文档库 最新最全的文档下载
当前位置:文档库 › (完整版)量子力学总结

(完整版)量子力学总结

(完整版)量子力学总结
(完整版)量子力学总结

量子力学总结

第一部分 量子力学基础(概念)

量子概念

所谓“量子”英文的解释为:a fixed amount (一份份、不连续),即量子力学是用不连续物理量来描述微观粒子在微观尺度下运动的力学,量子力学的特征简单的说就是不连续性。

描述对象:微观粒子 微观特征量

以原子中电子的特征量为例估算如下: ○1“精细结构常数”(电磁作用常数),

1371~

10297.73

2-?==c e ηα

2原子的电子能级 eV

a e me c e mc E 27~~02242

2

2==???

? ??ηη 即:数10eV 数量级 ○

3原子尺寸:玻尔半径: 53.0~2

2

0me

a η=?,一般原子的半径1?

○4速率:26

~~ 2.210/137

e c V c m s c ?-?h ○5时间:原子中外层电子沿玻尔轨道的“运行”周期

160

0105.1~2~-?v a t π

角频率160

102.4~~?a v c ω, 即每秒绕轨道转1016圈

(电影胶片21张/S ,日光灯频率50次/S )

○6角动量:ηηη=??2

2

20~~e

m me mv a J

基本概念: 1、光电效应 2、康普顿效应

3、原子结构的波尔理论

波尔2个假设: 定态轨道 定态跃迁

4、物质波及德布洛意假设(德布洛意关系)

“任何物体的运动伴随着波,而且不可能将物质的运动和波的传播分开”,认为物体若以大小为P 的动量运动时,则伴随有波长为λ的波动。

P

h

=λ,h 为普朗克常数

同时满足关系ωη==hv E

因为任何物质的运动都伴随这种波动,所以称这种波动为物质波(或德布罗意波)。

称P

h

h E

v ==λ 德布罗意波关系

例题:设一个粒子的质量与人的质量相当,约为50kg ,并以12秒的百米速度作直线运动,求粒子相应的德布罗意波长。说明其物理意义。 答:动量v p μ=

波长m v h p h 3634101.1)1250/(1063.6)/(/--?=??===μλ

晶体的晶格常数约为10-10m ,所以,题中的粒子对应的德布罗意波长<<晶体的晶格常数,因此,无法观测到衍射现象。

5、波粒二象性 (1)电子衍射实验

1926年戴维逊(C ·J ·Davisson )和革末(L ·H ·Gevmer )第一个观察到了电子在镍单晶表面的衍射现象,证实了电子的波动性,求出电子的波长λ

0.167nm

2

k

h h

p m E

λ===

汤姆逊(G·P·Thomson)用高速电子穿过金属衍进行实验,也获得了电子衍射的图样。如错误!未找到引用源。是电子在Au多晶的衍射图样。

(2)电子干涉实验

干涉实验说明:

◆大量电子的一次性行为与单个电子的多次性行

为表现出同样的波动性。

◆干涉图像的出现体现了微观粒子的共同特性,它

并不是由微观粒子相互之间作用产生的,而是微

观粒子其个性的集体表现。

结论:

◆干涉、衍射现象是波动本质的体现,波动是无条

件的,干涉、衍射现象的观测是有条件的。

◆干涉图像的出现体现了微观粒子的共同特性,它

并不是由微观粒子相互之间作用产生的,而是微

观粒子其个性的集体表现。

◆粒子的波粒二象性,从量子观点看,所谓粒子性

是它具有质量、能量、动量等粒子属性。所谓波

动性是指其具有频率、波长,在一定条件下,可

观察出干涉和衍射,波和粒子性是物质同时具有

的两个属性(但是不能同时观测),如同硬币的

两面。

备注:宏观粒子(如子弹)仍然具有波动的属性(“任何物体的运动伴随着波,而且不可能将物质的运动和波的传播分开”,认为物体若以大小为P的动量

运动时,则伴随有波长为λ的波动),但是,观察不到干涉现象。

6、波函数及波函数的统计诠释

(1)波函数:表示一个体系的粒子状态,即用粒子坐标和时间为变量的波函数作为体系粒子状态全面的数学描述。

(2)几率密度|ψ|2:解释为给定时间,在一定空间间隔内发生一个粒子的几率

(或在一定空间间隔内的几率密度) (3)几率|ψ|2d τ:空间d τ体积内的几率

备注:波函数的统计诠释:

|E|2解释为“光子密度的几率量度”

首先考察光的双缝干涉图样。由波动图像,屏幕上某点的强度I 由下式给出

20||I c ε=E (2-13)

式中:E 为该点的电场强度;ε0为真空介电常数;c 为光速。另一方面,由光子图像,屏幕上一点的强度为

I hvN =

式中:hv 是一个光子的能量;N 为打在屏幕上该点的光子通量(单位时间通过单位面积的光子数),虽然单个光子到达屏幕什么地方无法预测,但亮带光子到达的几率大,暗带光子到达的几率小,在屏幕上一点的光子通量N ,便是该点附近发现光子几率的一个量度。因为

20||I c hvN ε==E ,所以2

||N ∝E

上式说明,在某处发现一个光子的几率与光波的电场强度的平方成正比。这就是爱因斯坦早在1907年对光辐射的量子统计解释。 |ψ|2解释为给定时间,在一定空间间隔内发生一个粒子的几率

由于电子也产生类似的干涉条纹,几率大的地方,出现的电子多,形成明条波;在几率小的地方,出现的电子少,形成暗条纹。与爱因斯坦把|E|2解释为“光子密度的几率量度”相似,玻恩把|ψ|2解释为给定时间,在一定空间间隔内发生一个粒子的几率。玻恩指出“对应空间的一个状态,就有一个由伴随这状态的德布罗意波确定的几率”。玻恩由此获得了1954年诺贝尔物理奖。

(4)微观物体任意运动状态(任意态)的描述(非定态波函数)及普遍物理诠释

按照态迭加原理,非征态ψ可以表示成本征态的迭加:

n n

C ψψ=∑

2

||n

C ∑代表总的几率,可见2

||n C 就是ψ态中本

征态ψn 的相对强度(成分),也就是ψ态部分地处于ψn 的相对几率。

2

||n C =在态ψ中力学量F 的取值λn 的几率,这就

是对波函数ψ的普遍物理诠释。

备注:

可以认为ψ是部分地处于ψ1,部分地处于ψ2,因此F 的取值可以是λ1,也可以是λ2……总之,只要n n C ψψ=∑中存在ψn 项,相对应的本征值λn 就是F 的一个取值。 由(4-22)式C n 的公式知

*

n n C d ψψτ=?

对(4-21)取共轭后:***n n C ψψ=∑

(4-23)(4-21)与(4-23)相乘,再积分

*****2

||n n m m n m nm n n n n

m

n

m

n

n

d d C C C C C C C ψψττψψδ====∑∑∑∑∑∑??

