文档库 最新最全的文档下载
当前位置:文档库 › 铁路空车调配问题的区间线性规划模型及算法

铁路空车调配问题的区间线性规划模型及算法

铁路空车调配问题的区间线性规划模型及算法
铁路空车调配问题的区间线性规划模型及算法

线性规划模型及其举例

线性规划模型及其举例 摘要:在日常生活中,我们常常对一个问题有诸多解决办法,如何寻找最优方案,成为关键,本文提出了线性规划数学模型及其举例,在一定约束条件下寻求最优解的过程,目的是想说明线性规划模型在生产中的巨大应用。 关键词:资源规划;约束条件;优化模型;最优解 在工农业生产与经营过程中,人们总想用有限的资源投入,获得尽可能多的使用价值或经济利益。如:当任务或目标确定后,如何统筹兼顾,合理安排,用最少的资源(如资金、设备、原材料、人工、时间等)去完成确定的任务或目标;企业在一定的资源条件限制下,如何组织安排生产获得最好的经济效益(如产品量最多,利润最大)。 一.背景介绍 如果产出量与投入量存在(或近似存在)比例关系,则可以写出投入产品的线性函数式: 1()n i ij j j f x a x ==∑,1,2,,,1i m m =+ (1) 若将(1)式中第(1m +)个线性方程作为待求的目标函数,其余m 个线性方程作为资源投入的限制条件(或约束条件),则(1)式变为: OPT. 1()n j j j f x c x ==∑ ST. 1 n ij j j a x =∑> ( =, < )i b , 1,2,,i m = (2) 0,j x ≥ 1,2,,j n =… (2)式特点是有n 个待求的变量j x (1,2,,j n =…);有1个待求的线性目标函数()f x ,有m 个线性约束等式或不等式,其中i b (1,2,,i m =…)为有限的资源投入常量。将客观实际问题经过系统分析后,构建线性规划模型,有决策变量,目标函数和约束条件等构成。 1.决策变量(Decision Variable,DV )在约束条件范围内变化且能影响(或限定)目标函数大小的变量。决策变量表示一种活动,变量的一组数据代表一个解决方案,通常这些变量取非负值。 2.约束条件(Subject To,ST )在资源有限与竞争激烈的环境中进行有目的性的一切活动,都

128499-管理运筹学-第二章线性规划-习题

11(2),12,14,18 习题 2-1 判断下列说法是否正确: (1) 任何线性规划问题存在并具有惟一的对偶问题; T (2) 对偶问题的对偶问题一定是原问题;T (3) 根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之, 当对偶问题无可行解时,其原问题具有无界解;F (4) 若线性规划的原问题有无穷多最优解,则其对偶问题也一定具有无穷多最优 解; (5) 若线性规划问题中的b i ,c j 值同时发生变化,反映到最终单纯形表中,不会出 现原问题与对偶问题均为非可行解的情况; (6) 应用对偶单纯形法计算时,若单纯形表中某一基变量x i <0,又x i 所在行的元素全 部大于或等于零,则可以判断其对偶问题具有无界解。 (7) 若某种资源的影子价格等于k ,在其他条件不变的情况下,当该种资源增加 5个单位时,相应的目标函数值将增大5k ; (8) 已知y i 为线性规划的对偶问题的最优解,若y i >0,说明在最优生产计划中第 i 种资源已经完全耗尽;若y i =0,说明在最优生产计划中的第i 种资源一定有剩余。 2-2将下述线性规划问题化成标准形式。 ????? ? ?≥≥-++-≤+-+-=-+-+-+-=无约束 43 214321432143214321,0,,232142224.5243max )1(x x x x x x x x x x x x x x x x st x x x x z 2-3分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基 可行解对应图解法中可行()?????≥≤≤-+-=++-+-=无约束 321 3213213 21,0,06 24 .322min 2x x x x x x x x x st x x x z 域的哪一顶点。 ()??? ??≥≤+≤++=0,8259 43.510max 12 1212121x x x x x x st x x z ()??? ??≥≤+≤++=0,242615 53.2max 22 121212 1x x x x x x st x x z 2-4已知线性规划问题,写出其对偶问题: 5 43212520202410max x x x x x z ++++=

