文档库 最新最全的文档下载
当前位置:文档库 › 土体压缩模量、变形模量和弹性模量的讨论

土体压缩模量、变形模量和弹性模量的讨论

土体压缩模量、变形模量和弹性模量的讨论
土体压缩模量、变形模量和弹性模量的讨论

土体压缩模量、变形模量和弹性模量的讨论

陈勇华

中国地质大学(武汉)工程学院广州地铁设计研究院有限公司广东广州510010

摘要:本文通过论述土体压缩模量、变形模量和弹性模量的概念、区别及联系及各种模量的适用范围,重点推导了压缩模量和变形模量之间的换算公式及经验换算关系,并提出通过经验试算找出合适的三轴压缩试验变形模量的方法。

关键词:土体;压缩模量;变形模量;弹性模量

0引言

目前,深基坑开挖、地基处理、隧道工程等岩土工程项目大规模开展,计算理论也在不断发展和完善。特别是随着有限单元法、有限差分法、边界元法等数值方法引入到岩土工程的计算理论中,加之各种计算软件的广泛应用,使岩土工程的计算可以考虑到更多更复杂的实际边界条件,使得三维分析变得可能。但在此计算中,岩土本构模型和土体参数的选取依然是个关键。土体参数中,压缩模量、变形模量和弹性模量的概念往往容易混淆,例如,勘察报告里面多提供压缩模量(Es),但这是实验室在完全侧限条件下得到的土体变形指标,若用于实际中计算土体压缩,则误差较大;又如,计算建筑物加载的瞬时沉降时,应选用弹性模量,若采用压缩模量或者变形模量,则会计算结果偏大很多。为此,本文着重讨论上述三种模量的区别与联系以及合理的选用方法。

1三种模量的概念

1.1压缩模量

土体的压缩模量是由室内侧限压缩试验的e~p曲线得到,其定义为土在完全侧限的条件下竖向应力增量Δp与相应的变形稳定情况下应变增量Δε的比值:

Es=Δp/Δε(1-1)

两种表达式:

Es=(1+e0)/a(1-2)

Es=(1+ei)/a(1-3)

式(1-2)的应变增量是变形增量与试验土样原始长度之比.式(1-3)的应变增量是变形增量与试验土样在

压力段范围初始压力下的长度之比。

1.2变形模量

变形模量通过现场载荷试验的p~s曲线求的,当荷载小于某数值时,荷载p与载荷板沉降之间呈直线关系,根据弹性理论计算沉降的公式,可反求出地基的变形模量:

E0=ωpb(1-?2)/s(1-4)

式中:E0—土的变形模量(MPa);

P—直线段的荷载强度(kPa);

s—相应于p的载荷板下沉量;

b—载荷板的宽度或直径;

—土的泊松比;

—沉降影响系数。

需要指出的是,根据弹性力学公式计算的变形模量,就是弹性模量,取近似弹性段进行计算,不考虑多孔介质的压硬性,即模量随应力状态而变化的特性。

1.3弹性模量

弹性模量是指正应力σ与弹性(即可恢复)正应变εd的比值,通常用E来表示。一般采用三轴仪进行三轴重复压缩试验,得到的

应力应变曲线上的初始切线模量Ei或再加荷模量Er作为弹性模量(我们也可分别称为初始模量、卸荷模量)。弹性模量的测定方法有两大类:静力法和动力法,在静三轴仪中测定的方法为静力法,得到的弹性模量为静弹模,一般用E来表示;动力法的仪器是动三轴仪,测得的弹性模量为动弹模,一般用Ed来表示。

2三种模量的区别及适用范围

压缩模量的室内试验操作比较简单,但要得到保持天然结构状态的原状土样很困难,更重要的一点是试验在土体完全侧向受限的条件下进行,因此试验得到的压缩性规律和指标理论上只适应于刚性侧限条件下的沉降计算,其实际运用具有很大的局限性。现行规范中,压缩模量一般用于分层总和法、应力面积法的地基最终沉降计算。

变形模量是根据现场载荷试验得到的,它是指土在侧向自由膨胀条件下正应力与相应的正应变的比值。相比室内侧限压缩试验,现场载荷试验排除了取样和试样制备等过程中应力释放及机械人为扰动的影响,更接近于实际工作条件,能比较真实地反映土在天然埋藏条件下的压缩性。该参数用于弹性理论法最终沉降估算中,但在载荷试验中所规定的沉降稳定标准带有很大的近似性。

弹性模量的概念在实际工程中有一定的意义。在计算高耸结构物在风荷载作用下的倾斜时发现,如果用土的压缩模量或变形模量指标进行计算,将得到实际上不可能那么大的倾斜值。这是因为风荷载是瞬时重复荷载,在很短的时间内土体中的孔隙水来不及排出或不完全排出,土的体积压缩变形来不及发生,这样荷载作用结束之后,发生的大部分变形可以恢复,因此用弹性模量计算就比较合理一些。再比如,在计算饱和粘性土地基上瞬时加荷所产生的瞬时沉降时,同样也应采用弹性模量。该常数常用于弹性理论公式估算建筑物的初始瞬时沉降。

根据上述三种模量的论述,可看出:压缩模量和变形模量的应变为总的应变,既包括可恢复的弹性应变,又包括不可恢复的塑性应变;而弹性模量的应变只包含弹性应变。在一般工程中,土的弹性模量就是指土体开始变形阶段的模量,因为土发生弹性变形的时间非常短,土在弹性阶段的变形模量等于弹性模量,变形模量更能适合土体的实际情况。常规三轴试验得到的弹性模量是轴向应力与轴向应变曲线中开始的直线段(即弹性阶段)的斜率。

这些模量各有适用范围,本质上是为了在实验室或者现场模拟为再现实际工况而获取的值。一般情况下土的弹性模量是压缩模量、变形模量的十几倍或者更大。

3压缩模量与变形模量之间的换算

从理论上可以得到压缩模量与变形模量之间的换算关系。

在侧限压缩试验中,σz为竖向应力,由于侧向完全侧限,所以:εx=εy=0(3-1)

σx=σy=K0σz(3-2)

m w

式中,K0为侧压力系数,可通过试验测定;εx、εy分别为x、y 轴向的应变。

利用三向应力状态下的广义虎克定律,根据式(3-1)可得:

εx=σx/E0-?(σy/E0+σz/E0)=0,(3-3)

μ为土的泊松比。

将(3-2)代入上式得:

K0=μ/(1-μ),或μ=K0/(1+K0)(3-4)

再考察εz得式(3-5):

εz=σz/E0-μ(σx/E0+σy/E0)

=(1-2μK0)σz/E0

=σz{1-2μ2/(1-μ)}/E0

将侧限压缩条件

εz=σz/Es

代入上式左边,则

σz/Es=(1-2μK0)σz/E0(3-6)

这样就得到:

E0=Es(1-2?K0)=Es{1-2?2/(1-?)}(3-7)

式(3-7)给出了变形模量与压缩模量之间的关系。

必须指出的是,上式只是E0和Es之间的理论关系,是基于线弹性假定得到的。但土体不是完全弹性体,而且,由于现场载荷试验和室内侧限压缩试验测定相应指标时,都有一些无法考虑的因素如:压缩试验的土样受扰动较大,载荷试验与压缩试验的加荷速率、压缩稳定标准不一样,μ值不易精确测定等,使得理论计算结果与实测结果有一定差距。实测资料表明,E0和Es的比值并不像理论得到的在0~1之间变化,如我国60年代初期总结出的E0/Es平均值都超过1,土压缩性越小,比值越大,表1给出了一些统计资料。同两个指标间的理论关系相比可以看出,结构性强的老粘土等,相差较大。反之,结构性弱的土,如新近沉积粘土等,E0/Es平均值和下限值都是最小的,较接近理论计算结果。

