文档库 最新最全的文档下载
当前位置:文档库 › 食品化学思考题答案..

食品化学思考题答案..

食品化学思考题答案..
食品化学思考题答案..

食品化学思考题答案

第一章绪论

1、食品化学定义及研究内容?

食品化学定义:论述食品的成分和性质以及食品在处理、加工和贮藏中经受的化学变化。研究内容:食品材料中主要成分的结构和性质;这些成分在食品加工和保藏过程中产生的物理、化学、和生物化学变化;以及食品成分的结构、性质和变化对食品质量和加工性能的影响等。

第二章水

1 名词解释

(1)结合水(2)自由水(3)等温吸附曲线(4)等温吸附曲线的滞后性(5)水分活度

(1)结合水:存在于溶质及其他非水组分临近的水,与同一体系中“体相”水相比,它们呈现出低的流动性和其他显著不同的性质,这些水在-40℃下不结冰。

(2)自由水:食品中的部分水,被以毛细管力维系在食品空隙中,能自由运动, 这种水称为自由水。

(3)等温吸附曲线:在恒温条件下,以食品含水量(gH2O/g干物质)对Aw作图所得的曲线。又称等温吸湿曲线、等温吸着曲线、水分回吸等温线.

(4)如果向干燥样品中添加水(回吸作用)的方法绘制水分吸着等温线和按解吸过程绘制的等温线并不相互重叠,这种不重叠性称为滞后现象。

(5)水分活度:食品的水蒸汽分压(P)与同条件下纯水蒸汽压(P0)之比。它表示食品中水的游离程度,水分被微生物利用的程度。也可以用相对平衡湿度表aw=ERH/100。

2 、结合水、自由水各有何特点?

答:结合水:-40℃不结冰,不能作为溶剂,100 ℃时不能从食品中释放出来,不能被微生物利用,决定食品风味。

自由水:0℃时结冰,能作为溶剂,100 ℃时能从食品中释放出来很适于微生物生长和大多数化学反应,易引起Food的腐败变质,但与食品的风味及功能性紧密相关。

3 、分析冷冻时冰晶形成对果蔬类、肉类食品的影响。

答:对于肉类、果蔬等生物组织类食物,普通冷冻(食品通过最大冰晶生成带的降温时间超过30min)时形成的冰晶较粗大,冰晶刺破细胞,引起细胞内容物外流(流汁),导致营养素及其它成分的损失;冰晶的机械挤压还造成蛋白质变性,食物口感变硬。

速冻,为了不使冷冻食品产生粗大冰晶,冷冻时须迅速越过冰晶大量形成的低温阶段,即在几十分钟内越过-3.9~0℃。冷冻食品中的冰晶细小则口感细腻(冰淇淋),冰晶粗大则口感粗糙。

4、水与溶质相互作用分类:偶极—离子相互作用,偶极—偶极相互作用,疏水水合作用,疏水相互作用。

浄结构形成效应:在稀盐溶液中,一些离子具有净结构形成效应(溶液比纯水具有较低的流动性),这些离子大多是电场强度大,离子半径小的离子,或多价离子。如:Li+, Na+, Ca2+, Ba2+, Mg2+, Al3+,F-,OH-, 等。主要是一些小离子或多价离子,具有强电场,所以能紧密地结合水分子。那么这些离子加到水中同样会对水的净结构产生破坏作用,打断原有水分子与水分子通过氢键相连的结构,另一方面,正因为它与水分子形成的结合力更强烈,远远超过对水结构的破坏,就是说正面影响超过负面影响,整体来说,使水分子与水分子结合的更紧密,可以想象,这些水流动性比纯水流动性更差,因为拉的更紧,堆积密度更大。