线性规划理论在实际问题中的应用

Ⅰ线性规划理论在实际问题中的应用 ⅰ问题背景描述 线性规划是运筹学的一个基本分支,它广泛应用现有的科学技术和数学方法,解决实际中的问题,帮助决策人员选择最优方针和决策。把线性规划的知识运用到企业中,企业就有必要利用线性规划的知识对战略计划,生产,销售的各个环节进行优化,从而降低生产成本,提高企业的生产效率,通过建立模型并利用相关软件,对经济管理中有限资源进行合理分配,从而获得最佳经济效益。根据美国《财富》杂志对全美前500家大公司的调查表明,线性规划的应用程度名列前矛,有85%的公司频繁地使用线性规划,并取得了显著提高经济效益的效果。 在实际生活中,经常会遇到一定的人力、物力、财力等资源条件下,如何精打细算巧安排,用最少的资源取得最大的效益的问题,而这正是线性规划研究的基本内容,它在实际生活中有着非常广泛的应用.任何一个组织的管理者都必须对如何向不同的活动分配资源的问题做出决策,即如何有效地利用人力、物力完成更多的任务,或在预定的任务目标下如何耗用最少的人力、物力去实现目标。在许多情况下,大量不同的资源必须同时进行分配,需要这些资源的活动可以是不同的生产活动,营销活动,金融活动或者其他一些活动。随着计算技术的不断发展,使成千上万个约束条件和决策变量的线性规划问题能迅速地求解,更为线性规划在经济等各领域的广泛应用创造了极其

有利的条件。线性规划已经成为现代化管理的一种重要的手段。 建模是解决线性规划问题极为重要的环节,一个正确的数学模型的建立要求建模者熟悉线性规划的具体实际内容,要明确目标函数和约束条件,通过表格的形式把问题中的已知条件和各种数据进行整理分析,从而找出约束条件和目标函数。 从实际问题中建立数学模型一般有以下三个步骤; 1.根据影响所要达到目的的因素找到决策变量; 2.由决策变量和所在达到目的之间的函数关系确定目标函数; 3.由决策变量所受的限制条件确定决策变量所要满足的约束条件。 所建立的数学模型具有以下特点: 1、每个模型都有若干个决策变量(x1,x2,x3……,xn),其中n为决策变量个数。决策变量的一组值表示一种方案,同时决策变量一般是非负的。 2、目标函数是决策变量的线性函数根据具体问题可以是最大化(max)或最小化(min),二者统称为最优化(opt)。 3、约束条件也是决策变量的线性函数。 当我们得到的数学模型的目标函数为线性函数,约束条件为线性等式或不等式时称此数学模型为线性规划模型。 线性规划模型的基本结构:

线性规划模型在生活中的实际应用

线性规划模型在生活中的实际应用 一、线性规划的基本概念 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域.决策变量、约束条件、目标函数是线性规划的三要素. 二、线性规划模型在实际问题中的应用 (1)线性规划在企业管理中的应用范围 线性规划在企业管理中的应用广泛,主要有以下八种形式: 1.产品生产计划:合理利用人力、物力、财力等,是获利最大. 2.劳动力安排:用最少的劳动力来满足工作的需要. 3.运输问题:如何制定运输方案,使总运费最少. 4.合理利用线材问题:如何下料,使用料最少. 5.配料问题:在原料供应的限制下如何获得最大利润. 6.投资问题:从投资项目中选取方案,是投资回报最大. 7.库存问题:在市场需求和生产实际之间,如何控制库存量从而获得更高利益.

8.最有经济计划问题:在投资和生产计划中如何是风险最小 . (2)如何实现线性规划在企业管理中的应用 在线性规划应用前要建立经济与金融体系的评价标准及企业的计量体系,摸清企业的资源.首先通过建网、建库、查询、数据采集、文件转换等,把整个系统的各有关部分的特征进行量化,建立数学模型,即把组成系统的有关因素与系统目标的关系,用数学关系和逻辑关系描述出来,然后白较好的数学模型编制成计算机语言,输入数据,进行计算,不同参数获取的不同结果与实际进行分析对比,进行定量,定性分析,最终作出决策. 3.3 线性规划在运输问题中的应用 运输是物流活动的核心环节,线性规划是运输问题的常用数学模型,利用数学知识可以得到优化的运输方案. 运输问题的提出源于如何物流活动中的运输路线或配送方案是最经济或最低成本的.运输问题解决的是已知产地的供应量,销地的需求量及运输单价,如何寻找总配送成本最低的方案;运输问题包含产销平衡运输问题和产销不平衡运输问题;通常将产销不平衡问题转化为产销平衡问题来处理;运输问题的条件包括需求假设和成本假设.需求假设指每一个产地都有一个固定的供应量所有的供应量都必须配送到目的地.与之类似,每一个目的地都有一个固定的需求量,整个需求量都必须有出发地满足;成本假设指从任何一个产地到任何一个销地的配送成本和所配送的数量的线性比例关系.产销平衡运输问题的一般提法是: 假设某物资有m个产地a1,a2,?,am;各地产量分别为b1,b2,?,bn,物资从产地Ai运往销地Bj的单位运价为cij,满足:

线性规划理论及其应用[开题报告]