E0/Es全国调查资料表1

4数值计算中模量的取用

一般岩土设计计算需要三轴压缩试验变形模量E和泊松比?,有两种取法,

(1)由于试验不同,E和Es之间存在如下所示的换算关系:

E=E0=Es(1-2μK0)=Es{1-2μ2/(1-μ)},

换算时值可以通过查表或地质报告获得。

(2)就是根据经验取E=2.0~5.0Es,经过反复试算确定弹模。

两种方法各有优点:第一种可以很方便的算出弹模,但与实际情况的弹模有一定的差别;第二种需要试算多次才能找到所需要的弹模,但比较符合实际情况。

5小结

本文论述了土体压缩模量、变形模量和弹性模量的概念,区别及联系,重点推导了压缩模量和变形模量之间的换算公式及经验换算关系。压缩模量和变形模量的应变为总的应变,既包括可恢复的弹性应变,又包括不可恢复的塑性应变;而弹性模量的应变只包含弹性应变。这些模量各有适用范围,本质上是为了在实验室或者现场模拟为再现实际工况而获取的值。最后指出了在数值计算中需要获得的三轴压缩试验变形模量,需根据经验试算多次才能找到合适的值,由此得到的指标比较符合实际情况。

参考文献

[1]高晓军等.压缩模量的问题及解决途径[J].工程勘察.2007

(2):32-34.

[2]邢春艳.土的压缩模量计算时孔隙比e值选用的探讨[J].城市道桥与防洪.2007(8):153~154.

[3]范孟华张慧.对土压缩模量定义及相关问题的探讨[J].路基工程.2006(6):62~64.

[4]高大钊主编.土力学与基础工程[M].北京:中国建筑工业出版社,2004

[5]钱家欢,殷宗泽主编.土工原理与计算[M].北京:中国水利水电出版社,1996

[6]董建国,赵锡宏著.高层建筑地基基础[M].上海:同济大学出版社,1997

[7]《岩土工程手册》编写委员会.岩土工程手册[M].北京:中国建筑工业出版社,1994

E0/E s

土的种类

一般变化范围平均值老粘性土 1.45~2.80 2.11

红粘土 1.04~4.87 2.36

I p>0 1.60~2.80 1.35 一般粘性土

I p<0 0.54~2.68 0.98

新近沉积粘性土0.35~1.94 0.93

淤泥及淤泥质土 1.05~2.97 1.90

土体压缩模量、变形模量和弹性模量的讨论

作者:陈勇华

作者单位:中国地质大学(武汉)工程学院,广州地铁设计研究院有限公司,广东,广州,510010

刊名:

城市建设

英文刊名:CHENGSHI JIANSHE YU SHANGYE WANGDIAN

年,卷(期):2010(16)

参考文献(7条)

1.高晓军压缩模量的问题及解决途径[期刊论文]-工程勘察 2007(02)

2.邢春艳土的压缩模量计算时孔隙比e值选用的探讨[期刊论文]-城市道桥与防洪 2007(08)

3.范孟华;张慧对土压缩模量定义及相关问题的探讨[期刊论文]-路基工程 2006(06)

4.高大钊土力学与基础工程 2004

5.钱家欢;殷宗泽土工原理与计算 1996

6.董建国;赵锡宏高层建筑地基基础 1997

7.《岩土工程手册》编写委员会岩土工程手册 1994

本文读者也读过(10条)

1.李建光.祁慧君地基土模量的取值方法及其在有限元计算中的应用[会议论文]-2008

2.刘春泽.郝庆芬.赵俭斌土变形模量的研究与分析[期刊论文]-岩土工程界2007,10(12)

3.孙训海.雷晓雨.佟建兴.王明山.SUN Xun-hai.LEI Xiao-yu.TONG Jian-xin.WANG Ming-shan土层压缩模量的选取对地基变形计算的影响[期刊论文]-建筑科学2010,26(9)

4.范孟华.张慧.Fan Menghua.Zhang Hui对土压缩模量定义及相关问题的探讨[期刊论文]-路基工程2006(6)

5.郭焱.曹瑞钠.Guo Yan.Cao Ruina关于土的几种模量的讨论[期刊论文]-同煤科技2010(4)

6.宰金珉.张云军.王旭东.常银生.ZAI Jin-min.ZHANG Yun-jun.WANG Xu-dong.CHANG Yin-sheng卸荷状态下黏性土的变形和强度试验研究[期刊论文]-岩土工程学报2007,29(9)

7.王玉锁.王明年.童建军.魏龙海.WANG Yu-suo.WANG Ming-nian.TONG Jian-jun.WANG Long-hai砂类土体隧道围岩压缩模量的试验研究[期刊论文]-岩土力学2008,29(6)

8.张志刚.乔春生.ZHANG Zhigang.QIAO Chunsheng改进的节理岩体变形模量经验确定方法及其工程应用[期刊论文]-工程地质学报2006,14(2)

9.周翠英.林春秀.林鲁生.杨锡鎏.ZHOU Cui-ying.LIN Chun-xiu.LIN Lu-sheng.YANG Xi-liu外荷载作用下软土压缩模量的动态演化规律研究[期刊论文]-岩土力学2010,31(7)

10.宋俊彦浅议压缩模量在工程勘察中的应用[期刊论文]-硅谷2009(5)

本文链接:https://www.wendangku.net/doc/86434021.html,/Periodical_csjsysywd201016089.aspx

弹性模量、压缩模量、变形模量

E--弹性模量Es--压缩模量Eo--变形模量 在工程中土的弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。但在勘察报告中却只提供变形模量,在模拟计算的时侯我们要用弹性模量。 变形模量的定义在表达式上和弹性模量是一样的E=ζ/ε,对于变形模量ε是指应变,包括弹性应变εe和塑性应变εp,对于弹性模量而言,ε就是指εe。压缩模量指的是侧限压缩模量,通过固结试验可以测定。如果土体是理想弹性体,那么E=Es(1-2μ^2/(1-μ))=E0。 在土体模拟分析时,如果时一维压缩问题,选用Es;如果是变形问题,一般用E0;如果是瞬时变形,或弹性变形用E。 土的变形模量与压缩模量的关系 土的变形模量和压缩模量,是判断土的压缩性和计算地基压缩变形量的重要指标。 为了建立变形模量和压缩模量的关系,在地基设计中,常需测量土的側压力系数ξ和側膨胀系数μ。 側压力系数ξ:是指側向压力δx与竖向压力δz之比值,即: ξ=δx/δz 土的側膨胀系数μ(泊松比):是指在側向自由膨胀条件下受压时,测向膨胀的应变εx与竖向压缩的应变εz之比值,即 μ=εx/εz 根据材料力学广义胡克定律推导求得ξ和μ的相互关系, ξ=μ/(1-μ)或μ=ε/(1+ε) 土的側压力系数可由专门仪器测得,但側膨胀系数不易直接测定,可根据土的側压力系数,按上式求得。 在土的压密变形阶段,假定土为弹性材料,则可根据材料力学理论,推导出变形模量E0和压缩模量Es之间的关系。 ,令β= 则Eo=βEs 当μ=0~0.5时,β=1~0,即Eo/Es的比值在0~1之间变化,即一般Eo小于Es。但很多情况下Eo/Es 都大于1。其原因为:一方面是土不是真正的弹性体,并具有结构 性;另一方面就是土的结构影响;三是两种试验的要求不同;