浄结构破坏效应:在稀盐溶液中一些离子具有净结构破坏效应(溶液比纯水具有较高的流动性), 这些离子大多为大离子或单价离子,产生弱电场,如:K+, Rb+, Cs+, NH4+, Cl-, Br-,I-,NO3-,BrO3-,IO3-,ClO4-等。这些是电场强度较弱的大离子或单价离子,它和水分子之间形成的作用力,比方直径越大,与周围水分子结合越松散,不那么紧密,对水分子破坏作用更大于对水分子正面作用,入不敷出,破坏更厉害,总体上对水的净结构产生破坏效应,水分子结合比原来水分子结合来的松散,水分子受到束缚更少了,流动性更强。

疏水相互作用推动力:是水和这些疏水物质尽可能的少接触,尽可能减少接触面积所导致的。疏水相互作用对一些大分子的结构和构像是非常重要的。例如蛋白子的疏水相互作用。

5 水分活度与温度的关系

①冰点以下,㏑aw=-K△H/RT,T ↑则aw↑,㏑aw -1/T 为一直线。水分含量增加时,T 对aw的影响程度提高。

②温度对aw的影响在冰点下远大于在冰点以上(冰冻冷藏的依据),温度下降,导致aw下降很快,有利于降低温度,抵抗败坏;T ↑,不利于水和非水组分的相互作用。

③在试样的冰点此直线出现明显的转折。

6 等温吸湿线定义、三个区域含义。

答、定义:在恒温条件下,以食品含水量(gH2O/g干物质)对Aw作图所得的曲线。

区Ⅰ:化合水。区Ⅱ:多分子层水。区Ⅲ:自由水或体相水

7 滞后现象定义,滞后现象产生的原因。

答、定义:如果向干燥样品中添加水(回吸作用)的方法绘制水分吸着等温线和按解吸过程绘制的等温线并不相互重叠,这种不重叠性称为滞后现象。

原因:解吸过程中一些水分与非水溶液成分作用而无法放出水分。

不规则形状产生毛细管现象的部位,欲填满或抽空水分需不同的蒸汽压(要抽出需P内>P 外,要填满则需P外>P内)。

解吸作用时,因组织改变,当再吸水时无法紧密结合水,由此可导致回吸相同水分含量时处于较高的aw。

8 降低水分活度可以提高食品的稳定性,其机理是什么?如何减少水分活度?

机理:降低水分活度,使食品中许多可能发生的化学反应、酶促反应受到抑制。

A、很多化学、生物反应必须有水分子参加才能进行,就必须有足够的自由水,那么降低水分活度就减少了参加反应的自由水的数量,化学反应的速度也就变慢。

B、许多以酶为催化剂的酶促反应,水除了起着一种反应物的作用外,还能作为底物向酶扩散的输送介质,且通过水化促使酶和底物活化

一般可用干燥、盐腌和糖渍等方法减少水分活度。

第三章碳水化合物

1、单糖、双糖和低聚糖的食品性质及功能?

答、单糖双糖的食品性质和功能

1)甜度

各种单糖或双糖的相对甜度为:蔗糖1.0,果糖1.5,葡萄糖0.7,半乳糖0.6,麦芽糖0.5,乳糖0.4。

2)溶解度与渗透压及抗氧化性。一定浓度的糖溶液,具有一定的渗透压。渗透压高,则抑菌效果强。糖溶液中溶氧减少,有抗氧化作用(护色,保香)。

3)结晶性

结晶能力:Glu >Suc >转化糖,果糖>麦芽糖

晶体小晶体大难结晶

>淀粉糖浆,果葡糖浆

不结晶,能防止蔗糖结晶

硬糖生产不能单用蔗糖。因为,蔗糖结晶大,脆,易破碎,产品缺乏韧性。一般在生产硬糖时添加一定量的(30%-40%)的淀粉糖浆。冷冻食品,使用淀粉糖浆可阻止含水蔗糖晶体形成,使产品组织细腻,口感好。