毕业论文开题报告 信息与计算科学 线性规划理论及其应用 一、选题的背景、意义[1][2] 1.选题的背景 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大化或最小化的问题,最大化问题是要在一个集合上使一个函数达到最大,最小化问题是要在一个集合上使一个函数达到最小。统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。随着计算机技术的发展和普及,线性规划的应用越来越广泛。它已成为人们为合理利用有限资源制定最佳决策的有力工具。 2.选题的意义 随着计算机技术的发展和普及,线性规划的应用越来越广泛。它已成为人们为合理利用有限资源制定最佳决策的有力工具。随着经济全球化的不断发展,企业面临更加激烈的市场竞争。企业必须不断提高盈利水平,增强其获利能力,在生产、销售、新产品研发等一系列过程中只有自己的优势,提高企业效率,降低成本,形成企业的核心竞争力,才能在激烈的竞争中立于不败之地。过去很多企业在生产、运输、市场营销等方面没有利用线性规划进行合理的配置,从而增加了企业的生产,使企业的利润不能达到最大化。在竞争日益激烈的今天,如果还按照过去的方式,是难以生存的,所以就有必要利用线性规划的知识对战略计划、生产,销售各个环节进行优化从而降低生产成本,提高企业的效率。在各类经

运筹学-线性规划模型在实际生活中的应用

线性规划模型在实际生活中的应用 【摘要】线性规划在实际生活中扮演着很重要的角色,研究对象是计划管理工作中有关安排和估值的问题,其广泛应用于经济等领域,是实际生活中进行管理决策的最有效的方法之一。解决的主要问题是在给定条件下,按某一衡量指标来寻找安排的最优方案。本文通过对例题利用线性规划分析,如何合理的分配利用,最终找到最优解使企业利润最大,说明了线性规划在实际生活中的应用,而且对线性规划问题模型的建立,模型的解进行了分析,运用图解法和单纯形法解决问题。 【关键词】线性规划、建模、实际生活、图解法、单纯形法 前言:线性规划(Linear programming,简称LP)是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。 在实际生活中,经常会遇到一定的人力、物力、财力等资源条件下,如何精打细算巧安排,用最少的资源取得最大的效益的问题,而这正是线性规划研究的基本容,它在实际生活中有着非常广泛的应用.任何一个组织的管理者都必须对如何向不同的活动分配资源的问题做出决策,即如何有效地利用人力、物力完成更多的任务,或在预定的任务目标下如何耗用最少的人力、物力去实现目标。在许多情况下,大量不同的资源必须同时进行分配,需要这些资源的活动可以是不同的生产活动,营销活动,金融活动或者其他一些活动。随着计算技术的不断发展,使成千上万个约束条件和决策变量的线性规划问题能迅速地求解,更为线性规划在经济等各领域的广泛应用创造了极其有利的条件。线性规划已经成为现代化管理的一种重要的手段。本文运用常用的图解法和单纯形法解决利润最大化决策问题,贴近生活,很好的吧线性规划应用到生活实践中。 1、简单线性问题步骤简单介绍 建模是解决线性规划问题极为重要的环节,一个正确的数学模型的建立要求建模者熟悉线性规划的具体实际容,要明确目标函数和约束条件,通过表格的形式把问题中的已知

非线性规划理论和算法

非线性最优化理论与算法 第一章引论 本章首先给出了一些常见的最优化问题和非线性最优化问题解的定义,并且根据不同的条件对其进行了划分。接着给出了求解非线性优化问题的方法,如图解法等,同时又指出一个好的数值方法应对一些指标有好的特性,如收敛速度与二次终止性、稳定性等。随后给出了在非线性最优化问题的理论分析中常用到的凸集和凸函数的定义和有关性质。最后给出了无约束优化最优性条件。 第二章线搜索方法与信赖域方法 无约束优化的算法有两类,分别是线搜索方法和信赖域方法。本章首先给出了两种线搜索方法即精确线搜索方法和非精确线搜索方法。线搜索方法最重要的两个要素是确定搜索方向和计算搜索步长,搜索步长可确保下降方法的收敛性,而搜索方向决定方法的收敛速度。 精确线搜索方法和非精确线搜索方法 对于精确线搜索方法,步长ακ满足 αk=arg min ?x k+αd k α≥0 这一线搜索可以理解为αk是f(x k+αd k)在正整数局部极小点,则不论怎样理解精确线搜索,它都满足正交性条件: d k T??(x k+αk d k)=0 但是精确搜索方法一般需要花费很大的工作量,特别是当迭代点远离问题的解时,精确的求解问题通常不是有效的。而且有些最优化方法,其收敛速度并不依赖于精确搜索过程。对于非精确搜索方法,它总体希望收敛快,每一步不要求达到精确最小,速度快,虽然步数增加,则整个收敛达到快速。书中给出了三种常用的非精确线搜索步长规则,分别是Armijo步长规则、Goldstein步长规则、Wolfe步长规则。第一个步长规则的不等式要求目标函数有一个满意的下降量,第二个不等式控制步长不能太小,这一步长规则的第二式可能会将最优步长排除在步长的候选范围之外,也就是步长因子的极小值可能被排除在可接受域之外。但Wolfe步长规则在可接受的步长范围内包含了最优步长。在实际计算时,前两种步长规则可以用进退试探法求得,而最后一种步长规则需要借助多项式插值等方法求得。紧接着,又介绍了Armijo和Wolfe步长规则下的下降算法的收敛性。 信赖域方法 线性搜索方法都是先方向再步长,即先确定一个搜索方向d k,然后再沿着这个搜索方向d k选择适当的步长因子αk,新的迭代点定义为x k+1=x k+αk d k。与线搜索方法不同,信赖域方法是先步长再方向,此方法首先在当前点附近定义目标函数的一个近似二次模型,然后利用目标函数在当前点的某邻域内与该二次模型的充分近似,取二次模型在该邻域内的最优值点来产生下一迭代点。它把最优化