弹性模量与变形模量以及压缩模量的的区别是什么

土的变形模量是土体在无侧限条件下应力与应变之比值,相当于弹性模量。由于土体不是理 想的弹性体,故称为变形模量。土的变形模量反映了土体抵抗弹塑性变形的能力,可用于弹 塑性问题分析,通常可以通过三轴试验或现场试验进行测定。如果现场原位试验未进行,可 以通过其他方法进行估算、假定或理论计算。 E--弹性模量Es--压缩模量Eo--变形模量 在工程中土的弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。但在勘察报告中却只提供变形模量,在模拟计算的时侯我们要用弹性模量。 变形模量的定义在表达式上和弹性模量是一样的E=ζ/ε,对于变形模量ε是指应变,包括弹性应变εe和塑性应变εp,对于弹性模量而言,ε就是指εe。压缩模量指的是侧限压缩模量,通过固结试验可以测定。如果土体是理想弹性体,那么E=Es(1-2μ^2/(1-μ))=E0。 在土体模拟分析时,如果时一维压缩问题,选用Es;如果是变形问题,一般用E0;如果是瞬时变形,或弹性变形用E。 土的变形模量和压缩模量,是判断土的压缩性和计算地基压缩变形量的重要指标。 为了建立变形模量和压缩模量的关系,在地基设计中,常需测量土的側压力系数ξ和側膨胀系数μ。 側压力系数ξ:是指側向压力δx与竖向压力δz之比值,即: ξ=δx/δz 土的側膨胀系数μ(泊松比):是指在側向自由膨胀条件下受压时,测向膨胀的应变εx与竖向压缩的应变εz之比值,即 μ=εx/εz 根据材料力学广义胡克定律推导求得ξ和μ的相互关系, ξ=μ/(1-μ)或μ=ε/(1+ε) 土的側压力系数可由专门仪器测得,但側膨胀系数不易直接测定,可根据土的側压力系数,按上式求得。 在土的压密变形阶段,假定土为弹性材料,则可根据材料力学理论,推导出变形模量E0和压缩模量Es之间的关系。 ,令β= 则Eo=βEs 当μ=0~0.5时,β=1~0,即Eo/Es的比值在0~1之间变化,即一般Eo小于Es。但很多情况下Eo/Es 都大于1。其原因为:一方面是土不是真正的弹性体,并具有结构 性;另一方面就是土的结构影响;三是两种试验的要求不同; μ、β的理论换算值 土的种类μβ

常用材料的弹性模量、切变模量及泊松比[1]

常用材料的弹性模量及泊松比 数据表(S) 序号材料名称弹性模量\E\Gpa 切变模量\G\Gpa 泊松比\μ 1 镍铬钢、合金钢206 79.38 0.25~0.3 2 碳钢196~206 79 0.24~0.28 3 铸钢172~202 - 0.3 4 球墨铸铁140~154 73~76 - 5 灰铸铁、白口铸铁113~157 44 0.23~0.27 6 冷拔纯铜12 7 4 8 - 7 轧制磷青铜113 41 0.32~0.35 8 轧制纯铜108 39 0.31~0.34 9 轧制锰青铜108 39 0.35 10 铸铝青铜103 41 - 11 冷拔黄铜89~97 34~36 0.32~0.42 12 轧制锌82 31 0.27 13 硬铝合金70 26 - 14 轧制铝68 25~26 0.32~0.36 15 铅17 7 0.42 16 玻璃55 22 0.25 17 混凝土17.5~32.5 4.9~15.7 0.1~0.18 18 纵纹木材9.8~12 0.5 - 19 横纹木材0.5~0.98 0.44~0.64 - 20 橡胶0.00784 - 0.47 21 电木 1.96~2.94 0.69~2.06 0.35~0.38 22 尼龙28.3 10.1 0.4 23 可锻铸铁152 - - 24 拔制铝线69 - - 25 大理石55 - - 26 花岗石48 - - 27 石灰石41 - - 28 尼龙1010 1.07 - - 29 夹布酚醛塑料4~8.8 - - 30 石棉酚醛塑料 1.3 - - 31 高压聚乙烯0.15~0.25 - - 32 低压聚乙烯0.49~0.78 - - 33 聚丙烯 1.32~1.42 - -

压缩模量与变形模量的区别

一、压缩模量与变形模量的区别 (一)、第一种 压缩模量:在完全侧限条件下,土的竖向附加应力增量与相应的应变增量之比值,它可以通过室内压缩试验获得。 变形模量:是通过现场载荷试验求得的压缩性指标,即在部分侧限条件下,其应力增量与相应的应变增量的比值。 结论:从上述定义来看,由于压缩模量附带了完全侧限条件,与实际地基的部分侧限条件不一致,故沉降计算必须进行大误差修正(通常修正系数可达0.25~2.0);而变形模量是现场原位测试指标(载荷试验计算指标),较好的模拟了实际地层侧限条件,故理论上由变形模量计算沉降更准确、基本不需修正,承载板的尺寸越接近基础尺寸,计算的精度越高,如果由实体基础沉降资料反算变形模量,来指导相邻场地沉降计算会有很高的准确性,故由变形模量计算沉降在理论上应该比由压缩模量计算更准确、更符合实际。 2、试验方法的差异: 压缩模量:由室内压缩(固结)试验测定,有试验成本低、可操作性强、便于分层大量取样试验的特点。 变形模量:由现场载荷试验来测定,有成本高、周期长、试验点数有限、特别是深层载荷试验费用极高、深度有限、载荷板尺寸通常难以达到实体基础尺寸相当的宽度级别,因而变形模量的测定属于高成本的测试。 结论:从上述两试验测定方法的不同可见,压缩模量的测定通常更容易、成本低廉、易于试验,是勘察报告必须完成的工作,故设计用压缩模量计算沉降依据和数据更充分,这或许就是采用压缩模量计算沉降的公式和经验更多的原因;而变形模量的测定由于其高成本和高精度,更适合于大型、高荷载、大基础的重要工程,对于中小工程项目(一般基础荷载较小、基础尺寸较小),采用高成本的载荷试验确定变形模量再计算沉降反而不适用(老板愿意花钱另当别论)。 3、试验土类差异: 压缩模量:由于采用土样压缩(固结)试验测定,对于不能采取原状土的地层(如碎石土)和不能切环刀的岩土(如大部分岩石),显然我们难以获得压缩模量。 变形模量:由于我们基本可以在任何基坑底面岩土层进行载荷试验,故变形模量的测定几乎适合任何岩土类别,对于不能获取原状土的地层他就有显著的优越性。 结论:如果不计较成本因素,变形模量法与压缩模量法相比,可适用于任何岩土类别,而压缩模量法一般仅适用于可以获取原状土的地层。 4、试验条件差异: 压缩模量:在勘察阶段通过大量取样来获得,勘察报告在用压缩模量来计算沉降时通常有充分的数据支持。 变形模量:现场载荷试验通常难以在勘察阶段完成,载荷试验一般依据设计需要由设计人员提出在基坑开挖后在基底进行,且数量有限(当然对于重要工程和地层条件许可,也可在勘察阶段进行大量深层螺旋板载荷试验等来获取),目前用其他非载荷试验间接(经验)估算变形模量的方法仍显经验不足。 结论:上述差异决定了,大量工程(特殊工程除外)在勘察阶段,甚至在建筑基坑开挖前我们不得不采用压缩模量来计算沉降,当基坑开挖后,对于重要工程,并进行了一定数量载荷试验之后,我们才真正基本具备用实测变形模量来计算沉降的条件,故本人认为,在现阶段我们要真正意义上实现用实测变形模量来准确计算沉降,通常是难以实现的理论期望。总结:采用压缩模量还是变形模量来计算沉降哪种更合适?主要受三方面的因素制约:

压缩模量变形模量弹性模量

压缩模量与变形模量的区别 (一)、第一种 压缩模量:在完全侧限条件下,土的竖向附加应力增量与相应的应变增量之比值,它可以通过室内压缩试验获得。 变形模量:就是通过现场载荷试验求得的压缩性指标,即在部分侧限条件下,其应力增量与相应的应变增量的比值。 结论:从上述定义来瞧,由于压缩模量附带了完全侧限条件,与实际地基的部分侧限条件不一致,故沉降计算必须进行大误差修正(通常修正系数可达0、25~2、0);而变形模量就是现场原位测试指标(载荷试验计算指标),较好的模拟了实际地层侧限条件,故理论上由变形模量计算沉降更准确、基本不需修正,承载板的尺寸越接近基础尺寸,计算的精度越高,如果由实体基础沉降资料反算变形模量,来指导相邻场地沉降计算会有很高的准确性,故由变形模量计算沉降在理论上应该比由压缩模量计算更准确、更符合实际。 2、试验方法的差异: 压缩模量:由室内压缩(固结)试验测定,有试验成本低、可操作性强、便于分层大量取样试验的特点。 变形模量:由现场载荷试验来测定,有成本高、周期长、试验点数有限、特别就是深层载荷试验费用极高、深度有限、载荷板尺寸通常难以达到实体基础尺寸相当的宽度级别,因而变形模量的测定属于高成本的测试。 结论:从上述两试验测定方法的不同可见,压缩模量的测定通常更容易、成本低廉、易于试验,就是勘察报告必须完成的工作,故设计用压缩模量计算沉降依据与数据更充分,这或许就就是采用压缩模量计算沉降的公式与经验更多的原因;而变形模量的测定由于其高成本与高精度,更适合于大型、高荷载、大基础的重要工程,对于中小工程项目(一般基础荷载较小、基础尺寸较小),采用高成本的载荷试验确定变形模量再计算沉降反而不适用(老板愿意花钱另当别论)。 3、试验土类差异: 压缩模量:由于采用土样压缩(固结)试验测定,对于不能采取原状土的地层(如碎石土)与不能切环刀的岩土(如大部分岩石),显然我们难以获得压缩模量。变形模量:由于我们基本可以在任何基坑底面岩土层进行载荷试验,故变形模量的测定几乎适合任何岩土类别,对于不能获取原状土的地层她就有显著的优越性。 结论:如果不计较成本因素,变形模量法与压缩模量法相比,可适用于任何岩土类别,而压缩模量法一般仅适用于可以获取原状土的地层。 4、试验条件差异: 压缩模量:在勘察阶段通过大量取样来获得,勘察报告在用压缩模量来计算沉降时通常

压缩模量与变形模量的区别

一、压缩模量与变形模量得区别 (一)、第一种 压缩模量:在完全侧限条件下,土得竖向附加应力增量与相应得应变增量之比值,它可以通过室内压缩试验获得。 变形模量:就是通过现场载荷试验求得得压缩性指标,即在部分侧限条件下,其应力增量与相应得应变增量得比值。 结论:从上述定义来瞧,由于压缩模量附带了完全侧限条件,与实际地基得部分侧限条件不一致,故沉降计算必须进行大误差修正(通常修正系数可达0、25~2、0);而变形模量就是现场原位测试指标(载荷试验计算指标),较好得模拟了实际地层侧限条件,故理论上由变形模量计算沉降更准确、基本不需修正,承载板得尺寸越接近基础尺寸,计算得精度越高,如果由实体基础沉降资料反算变形模量,来指导相邻场地沉降计算会有很高得准确性,故由变形模量计算沉降在理论上应该比由压缩模量计算更准确、更符合实际。 2、试验方法得差异: 压缩模量:由室内压缩(固结)试验测定,有试验成本低、可操作性强、便于分层大量取样试验得特点。 变形模量:由现场载荷试验来测定,有成本高、周期长、试验点数有限、特别就是深层载荷试验费用极高、深度有限、载荷板尺寸通常难以达到实体基础尺寸相当得宽度级别,因而变形模量得测定属于高成本得测试。 结论:从上述两试验测定方法得不同可见,压缩模量得测定通常更容易、成本低廉、易于试验,就是勘察报告必须完成得工作,故设计用压缩模量计算沉降依据与数据更充分,这或许就就是采用压缩模量计算沉降得公式与经验更多得原因;而变形模量得测定由于其高成本与高精度,更适合于大型、高荷载、大基础得重要工程,对于中小工程项目(一般基础荷载较小、基础尺寸较小),采用高成本得载荷试验确定变形模量再计算沉降反而不适用(老板愿意花钱另当别论)。 3、试验土类差异: 压缩模量:由于采用土样压缩(固结)试验测定,对于不能采取原状土得地层(如碎石土)与不能切环刀得岩土(如大部分岩石),显然我们难以获得压缩模量。 变形模量:由于我们基本可以在任何基坑底面岩土层进行载荷试验,故变形模量得测定几乎适合任何岩土类别,对于不能获取原状土得地层她就有显著得优越性。 结论:如果不计较成本因素,变形模量法与压缩模量法相比,可适用于任何岩土类别,而压缩模量法一般仅适用于可以获取原状土得地层。 4、试验条件差异: 压缩模量:在勘察阶段通过大量取样来获得,勘察报告在用压缩模量来计算沉降时通常有充分得数据支持。 变形模量:现场载荷试验通常难以在勘察阶段完成,载荷试验一般依据设计需要由设计人员提出在基坑开挖后在基底进行,且数量有限(当然对于重要工程与地层条件许可,也可在勘察阶段进行大量深层螺旋板载荷试验等来获取),目前用其她非载荷试验间接(经验)估算变形模量得方法仍显经验不足。 结论:上述差异决定了,大量工程(特殊工程除外)在勘察阶段,甚至在建筑基坑开挖前我们不得不采用压缩模量来计算沉降,当基坑开挖后,对于重要工程,并进行了一定数量载荷试验之后,我们才真正基本具备用实测变形模量来计算沉降得条件,故本人认为,在现阶段我们要真正意义上实现用实测变形模量来准确计算沉降,通常就是难以实现得理论期望。 总结:采用压缩模量还就是变形模量来计算沉降哪种更合适?主要受三方面得因素制约:

压缩模量与变形模量的区别

压缩模量与变形模量的区 别 Prepared on 24 November 2020

一、压缩模量与变形模量的区别 (一)、第一种 压缩模量:在完全侧限条件下,土的竖向附加应力增量与相应的应变增量之比值,它可以通过室内压缩试验获得。 变形模量:是通过现场载荷试验求得的压缩性指标,即在部分侧限条件下,其应力增量与相应的应变增量的比值。 结论:从上述定义来看,由于压缩模量附带了完全侧限条件,与实际地基的部分侧限条件不一致,故沉降计算必须进行大误差修正(通常修正系数可达~);而变形模量是现场原位测试指标(载荷试验计算指标),较好的模拟了实际地层侧限条件,故理论上由变形模量计算沉降更准确、基本不需修正,承载板的尺寸越接近基础尺寸,计算的精度越高,如果由实体基础沉降资料反算变形模量,来指导相邻场地沉降计算会有很高的准确性,故由变形模量计算沉降在理论上应该比由压缩模量计算更准确、更符合实际。 2、试验方法的差异: 压缩模量:由室内压缩(固结)试验测定,有试验成本低、可操作性强、便于分层大量取样试验的特点。 变形模量:由现场载荷试验来测定,有成本高、周期长、试验点数有限、特别是深层载荷试验费用极高、深度有限、载荷板尺寸通常难以达到实体基础尺寸相当的宽度级别,因而变形模量的测定属于高成本的测试。 结论:从上述两试验测定方法的不同可见,压缩模量的测定通常更容易、成本低廉、易于试验,是勘察报告必须完成的工作,故设计用压缩模量计算沉降依据和数据更充分,这或许就是采用压缩模量计算沉降的公式和经验更多的原