(本征态的正交归一性*

n m nm d ψψτδ=?)

如果ψ是归一化的,即*1d ψψτ=?,则

2||1n

C

=∑ (4-24)

如果ψ没有归一化,则

2

*

||1n n

C d ψψτ

=∑

? (4-25)

由(4-24)式和(4-25)式得出2||n C ∑代表总的几率,可见2

||n C 就是ψ态中本征态ψn 的相对强度(成分),也就是ψ态部分地处于ψn 的相对几率。

2||n C =在态ψ中力学量F 的取值λn 的几率,这就是对波函数ψ的

普遍物理诠释。

7、波函数的性质

波函数及其一次微商在全部分布空间中都必须有限,单值、连续的,平方可积。

◆ “有限”的要求是从波函数的几率诠释产生出来的,因为,ψ*ψ代表几率,而几率总是有限的。 ◆ “单值”是从波函数作为状态的全面 数学描述提出的要求,如果波函数“连续”的要求是多值函数,状态性质就无法确定了。

◆ “连续”可以从定态一维薛定谔方式:

ψψψE x V dx

d m =+-)(2222η中直接得出,则上式变为:

ψψ])([2222E x V m

dx d -=η,积分一次?

-=dx E V m

dx d ψψ)(22η

不管被积函数(V-E )ψ是否连续,(有时V(x)不连续,在个别点有跃变),只要它是有限的,则其积分

总是连续的,因此dx d ψ

是连续的。

◆ “平方可积”:为了计算方便,常引入一些不是平方可积的波函数(相当于粒子运动范围实际上没有限制,粒子可以达无限远处),这时只要作合理数学处理,仍可用

?

=有限值

τψd 2||,归一化几率。

8、波函数的叠加原理

从经典物理中波的概念知,波具有干涉、衍射现象,满足叠加原理,微观粒子具有波粒二象性,即具有波动的特性,因此,微观粒子的波函数也同样具有叠加性,称之为态叠加原理。叠迭加性表现在:

任何一个态(波函数ψ)总可以看成是由其他某些态(ψ1,ψ2……)线性叠加而成:

ψ=C 1ψ1+C 2ψ2+…… C 1,C 2……为复数

如果波函数ψ1,ψ2,…是可以实现的态时,则它们的线性叠加式

∑=

n

n

n C ψ

ψ总是一个可以实现的态。

当粒子处于叠加态ψ时,可以认为它是部分地处于ψ1态,部分地处于ψ2态,……部分地处于ψn 态.

9、几率密度与几率流密度 几率密度w :

2

),(),(t r t r w ψ= (2-17)

几率流密度)(2**

ψψψψ?-?-

=m

i j η 0=??+??

j w t

(2-22)

几率连续性方程,其积分形式为

???

?-=??

S

V

dS

j wd t s

τ (2-23)

j 的物理意义:(几率流密度)

(2-23)式中:

左边代表在封闭区域V s 中找到粒子的总几率(或

粒子数)在单位时间内的增量,

右边(注意符号!)内通过则应代表单位时间V s

的封闭表面S 而流入V s 的内的几率(粒子数),所以j 具有几率流(粒子流)密度的意义,是一个矢量。 这个表达式的物理意义是十分清楚的,即单位时间内空间某一区域V s 中增加的几率等于该区域边界流入的几率。

9、定态(几率)、束缚态(波函数为零)、本征态 10、本征方程、本征函数、本征值 11、算符的对易性

12、常用力学量算符(能量μE

i t

?=?h 、哈密顿算符

μ22()2H V r m =-?+h 、动量μP i →-?h 、动能μ222T m →?h 、势能μ()()V

r V r →、坐标r r →$、角动量、角动量z 轴分量),,,

13、力学量算符的性质(线性、厄米) 14、线性算符的性质 15、厄米算符的性质

(1)、厄米量算符的本征值为实数

(2)、厄米量算符不同本征值对应的本征函数正交,归一。

(3)、厄米算符在一定条件下,厄米算符的本征函数组成完备系。

13、14、15结论:

(1)、力学量算符的本征值为实数

(2)、力学量算符不同本征值对应的本征函数正交,归一。

(3)、在一定条件下,力学量算符的本征函数组成完备系。

16、隧道效益、塞曼效益、史塔克效益

17、微扰的含义

18、全同粒子、费米子、波色子、洪特法则、泡利不相容原理

19、海森堡测不准关系

(两个物理量同时测量测不准) 20、两个物理量同时测准的条件

第二部 基本公式

1、 薛定谔方程

量子波动方程,称薛定谔方程。

三维情况:222

2

222x y z ????=++??? 称拉普拉斯算符

定义: 22?()2h H V r m

=-?+ 称为哈密顿算符 三维薛定谔方程:22

[(,)]2h ih V r t t m ψψ?=-?+?

?ih H t ψψ?=? 2、定态薛定谔方程

在势能项V 中不含时间t 时,哈密顿算符?H

也不显含时间。将ψ(r,t)中与时间有关的因子分离出来,令

(,)()()r t r f t ψψ=

分离变量后得:/()iEt f t ce -=h

c 为常数。

因此,薛定谔方程的解可以表示为

/(,)()iEt r t r e

ψψ-=h

(2-14)

波函数的空间部分ψ(r)满足方程:

22?()[()]2h H r V r E m

ψψψ=-?+= (2-15) 粒子处于该状态时能量为E ,E 与r 、t 无关是个常量,取确定值,所以由式(2-14)表示的状态叫(能量)定态,这种形式的波函数叫定态波函数。方程(2-15)又叫定态薛定谔方程。

定态波函数/(,)()iEt r t r e ψψ-=h

特点(判断依据):几率密度*22

|||()|W r ψψψψ===与

时间无关(驻波)。

而含时间的薛定谔方程(2-12)的一般解,可以表示为这些定态波函数的线性叠加:

/(,)()x

iE t n n n

r t c r e ψψ-=∑h

(2-16a )

式中cn 为常数。

3、一维无限深势阱势的解(能量本征方程、能量定态)

4、谐振子的能量本征方程及其解(能量定态)

5、动量本征方程及其解(动量定态)

6、角动量本征方程及其解(角动量定态)

7、中心力场问题的解(三维)

8、算符的对易性

一般来说,若算符μA 和μB 满足μμμμAB BA =,则称为“可对易”,类似乘法的互易性;如果μμμμAB BA

≠,则称为μA 和μB “不可对易”, 定义μμμμμμ[]A B AB BA ?≡-对易关系式 当μμ[]0A B ?=时,称对易式 当μμ[]0A B

?≠时,称不对易式 9、动量与坐标、能量与时间的测不准关系 10、任意态的波函数、其所含本征态系数及几率表达公式

设力学量?F

的正交归一本征函数系为{ψn },由于其完备性,任意一个波函数ψ(r)都可以展开为

()()n n r c r ψψ=∑

(4-21)

展开式系数c n 与位置矢r 无关,以*

m ψ乘(4-21)式两端,并对全空间积分两端,并对全空间积分,考虑到正交归一条件即得

***

()()()()()()m m n n n m n n mn m n

n

n

r r d r c r d c r r d c c ψψτψψτψψτδ====∑∑∑???