运筹学第七章动态规划

习题七7.1计算如图所示的从A 到E 的最短路线及其长度(单位:km ): (1) 用逆推解法;2用标号法。 7.2 用动态规划方法求解下列问题 (1) max z =x 12x 2 x 33 x 1+x 2+x 3 ≤6 x j ≥0 (j =1,2,3) (2)min z = 3x 12+4x 22 +x 32 x 1x 2 x 3 ≥ 9 x j ≥0 (j =1,2,3) 7.3 利用动态规划方法证明平均值不等式: n n n x x x n x x x 12121)()( ≥+++ 设x i ≥0,i =1,2,…,n 。 7.4 考虑一个有m 个产地和n 个销地的运输问题。设a i (i =1,2,…,m )为产地i 可发运的物资数,b j (j =1,2,…,n )为销地j 所需要的物资数。又从产地i 到销地j 发运x ij 单位物资所需的费用为h ij (x ij ),试将此问题建立动态规划的模型。 7.5 某公司在今后三年的每一年的开头将资金投入A 或B 项工程,年末的回收及其概率如下表所示。每年至多做一项投资,每次只能投入1000万元。求出三年后所拥有的期望金额达到最大的投资方案。 投 资 回 收 概 率 A 0 0.4 2000 0.6 B 1000 0.9 2000 0.1 7.6 某公司有三个工厂,它们都可以考虑改造扩建。每个工厂都有若干种方案可供选择,各种方案的投资及所能取得的收益如下表所示(单位:千万元)。现公司有资金5千万元,问应如何分配投资使公司的总收益最大?

7.7 某厂准备连续3个月生产A种产品,每月初开始生产。A的生产成本费用为x2,其中x是A产品当月的生产数量。仓库存货成本费是每月每单位为1元。估计3个月的需求量分别为d1=100,d2=110,d3=120。现设开始时第一个月月初存货s0=0,第三个月的月末存货s3=0。试问:每月的生产数量应是多少才使总的生产和存货费用为最小。 7.8 设有一辆载重卡车,现有4种货物均可用此车运输。已知这4种货物的重量、容积及价值关系如下表所示。 货物代号重量(吨)容积(立方米)价值(千元) 1 2 2 3 2 3 2 4 3 4 2 5 4 5 3 6 若该卡车的最大载重为15吨,最大允许装载容积为10立方米,在许可的条件下,每车装载每一种货物的件数不限。问应如何搭配这四种货物,才能使每车装载货物的价值最大。 7.9 某警卫部门有12支巡逻队负责4个仓库的巡逻。按规定对每个仓库可分别派2-4支队伍巡逻。由于所派队伍数量上的差别,各仓库一年内预期发生事故的次数如下表所示。试应用动态规划的方法确定派往各仓库的巡逻队数,使预期事故的总次数为最少。 巡逻队数预期事故次数仓库 1 2 3 4 2 18 38 14 34 3 16 36 12 31 4 12 30 11 25 7.10 (生产计划问题)根据合同,某厂明年每个季度末应向销售公司提供产品,有关信息见下表。若产品过多,季末有积压,则一个季度每积压一吨产品需支付存贮费0.2万元。现需找出明年的最优生产方案,使该厂能在完成合同的情况下使全年的生产费用最低。 季度j生产能力a j(吨)生产成本d j(万元/吨)需求量b j(吨) 1 30 15.6 20 2 40 14.0 25 3 25 15.3 30 4 10 14.8 15 (1)请建立此问题的线性规划模型。(提示:设第j季度工厂生产产品x j吨,第j季度初存贮的产品为y j吨,显然y1=0)(2)请建立此问题的动态规划模型。(均不用求解)

线性规划理论在实际问题中的应用

山西财经大学华商学院论文 线性规划理论在实际中的应用 **(##############) 论文指导教师姓名:***(职称)管理科学与工程学院讲师 所在系及专业名称:财务会计系班级:会计四班 论文提交日期:2011年06月16日 评阅人: 2010 年月日