4)亲水性

糖类为多羟基酮或醛及其衍生物或缩合物,糖分子中的羟基能与H2O形成氢键,表现出亲水性。

糖的亲水性在食品中表现为吸湿性(糖在较高空气湿度环境中吸收水分的能力)和保湿性(糖在较低空气湿度环境中对食品中水分的保持能力)。

5)旋光性

6)冰点降低

当在水中加入糖时会引起溶液的冰点降低。糖的浓度越高,溶液冰点下降的越大。相同浓度下对冰点降低的程度,

葡萄糖>蔗糖>淀粉糖浆。

7)褐变风味

Glu与不同氨基酸加热,产生不同风味,例

Glu + 甘氨酸焦糖香

Glu +谷氨酰胺巧克力味

Glu + 脯氨酸烤面包味

Glu + 甲硫氨酸马铃薯香味

8)粘度

粘度:单糖<双糖<寡糖<多糖

Glu,Fru <Suc <淀粉糖浆

水果罐头、肉类罐头、果汁饮料:添加淀粉糖浆获得适度的粘稠感。

低聚糖:低聚糖的功能

(1)赋予风味

麦芽酚、乙基麦芽酚、异麦芽酚有强烈的焦糖香,也是食品中常用的风味(甜味)增强剂。

(2)特殊功能

增加溶解性:如环状糊精,麦芽糊精

稳定剂:糊精作固体饮料的增稠剂和稳定剂

(3)保健功能

低聚(果)糖可促进小孩肠道双歧杆菌生长,促消化;低能量或零能量;低龋齿性。

1、简述β-环状糊精的结构特点及其用途。

应用:①医学

如用环状糊精包接前列腺素的试剂、注射

剂,卞基青霉素-β-环糊精。

②农业

应用在农药上。环糊精包接稳定化,某些农药则可耐贮存及提高杀虫效力。

③食品行业

做增稠剂,稳定剂,提高溶解度(做乳化剂),掩盖异味等。

3、为了使某种面粉制作的面条具有一定吸水性(不存在硬芯),可以采取哪些措施?并说明理由。

加入吸湿剂,吸湿剂应该含离子、离子基团或含可形成氢键的中性基团(羟基,羰基,氨基,亚氨基,酰基等),即有可与水形成结合水的亲水性物质。

如:多元醇:丙三醇、丙二醇、糖

无机盐:磷酸盐(水分保持剂)、食盐

动、植物、微生物胶:卡拉胶、琼脂

4、糖苷相关性质?

答:糖苷是由单糖或低聚糖的半缩醛羟基和另一个分子中的-OH、-NH2、-SH(巯基)等发生缩合反应而得的化合物。

糖苷的相关性质有:

①无变旋现象因为分子中没有半缩醛羟基

②无还原性

③酸中水解,碱中可稳定存在

④吡喃糖苷环比呋喃糖苷稳定

5、多糖有哪些食品性质与功能?

答:多糖的食品性质功能:提供硬度、脆性、紧密度、稠度、黏度、黏附力、胶凝性、口感等。

一、多糖的水溶性.

有的多糖常通过分子间氢键,形成数量多而稳定、水分子难以渗入的区域,称结晶区。此类多糖不溶于水. 有的多糖其分子间不形成结晶区,而是形成分子排列松散、杂乱、高度水化的区域,称无定形区。此类多糖能溶于水。

二、多糖的胶凝作用

每个多糖分子参与形成两个或两个以上的结晶区,每个结晶区则仅仅是由两个链段形成,缔合成复杂的三维网络结构,大量的水分散在三维网络中,此体系即为凝胶。

常见的多糖凝胶食品有:果冻,布丁等

三、多糖溶液的粘度

粘度是体系摩擦阻力的表现。体系中溶质分子占有的有效体积越大,则流动时的分子对后面的分子的阻力越大,体系的粘度越高。

影响多糖粘度的因素有:(1)多糖分子的形状、大小。(2)分子所带电荷。

6、直链淀粉和支链淀粉的物理化学性质比较?

