)。a 球可放入三个盒子中的任一个有313=C 种方法。b 球因 为试验要求每只盒子只装一个球,所以a 球放入的盒子不能再放入b 球,b 球只能放入其余(无a 球 的盒子)两个中任一个,其放法有21 2=C 个。c 只能放入剩下的空盒中,其放法只有一个。三个球任放入三个盒中保证每个盒只有一个球,完成这件事共有方法为 611213=??C C 种。 2. 事件A 表示“五件产品中至少有一件不合格品”,事件B 表示“五件产品都是合格品”,则,A B AB U 各表示什么事件?B A 、之间有什么关系? 解: 设k A =“五件中有k 件是不合格品” =B “五件都是合格品”。此随机试验E 的样 本空间可以写成:{}12345,,,,,S A A A A A B = 而 12345A A A A A A =U U U U ,A B S ∴=U φ=AB ,A 与B 是互为对立事件。 3. 随机抽验三件产品,设A 表示“三件中至少有一件是废品”,设B 表示“三件中至少有两件是废品”,C 表示“三件都是正品”,问 ,,,,A B C A B AC U 各表示什么事件?

北京邮电大学概率论期末考试试卷及答案

北京邮电大学概率论期末考试试卷及答案

第1章概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A:出现奇数点,则 A= ;B:数点大于2,则B= . (2) 一枚硬币连丢2次, A:第一次出现正面,则A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A、B、C为三事件,用A、B、C的运算关 系表示下列各事件: (1)A、B、C都不发生表示为: .(2)A 与B都发生,而C不发生表示为: . (3)A与B都不发生,而C发生表示为: .(4)A、B、C中最多二个发生表示为: . (5)A、B、C中至少二个发生表示为: .(6)A、B、C中不多于一个发生表示为: .

2. 设}4 B =x ≤ x ≤ A S:则 x x = x < 3 1: }, { 2: { }, ≤ = {≤< 5 0: (1)= A,(2) ?B = AB,(3)=B A, (4)B A?= ,(5)B A= 。 §1 .3 概率的定义和性质 1.已知6.0 A P ?B = P A B P,则 ( ,5.0 ( ) ) ,8.0 (= ) = (1) =) (AB P, (2)() P)= , (B A (3)) P?= . (B A 2. 已知, 3.0 P A P则 =AB ( (= ) ,7.0 ) P= . A ) (B §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是。 2. 已知,2/1 A P =B A P则 = A P B | ( | ) ,3/1 ) ) ,4/1 ( (=

概率统计期末考试试题附答案

中国计量学院2011 ~ 2012 学年第 1 学期 《 概率论与数理统计(A) 》课程考试试卷B 开课二级学院: 理学院 ,考试时间: 2011 年 12_月26 日 14 时 考试形式:闭卷√、开卷□,允许带 计算器 入场 考生姓名: 学号: 专业: 班级: 1.某人射击时,中靶的概率为4 3 ,若射击直到中靶为止,则射击次数为3的概率为( ). (A) 43412?)( (B) 343)( (C) 41432?)( (D) 34 1)( 2.n 个随机变量),,3,2,1(n i X i =相互独立且具有相同的分布并且a X E i =)(,b X Var i =)(,则这些随机变量的算术平均值∑= =n i i X n X 1 1的数学期望和方差分别为( ). (A ) a ,2n b (B )a ,n b (C)a ,n b 2 (D )n a ,b 3.若100张奖券中有5张中奖,100个人分别抽取1张,则第100个人能中奖的概率为( ). (A) 01.0 (B) 03.0 (C) 05.0 (D) 0 4. 设 )(),(21x F x F 为两个分布函数,其相应的概率密度)(),(21x f x f 是连续函数,则必为概率密度的是( ). (A) )()(21x f x f (B))()(212x F x f (C))()(21x F x f (D) )()()()(1221x F x f x F x f + 5.已知随机变量X 的概率密度函数为?????≤>=-0,00 ,)(22 22x x e a x x f a x ,则随机变量X Y 1 = 的期望 =)(Y E ( ).

同济大学概率统计试卷

概率统计试卷二 一、(10分)已知随机变量X 服从参数为1的泊松分布,记事件{}2,X A =≥ {}1,X B =<求()()() ,,.P P P A B A -B B A 二、(10分)对以往数据分析结果表明,当机器运转正常时,产品的合格率为90%;而当机器发生故障时其合格率为30%,机器开动时,机器运转正常的概率为75%,试求已知某日首件产品是合格品时,机器运转正常的概率。 三、(12分)设(X ,Y )为二维离散型随机变量,X ,Y 的边缘概率函数分别为 且()01,P XY ==试求: (1)(X ,Y )的联合概率函数;(2)X ,Y 是否相互独立?为什么? (3)X ,Y 是否相关?为什么? 四、(14分)设(X ,Y )的联合密度函数为()()22,0,0,0, x y e x y f x y -+?>>?=???其余, 试求:(1)()X 1,Y 2;P <> (2)()X Y 1.P +< 五、(12分)假设一条生产流水线在一天内发生故障的概率为0.1,流水线发生故障时全天停止工作,若一周5个工作日无故障这条流水线可产生利润20万元,一周内发生一次故障时,仍可获利润6万元,发生二次或二次以上故障就要亏损2万元,求一周内这条流水线所产生利润的期望值。 六、(12分)假设生产线上组装每件成品花费的时间服从指数分布。统计资料表明:该生产线每件成品的平均组装时间10分钟。假设各件产品的组装时间相互独立。试求在15小时至20小时之间在该生产线组装完成100件成品的概率。(要用中心极限定理) 七、(16分)设()1n X ,,X 是取自总体X 的一个样本,X 服从区间[],1θ上的均匀分布, 其中1,θθ<未知,求(1)*θθ的矩估计; (2)θθ的极大似然估计; (3)试问:θ是否为θ的无偏估计?若不是,试将θ修正成θ的一个无偏估计。 八、(14分)已知某种食品的袋重(单位:千克)服从正态分布() 2N μσ,,其中