线性规划理论在实际问题中的应用 随着经济全球化的不断发展,企业面临更加激烈的市场竞争。企业必须不断提高盈利水平,增强其获利能力,在生产、销售、新产品研发等一系列过程中只有自己的优势,提高企业效率,降低成本,形成企业的核心竞争力,才能在激烈的竞争中立于不败之地。在竞争日益激烈的今天,有必要利用线性规划的知识提高企业的效率。 任何一个组织的管理都必须对如何向不同的活动分配资源的问题作出决策,即如何有效地利用人力物力完成更多的任务或在预定的任务目标下如何耗用最少的人力物力去实现目标。线性规划是帮助管理这些决策的一个功能强大的问题解决工具,向活动进行分配的资源可以是人员或设备等不同量纲的资源,在许多情况下大量不同的资源必须同时进行分配,需要这些资源的活动可以是不同的生产活动,营销活动,金融活动或者其他一些活动。用数学的语言表达统筹规划的问题先要根据问题要达到的目标选取适当的变量(或称为决策变量,是问题中要确定的未知量,它用以表明规划中的用数量表示的方案、措施,可有决策者决定),问题的目标通过变量的函数形式表示(称为目标函数,它是指对问题所最求的目标的数学描述,按优化目标分别在这个函数前加上MAX和MIN),对问题的限制条件用有关变量的等式或不等式表达(称为约束条件,它是指决策变量取值时受到的各种资源条件的限制,通常表达为含决策变量的线性等式或不等式)。当变量连续取之,且目标函数和约束条件均为线性时,称这一类模型为线性规划的模型。 线性规划可以对经济管理系统中的人、财、物等有限资源进行统筹安排,为决策者提供有依据的最优方案,以实现有效管理。利用线性规划我们可以解决很多问题。以下是我从实际生活中选择的求利润最大化的问题,可用线性规划方法进行解决。在管理实践中线性的含义:一是严格的比例性。二是可叠加性资源分配问题是将有限的资源分配到各种活动中去的线性规划问题。这类问题的共性是在线性规划模型中每一个函数限制均为资源限制具体表现为如下形式:使用的资源数量≤可用的资源数量。 问题引入: 某公司是商务房地产开发项目的主要投资商。目前,该公司有机会在三个建设项目中投资: 项目1:建造高层办公楼; 项目2:建造宾馆; 项目3:建造购物中心。 每个项目都要求投资者在四个不同的时期投资:在当前预付定金,以及一年、二年、三年后分别追加投资。下表显示了四个时期每个项目所需资金(百万

线性规划问题及其数学模型

第二章 线性规划的对偶理论与灵敏度分析习题 1. 写出下列线性规划问题的对偶问题。 (1)????? ? ?≥=++≤++≥++++=无约束 3213213213213 21,0,5343 32243422min x x x x x x x x x x x x x x x z (2) ????? ? ?≤≥≤++≥-+-=++++=0 ,0,8374355 22365max 3213213213213 21x x x x x x x x x x x x x x x z 无约束 (3)?? ??? ??? ???==≥=====∑∑∑∑====) ,,1;,,1(0) ,,1(),,1(min 1 111n j m i x n j b x m i a x x c z ij m i j ij n j i ij m i ij n j ij (4)???????????=≥++==<=<=∑∑∑===),,,,1(0),,2,1() ,,1(min 1 211111n n j x m m m i b x a m m i b x a x c z j n j i j ij n j i j ij n j j j 无约束 2. 判断下列说法是否正确,为什么? (1)如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解; (2)如果线性规划的对偶问题无可行解,则原问题也一定无可行解; ( 3)在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目标函数值一定不超过其对偶问题可行解的目标函数值; (4)任何线性规划问题具有唯一的对偶问题。 3. 已知某求极大化线性规划问题用单纯形法求解时的初始单纯形表及最终单纯形表如下表所示,求表中各括弧内未知数的值。

第三章线性规划

第三章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足 (目标函数)2134max x x z += (1) s.t.(约束条件)???????≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式 是问题的约束条件,记为s.t.(即subject to)。上述即为一规划问题数学模型的三个要素。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选取适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划问题的解的概念 一般线性规划问题的标准型为 ∑==n j j j x c z 1 min (3) ∑==≤n j i j ij m i b x a 1 ,,2,1 s.t. (4) 可行解 满足约束条件(4)的解),,,(21n x x x x =,称为线性规划问题的可行解,而使目标函数(3)达到最小值的可行解叫最优解。 可行域 所有可行解构成的集合称为问题的可行域,记为R 。 1.3 线性规划的图解法

线性规划建模问题

线性规划建模问题 1、招聘问题 新机电器始创于1989年,是高低压电器元件、成套装置附件、高压电控电器配套件的专业生产制造商,是国家的高、低压电器开关行业协会理事单位,在业内享有很高声誉。新机电器已发展成为拥有八家子公司,在永嘉、温州、厦门、青田、陕西均有设厂。 工种:普车车工、数控车工、装配工、检验员、计算机绘图员各1名。 要求:具有良好的工作心态,吃苦耐劳,虚心好学,积极进取,有团队协作精神以及良好的沟通能力。 面试须知: 岗位安排方案完成后,新机为前往厂内实习的人员,提供了往返车费,总共是46元。获悉该厂又分新、旧两个厂区,要求每区至少去一名同学,且去旧厂区面试的同学比新厂区至少多一名。 已知前往新厂区每位同学的往返车费是4元,该厂区为每人提供的考虑岗位数为5个;旧厂区每位同学的往返车费是6元,而为每人可供考虑的岗位数为3个。 建模分析: 分析:以两组为基本单位,共同出谋划策,怎样合理地安排分别前往新、旧两区的人数,并能使面试时可选择的空缺岗位数达到最多,这样每人实习录用的机会就增多。请问岗位最多是多少? 假设: 问题解答: 解:设前往新、旧厂区的 人数分别为y x,,设岗位数 为z,则根据题意得, y x z3 5+ =,且 1,1 1 4646 x y y x x y ≥≥ ? ? ≥+ ? ?+≤ ? y=1