将m n c c →

可得展开式系数C n 的公式

*

()()n n c r r d ψψτ=? (4-22)

对(4-21)取共轭后:*

*

*n

n

C ψψ

=

∑ (4-23)

(4-21)与(4-23)相乘,再积分

*****2

||n n m m n m nm n n n n

m

n

m

n

n

d d C C C C C C C ψψττψψδ====∑∑∑∑∑∑??

(本征态的正交归一性

*

n m nm d ψψτδ=?)

如果ψ是归一化的,即

*

1d ψψτ=?,则

2||1n

C

=∑

(4-24)

如果ψ没有归一化,则

2

*

||1n n

C d ψψτ

=∑

?

(4-25)

11、任意态物理量值的平均值公式

μμμ2*

*****||n n n n n n n n n n n n n

n

n n

n

F C C C C d d C d C F d F C d F λλλψψτ

τψλψτψψτψψτψψ

=======∑∑∑?∑?∑?∑??

上式为平均值公式,即

μ2*||n n F C F d λψψτ==?

(4-29)

据此公式知,只要知道波函数ψ,就可以直接计算任何力学量F 的平均值,而不需要预先求出F 的全部本征值(进而求加权平均)和本征函数。

若ψ没有归一化,则

2

2||||

n

n n

n

C F C λ=

∑∑ (4-30)

**

F d F d ψψτ

ψψτ

=

??

(4-31)

第三部分 习题

1、求最大几率半径

3-8 第一激发态谐振子

[解] 由22

/2

1()x xe α

ψγ-=

几率密度22

2221()||x

w x x e α

ψ-=

令x ξα=,则

2

2()()w x x e ξξ-→=

'''

2

0dw

d ξ=得

}

22

2

220(1)e e ξξ

ξξξ----=

-

21ξ=,即221x α=

1/(x α

∴=±=

6-3

0/r a ψ-=

○1**2

r r d r r drd ψψτψψΩ==???

02/30234000

14!3

422()r a r e dr a a a a ππ∞

-=?=?=? ○2022222/33200000

441!2()

r a s s s s e e e e re dr r a a a a ππ∞--?-==-?=-? ○

3r r dr →+球索内出现电子的概率 0

2/*2230

4()4r a w r dr r r e dr a πψψ-==

几率密度

2/23

4()r a w r r e a -∴=

0002/2/2/2330000

428(2)(1)0r a r a r a dw r

re r e re dr a a a a ---=-=-= 12300,,r r r a ∴==∞=

进一步讨论可知,只有r =a 0才是最大值处,所以最可几半径r =a 。

2、定态方程(能量本征态方程)求解

3-7 一维势阱

解:,()0,||x a x a

V x x a ∞<->?=??

或…

定态方程为

2222d E dx

ψ

ψμ-=h ()a x a -剟 (1)

0ψ=

()x a x a <->或 (2)

令222E

μα=

h

,E>0,所以α为实数,方程(1)化为 22

2

0d dx ψαψ+=

(3) 其通解为:()sin cos x A x B x ψαα=+

(4) 由连续条件

:0sin cos x a A a B a αα=-=-+ (5) :0sin cos x a A a B a αα==+ (6)

(5)+(6) 2cos 0B a α=

若B =0,则A ≠0,sin αa =0 2a n π=

22

222

2

22

2

22n E n n E a

a μππαμ==?

=h h

(7)

sin

n n A x a

π

ψ=

(8)

(6)-(5)得2sin 0A x α= 若A =0,则B ≠0,cos αa =0

所以 1

(21)()22a n n παπ=+?=+

2222

22

1()222n n n E a παμμ+==?h h (9)

1

()2()cos n n x

x B a

πψ+= (10)

(7)、(9)两式可改写为

222

2(2)8n n E a πμ=h

(7')

222

2

(21)8n n E a πμ+=h

(9')

(8)、(10)也可改写为

2sin

2n n A x a π

ψ=

(8') (21)

cos 2n n B x a

ψ+=

(9') 将(9')~(10')四式合之有

2222

sin ,||()

20,||cos

,||()20,||(1,2,3,)

8n n n n x A x a n a x a n x B x a n a x a

n E n a πψπψπμ??

??=?

??>???

????=????>???=

=????

h L 为偶数为奇数??

归一化常数A B =[注]两个ψn

可合为:()(||)2n n x a x a a

πψ=

+?

3-10

解由E 满足0

()x

I Ae x a βψ=<-

sin()II B x ψαδ=+ ()x

III Ce x a βψ-=>

当ψ及ψ'的连续性条件有

://I I II

II x a ψψψψ''=-=,cos()

sin()

a

a

Ae B a Ae B a βββααδαδ---+=

-+

即 ctg()a βαδα

-+=

(1)

://I II III III x a ψψψψ''==,cos()sin()a

a

B a Ce B a Ce ββααδβαδ--+-=+

即 ctg()a β

αδα

-+=

(2)

由(1)、(2)得

11ctg ()a n β

αδπα

--+=+

(3)

1122ctg (

)ctg ()a n n β

βαδππα

α

---+=+=-

(4)

(4)-(3)得:

-1212()2ctg ()a n n β

απα

=--

令 21n n n =-(为整数),则有

-1ctg ()2

a n π

βαα

=?-

(5)

但1ctg ()sin βα

--=

而222200[22()]/2/E V E V αβμμμ+=+-=h h 故(5)式可化为:

1sin 2n a πα-=

- (6)

采用数值解法或作图法可求得不同n 值的αn

值,由α=h 进而求出E n 。 3-11 不对称力场中的粒子

解:1

2

100()V x V x x

a V V x a

=??<>?剟

束缚态要求2E V <(但0E >) 与上题解法相类似 令 22212/,

2()/E V E αμβμ==-h h

2222()/V E γμ=-h ,α、β、γ均为实数

分别求解定态方程,利用x →±∞,ψ有限条件有

(0)

sin()(0)()x I II x

III

Ae x B x x a Ce x a βγψψαδψ-?=

=+??=>?剟 由x =0,a 时,ψ、ψ'的连续性得

ctg β

δα

=

(1) ctg(2)γ

αδα

-+=

(2)

由(1)

sin δ=

=

1sin δ-??

=

(3)

由(2)

sin()a αδ+=

=

(4)

所以

1sin a n αδπ-??