类型分子构成分子形态溶解性与I2反应糊化性老化性

直链淀粉由葡萄糖

以α-1,4

苷键缩合

而成

直链卷曲呈

螺旋状无分

支结构

不溶于冷水

可溶于热水

呈蓝色不易糊化易老化

支链淀粉由葡萄糖α

-1,4和α-1,6

苷键缩合而成

聚合体近似

球状,具有

树枝状结构,

每个分支卷

曲呈螺旋状

不溶于水只

在热水中溶

呈紫红色易糊化不易老化

7、什么是淀粉的糊化和老化?本质是什么?各有哪些影响因素?如何影响?

答:淀粉的糊化:将淀粉混合于水中并加热,达到一定温度后,则淀粉粒溶胀、崩溃,形成粘稠的均匀的透明糊溶液,称淀粉的糊化(α-化)。

本质是淀粉颗粒中有序态(晶态)和无序态(非晶态)的淀粉分子之间的氢键断裂,分散在水中形成亲水性胶体溶液。

影响因素有:

①结构:直链淀粉不易糊化。

②Aw:Aw提高,糊化程度提高。

③糖:高浓度的糖水分子,使淀粉糊化受到抑制。

④盐:高浓度的盐使淀粉糊化受到抑制;低浓度的盐存在,对糊化几乎无影响。但对马铃薯淀粉例外,因为它含有磷酸基团,低浓度的盐影响它的电荷效应。

⑤脂类:脂类可与淀粉形成包合物,即脂类被包含在淀粉螺旋环内,不易从螺旋环中浸出,并阻止水渗透入淀粉粒。

⑥酸度:一般淀粉在碱性中易于糊化,且淀粉糊在中性至碱性条件下黏度也是稳定的。

淀粉的老化:热的淀粉糊冷却时,淀粉分子间会重新形成结晶区,溶解度逐渐减少甚至产生不溶性沉淀,这种现象称为淀粉的老化(β-化)。

本质是糊化后的分子又自动排列成序,形成高度致密的、结晶化的、不溶解性分子微束。影响因素有:

(1)淀粉的种类。直链淀粉比支链淀粉易于老化

(2)温度。2~4℃,淀粉易老化;>60℃或<-20℃,不易发生老化;

(3)含水量。含水量30~60%,易老化。含水量过低(10%)或过高均不易老化;

(4)共存物的影响。表面活性剂可抗老化,如脂肪甘油脂,糖脂,磷脂。多糖、蛋白质等亲水大分子,可与淀粉竞争水分子及干扰淀粉分子平行靠拢,从而起到抗老化作用。(5)糊化程度。糊化程度越高,淀粉颗粒解体越彻底,则重新凝聚而老化的速度越慢。

8、试从结构上解释为什么支链淀粉比直链淀粉易糊化,糊化的本质是什么?

在一定温度下,淀粉粒在水中发生膨胀,形成粘稠的糊状胶体溶液,这一现象称为淀粉的糊化,由于支链淀粉的结构不如直链淀粉紧密,处于无序态的分子比直链淀粉多,水更容易进入微晶束,容易发生膨胀,形成粘稠的糊状胶体溶液。

淀粉糊化本质是水进入微晶束,折散淀粉分子间的缔合状态,使淀粉分子失去原有的取向排列,而变为混乱状态,即淀粉粒中有序及无序态的分子间的氢键断开,分散在水中成为胶体溶液。

9、果胶凝胶形成的条件和机制是什么?受哪些因素影响?如何影响?

答、⑴高甲氧基果胶(低pH和高糖浓度)

条件:脱水剂(蔗糖)含量58-75%,

pH2.0-3.5,果胶含量<1%,可以形成凝胶。

机制:脱水剂使高度含水的果胶分子脱水以及电荷中和而形成凝集体。

低pH可阻止羧基离解,使高度水合作用和带电的羧基转变为不带电荷的分子,从而使分子间斥力减小,分子水合作用降低,结果有利于分子间的结合和三维网络结构的形成。

高糖浓度,由于糖争夺水分子,致使中性果胶分子溶剂化程度大大降低,有利于形成分子间氢键和凝胶。

⑵低甲氧基果胶(M 2+)

条件:二价(M 2+)金属离子

蔗糖(10%-20%)改善凝胶的质地,否则容易脆裂,弹性小

机制:在果胶分子间形成交联键

影响凝胶强度的因素:凝胶强度与分子量成正比;

凝胶强度与酯化程度成正比;

酯化程度越大,凝胶强度越大。

10、常见食品胶有哪几类?如黄原胶

葡聚糖(右旋糖酐),黄杆菌胶,茧酶胶,环状糊精,黄原胶。

第四章脂类

1、甘油酯的命名方法?