在坐标系中将各不等式区域表示如下: 我们发现当5 ,4= =y x时,不等式所夹的区域最大,因此,前往新、旧厂区的人数分别为4、5时,可供选择的岗位数最大,为35个。 2、已知高翔工业区内的新机厂区并不是真正的加工厂,实际上只完成装配工作,所需配件由青田与陕西两个厂区供应,而这两个厂生产出的零部件毛利价格不同。 拿“JN15-12-31.5型户内高压接地开关”为例,扭簧为其中的配件之一,而青田与陕西产的扭簧可获利润不同,毛利价格现列表如下: 要求:每日由青田与陕西厂区供应的货品总和需保持在500—1000件之间,而且青田厂区的产品数至少要比陕西的多100件,下面请你给出一项合理的方案,将货源如何进行调配,才能使我厂每日的毛利最多?最多为多少?方案的好坏,以及策划的速度快慢都直接影响到你在实习期间以及今后工作岗位的调动及职务与薪酬。 问题解决: 解:设每日青田与陕西厂区所提供的货品数分别为y x,,设每日扭簧的毛利为z元,则根 据题意得:y x z20 15+ =,且 0,0 5001000 100 x y x y x y ≥≥ ? ? ≤+≤ ? ?≥+ ? ,在坐标系中将各不等式的区域表示如

《运筹学》 第三章线性规划对偶理论与灵敏度分析习题及 答案

第三章线性规划对偶理论与灵敏度分析习题 一、思考题 1.对偶问题和对偶变量的经济意义是什么? 2.简述对偶单纯形法的计算步骤。它与单纯形法的异同之处是什么? 3.什么是资源的影子价格?它和相应的市场价格之间有什么区别? 4.如何根据原问题和对偶问题之间的对应关系,找出两个问题变量之间、解及检 验数之间的关系? 5.利用对偶单纯形法计算时,如何判断原问题有最优解或无可行解? 6.在线性规划的最优单纯形表中,松弛变量(或剩余变量)0>+k n x ,其经济意 义是什么? 7.在线性规划的最优单纯形表中,松弛变量k n x +的检验数0>+k n σ(标准形为 求最小值),其经济意义是什么? 8.将i j j i b c a ,,的变化直接反映到最优单纯形表中,表中原问题和对偶问题的解 将会出现什么变化?有多少种不同情况?如何去处理? 二、判断下列说法是否正确 1.任何线性规划问题都存在且有唯一的对偶问题。 2.对偶问题的对偶问题一定是原问题。 3.若线性规划的原问题和其对偶问题都有最优解,则最优解一定相等。 4.对于线性规划的原问题和其对偶问题,若其中一个有最优解,另一个也一定 有最优解。 5.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷多个最优解。 6.已知在线性规划的对偶问题的最优解中,对偶变量0>* i y ,说明在最优生产计 划中,第i 种资源已经完全用尽。 7.已知在线性规划的对偶问题的最优解中,对偶变量0=* i y ,说明在最优生产计 划中,第i 种资源一定还有剩余。 8.对于i j j i b c a ,,来说,每一个都有有限的变化范围,当其改变超出了这个范围 之后,线性规划的最优解就会发生变化。 9.若某种资源的影子价格为u ,则在其它资源数量不变的情况下,该资源增加k 个单位,相应的目标函数值增加 u k 。 10.应用对偶单纯形法计算时,若单纯形表中某一基变量0