深圳大学的概率论与数理统计试题(含答案)

期末考试试卷参考解答及评分标准 开/闭卷 闭卷 A/B 卷 A 2219002801- 课程编号 2219002811 课程名称 概率论与数理统计 _______________ 学分 J ________ 第一部分基本题 一、选择题(共6小题,每小题5分,满分30分。在每小题给出的四个选项中,只有一 个是符合题目要求的,把所选项前的字母填在题后的括号内) (每道选择题选对满分,选 错0分) 2?假设事件A 与事件B 互为对立,则事件A B( ) (A)是不可能事件 (B)是可能事件 (C) 发生的概率为1 (D)是必然事件 答:选A ,这是因为对立事件的积事件是不可能事件。 3. 已知随机变量X,Y 相互独立,且都服从标准正态分布,则 X 2 + Y 2服从( ) (A)自由度为1的2分布 (B)自由度为2的2分布 (C)自由度为1的F 分布 (D)自由度为2的F 分布 答:选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为 2分布。 4. 已知随机变量X,Y 相互独立,X~N(2,4),Y~N(-2,1),则( (A) X+Y~P ⑷ (B) X+Y~U(2,4) (C) X+Y~N(0,5) 答:选C ,因为相互独立的正态变量相加仍然服从正态分布, D(X+Y)=D(X)+D(Y)=4+1=5,所以有 X+Y~N(0,5)。 5. 样本(X 1,X 2,X 3)取自总体 X ,E(X)= < D(X)=-2,则有( ) 答:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。 6. 随机变量 X 服从在区间(2,5)上的均匀分布,贝U X 的数学期望E(X)的值为( ) (A) 2 (B) 3 (C) 3.5 (D) 4 答:选C ,因为在(a,b)区间上的均匀分布的数学期望为(a+b)/2。 二、填空题(共6小题,每小题5分,满分30分。把答案填在题中横线上) 1. 事件表达式A B 的意思是( ) (A) 事件A 与事件B 同时发生 (C)事件B 发生但事件A 不发生 答:选D , (B) 事件A 发生但事件B 不发生 (D)事件A 与事件B 至少有一件发生 ) (D) X+Y~N(0,3) 而 E(X+Y)=E(X)+E(Y)=2-2=0, (A) X 1+X 2+X 3是」的无偏估计 Y + V + V (B) X1 X2 入3 是邛勺无偏估计 3 (C) X ;是二2 的无偏估计 (D) .宁严2 是■-2的无偏估计

《概率论》期末考试试题及答案

07级《概率论》期末考试试题B 卷及答案 一、 填空题(满分15分): 1.一部五卷的文集,按任意次序放到书架上,则(1)“第一卷出现在旁边”的概率为 5 2 。 5 2 !5!422=?= p 2.设,)(,)(,)(r AB P q B P p A P ===则=)(B A P r p - 。性质 r p AB P A P AB A P B A P B A P -=-=-=-=)()()][)()( 3.设随机变量ξ的密度函数为() 0 3,其它 ?? ?>=-x ce x x ?则c= 3 . 33 )(130 =?= ==-+∞ +∞ ∞ -? ? c c dx e c dx x x ? 4. 设ξ、η为随机变量,且D (ξ+η)=7,D (ξ)=4,D (η)=1, 则Cov(ξ,η)= 1 . 1 21 472)(),cov() ,cov(2)(=--=--+=++=+ηξηξηξηξηξηξD D D D D D 5.设随机变量ξ服从两点分布) 1 ,1(B ,其分布律为 则ξ的特征函数为= )(t f ξit e 3 132+。 二、 单项选择题(满分15分): 1.设.A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示“三个事件恰好一个发生”为( ②. ). ① C B A ??. ② C B A C B A C B A ++ ③ ABC -Ω. ④ C B A C B A C B A C B A +++ 2.设随机变量ξ的分布函数为