+=-

1

1

sin sin a n απ--????=--

3-12 平面转子

解:平面转子作一维运动,绕z 轴旋转

由 22

2

?()()()2d H E I d ψ?ψ?ψ??=-

=h (1)

令22/IE α=h ,(α为实数),方程(1)可化为

222

()

()0d d ψ?αψ??

+= (2)

方程的解为:

()i i Ae Be α?α?ψ?-=+

(3)

由周期条件(2)()ψ?πψ?+=

得 21i e απ±=

22m αππ∴?=?,

(0,1,2,3,)m m α∴==±±±L

(4)

(3)中A 项表示逆时针转动,B 项表示顺时针转动,α=m 中,α可正可负,所以只需保留一项,

()im Ae ?ψ?=

(5) 能级 22

22

22m m E I I α==

h h

(6)

(0,1,2,3)m =±±±

3-13 范德瓦尔斯力

解:0

1,0

,(),0

x V x x a

V x V a x b x b

=?-??>?…剟

10V E -<<为束缚态。

分区求解定态方程可得:

量子力学知识点总结

量子力学期末复习完美总结 一、 填空题 1.玻尔-索末菲的量子化条件为: pdq nh =?,(n=1,2,3,....), 2.德布罗意关系为:h E h p k γωλ == = =; 。 3.用来解释光电效应的爱因斯坦公式为: 21 2 mV h A υ=-, 4.波函数的统计解释:()2 r t ψ ,代表t 时刻,粒子在 空间r 处单位体积中出现的概率,又称为概率密度。这 是量子力学的基本原理之一。波函数在某一时刻在空间的强度,即其振幅绝对值的平方与在这一点找到粒子的几率成正比,和粒子联系的波是概率波。 5.波函数的标准条件为:连续性,有限性,单值性 。 6. , 为单位矩阵,则算符 的本征值为: 1± 。 7.力学量算符应满足的两个性质是 实数性和正交完备性 。 8.厄密算符的本征函数具有: 正交性,它们可以组成正交归一性。即 ()m n mn d d λλφφτδφφτδλλ**''==-??或 。 9.设 为归一化的动量表象下的波函数,则 的物理意义为:表示在()r t ψ,所描写 的态中测量粒子动量所得结果在p p dp →+范围内的几率。 10. i ; ?x i L ; 0。 11.如两力学量算符 有共同本征函数完全系,则 _0__。 12.坐标和动量的测不准关系是: () () 2 2 2 4 x x p ??≥ 。 自由粒子体系,_动量_守恒;中心力场中运动的粒子__角动量__守恒 13.量子力学中的守恒量A 是指:?A 不显含时间而且与?H 对易,守恒量在一切状态中的平均值和概率分布都不随时间改变。 14.隧道效应是指:量子力学中粒子在能量E 小于势垒高度时仍能贯穿势垒的现象称为隧道效应。 15. 为氢原子的波函数, 的取值范围分别为:n=1,2,3,… ;l=0,1,…,n -1;m=-l,-l+1,…,0,1,…l 。 16.对氢原子,不考虑电子的自旋,能级的简并为: 2 n ,考虑自旋但不考虑自旋与轨道角动量的 耦合时,能级的简并度为 22n ,如再考虑自旋与轨道角动量的耦合,能级的简并度为 12+j 。 17.设体系的状态波函数为 ,如在该状态下测量 力学量 有确定的值 ,则力学量算符 与态矢量 的关系为:?F ψλψ =。 18.力学量算符 在态 下的平均值可写 为 的条件为:力学量算符的本征 值组成分立谱,并且()r ψ是归一化波函数。 19.希尔伯特空间:量子力学中Q 的本质函数有无限多 个,所以态矢量所在的空间是无限维的函数空间。 20.设粒子处于态 , 为 归一化波函数, 为球谐函数,则系数c 的取值为: 1 6 , 的可能值为: 13 , 本征值为 出现 的几率为: 1 2 。

量子力学作业习题

第一章量子力学作业习题 [1] 在宏观世界里,量子现象常常可以忽略.对下列诸情况,在数值上加以证明: ( l )长l=lm ,质量M=1kg 的单摆的零点振荡的振幅; ( 2 )质量M=5g ,以速度10cm/s 向一刚性障碍物(高5cm ,宽1cm )运动的子弹的透射率; ( 3 )质量M= 0.1kg ,以速度0.5m/s 运动的钢球被尺寸为1×1.5m2时的窗子所衍射. [2] 用h,e,c,m(电子质量), M (质子质量)表示下列每个量,给出粗略的数值估计: ( 1 )玻尔半径(cm ) ; ( 2 )氢原子结合能(eV ) ; ( 3 )玻尔磁子;( 4 )电子的康普顿波长(cm ) ; ( 5 ) 经典电子半径(cm ) ; ( 6 )电子静止能量(MeV ) ; ( 7 )质子静止能量( MeV ) ; ( 8 )精细结构常数;( 9 )典型的氢原子精细结构分裂 [3]导出、估计、猜测或背出下列数值,精确到一个数量级范围内, ( 1 )电子的汤姆逊截面;( 2 )氢原子的电离能;( 3 )氢原子中基态能级的超精细分裂能量;( 4 )37Li ( z=3 )核的磁偶极矩;( 5 )质子和中子质量差;( 6 )4He 核的束缚能;( 7 )最大稳定核的半径;( 8 )Π0 介子的寿命;( 9 )Π-介子的寿命;( 10 )自由中子的寿命. [4]指出下列实验中,哪些实验表明了辐射场的粒子性?哪些实验主要证明能量交换的量子性?哪些实验主要表明物质粒子的波动性?简述理由. ( 1 )光电效应;( 2 )黑体辐射谱;( 3 ) Franck – Hertz实验;( 4 ) Davisson -Ger - mer 实验;散射. [5]考虑如下实验:一束电子射向刻有A 、B 两缝的平板,板外是一装有检测器阵列的屏幕,利用检测器 能定出电子撞击屏幕的位置.在下列各种情形下,画出入射电子强度随屏幕位置变化的草图,给出简单解释. ( 1 ) A 缝开启,B缝关闭; ( 2 ) B 缝开启,A 缝关闭; ( 3 )两缝均开启. [6]验算三个系数数值:(1 2 ;(3)hc

量子力学知识点总结(精.选)

1光电效应:光照射到金属上,有电子从金属上逸出的现象。这种电子称之为光电子。 2光电效应有两个突出的特点:①存在临界频率ν0 :只有当光的频率大于一定值v 0 时,才有光电子发射出来。若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。②光电子的能量只与光的频率有关,与光的强度无关。光的强度只决定光电子数目的多少。 3爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= h ν的微粒形式出现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子 4康普顿效应:高频率的X 射线被轻元素如白蜡、石墨中的电子散射后出现的效应。 ⒕康普顿效应的实验规律:射光中,除了原来X 光的波长λ外,增加了一个新的波长为λ'的X 光,且λ' >λ;波长增量Δλ=λ-λ随散射角增大而增大 5戴维逊-革末实验证明了德布罗意波的存在 6波函数的物理意义:某时刻t 在空间某一点(x,y,z)波函数模的平方与该时刻t 该地点(x,y,z)附近单位体积内发现粒子的几率密度(通常称为几率)dw(x,y,z,t)成正比。按照这种解释,描写粒子的波是几率波 7波函数的归一化条件 1),,,( 2 ?∞=ψτd t z y x 8定态:微观体系处于具有确定的能量值的状态称为定态。定