第三章 非线性规划

第三章 非线性规划 §1 非线性规划 1.1 非线性规划的实例与定义 如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。一般说来,解非线性规划要比解线性规划问题困难得多。而且,也不象线性规划有单纯形法这一通用方法,非线性规划目前还没有适于各种问题的一般算法,各个方法都有自己特定的适用范围。 下面通过实例归纳出非线性规划数学模型的一般形式,介绍有关非线性规划的基本概念。 例1 (投资决策问题)某企业有n 个项目可供选择投资,并且至少要对其中一个项目投资。已知该企业拥有总资金A 元,投资于第),,1(n i i 个项目需花资金i a 元,并预计可收益i b 元。试选择最佳投资方案。 解 设投资决策变量为 个项目 决定不投资第,个项目 决定投资第i i x i 0, 1,n i ,,1 , 则投资总额为 n i i i x a 1 ,投资总收益为 n i i i x b 1 。因为该公司至少要对一个项目投资,并 且总的投资金额不能超过总资金A ,故有限制条件 n i i i A x a 1 另外,由于),,1(n i x i 只取值0或1,所以还有 .,,1,0)1(n i x x i i 最佳投资方案应是投资额最小而总收益最大的方案,所以这个最佳投资决策问题归结为总资金以及决策变量(取0或1)的限制条件下,极大化总收益和总投资之比。因此,其数学模型为: n i i i n i i i x a x b Q 11max s.t. n i i i A x a 1 .,,1,0)1(n i x x i i 上面例题是在一组等式或不等式的约束下,求一个函数的最大值(或最小值)问题,其中目标函数或约束条件中至少有一个非线性函数,这类问题称之为非线性规划问题,简记为(NP )。可概括为一般形式 )(min x f q j x h j ,,1, 0)(s.t. (NP) p i x g i ,,1, 0)(

线性规划模型的应用与灵敏度分析正文

线性规划模型的应用与灵敏度分析 第一章线性规划问题 1.线性规划简介及发展 线性规划(Linear Programming)是运筹学中研究最早、发展最快、应用广泛、方法成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,研究线性约束条件下线性目标函数的极值问题的数学理论和方法,英文缩写为LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面,为合理利用有限的人力、物力、财力等资源做出的最优决策,提供科学的依据。 线性规划及其通用解法——单纯形法是由美国G.B.Dantzig在1947年研究空军军事规划提出来的。法国数学家傅里叶和瓦莱-普森分别于1832和1911年独立地提出线性规划的想法,但未引起注意。1939年苏联数学家康托罗维奇在《生产组织与计划中的数学方法》一书中提出线性规划问题,也未引起重视[1]。1947年美国数学家丹齐克提出线性规划的一般数学模型和求解线性规划问题的通用方法──单纯形法,为这门学科奠定了基础。1947年美国数学家诺伊曼提出对偶理论,开创了线性规划的许多新的研究领域,扩大了它的应用范围和解题能力[2]。1951年美国经济学家库普曼斯把线性规划应用到经济领域,为此与康托罗维奇一起获1975年诺贝尔经济学奖。50年代后对线性规划进行大量的理论研究,并涌现出一大批新的算法。例如,1954年莱姆基提出对偶单纯形法,1954年加斯和萨迪等人解决了线性规划的灵敏度分析和参数规划问题,1956年塔克提出互补松弛定理,1960年丹齐克和沃尔夫提出分解算法等。线性规划的研究成果还直接推动了其他数学规划问题包括整数规划、随机规划和非线性规划的算法研究[3]。由于数字电子计算机的发展,出现了许多线性规划软件,如MPSX,OPHEIE,UMPIRE等,可以很方便地求解几千个变量的线性规划问题。1979年苏联数学家提出解线性规划问题的椭球算法,并证明它是多项式时间算法。1984年美国贝尔电话实验室的印度数学家N.卡马卡提出解线性规划问题的新的多项式时间算法。用这种方法求解线性规划问题在变量个数为5000时只要单纯形法所用时间的1/50。现已形成线性规划多项式算法理论。50年代后线性规划的应用范围不断扩大。建立线性规

线性规划理论在实际问题中的应用

线性规划理论在实际问题中的应用 内容摘要: 企业是一个复杂的系统,要研究它必须将其抽象出来形成模型。如果将系统内部因素的相互关系和它们活动的规律用数学的形式描述出来,就称之为数学模型。线性规划是运用数学模型,对人力、设备、材料、资金等进行系统和定量的分析,使生产力得到最为合理的组织,以获得最佳的经济效益。应用线性规划问题解决实际问题,最重要的一个步骤就是首先要建立实际问题的线性规划问题的数学模型。 一、线性规划问题及其数学模型 二、线性规划模型的具体分析及应用Excel求解线性规划问题 三、线性规划的局限性