因;而变形模量的测定由于其高成本和高精度,更适合于大型、高荷载、大基础的重要工程,对于中小工程项目(一般基础荷载较小、基础尺寸较小),采用高成本的载荷试验确定变形模量再计算沉降反而不适用(老板愿意花钱另当别论)。 3、试验土类差异: 压缩模量:由于采用土样压缩(固结)试验测定,对于不能采取原状土的地层(如碎石土)和不能切环刀的岩土(如大部分岩石),显然我们难以获得压缩模量。 变形模量:由于我们基本可以在任何基坑底面岩土层进行载荷试验,故变形模量的测定几乎适合任何岩土类别,对于不能获取原状土的地层他就有显着的优越性。 结论:如果不计较成本因素,变形模量法与压缩模量法相比,可适用于任何岩土类别,而压缩模量法一般仅适用于可以获取原状土的地层。 4、试验条件差异: 压缩模量:在勘察阶段通过大量取样来获得,勘察报告在用压缩模量来计算沉降时通常有充分的数据支持。 变形模量:现场载荷试验通常难以在勘察阶段完成,载荷试验一般依据设计需要由设计人员提出在基坑开挖后在基底进行,且数量有限(当然对于重要工程和地层条件许可,也可在勘察阶段进行大量深层螺旋板载荷试验等来获取),目前用其他非载荷试验间接(经验)估算变形模量的方法仍显经验不足。 结论:上述差异决定了,大量工程(特殊工程除外)在勘察阶段,甚至在建筑基坑开挖前我们不得不采用压缩模量来计算沉降,当基坑开挖后,对于重要工

土的经验参数(物理指标、压缩、变形模量、剪切强度)

有关土的经验参数一、原状土物理性质指标变化围 原状土物理性质指标变化围,见表3-3-28。 注:粘砂土3<I p≤7;砂粘土 7<I p≤17 二、土的平均物理、力学性质指标,见表3-3-29。土的平均物理、力学性质指标,见表3-3-29。

注:①平均比重采取:砂——2.66;粘砂土——2.70;砂粘土——2.71;粘土——2.74; ②粗砂和中砂的E 0值适用于不均匀系数C u = = 3者,当C u >5时应按表中所列值减少 。C u 为中间值时E 0 值按插法确定; ③对于地基稳定计算,采用人摩擦角φ的计算值低于标准值2°。 10 60d d 32

三、土的压缩模量一般围值 土的压缩模量一般围值,见表3-3-3-。 注:砂粘土7<I p≤7;粘土I p>17 四、粘性土剪强度参考值 粘性土抗剪强度参考值,见表3-3-31。 注:粘砂土3<I p≤7;砂粘土7<I p≤7;粘土I p>17 五、土的侧压力系数(ξ)和泊松比(u)参考值

注:粘土I p>17;粉质粘土10<I p≤17;I p≤10 五、变形模量于压缩模量的关系 变形模量E0是指土体在无侧限条件下应力与应变之比,其中的应变包含弹性应变和塑性应变两部分。因此,变形模量较弹性模量E小,通常在土与基础的共同作用分析中用变形模量E。变形模量一般是通过现场载荷试验确定,一些地方通过静力触探、标贯试验与变形模量建立了经验公式。 压缩模量Es是在侧限条件下应力与应变的比值,是通过室试验获取的参数。 两者的关系:对于软土E0近似等于Es;较硬土层,E0=βEs,β=2~8,土愈坚硬,倍数愈大。

(推荐)常用材料弹性模量及泊松比

(《钢结构设计规范》GB 50017━2003表3.4.3统一取弹性模量206000MPa。泊松比约为0.3 )(有限元材料库的参数为:45号钢密度7890kg/m3,泊松比0.269,杨氏模量209000GP.)(HT200,弹性模量为135GPa,泊松比为0.27) (HT200 密度:7.2-7.3,弹性模量:70-80; 泊松比0.24-0.25 ;热膨胀系数加热: 10 冷却-8) (用灰铸铁 HT200,根据资料可知其密度为7340kg/m3,弹性模量为120GPa ,泊松比为0. 25)(HT200,弹性模量E=1.22e 11 Pa, 泊松比λ=0.25,密度ρ=7800 kg/m 3) ( HT200 122 /0. 3 /7. 2 ×10 - 6) (材料HT200,密度为7. 8103 kg / m 3 ,弹性模量为 145 GPa,泊松比为0.3) ( HT200,其弹性模量 E=140GPa,泊松比μ=0.25,密度ρ=7.8×10 3 kg/m 3) (模具材料为灰口铸铁 HT200,C-3.47%,Si-2.5%,密度 7210 kg / m3 ,泊松比 0.27。) (箱体材料为HT200,其性能参数为:弹性模量E=1.4×10 11 Pa,泊松比μ=0.3,密度为ρ=7.8×10 3 kg.m -3 ) (模型材料HT200,其主要物理与机械性能参数如下:密度7.25 t/m 3 ,弹性模量126 GPa, 泊松比0.3) (垫板的材料采用 HT200, 材料相关参数查表可得, 弹性模量 E = 1120 ×10 5 N /mm 2 , 泊松比μ= 0125, 密度ρ=712 ×10 - 9 t /mm 3) 表58-23,常用材料的弹性模量,泊松比和线胀系数

压缩模量、变形模量、弹性模量

压缩模量与变形模量的区别(一)、第一种 压缩模量:在完全侧限条件下,土的竖向附加应力增量与相应的应变增量之比值,它可以通过室内压缩试验获得。 变形模量:是通过现场载荷试验求得的压缩性指标,即在部分侧限条件下,其应力增量与相应的应变增量的比值。 结论:从上述定义来看,由于压缩模量附带了完全侧限条件,与实际地基的部分侧限条件不一致,故沉降计算必须进行大误差修正(通常修正系数可达0.25~2.0);而变形模量是现场原位测试指标(载荷试验计算指标),较好的模拟了实际地层侧限条件,故理论上由变形模量计算沉降更准确、基本不需修正,承载板的尺寸越接近基础尺寸,计算的精度越高,如果由实体基础沉降资料反算变形模量,来指导相邻场地沉降计算会有很高的准确性,故由变形模量计算沉降在理论上应该比由压缩模量计算更准确、更符合实际。 2、试验方法的差异: 压缩模量:由室内压缩(固结)试验测定,有试验成本低、可操作性强、便于分层大量取样试验的特点。 变形模量:由现场载荷试验来测定,有成本高、周期长、试验点数有限、特别是深层载荷试验费用极高、深度有限、载荷板尺寸通常难以达到实体基础尺寸相当的宽度级别,因而变形模量的测定属于高成本的测试。 结论:从上述两试验测定方法的不同可见,压缩模量的测定通常更容易、成本低廉、易于试验,是勘察报告必须完成的工作,故设计用压缩模量计算沉降依据和数据更充分,这或许就是采用压缩模量计算沉降的公式和经验更多的原因;而变形模量的测定由于其高成本和高精度,更适合于大型、高荷载、大基础的重要工程,对于中小工程项目(一般基础荷载较小、基础尺寸较小),采用高成本的载荷试验确定变形模量再计算沉降反而不适用(老板愿意花钱另当别论)。 3、试验土类差异: 压缩模量:由于采用土样压缩(固结)试验测定,对于不能采取原状土的地层(如碎石土)和不能切环刀的岩土(如大部分岩石),显然我们难以获得压缩模量。变形模量:由于我们基本可以在任何基坑底面岩土层进行载荷试验,故变形模量的测定几乎适合任何岩土类别,对于不能获取原状土的地层他就有显著的优越性。 结论:如果不计较成本因素,变形模量法与压缩模量法相比,可适用于任何岩土类别,而压缩模量法一般仅适用于可以获取原状土的地层。 4、试验条件差异:

土的经验参数(物理指标、压缩、变形模量、剪切强度)

有关土的经验参数 一、原状土物理性质指标变化范围 原状土物理性质指标变化范围,见表3-3-28。 注:粘砂土3<I p≤7;砂粘土7<I p≤17 二、土的平均物理、力学性质指标,见表3-3-29。 土的平均物理、力学性质指标,见表3-3-29。

注:①平均比重采取:砂——2.66;粘砂土——2.70;砂粘土——2.71;粘土——2.74; ②粗砂和中砂的E 0值适用于不均匀系数C u ==3者,当C u >5时应按表中所列值减少。C u 为中间值 时E 0值按内插法确定; ③对于地基稳定计算,采用人摩擦角φ的计算值低于标准值2°。 三、土的压缩模量一般范围值 土的压缩模量一般范围值,见表3-3-3-。 10 60d d 32

注:砂粘土7<I p≤7;粘土I p>17 四、粘性土剪强度参考值 粘性土抗剪强度参考值,见表3-3-31。 注:粘砂土3<I p≤7;砂粘土7<I p≤7;粘土I p>17 五、土的侧压力系数(ξ)和泊松比(u)参考值 注:粘土I p>17;粉质粘土10<I p≤17;I p≤10 五、变形模量于压缩模量的关系

变形模量E0是指土体在无侧限条件下应力与应变之比,其中的应变包含弹性应变和塑性应变两部分。因此,变形模量较弹性模量E小,通常在土与基础的共同作用分析中用变形模量E。变形模量一般是通过现场载荷试验确定,一些地方通过静力触探、标贯试验与变形模量建立了经验公式。 压缩模量Es是在侧限条件下应力与应变的比值,是通过室内试验获取的参数。 两者的关系:对于软土E0近似等于Es;较硬土层,E0=βEs,β=2~8,土愈坚硬,倍数愈大。

土的压缩模量,变形模量,弹性模量

土体弹性模量,压缩模量及变形模量是常用的也是很容易混淆的三个概念。压缩模量也叫侧限压缩模量是土在完全侧限条件下竖向附加应力与相应竖向应变的比值。变形模量是在现场原位测得的,是无侧限条件下应力与应变的比值,可以比较准确地反映土在天然状态下的压缩性,这也是为什么砂土要用变形模量指标的缘故。压缩模量和变形模量之间可以互相换算,两者间是倍数的关系,土越坚硬倍数越大,软土则两者比较接近。弹性模量是正应力与弹性(即可恢复)正应变的比值。}&p8{;GT:z-S 压缩模量E s 是土在完全侧限的条件下得到的,为竖向正应力与相应的正应变的比值。该参数将用于 地基最终沉降量计算的分层总和法、应力面积法等方法中。 变形模量E 0 是根据现场载荷试验得到的,它是指土 在侧向自由膨胀条件下正应力与相应的正应变的 比值。该参数将用于弹性理论法最终沉降估算中,但载荷试验中所规定的沉降稳定标准带有很大的近似性。 弹性模量E i 可通过静力法或动力法测定,它是指正 应力s 与弹性(即可恢复)正应变e 的比值 该参数常用于用弹性理论公式估算建筑物的初始瞬时沉降。

根据上述三种模量的定义可看出:压缩模量和变形模 量的应变为总的应变,既包括可恢复的弹性应变, 又包括不可恢复的塑性应变。而弹性模量的应变只包含弹性应变。 从理论上可以得到压缩模量与变形模量之间的换算关系: 1-刈 上式给出了变形模量与压缩模量之间的理论关系,由于0W卩 < 0.5,所以0 < B < 1。 由于土体不是完全弹性体,加上二种试验的影响因素 较多,使得理论关系与实测关系有一定差距。实 测资料表明,E 0与E s的比值并不象理论得到的在0?I 间变化,而可能出现E 0 / E s 超过1 的情况,且土的结构性越强或压缩性越小,其比值越大。 土的弹性模量要比变形模量、压缩模量大得多,可能是 它们的十几倍或者更大

常用材料弹性模量及泊松比

(《钢结构设计规范》GB 50017━ (有限元材料库的参数为:45号钢密度7890kg/m3,泊松比,杨氏模量209000GP.) (HT200,弹性模量为135GPa,泊松比为) (HT200 密度:,弹性模量:70-80; 泊松比热膨胀系数加热:10冷却-8) (用灰铸铁 HT200,根据资料可知其密度为7340kg/m3,弹性模量为120GPa ,泊松比为0. 25)(HT200,弹性模量E= 11 Pa, 泊松比λ=,密度ρ=7800 kg/m 3) ( HT200 122 /0. 3 /7. 2 ×10 - 6) (材料HT200,密度为7. 8103 kg / m 3 ,弹性模量为 145 GPa,泊松比为 ( HT200,其弹性模量 E=140GPa,泊松比μ=,密度ρ=×10 3 kg/m 3) (模具材料为灰口铸铁 HT200,%,%,密度 7210 kg / m3 ,泊松比。) (箱体材料为HT200,其性能参数为:弹性模量E=×10 11 Pa,泊松比μ=,密度为ρ=×10 3 -3 ) (模型材料HT200,其主要物理与机械性能参数如下:密度 t/m 3 ,弹性模量126 GPa, 泊松比 (垫板的材料采用 HT200, 材料相关参数查表可得, 弹性模量 E = 1120 ×10 5 N /mm 2 , 泊松比μ= 0125, 密度ρ=712 ×10 - 9 t /mm 3) 表58-23,常用材料的弹性模量,泊松比和线胀系数

常用弹性模量及泊松比 ━━━━━━━━━━━━━━━━━━名称弹性模量E 切变模量G 泊松比μ GPa GPa ──────────────────镍铬钢 206 合金钢 206 碳钢 196-206 79 铸钢 172-202 球墨铸铁 140-154 73-76 灰铸铁 113-157 44 白口铸铁 113-157 44 冷拔纯铜 127 48 轧制磷青铜 113 41 轧制纯铜 108 39 轧制锰青铜 108 39