态波函数:描述定态的波函数称为定态波函定态的性质:⑴由定态波函数给出的几率密度不随时间改变。⑵粒子几率流密度不随时间改变。⑶任何不显含时间变量的力学量的平均值不随时间改变 9算符: 作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。 10厄密算符的定义:如果算符 F ?满足下列等式() ? ?dx F dx F φψφψ**??=,则称F ?为厄密算符。式中ψ和φ为任意波函数,x 代表所有的变量,积分范围是所有变量变化的整个区域。 推论:量子力学中表示力学量的算符都是厄密算符。 11厄密算符的性质:厄密算符的本征值必是实数。厄密算符的属于不同本征值的两个本征函数相互正交。 12简并:对应于一个本征值有一个以上本征函数的情况。简并度:对应于同一个本征值的本征函数的数目。 13量子力学中力学量运动守恒定律形式是: 01=??????+??=H F i t F dt F d ?,?η 量子力学中的能量守恒定律形式是01=??????=H H i dt H d ?,??η 14 15斯特恩-革拉赫实验证明电子存在自旋理由 16黑体辐射揭示了经典物理学的局限性。 17玻尔的量子化条件:在量子理论中,角动量必须是h 的整数 的近似求解方法。 求出,由求出微扰论:由n n n n E E ψψ)0()0(

量子力学答案完整版周世勋第三版

找了好久才找到的,希望能给大家带来帮助 量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比, 即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλλρλρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86' =? ?? ? ? ??-?+--?=-kT hc kT hc e kT hc e hc λλλλλπρ ? 011 5=-?+--kT hc e kT hc λλ ? kT hc e kT hc λλ=--)1(5 如果令x=kT hc λ ,则上述方程为 x e x =--)1(5 第一章绪论

这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2 c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 6 1051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ nm m m E c hc E h e e 71.01071.031051.021024.12296 6 2=?=????= ==--μμ 在这里,利用了 m eV hc ??=-61024.1 以及 eV c e 621051.0?=μ 最后,对 E c hc e 2 2μλ= 作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学作业答案

第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλλρλρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ ? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5

如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 1.4 利用玻尔——索末菲的量子化条件,求: (1)一维谐振子的能量; (2)在均匀磁场中作圆周运动的电子轨道的可能半径。 已知外磁场H=10T ,玻尔磁子124109--??=T J M B ,试计算运能的量子化间隔△E ,并与T=4K 及T=100K 的热运动能量相比较。 解 玻尔——索末菲的量子化条件为 ?=nh pdq 其中q 是微观粒子的一个广义坐标,p 是与之相对应的广义动量,回路积分是沿运动轨道积一圈,n 是正整数。 (1)设一维谐振子的劲度常数为k ,谐振子质量为μ,于是有 2 22 12kx p E +=μ 这样,便有 )2 1(22kx E p - ±=μ 这里的正负号分别表示谐振子沿着正方向运动和沿着负方向运动,一正一负正好表示一个来回,运动了一圈。此外,根据 221 kx E = 可解出 k E x 2± =± 这表示谐振子的正负方向的最大位移。这样,根据玻尔——索末菲的量子化条件,有 ?? -+ + - =--+-x x x x nh dx kx E dx kx E )2 1 (2)()21(222μμ

量子力学知识总结

量子力学基础知识总结 一.微观粒子的运动特征 1.黑体辐射和能量量子化 黑体:一种能全部吸收照射到它上面的各种波长辐射的物体 普朗克提出能量量子化假设:定温下黑体辐射能量只与辐射频率有关,频率为ν的能量,其数值是不连续的,只能是hν的整数倍,称为能量量子化。 2.光电效应与光子学说 爱因斯坦将能量量子化概念用于电磁辐射,并用以解释光电效应。其提出了光子学说,圆满解释了光电效应。 光子学说内容: ①光是一束光子流,每一种频率的的光的能量都有一个最小单位,称为光子 光子能量ε=hν/c ②光子质量m=hν/c2 ③光子动量p=mc=hν/c= h/λ ④光的强度取决于单位体积内光子的数目,即光子密度。光电效应: hν= W+E K =hν +2 1 mv2,W为脱出功,E k 为光电子的动能。 3.实物微粒的波粒二象性 德布罗意提出实物微粒也具有波性:E=hν p=h/λ 德布罗意波长:λ=h/p=h/(mv) 4. 测不准原理:?x?x p≥h?y?p y ≥h?z?p y ≥h?tE≥h 二、量子力学基本假设 1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数ψ(x,y,z,t)来描述,它包括体系的全部信息。这一函数称为波函数或态函数,简称态。 不含时间的波函数ψ(x,y,z)称为定态波函数。在本课程中主要讨论定态波函数。 由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于ψ*ψ,所以通常将用波函数ψ描述的波称为几率波。在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将ψ*ψ称为几率密度,它就是通常所说的电子云;ψ*ψdτ为空间某点附近体积元dτ中电子出现的几率。 对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born)统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。 波函数ψ可以是复函数, 合格(品优)波函数:单值、连续、平方可积。 2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。 算符:作用对象是函数,作用后函数变为新的函数。

第十三章 量子力学基础2作业答案

(薛定谔方程、一维无限深势阱、隧道效应、能量和角动量量子化、电子自旋、多电子原子) 一. 选择题 [ C ]1. (基础训练 10)氢原子中处于2p 状态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为 (A) (2,2,1,2 1 -). (B) (2,0,0,21). (C) (2,1,-1,2 1 -). (D) (2,0,1,21). ★提示:2p 电子对应的量子数n = 2; l = 1,只有答案(C )满足。 [ C ]2. (基础训练11)在激光器中利用光学谐振腔 (A) 可提高激光束的方向性,而不能提高激光束的单色性. (B) 可提高激光束的单色性,而不能提高激光束的方向性. (C) 可同时提高激光束的方向性和单色性. (D) 既不能提高激光束的方向性也不能提高其单色性. [ D ]3. (自测提高7)直接证实了电子自旋存在的最早的实验之一是 (A) 康普顿实验. (B) 卢瑟福实验. (C) 戴维孙-革末实验. (D) 斯特恩-革拉赫实验. [ C ]4. (自测提高9)粒子在外力场中沿x 轴运动,如果它在力场中的势能分布如图19-6所示,对于能量为 E < U 0从左向右运动的粒子,若用 ρ1、ρ2、ρ3分别表示在x < 0,0 < x a 三个区域发现粒子的概率,则有 (A) ρ1 ≠ 0,ρ2 = ρ3 = 0. (B) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 = 0. (C) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 ≠ 0. (D) ρ1 = 0,ρ2 ≠ 0,ρ3 ≠ 0. ★提示:隧道效应。 二. 填空题 1. (基础训练17)在主量子数n =2,自旋磁量子数2 1 =s m 的量子态中,能够填充的最大电子数是___4___. ★提示:主量子数n =2的L 壳层上最多可容纳228n =个电子(电子组态为2622s p ),如 仅考虑自旋磁量子数2 1 =s m 的量子态,则能够填充的电子数为上述值的一半。 图 19-6