2、HLB定义及乳化剂选择原则?

表面活性剂都是两亲分子,由于亲水和亲油基团的不同,很难用相同的单位来衡量,所以Griffin提出了用一个相对的值即HLB值来表示表面活性物质的亲水性。对非离子型的表面活性剂,HLB的计算公式为:

乳化剂选择原则:HLB为3—6的乳化剂有利于形成W/O型乳状液

HLB为8—18的乳化剂有利于形成O/W型乳状液

两种乳化剂混合使用时,其HLB值具有加和性

复合乳化剂的乳化稳定性高于单一乳化剂

1、油脂酸败的三种类型?

答、油脂酸败包括氧化型酸败,水解型酸败,酮型酸败。

氧化型酸败包括自动氧化和光敏氧化。自动氧化是指活化的不饱和脂肪酸与基态氧3O2发生的自由基反应。分为引发期,增殖期,和终止期三个阶段。光敏反应是Sen(光敏剂) 引发的脂类氧化,是不饱和双键与单重态氧1O2直接发生的氧化反应。

含低级脂肪酸较多的油脂,其残渣中存在有酯酶或污染微生物所产生的酯酶,在酶的作用下,油脂水解生成游离的低级脂肪酸(含C10以下)和甘油。游离的低级脂肪酸,如丁酸、己酸、辛酸等具有特殊的汗臭味和苦涩味,这种现象称为油脂水解型酸败。

油脂水解产生的游离饱和脂肪酸,在一系列酶的催化下氧化生成有怪味的酮酸和甲基酮,称为酮型酸败(β-氧化作用)。

2、试述油脂自动氧化机理,并说出影响氧化速度的因素?食品生产中采取哪些措施可降低油脂自动氧化的速度?

答:油脂的不饱和脂肪酸在空气中易发生自动氧化,氧化产物进一步分解为低级脂肪酸、醛、酮、(氢过氧化物、环氧化物、二聚物等)产生恶劣臭味,这种现象叫油脂的自动氧化。

反应机理:(1)引发(慢)

RH 光、热金属离子R·+ H·

(2)增殖(快)

R·+ 3O2 -→ROO·

ROO·+ RH -→ROOH + R·

(3)终止

R·+ R·-→RR

R·+ ROO·-→ROOR

ROO·+ ROO·-→ROOR + O2

RO·+ R·-→ROR

影响油脂自动氧化速度的因素有:

(1)脂肪酸组成

A、V双键多>V双键少>V双键无

B、V共轭>V非共轭

(2)温度:温度升高,则V升高,例:起酥油21~63℃内每升高16℃,速度升高2倍

(3)光和射线:光促进产生游离基、促进氢过氧物的分解,(β、γ射线)辐射食品,辐射时产生游离基,V增加,在贮存期易酸败。所以,油脂食品宜避光贮存.

(4)氧与表面积V∝A脂V ∝pO2

(5)水分影响复杂AW=0.3~0.4 V小AW=0.7~0.85 V大

(6)金属离子重金属离子是油脂氧化酸败的催化剂,A可加速氢过氧化物分解B直接作用于未氧化物质C促进氧活化成单重态氧和自由基

措施:

为了保证食品的安全性,食品生产中可以采取一定措施:选择稳定性高的油;低温油炸;添加抗氧化剂能有效防止和延缓油脂的自动氧化作用的物质;清去食品微粒、清洗设备。

酚类化合物,可以提供一个氢原子与游离基作用,生成新的酚游离基,它的稳定性很高,不能产生游离基链反应,终止了脂肪游离基氧化反应,所以可以抑制脂肪的氧化。

3、写出油脂的自动氧化机理,说明酚类抗氧化剂为何能抑制脂肪氧化?