00)(2 2 <≥?? ???+=-x x B Ae x F x 则其中常数为(① )。 ①A=-1,B=1 ②A=1,B=-1 ③ A=1,B=1 ④ A=-1,B =-1 B A B e A x F B B e A x F x x x x x x +=+===+==-→→- +∞ →+∞ →++2 2 22lim )(lim 0lim )(lim 1 解得1,1=-=B A 3设随机变量ξ的分布列为.,2,1,2 1 )2)1(( ==-=k k P k k k ξ则ξE ( ④ ) ①等于1. ② 等于2ln ③等于2ln - ④ 不存在 445111 =?==∑ ∞ =C C C i i ∑∑+∞=+∞ =+=?-11 1 1 4545) 1(i i i i i i i ,由调和级数是发散的知,EX 不存在 4.对于任意两个随机变量ξ与η,下面(④ )说法与0),cov(=ηξ不等价。 ①相关系数0,=Y X ρ ② )()()(ηξηξD D D +=+ ③ ηξξηE E E ?=)( ④ ξ 与η相互独立 5.设随机变量ξ服从二项分布)2 1 ,4(B ,由车贝晓夫不等式有 ( ② ). ①.31 )32(≤ ≥-ξP ②.91 )32(≤≥-ξP ③ 3 1 )32(≥<-ξP . ④ 9 1)32(≥ <-ξP 因为9 1 )32(,1,2≤≥-==ξξξP D E 三、(满分20分) (1)两人相约7点到8点在某地会面,试求一人要等另一人半小时以上的概率。 解:

概率论与数理统计期末考试题及答案

模拟试题 填空题(每空3分,共45 分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B| A) = 0.85,则P(A| B)= P( A U B)= 1 2、设事件A与B独立,A与B都不发生的概率为—,A发生且B不发生的概率与 B 9 发生且A不发生的概率相等,则A发生的概率为:_______________________ ; 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 I Ae x, X c 0 4、已知随机变量X的密度函数为:W(x) = {1/ 4, 0 < X V 2,则常数A= 0, x>2

分布函数F(x)= ,概率P{—0.51} =5/ 9,贝U p = 若X与丫独立,则Z=max(X,Y)的分布律: 6、设X ~ B(200,0.01), Y - P(4),且X 与丫相互独立,则D(2X-3Y)= COV(2X-3Y , X)= 7、设X1,X2,III,X5是总体X ~ N(0,1)的简单随机样本,则当k = 时, 丫"⑶; 8、设总体X~U(0,巧日:>0为未知参数,X i,X2,lil,X n为其样本, -1n X =—S X i为 n i 二 样本均值,则日的矩估计量为: 9、设样本X i,X2,川,X9来自正态总体N(a,1.44),计算得样本观察值X = 10,求参 数a的置信度为95%的置信区间: 计算题(35分) 1、(12分)设连续型随机变量X的密度函数为:

同济大学概率论与数理统计 复习试卷

同济大学概率论与数理统计 复习试卷 1、对于任意二个随机事件B A ,,其中1)(,0)(≠≠A P A P ,则下列选项中必定成立的是( ) (A ) ()()A B P A B P = 是B A ,独立的充分必要条件; (B) ()()A B P A B P = 是B A ,独立的充分条件非必要条件; (C) ()()A B P A B P = 是B A ,独立的必要条件非充分条件; (D) ()()A B P A B P = 是B A ,独立的既非充分条件也非必要条件. 2、 设一批产品中一、二、三等品各占60%、30%、10%,现从中随机地取出一件,结果发现取到的这件不是三等品,在此条件下取到的这件产品是一等品的概率为 ,在此条件下取到的这件产品是二等品的概率为 . 3、 对任意常数)(,,b a b a <,已知随机变量X 满足 (),()P X a P X b αβ≤=≥=. 记()b X a P p ≤<=,则下列选项中必定成立的是 ( ) (A))(1βα+-=p ; (B) )(1βα+-≥p ; (C) )(1βα+-≠p ; (D) )(1βα+-≤p . 4、 设随机变量X 的概率密度为 ???<<=其它,010,5)(4x x x f ,则使得)()(a X P a X P <=>成立的常数=a ,X Y ln 2-=的密度函数

为=)(y f Y . 5、如果22,,EY EX ∞<<∞且X 与Y 满足()(),D X Y D X Y +=-则必有 ( ) ()A X 与Y 独立; ()B X 与Y 不相关; ()()0C D Y =; ()()()0.D D X D Y = 6、 设12,,n X X X 相互独立且服从相同的分布, ∑====n i i X n X X D X E 1 111,3)(,1)(,则由切比雪夫不等式可得() ≤≥-11X P ,∑=n i i X n 121依概率收敛于 . 7、 设521,X X X 独立且服从相同的分布, ()1,0~1N X .()()2 542321X X X X X c Y +++=.当常数c = 时,Y 服从自由度为 的F 分布. 8、一个男子在某城市的一条街道遭到背后袭击和抢劫,他断言凶犯是黑人。然而,当调查这一案件的警察在可比较的光照条件下多次重新展现现场情况时,发现受害者正确识别袭击者肤色的概率只有80%,假定凶犯是本地人,而在这个城市人口中90%是白人,10%是黑人,且假定白人和黑人的犯罪率相同,

相关文档
相关文档 最新文档