量子力学初步-作业(含答案)

量子力学初步 1. 设描述微观粒子运动的波函数为(),r t ψ ,则ψψ*表示______________________________________;(),r t ψ 须满足的条件是_______________________________; 其 归 一 化 条 件 是 _______________________________. 2. 将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将_______________________________. (填入:增大D 2倍、增大2D 倍、增大D 倍或不变) 3. 粒子在一维无限深方势阱中运动(势阱宽度为a ),其波函数为 ()()30x x x a a πψ= << 粒子出现的概率最大的各个位置是x = ____________________. 4. 在电子单缝衍射实验中,若缝宽为a =0.1 nm (1 nm = 10-9 m),电子束垂直射在单缝面上,则衍射的电子横向动量的最小不确定量y p ?= _________N·s. (普朗克常量h =6.63×10-34 J·s) 5. 波长λ= 5000 ?的光沿x 轴正向传播,若光的波长的不确定量λ?= 10-3 ?,则利用不确定关系式x p x h ??≥可得光子的x 坐标的不确定量至少为_________. 6. 粒子做一维运动,其波函数为 ()00 x Axe x x x λψ-≥= ≤ 式中λ>0,粒子出现的概率最大的位置为x = _____________. 7. 量子力学中的隧道效应是指______________________________________ 这种效应是微观粒子_______________的表现. 8. 一维无限深方势阱中,已知势阱宽度为a ,应用测不准关系估计势阱中质量为m 的粒子的零点能量为____________. 9. 按照普朗克能量子假说,频率为ν的谐振子的能量只能为_________;而

量子力学教程课后习题答案

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)()(5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλ λρλρ ρ 这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=h v , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学期末考试知识点+计算题证明题

1. 你认为Bohr 的量子理论有哪些成功之处?有哪些不成功的地方?试举一例说明。 (简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的?) 答:Bohr 理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件。首先,Bohr 的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,Bohr 理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在Bohr 理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,Bohr 理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,Bohr 理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质。 2. 什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的? 答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a.对于一定的金属材料做成的电极,有一个确定的临界频率0υ,当照射光频率0υυ<时,无论光的强度有多大,不会观测到光电子从电极上逸出;b.每个光电子的能量只与照射光的频率有关,而与光强无关;c.当入射光频率0υυ>时,不管光多微弱,只要光一照,几乎立刻910s -≈观测到光电子。爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完 成的。(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。 3.简述量子力学中的态叠加原理,它反映了什么? 答:对于一般情况,如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加:1122c c ψψψ=+(12c c ,是复数)也是这个体系的一个可能状态。这就是量子力学中的态叠加原理。态叠加原理的含义表示当粒子处于态1ψ和2ψ的线性叠加态ψ时,粒子是既处于态1ψ,又处于态2ψ。它反映了微观粒子的波粒二象性矛盾的统一。量子力学中这种态的叠加导致在叠加态下观测结果的不确定性。 4. 什么是定态?定态有什么性质? 答:体系处于某个波函数()()[]exp r t r iEt ψψ=-,所描写的状态时,能量具有确定值。这种状态称为定态。定态的性质:(1)粒子在空间中的概率密度及概率流密度不随时间变化;(2)任何力学量(不显含时间)的平均值不随时间变化;(3)任何力学量(不显含时间)取各种可能测量值的概率分布也不随时间变化。 5. 简述力学量与力学量算符的关系? 答:算符是指作用在一个波函数上得出另一个函数的运算符号。量子力学中采用算符来表示微观粒子的力学量。如果量子力学中的力学量F 在经典力学中有相应的力学量,则表示这个力学量的算符?F 由经典表示式F (r,p )中将p 换为算符?p 而得出的,即:

(完整版)人教版高中物理选修3-5知识点总结

人教版高中物理选修3-5知识点总结 一.量子论的建立黑体和黑体辐射Ⅰ (一)量子论 1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。 2.量子论的主要内容: ①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。 ②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。 3.量子论的发展 ①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。 ②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。 ③到1925年左右,量子力学最终建立。 4.量子论的意义 ①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。 ②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。 ③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应 ④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。 量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。(二)黑体和黑体辐射

1.热辐射现象 任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。 这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。 ①.物体在任何温度下都会辐射能量。 ②.物体既会辐射能量,也会吸收能量。物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。 辐射和吸收的能量恰相等时称为热平衡。此时温度恒定不变。 实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。 2.黑体 物体具有向四周辐射能量的本领,又有吸收外界辐射 来的能量的本领。 黑体是指在任何温度下,全部吸收任何波长的辐射的 物体。 3.实验规律: 1)随着温度的升高,黑体的辐射强度都有增加; 2)随着温度的升高,辐射强度的极大值向波长较短方向移动。 二.光电效应光子说光电效应方程Ⅰ 1、光电效应

量子力学知识点小结(良心出品必属精品)

第一章 ⒈玻尔的量子化条件,索末菲的量子化条件。 ⒉黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。 ⒎普朗克量子假说: 表述1:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。 表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:ε=hν。 表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。 ⒏光电效应:光照射到金属上,有电子从金属上逸出的现象。这种电子称之为光电子。 ⒐光电效应有两个突出的特点: ①存在临界频率ν0:只有当光的频率大于一定值v0 时,才有光电子发射出来。若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。 ②光电子的能量只与光的频率有关,与光的强度无关。光的强度只决定光电子数目的多少。 ⒑爱因斯坦光量子假说: 光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出

现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子。爱因斯坦方程 ⒒光电效应机理: 当光射到金属表面上时,能量为 E= h ν 的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。 ⒓解释光电效应的两个典型特点: ①存在临界频率v 0:由上式明显看出,当h ν- W 0 ≤0时,即ν≤ν0 = W 0 / h 时,电子不能脱出金属表面,从而没有光电子产生。 ②光电子动能只决定于光子的频率:上式表明光电子的能量只与光的频率ν有关,而与光的强度无关。 ⒔康普顿效应:高频率的X 射线被轻元素如白蜡、石墨中的电子散射后出现的效应。 ⒕康普顿效应的实验规律: ①散射光中,除了原来X 光的波长λ外,增加了一个新的波长为λ'的X 光,且λ' >λ; ②波长增量Δλ=λ-λ随散射角增大而增大。 ⒖量子现象凡是普朗克常数h 在其中起重要作用的现象 ⒗光具有微粒和波动的双重性质,这种性质称为光的波粒二象性 ⒘与运动粒子相联系的波称为德布罗意波或物质波。 ???? ? ???? ======n k h k n h P h E λππλων2 ,2