答、油脂的不饱和脂肪酸在空气中易发生自动氧化,氧化产物进一步分解为低级脂肪酸、醛、酮、(氢过氧化物、环氧化物、二聚物等)产生恶劣臭味,这种现象叫油脂的自动氧化。反应机理:(1)引发(慢)

RH 光、热金属离子R·+ H·

(2)增殖(快)R·+ 3O2 -→ROO·

ROO·+ RH -→ROOH + R·

(3)终止R·+ R·-→RR

R·+ ROO·-→ROOR

ROO·+ ROO·-→ROOR + O2

RO·+ R·-→ROR

酚类抗氧化剂抑制脂肪氧化的模式:

AH+ROO·→ROOH+A·或AH+R·→RH+A·,抗氧化剂的自由基A·因结构上的特点而比较稳定,是没有活性的,它不能引起一个链反应的传递,却参与一些终止反应,例如:A·+A·→AA A ·+ROO·→ROOA

4、过氧化值及其测定原理?

5、试述油脂精制的步骤和原理。

答、

6、油脂氢化的作用是什么?

答、可以使液体油脂转变成更适合于特殊用途的半固体脂肪或可塑性脂肪,如起酥油和人造黄油,还能提高熔点与氧化稳定性,改变三酰甘油的稠度和结晶性。

7、反复使用的油炸油品质降低表现在哪些方面?为什么?长期食用有何危害?

答、

8、代脂肪定义及作用,举例?

答、定义:能代替脂肪功能的物质,能使食品具有类似脂肪的结构及口感,但不产生热量的一类物质。

作用举例:

第五章蛋白质

1、蛋白质的食品功能性质主要包含哪几个方面?请分别进行介绍。

蛋白质的食品功能性质(Functionality)是指除营养价值外,对食品需宜特性有利的蛋白质的物理化学性质,如凝胶、溶解、泡沫、乳化、粘度等在食品中起着十分重要的性质。

蛋白质的食品功能性质主要分为四个方面:

(1)水合性质取决于蛋白质同水之间的相互作用。如吸水性、持水性、湿润性、溶胀性、粘附性、分散性、粘度、溶解度等。

(2)结构性质与蛋白质分子之间的相互作用有关,如沉淀、胶凝、面团形成、组织化等。(3)表面性质蛋白质在极性不同的两相之间所产生的作用,如气泡性能、乳化作用等。(4)感官性质是由于蛋白质作用于人的感官而产生,如爽滑度、咀嚼性、混浊度、色泽、气味等。

2、蛋白质的碱提酸沉原理?

多数食品中的蛋白质属于酸性蛋白,即蛋白质分子中的天冬氨酸和谷氨酸残基的总和大于赖氨酸、精氨酸和组氨酸残基的总和,因此,它们在pH4~5(等电点)具有最低溶解度,在碱性pH(pH8~9)具有最高溶解度。蛋白质的碱提酸沉即是利用此原理。

3、蛋白质的胶凝作用?

蛋白质的胶凝作用是指变性蛋白质分子聚集形成的有序的网络结构的过程,其中含有大量的水。

例如:豆腐熟鸡蛋酸奶等

蛋白质的胶凝与蛋白质的缔合、聚集、聚合、沉淀、絮凝和凝结等有区别:Pr的缔合是指在亚基或分子水平上发生的变化;聚合或聚集一般包括大的复合物的形成;絮凝是指没有蛋白质变性时的无序聚集反应;凝结是变性蛋白质的无序聚集反应。

4、小麦面粉为什么能形成面团?面粉中添加溴酸钾、脂肪氧化酶分别有何作用?为什么?答:由于小麦面粉中含有面筋蛋白质,有醇溶(麦胶)蛋白质,含有-S-S- -SH,有麦谷蛋白质,含有-S-S- -SH ,由于二硫键的交联而形成网络结构。添加溴酸钾可以使-SH发生氧化生成二硫键-S-S-、从而增加面筋筋力。脂肪氧化酶可以使脂肪发生氧化,生成过氧化物,从而使-SH发生氧化生成二硫键-S-S-、从而增加面筋筋力。

5、在食品加工过程中,热处理对蛋白质的营养价值有那些有利和不利的影响?