一、线性规划问题及其数学模型 (一)线性规划的模型决定于它的定义,线性规划的定义是:求一组变量的值,在满足一组约束条件下,求得目标函数的最优解。根据这个定义,就可以确定线性规划模型的基本结构。 (1)变量变量又叫未知数,它是实际系统的未知因素,也是决策系统中的可控因素,一般称为决策变量,常引用英文字母加下标来表示,如X l,X2,X3,X mn等。 (2)目标函数将实际系统的目标,用数学形式表现出来,就称为目标函数,线性规划的目标函数是求系统目标的数值,即极大值,如产值极大值、利润极大值或者极小值,如成本极小值、费用极小值、损耗极小值等等。 (3)约束条件约束条件是指实现系统目标的限制因素。它涉及到企业内部条件和外部环境的各个方面,如原材料供应、设备能力、计划指标、产品质量要求和市场销售状态等等,这些因素都对模型的变量起约束作用,故称其为约束条件。约束条件的数学表示形式为三种,即≥、=、≤。线性规划的变量应为正值,因为变量在实际问题中所代表的均为实物,所以不能为负。 (二)在经济管理中,线性规划使用较多的是下述几个方面的问题: (1) 投资问题—确定有限投资额的最优分配,使得收益最大或者见效快。 (2) 计划安排问题—确定生产的品种和数量,使得产值或利润最大,如资源配制问题。 (3) 任务分配问题—分配不同的工作给各个对象(劳动力或机床),使产量最多、效率最高,如生产安排问题。 (4) 下料问题—如何下料,使得边角料损失最小。 (5) 运输问题—在物资调运过程中,确定最经济的调运方案。 (6) 库存问题—如何确定最佳库存量,做到即保证生产又节约资金等等。 (三)应用线性规划建立数学模型的三步骤: (1) 明确问题,确定问题,列出约束条件。 (2) 收集资料,建立模型。 (3) 模型求解(最优解),进行优化后分析。 其中,最困难的是建立模型,而建立模型的关键是明确问题、确定目标,在建立模型过程中花时间、花精力最大的是收集资料。 (四)线性规划的数学模型的一般形式为: 目标函数max(min) z=c1 X l +c2 X2+…+cn Xn 满足约束条件: a11 X l +a12 X2,+…+a1n Xn≤(=,≥) b1 a21 X l +a22 X2,+…+a2n Xn ≤(=,≥) b2 …………. ………………………. am1 X l +am2 X2+…+amn Xn ≤(=,≥) bm X l,X2,…,Xn ≥0

线性规划理论及其应用[文献综述]

毕业论文文献综述 信息与计算科学 线性规划理论及其应用 一、前言部分[1] [2] 线性规划是运筹学中研究较早、发展较快、应用广泛、方法成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大化或最小化的问题,最大化问题是要在一个集合上使一个函数达到最大,最小化问题是要在一个集合上使一个函数达到最小。统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。随着计算机技术的发展和普及,线性规划的应用越来越广泛。它已成为人们为合理利用有限资源制定最佳决策的有力工具。 二、主题部分 2.1线性规划理论发展过程及方向 2.1.1线性规划发展过程[3][4] 法国数学家 J.- B.- J.傅里叶和 C.瓦莱-普森分别于1832和1911年独立地提出线性规划的想法,但未引起注意。 1939年苏联数学家Л.В.康托罗维奇在《生产组织与计划中的数学方法》一书中提出线性规划问题,也未引起重视。 1947年美国数学家G.B.丹奇克提出线性规划的一般数学模型和求解线性规划问题的通用方法──单纯形法,为这门学科奠定了基础。 1947年美国数学家J.von诺伊曼提出对偶理论,开创了线性规划的许多新的研究领域,扩大了它的应用范围和解题能力。

第二章 线性规划

第二章 线性规划 本章内容重点: 线性规划模型 解的主要概念 线性规划应用——建模 一. 线性规划模型 引例: (1)用一块边长为a 的正方形铁皮做一容器,应如何裁剪,使做成的容器的容积最大? (2)某企业计划生产甲、乙两种产品。这两种产品都要分别在A 、B 、C 、D 四种不同设备上加工。按工艺资料规定,生产每件产品甲需占用设备分别为2、1、4、0小时,生产每件产品乙需占用设备分别为2、2、0、4小时。已知各设备计划期内用于生产这两种产品的能力分别为12、8、16、12小时,又已知每生产一件产品甲企业能获得2元利润,每生产一件产品乙企业能获得3元利润,问该企业应如何安排生产,使总的利润收入最大? 讨论:(1)可用微积分的方法解决; (2)复杂一些 目标: 最大 2 132x x z +=

例2.1:某工厂拥有A 、B 、C 三种类型的设备,生产甲、乙两种产品。每件产品在生产中需要占用的设备机时数,每件产品可以获得的利润以及三种设备可利用的时数如下表所示: 问题:工厂应如何安排生产可获得最大的总利润? 解:设变量xi 为第i 种(甲、乙)产品的生产件数(i =1,2)。根据题意,我们知道两种产品的生产受到设备能力(机时数)的限制。对设备A ,两种产品生产所占用的机时数不能超过65,于是我们可以得到不等式:3 x1 + 2 x2 ≤ 65; 对设备B ,两种产品生产所占用的机时数不能超过40,于是我们可以得到不等式:2 x1 + x2 ≤ 40; 对设备C ,两种产品生产所占用的机时数不能超过75,于是我们可以得到不等式:3x 2 ≤75 ;另外,产品数不可能为负,即 x 1 ,x 2 ≥0。同时,我们有一个追求目标,即获取最大利润。于是可写出目标函数z 为相应的生产计划可以获得的总利润:z =1500x 1+2500x 2 。综合上述讨论,在加工时间以及利润与产品产量成线性关系的假设下,把目标函数和约束条件放在一起,可以建立如下的线性规划模 ????? ????≥≤≤≤+≤+0 ,1241648212222121 2121x x x x x x x x

相关文档