量子力学主要知识点复习全资料

大学量子力学主要知识点复习资料,填空及问答部分 1能量量子化 辐射黑体中分子和原子的振动可视为线性谐振子,这些线性谐振子可以发射和吸收辐射能。这些谐振子只能处于某些分立的状态,在这些状态下,谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍εεεεεn ,,4,3,2,??? 对频率为ν 的谐振子, 最小能量ε为: νh =ε 2.波粒二象性 波粒二象性(wave-particle duality )是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。在经典力学中,研究对象总是被明确区分为两类:波和粒子。前者的典型例子是光,后者则组成了我们常说的“物质”。1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。 德布罗意公式h νmc E ==2 λ h m p = =v 3.波函数及其物理意义 在量子力学中,引入一个物理量:波函数 ,来描述粒子所具有的波粒二象性。波函数满足薛定格波动方程 0),()](2[),(2 2=-?+??t r r V m t r t i ψψ 粒子的波动性可以用波函数来表示,其中,振幅 表示波动在空间一点(x ,y,z )上的强弱。所以, 应 该表示 粒子出现在点(x,y,z )附件的概率大小的一个量。从这个意义出发,可将粒子的波函数称为概率波。 自由粒子的波函数)](exp[Et r p i A k -?=ψ=ψ 波函数的性质:可积性,归一化,单值性,连续性 4. 波函数的归一化及其物理意义 常数因子不确定性设C 是一个常数,则 和 对粒子在点 (x,y,z )附件出现概率的描述是相同的。 相位不定性如果常数 ,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。 表示粒子出现在点(x,y,z )附近的概率。 表示点(x,y,z )处的体积元 中找到粒子的概率。这就是波函数的统计诠释。自然要求该粒子在空间各点概率之总和为1 必然有以下归一化条件 5. 力学量的平均值 2|(,,)|x y z ψ2|(,,)|x y z x y z ψ???x y z τ?=???2 |(,,)|1 x y z dxdydz ψ∞=? (,,)x y z ψ(,,)c x y z ψαi e C =(,,) i e x y z αψ(,,)x y z ψ

量子力学练习题

一. 填空题 1.量子力学的最早创始人是 ,他的主要贡献是于 1900 年提出了 假设,解决了 的问题。 2.按照德布罗意公式 ,质量为21,μμ的两粒子,若德布罗意波长同为λ,则它们的动量比p 1:p 2= 1:1;能量比E 1:E 2= 。 3.用分辨率为1微米的显微镜观察自由电子的德布罗意波长,若电子的能量E= kT 2 3(k 为 玻尔兹曼常数),要能看到它的德布罗意波长,则电子所处的最高温度T max = 。 4.阱宽为a 的一维无限深势阱,阱宽扩大1倍,粒子质量缩小1倍,则能级间距将扩大(缩小) ;若坐标系原点取在阱中心,而阱宽仍为a ,质量仍为μ,则第n 个能级的能 量E n = ,相应的波函数=)(x n ψ() a x a x n a n <<=0sin 2πψ和 。 5.处于态311ψ的氢原子,在此态中测量能量、角动量的大小,角动量的z 分量的值分别为E= eV eV 51.13 6.132 -=;L= ;L z = ,轨道磁矩M z = 。 6.两个全同粒子组成的体系,单粒子量子态为)(q k ?,当它们是玻色子时波函数为 ),(21q q s ψ= ;玻色体系 为费米子时 =),(21q q A ψ ;费米体系 7.非简并定态微扰理论中求能量和波函数近似值的公式是 E n =() ) +-'+'+∑ ≠0 2 0m n n m mn mn n E E H H E , )(x n ψ = () ) () +-'+ ∑ ≠00 2 0m m n n m mn n E E H ψ ψ , 其中微扰矩阵元 ' mn H =()() ?'τψψ d H n m 00?; 而 ' nn H 表示的物理意义是 。该方法的适用条件是 本征值, 。

《量子力学》考试知识点(精心整理)

《量子力学》考试知识点 第一章:绪论―经典物理学的困难 考核知识点: (一)、经典物理学困难的实例 (二)、微观粒子波-粒二象性 考核要求: (一)、经典物理困难的实例 1.识记:紫外灾难、能量子、光电效应、康普顿效应。 2.领会:微观粒子的波-粒二象性、德布罗意波。 第二章:波函数和薛定谔方程 考核知识点: (一)、波函数及波函数的统计解释 (二)、含时薛定谔方程 (三)、不含时薛定谔方程 考核要求: (一)、波函数及波函数的统计解释 1.识记:波函数、波函数的自然条件、自由粒子平面波 2.领会:微观粒子状态的描述、Born几率解释、几率波、态叠加原理(二)、含时薛定谔方程 1.领会:薛定谔方程的建立、几率流密度,粒子数守恒定理 2.简明应用:量子力学的初值问题 (三)、不含时薛定谔方程 1. 领会:定态、定态性质 2. 简明应用:定态薛定谔方程 第三章:一维定态问题

一、考核知识点: (一)、一维定态的一般性质 (二)、实例 二、考核要求: 1.领会:一维定态问题的一般性质、束缚态、波函数的连续性条件、反射系数、透射系数、完全透射、势垒贯穿、共振 2.简明应用:定态薛定谔方程的求解、 第四章量子力学中的力学量 一、考核知识点: (一)、表示力学量算符的性质 (二)、厄密算符的本征值和本征函数 (三)、连续谱本征函数“归一化” (四)、算符的共同本征函数 (五)、力学量的平均值随时间的变化 二、考核要求: (一)、表示力学量算符的性质 1.识记:算符、力学量算符、对易关系 2.领会:算符的运算规则、算符的厄密共厄、厄密算符、厄密算符的性质、基本力学量算符的对易关系 (二)、厄密算符的本征值和本征函数 1.识记:本征方程、本征值、本征函数、正交归一完备性 2.领会:厄密算符的本征值和本征函数性质、坐标算符和动量算符的本征值问题、力学量可取值及测量几率、几率振幅。 (三)、连续谱本征函数“归一化” 1.领会:连续谱的归一化、箱归一化、本征函数的封闭性关系

量子力学习题.(DOC)