(1)有利的影响:

大多数蛋白质经过热处理后营养价值都得到了提高,适当的热处理后使蛋白质变性,提高了蛋白质的消化率和氨基酸的生物有效性;加热还可以使一些酶失活,从而提高了食品的贮藏性能,且有利提高食品的品质;植物蛋白中存在的大多数天然蛋白质毒素或抗营养因子都可通过加热使之变性或钝化。

(2)不利的影响:

对蛋白质或蛋白质食品进行热处理时,有时会氨基酸构型改变,成为D-型,失去营养价值;还有可能引起氨基酸的脱羧、脱二氧化碳、脱氨等反应而降低干重、氮及含硫量;过度的热处理有时还会生成有毒化合物。

第六章维生素

1、维生素A原:本身不具备维生素A活性,但在体内可以转化为维生素A的物质,称为维生素A原。

2、主要维生素的分类及功能:

按照溶解性,维生素分为水溶性维生素、脂溶性维生素两大类。

水溶性维生素有维生素C、维生素B1、维生素B2、尼克酸、维生素B6、叶酸、维生素B12、泛酸、生物素等,

脂溶性维生素有维生素A、维生素D、维生素E、维生素K等。

辅酶或辅酶前体:如烟酸,叶酸等

维生素抗氧化剂:VE,VC

的功能遗传调节因子:V A,VD

某些特殊功能:V A-视觉功能、VC-血管脆性

3、简述VE的功能、稳定性、在哪些食物中存在及在功能食品中的应用。

生理功能:抗氧化作用。油脂中常用,保护其它易被氧化的物质,如维生素A及不饱和脂肪酸等。

提高机体免疫能力。

抗不育症。缺乏VE,将不能生育,还会引起肌肉萎缩,肾脏损失等。

化学稳定性:

黄色油状物,维生素E对热、酸、碱、紫外光的作用均比较稳定,高温下加热不易遭到破坏。

维生素E对氧敏感,在空气中易氧化成无活性的醌类物质。

分布:维生素E广泛地分布于动植物组织中,特别是小麦胚油、棉籽油、花生油及大豆油中含量较多。

在功能食品中的应用:

4、食品中维生素在贮藏加工过程中的损失途径有哪些?为尽量降低维生素的损失,可采用哪些措施?

维生素是所有营养素中受加工和贮存条件影响最大的一类营养素,容易受光、氧、温度、pH 值、射线、氧化剂、金属离子、食品添加剂、水分含量、酶等因素的影响而损失。

1.成熟度

果实在不同成熟期中抗坏血酸的含量不同,未成熟时含量较高,而一般说来蔬菜与之相反,成熟度越高,维生素含量越高,辣椒成熟就是一例。

2.部位

植物的不同部位维生素含量不同,其中根部最少。其次是果实和茎,含量最高的部位

是叶,对果实而言,表皮含维生素最高,并向核心依次递减。

3.采后及贮藏过程中的影响

原料中留存的酶导致产后维生素含量的变化。细胞受损后释放出来的酶改变维生素的化学形式和活性,进而影响其生物利用率。

正确处理方法:

采后立即冷藏,维生素氧化酶被抑制,维生素损失减少。

4.加工程度(修整和研磨)的影响:植物组织经过修整或细分(水果除皮)均会导致维生素损失;

谷物在研磨过程中,营养素不同程度受到破坏。

5.浸提:食品中水溶性维生素损失的一个主要途径是经由切口或易破坏的表面而流失;另外加工中的洗涤、水槽传送、漂烫、冷却和烹调等也会造成营养素损失,其损失程度与pH、温度、水分、切口表面积、成熟度等有关。