压缩模量与变形模量的区别

一、压缩模量与变形模量的区别 (一)、第一种 压缩模量:在完全侧限条件下,土的竖向附加应力增量与相应的应变增量之比值,它可以通过室内压缩试验获得。 变形模量:就是通过现场载荷试验求得的压缩性指标,即在部分侧限条件下,其应力增量与相应的应变增量的比值。 结论:从上述定义来瞧,由于压缩模量附带了完全侧限条件,与实际地基的部分侧限条件不一致,故沉降计算必须进行大误差修正(通常修正系数可达0、25~2、0);而变形模量就是现场原位测试指标(载荷试验计算指标),较好的模拟了实际地层侧限条件,故理论上由变形模量计算沉降更准确、基本不需修正,承载板的尺寸越接近基础尺寸,计算的精度越高,如果由实体基础沉降资料反算变形模量,来指导相邻场地沉降计算会有很高的准确性,故由变形模量计算沉降在理论上应该比由压缩模量计算更准确、更符合实际。 2、试验方法的差异: 压缩模量:由室内压缩(固结)试验测定,有试验成本低、可操作性强、便于分层大量取样试验的特点。 变形模量:由现场载荷试验来测定,有成本高、周期长、试验点数有限、特别就是深层载荷试验费用极高、深度有限、载荷板尺寸通常难以达到实体基础尺寸相当的宽度级别,因而变形模量的测定属于高成本的测试。 结论:从上述两试验测定方法的不同可见,压缩模量的测定通常更容易、成本低廉、易于试验,就是勘察报告必须完成的工作,故设计用压缩模量计算沉降依据与数据更充分,这或许就就是采用压缩模量计算沉降的公式与经验更多的原因;而变形模量的测定由于其高成本与高精度,更适合于大型、高荷载、大基础的重要工程,对于中小工程项目(一般基础荷载较小、基础尺寸较小),采用高成本的载荷试验确定变形模量再计算沉降反而不适用(老板愿意花钱另当别论)。 3、试验土类差异: 压缩模量:由于采用土样压缩(固结)试验测定,对于不能采取原状土的地层(如碎石土)与不能切环刀的岩土(如大部分岩石),显然我们难以获得压缩模量。 变形模量:由于我们基本可以在任何基坑底面岩土层进行载荷试验,故变形模量的测定几乎适合任何岩土类别,对于不能获取原状土的地层她就有显著的优越性。 结论:如果不计较成本因素,变形模量法与压缩模量法相比,可适用于任何岩土类别,而压缩模量法一般仅适用于可以获取原状土的地层。 4、试验条件差异: 压缩模量:在勘察阶段通过大量取样来获得,勘察报告在用压缩模量来计算沉降时通常有充分的数据支持。 变形模量:现场载荷试验通常难以在勘察阶段完成,载荷试验一般依据设计需要由设计人员提出在基坑开挖后在基底进行,且数量有限(当然对于重要工程与地层条件许可,也可在勘察阶段进行大量深层螺旋板载荷试验等来获取),目前用其她非载荷试验间接(经验)估算变形模量的方法仍显经验不足。 结论:上述差异决定了,大量工程(特殊工程除外)在勘察阶段,甚至在建筑基坑开挖前我们不得不采用压缩模量来计算沉降,当基坑开挖后,对于重要工程,并进行了一定数量载荷试验之后,我们才真正基本具备用实测变形模量来计算沉降的条件,故本人认为,在现阶段我们要真正意义上实现用实测变形模量来准确计算沉降,通常就是难以实现的理论期望。 总结:采用压缩模量还就是变形模量来计算沉降哪种更合适?主要受三方面的因素制约:

变形模量压缩模量

变形模量 定义:土的变形模量是通过现场载荷试验求得的压缩性指标,即在部分侧限条件下,其应力增量与相应的应变增量的比值。 能较真实地反映天然土层的变形特性。其缺点是载荷试验设备笨重、历时长和花钱多,且深层土的载荷试验在技术上极为困难,故常常需要根据压缩模量的资料来估算土的变形模量。 与压缩模量、弹性模量的区别 土的压缩模量:在完全侧限条件下,土的竖向附加应力增量与相应的应变增量之比值,它可以通过室内压缩试验获得。 土的弹性模量:土的弹性模量根据测定方法不同,可分为“静弹模”和“动弹模”。静弹模采用静三轴仪测定。弹性模量为加卸载该曲线上应力与应变的比值。动弹模,可用室内动三轴仪测得,当土样固结后,分级施加动应力,进行不排水的振动试验,一般保持动应力幅值不变,振动次数视工程实际条件而定可用双曲线方程来描述,也称切线弹模。 土的变形模量和压缩模量,是判断土的压缩性和计算地基压缩变形量的重要指标。由于两者在压缩时所受的侧限条件不同,对同一种土在相同压应力作用下两种模量的数值显然相差很大。三种模量的试验方法不同,反映在应力条件、变形条件上也不同。压缩模量是在室内有侧限条件下的一维变形问题,变形模量则是在现场的三维空间问题;另外土体变形包括了可恢复的(弹性)变形和不可恢复的(塑性)变形两部分。压缩模量和变形模量是包括了残余变形在内的,与弹性模量有根本区别,而压缩模量与变形模量的区别又在于是否有侧限。在工程应用上,我们应根据具体问题采用不同的模量。 为了建立变形模量和压缩模量的关系,在地基设计中,常需测量土的侧压力系数ξ和侧膨胀系数μ。 侧压力系数ξ:是指侧向压力δx与竖向压力δz之比值,即: ξ=δx/δz 土的侧膨胀系数μ(泊松比):是指在侧向自由膨胀条件下受压时,测向膨胀的应变εx与竖向压缩的应变εz之比值,即 μ=εx/εz 根据材料力学广义胡克定律推导求得ξ和μ的相互关系, ξ=μ/(1-μ)或μ=ε/(1+ε) 土的侧压力系数可由专门仪器测得,但侧膨胀系数不易直接测定,可根据土的侧压力系数,按上式求得。 在土的压密变形阶段,假定土为弹性材料,则可根据材料力学理论,推导出变形模量E0和压缩模量Es之间的关系。 令β=1-2μ^2/(1-μ)则Eo=βEs

常用材料弹性模量

常用材料弹性模量 所谓弹性模量,是以在一定比例限度范围内拉伸应力和拉伸变形之比来表示。实际应用时,多以F-2 、F-5来表示2%或5%伸长时的应力。 在GB∕T 13022-1991中7.3规定:作应力-应变曲线,从曲线的初始直线部分计算拉伸弹和模量,以E(MPa)表示,E=δ∕ξ,式中δ-应力,MPa;ξ-应变。 在初始拉伸阶段,拉伸应力与形变化呈直线段,从这段应力与应变的关系可以计算试样的弹性模量。 而我们通常检测的薄膜断裂拉伸强度以及断裂伸长率,对于张力的设定而言不具有任何参考性,印刷复合时加载在薄膜上的应力必须控制在薄膜产生弹性变形的范围内,否则就是薄膜不可逆的拉伸变形,将产生严重的尺寸变化。 另外,薄膜张力设定还要考虑薄膜材料的受热稳定性,例如印刷干燥温度在50-80℃,复合干燥温度在55-90℃(水胶复合要高一些),复合热鼓温度在50-70℃等。常用材料的热稳定性依次为PET、NY >BOPP>消光OPP>CPP>PE。

下面我们探讨一下常用材料的弹性模量及耐热性对张力设定的影响:1、双向拉伸薄膜 作为表层基材,PET的弹性模量最高,其次是BOPP,再次是消光OPP,而BOPA在干燥条件时有良好的弹性模量(接近于PET薄膜),但受潮后挺度不足(弹性模量大幅降低,印刷套印困难)。同时,PET膜的热稳定性最好,其次是BOPP,再次消光OPP,由于消光OPP膜的弹性模量相对较低,同时热稳定性又较差,印刷冷却收卷后的回缩率较大,在夏季印刷收卷后易容易出现反粘现象,所以印刷消光OPP 时张力要调整得略小,干燥温度适当降低。 2、热封层基材的弹性模量 同时CPP的热稳定性远高于PE薄膜,因而LDPE薄膜的多色套印非常困难,需要配方调整提高其弹性模量及耐热稳定性。 对复合过程来说,最关键的是两贴合薄膜的张力匹配问题,也就是说复合后两层膜的回缩率要尽量一致,不然,轻则卷曲,重则产生遂道现象。例如,消光OPP干复铝箔,铝箔可以认为是不收缩,而消光OPP薄膜在加载复合张力的情况下经过50-80℃的烘箱,由于其弹性模量及耐热性都较PET及普通OPP差,因而松掉张力后的回缩率也会大一些,一般消光膜复合时张力要小干燥温度也要低一些。