量子力学习题 (三年级用) 山东师范大学物理与电子科学学院 二O O七年

第一部分 量子力学的诞生 1、计算下列情况的Broglie d e -波长,指出那种情况要用量子力学处理: (1)能量为eV .0250的慢中子 () 克2410671-?=μ .n ;被铀吸收; (2)能量为a MeV 的5粒子穿过原子克2410646-?=μ.a ; (3)飞行速度为100米/秒,质量为40克的子弹。 2、两个光子在一定条件下可以转化为正、负电子对,如果两光子的能量相等,问要实现这种转化,光子的波长最大是多少? 3、利用Broglie d e -关系,及园形轨道为各波长的整数倍,给出氢原子能 量可能值。

第二部分 波函数与Schr?dinger 方程 1、设()() 为常数a Ae x x a 222 1 -= ? (1)求归一化常数 (2).?p ?,x x == 2、求ikr ikr e r e r -=?=?1121和的几率流密度。 3、若() ,Be e A kx kx -+=? 求其几率流密度,你从结果中能得到什么样的 结论?(其中k 为实数) 4、一维运动的粒子处于 ()? ? ?<>=?λ-0 00x x Axe x x 的状态,其中,0>λ求归一化系数A 和粒子动量的几率分布函数。 5、证明:从单粒子的薛定谔方程得出的粒子的速度场是非旋的,即求证 0=υ?? 其中ρ= υ/j 6、一维自由运动粒子,在0=t 时,波函数为 ()()x ,x δ=?0 求: ?)t ,x (=?2

第三部分 一维定态问题 1、粒子处于位场 ()00 0000 ??? ?≥?=V x V x V 中,求:E >0V 时的透射系数和反射系数(粒子由右向左运动) 2、一粒子在一维势场 ?? ???>∞≤≤<∞=0 000x a x x V ) x ( 中运动。 (1)求粒子的能级和对应的波函数; (2)若粒子处于)x (n ?态,证明:,/a x 2= () .n a x x ?? ? ??π-=-2222 6112 3、若在x 轴的有限区域,有一位势,在区域外的波函数为 如 D S A S B D S A S C 22211211+=+=

量子力学习题答案

量子力学习题答案 1.2 在0k 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解:由德布罗意波粒二象性的关系知: E h =ν; p h /=λ 由于所考虑的电子是非相对论的电子(26k e E (3eV)c (0.5110)-μ? ),故: 2e E P /(2)=μ 69 h /p h / hc / 1.2410/0.7110 m 0.71nm --λ====?=?=1.3氦原子的动能是E=1.5kT ,求T=1K 时,氦原子的德布罗意波长。 解:对于氦原子而言,当K 1=T 时,其能量为 J 10 2.07K 1K J 10 381.12 32 323 1 23 ---?=????= = kT E 于是有 一维谐振子处于2 2 /2 ()x x Ae α ψ-=状态中,其中α为实常数,求: 1.归一化系数; 2.动能平均值。 (22 x e dx /∞-α-∞ = α?) 解:1.由归一化条件可知: 22 * 2x 2 (x)(x)dx A e dx 1 A /1 ∞∞-α-∞ -∞ ψψ===α=? ? 取相因子为零,则归一化系数1/21/4A /=απ 2.

2222 2 2 22 2 2 22 22 22 22 2 * 2x /2 x /22 2 2 x /2 x /2 2 2 x /2 2x /2 2 222x 2x /2 2 2 24 2x 2T (x)T (x)dx A e (P /2)e dx d A e ()e dx 2dx d A e (xe )dx 2dx A {xe (xe )dx} 2A x e dx A 22∞∞-α-α-∞-∞ ∞-α-α-∞∞-α-α-∞ ∞ ∞-α-α-∞ -∞ ∞-α-∞ = ψψ=μ=- μ =- -αμ=- -α- -αμ = α = μμ ? ?? ? ? ? =(= = 22 2 2 2 2 4 x 22 24 x x 2 2 22 24 21()xd(e ) 21A (){xe e dx}221A ()2442∞-α-∞ ∞ ∞-α-α-∞ -∞ α- α =α- -- μααα- - μ α μ μ α ? ? 若αT 4 ω= 解法二:对于求力学量在某一体系能量本征态下的平均值问题,用F-H 定理是 非常方便的。 一维谐振子的哈密顿量为: 2 2 22 d 1H x 2dx 2 =- + μωμ 它的基态能量01E 2 = ω 选择 为参量,则: 0dE 1d 2 = ω ; 2 2 2 d H d 2d 2()T d dx 2dx =- = - = μμ d H 20 0T d = 由F-H 定理知: 0dE d H 210 T d d 2= ==ω 可得: 1T 4 = ω

原子物理量子力学主要知识点复习

1.爱因斯坦关系是什么什么是波粒二象性 答:爱因斯坦关系:?? ? ??========k n n h n c h n c E p h hv E ρηρηρρρρηηλπλνπω 22 其中 波粒二象性:光不仅具有波动性,而且还具有质量、动量、能量等粒子的内禀属性,就 是说光具有波粒二象性。 2.α粒子散射与夫兰克-赫兹实验结果验证了什么 答:α粒子散射实验验证了原子的核式结构,夫兰克-赫兹实验验证了原子能量的量子化 3.波尔理论的内容是什么波尔氢原子理论的局限性是什么 答:波尔理论: (1)原子能够而且只能够出于一系列分离的能量状态中,这些状态称为定态。出于定态时,原子不发生电磁辐射。 (2)原子在两个定态之间跃迁时,才能吸收或者发射电磁辐射,辐射的频率v 由式 12E E hv -=决定 (3)原子处于定态时,电子绕原子核做轨道运动,轨道角动量满足量子化条件:ηn r m = υ 局限性: (1)不能解释较复杂原子甚至比氢稍复杂的氦原子的光谱; (2)不能给出光谱的谱线强度(相对强度); (3)从理论上讲,量子化概念的物理本质不清楚。 4.类氢体系量子化能级的表示,波数与光谱项的关系 答:类氢体系量子化能级的表示:()2 2202 442n Z e E n ηπεμ-= 波数与光谱项的关系Λ,4,5.3,3,5.2,121 ?22=?? ? ??-=n n R v 5.索莫菲量子化条件是什么,空间取向量子化如何验证 答:索莫菲量子化条件是nh q p =?d 空间取向量子化通过史特恩-盖拉赫(Stern-Gerlach )实验验证。、 6.碱金属的四个线系,选择定则,能级特点及形成原因 答:碱金属的四个线系:主线系、第一辅线系(漫线系)、第二辅线系(锐线系)、柏格曼系(基线系) 碱金属的选择定则:1,0,1±=?±=?j l 碱金属的能级特点:碱金属原子的能级不但与主量子数n 有关,还和角量子数l 有关;且对于同一n ,都比氢(H)能级低。 形成原因:原子实外价电子只有一个,但是原子实的极化和轨道的贯穿产生了影响,产生了与氢原子能级的差别 7.自旋假设内容,碱金属光谱精细结构特点

相关文档