土体压缩模量、变形模量和弹性模量的讨论

土体压缩模量、变形模量和弹性模量的讨论 陈勇华 中国地质大学(武汉)工程学院广州地铁设计研究院有限公司广东广州510010 摘要:本文通过论述土体压缩模量、变形模量和弹性模量的概念、区别及联系及各种模量的适用范围,重点推导了压缩模量和变形模量之间的换算公式及经验换算关系,并提出通过经验试算找出合适的三轴压缩试验变形模量的方法。 关键词:土体;压缩模量;变形模量;弹性模量 0引言 目前,深基坑开挖、地基处理、隧道工程等岩土工程项目大规模开展,计算理论也在不断发展和完善。特别是随着有限单元法、有限差分法、边界元法等数值方法引入到岩土工程的计算理论中,加之各种计算软件的广泛应用,使岩土工程的计算可以考虑到更多更复杂的实际边界条件,使得三维分析变得可能。但在此计算中,岩土本构模型和土体参数的选取依然是个关键。土体参数中,压缩模量、变形模量和弹性模量的概念往往容易混淆,例如,勘察报告里面多提供压缩模量(Es),但这是实验室在完全侧限条件下得到的土体变形指标,若用于实际中计算土体压缩,则误差较大;又如,计算建筑物加载的瞬时沉降时,应选用弹性模量,若采用压缩模量或者变形模量,则会计算结果偏大很多。为此,本文着重讨论上述三种模量的区别与联系以及合理的选用方法。 1三种模量的概念 1.1压缩模量 土体的压缩模量是由室内侧限压缩试验的e~p曲线得到,其定义为土在完全侧限的条件下竖向应力增量Δp与相应的变形稳定情况下应变增量Δε的比值: Es=Δp/Δε(1-1) 两种表达式: Es=(1+e0)/a(1-2) Es=(1+ei)/a(1-3) 式(1-2)的应变增量是变形增量与试验土样原始长度之比.式(1-3)的应变增量是变形增量与试验土样在 压力段范围初始压力下的长度之比。 1.2变形模量 变形模量通过现场载荷试验的p~s曲线求的,当荷载小于某数值时,荷载p与载荷板沉降之间呈直线关系,根据弹性理论计算沉降的公式,可反求出地基的变形模量: E0=ωpb(1-?2)/s(1-4) 式中:E0—土的变形模量(MPa); P—直线段的荷载强度(kPa); s—相应于p的载荷板下沉量; b—载荷板的宽度或直径; —土的泊松比; —沉降影响系数。 需要指出的是,根据弹性力学公式计算的变形模量,就是弹性模量,取近似弹性段进行计算,不考虑多孔介质的压硬性,即模量随应力状态而变化的特性。 1.3弹性模量 弹性模量是指正应力σ与弹性(即可恢复)正应变εd的比值,通常用E来表示。一般采用三轴仪进行三轴重复压缩试验,得到的 应力应变曲线上的初始切线模量Ei或再加荷模量Er作为弹性模量(我们也可分别称为初始模量、卸荷模量)。弹性模量的测定方法有两大类:静力法和动力法,在静三轴仪中测定的方法为静力法,得到的弹性模量为静弹模,一般用E来表示;动力法的仪器是动三轴仪,测得的弹性模量为动弹模,一般用Ed来表示。 2三种模量的区别及适用范围 压缩模量的室内试验操作比较简单,但要得到保持天然结构状态的原状土样很困难,更重要的一点是试验在土体完全侧向受限的条件下进行,因此试验得到的压缩性规律和指标理论上只适应于刚性侧限条件下的沉降计算,其实际运用具有很大的局限性。现行规范中,压缩模量一般用于分层总和法、应力面积法的地基最终沉降计算。 变形模量是根据现场载荷试验得到的,它是指土在侧向自由膨胀条件下正应力与相应的正应变的比值。相比室内侧限压缩试验,现场载荷试验排除了取样和试样制备等过程中应力释放及机械人为扰动的影响,更接近于实际工作条件,能比较真实地反映土在天然埋藏条件下的压缩性。该参数用于弹性理论法最终沉降估算中,但在载荷试验中所规定的沉降稳定标准带有很大的近似性。 弹性模量的概念在实际工程中有一定的意义。在计算高耸结构物在风荷载作用下的倾斜时发现,如果用土的压缩模量或变形模量指标进行计算,将得到实际上不可能那么大的倾斜值。这是因为风荷载是瞬时重复荷载,在很短的时间内土体中的孔隙水来不及排出或不完全排出,土的体积压缩变形来不及发生,这样荷载作用结束之后,发生的大部分变形可以恢复,因此用弹性模量计算就比较合理一些。再比如,在计算饱和粘性土地基上瞬时加荷所产生的瞬时沉降时,同样也应采用弹性模量。该常数常用于弹性理论公式估算建筑物的初始瞬时沉降。 根据上述三种模量的论述,可看出:压缩模量和变形模量的应变为总的应变,既包括可恢复的弹性应变,又包括不可恢复的塑性应变;而弹性模量的应变只包含弹性应变。在一般工程中,土的弹性模量就是指土体开始变形阶段的模量,因为土发生弹性变形的时间非常短,土在弹性阶段的变形模量等于弹性模量,变形模量更能适合土体的实际情况。常规三轴试验得到的弹性模量是轴向应力与轴向应变曲线中开始的直线段(即弹性阶段)的斜率。 这些模量各有适用范围,本质上是为了在实验室或者现场模拟为再现实际工况而获取的值。一般情况下土的弹性模量是压缩模量、变形模量的十几倍或者更大。 3压缩模量与变形模量之间的换算 从理论上可以得到压缩模量与变形模量之间的换算关系。 在侧限压缩试验中,σz为竖向应力,由于侧向完全侧限,所以:εx=εy=0(3-1) σx=σy=K0σz(3-2) m w

常用材料的弹性模量及泊松比数据表

常用材料的弹性模量及泊松比数据表(S) 序号材料名称弹性模量\E\Gpa 切变模量\G\Gpa 泊松比\μ 1 镍铬钢、合金钢206 ~ 2 碳钢196~206 79 ~ 3 铸钢172~202 - 4 球墨铸铁140~154 73~76 - 5 灰铸铁、白口铸铁113~157 44 ~ 6 冷拔纯铜12 7 4 8 - 7 轧制磷青铜113 41 ~ 8 轧制纯铜108 39 ~ 9 轧制锰青铜108 39 10 铸铝青铜103 41 - 11 冷拔黄铜89~97 34~36 ~ 12 轧制锌82 31 13 硬铝合金70 26 - 14 轧制铝68 25~26 ~ 15 铅17 7 16 玻璃55 22 17 混凝土14~23 ~~ 18 纵纹木材~12 - 19 横纹木材~~- 20 橡胶- 21 电木~~~ 22 尼龙 23 可锻铸铁152 - - 24 拔制铝线69 - - 25 大理石55 - - 26 花岗石48 - - 27 石灰石41 - - 28 尼龙1010 - - 29 夹布酚醛塑料4~- - 30 石棉酚醛塑料- - 31 高压聚乙烯~- - 32 低压聚乙烯~- - 33 聚丙烯~- -

Q235等属于碳素结构钢,35#、45#等属于优质碳素钢,强度较高,塑性和韧性都比碳素钢好。 屈服强度:是弹性变形的极限也叫屈服点。增加应力到一定程度时成为塑性变形,也就是变弯了。每种钢的屈服强度是不一样的 镍铬钢、合金钢的弹性模量是206GPa 碳钢的弹性模量为196~206GPa,计算时一般取206GPa 铸钢的弹性模量为172~202Gpa

相关文档
相关文档 最新文档