6.热加工的影响:温度越高,损失越大;加热时间越长,损失越多;加热方式不同(蒸汽或热水),损失不同;脱水干燥方式(冷冻干燥或高温干燥)对其保存率也有较大影响。

7.化学药剂处理的影响

漂白剂或改良剂常是面粉的添加剂,它能降低VA、VC和VE的含量;

亚硫酸盐(或SO2)常用来防止水果、蔬菜的酶促褐变和非酶褐变,它作为还原剂可以保护VC,但是作为亲核试剂则对VB1有害。

在腌制肉品中,亚硝酸盐常作护色剂和防腐剂。它不但与VC能快速反应(防止生成致癌物质亚硝胺),而且还会破坏胡萝卜素、VBl和叶酸等。

8.变质反应的影响

脂质氧化时,产生H2O2 、过氧化物和环氧化物,这些物质能氧化类胡萝卜素、生育酚、抗坏血酸,导致维生素活性的损失;

糖类化合物的非酶褐变生成高活性的羰基化合物,造成VB1、VB6和泛酸等损失;

食品加工过程中加入的配料会引入一些酶(VC氧化酶、硫胺素酶)导致VC 、VB1等损失。措施:

1、改变维生素自身的结构,促使其耐热、耐贮藏。

2、加入稳定剂。

3、改进加工工艺

4、改善包装和贮藏条件:真空充氮包装、薄膜包装、软管包装、蜡纸包装等

第七章矿物质

1、常量元素与微量元素?

食品中的矿物质,按含量多少可分为常量元素和微量元素。

含量在0.01%以上的为常量元素,如钙、镁、钾、钠、磷、氯、硫;

含量低于0.01%的为微量元素,如铁、锌、铜、锰、碘、氟、钼、硅、镍、钴、硒、锡、铬、钒。

2、酸性食品与碱性食品?

有的食物中S、P、Cl等非金属元素的含量较高,在体内的代谢产物为SO42-、PO43-、Cl-等,可降低体液pH值,这类食品称为酸性食品,如,鱼、肉、禽、蛋等动物性食品(含丰富的含硫蛋白),主食米、面及其制品(含磷较多)。

有的食物含钾、钠、钙、镁等金属元素较高,在体内代谢后的产物为阳离子形式的碱性物质,如Na+、K+、Mg2+等,可使体液pH升高,这类食品称为(生理)碱性食品,如水果、蔬菜,一些豆类、海带。

3、影响矿物质生物有效性的因素?

(一)食物的可消化性:一般,食物营养成分的生物有效性与食物的可消化性成正比关系。动物性食品中矿物质的生物有效性高于植物性食品。

(二)矿物质的化学形态: 矿物质的化学形态对矿物质的生物有效性影响很大,甚至有的矿物质只有某一化学形态才具有营养功能;不同食品中的矿物质,由于化学形态的差异,生物有效性相差很大。例如,钴只有以氰钴胺素(维生素B12)供应才有营养功能,血色素铁生物有效性比非血色素铁高。

矿物质颗粒的大小会影响溶解性和可消化性,因而影响生物有效性。若用难溶性物质来补充营养时,应特别注意颗粒大小。

(三)矿物质与其他营养素的相互作用:矿物质与其他营养素相互作用可提高或降低矿物质的生物有效性。

例如,两种元素会竞争在蛋白载体上的同一个结合部位而影响吸收,或者一种过剩的矿物质与另一种矿物质化合后一起被排泄掉,造成后者的缺乏。

也存在相互间的促进作用,如钙与乳生成乳酸钙,铁与氨基酸生成盐,都可以使这些矿物质成为可溶态,有利于吸收。

(四)螯合作用:螯合物的形成可能提高或降低矿物质的生物有效性。

传递和贮存金属离子的螯合物:氨基酸-金属螯合物;

新陈代谢必需的螯合物:亚铁血红素-血红蛋白螯合物;

降低生物有效性、干扰营养素的螯合物:植酸金属螯合物。

(五)加工方法:加工方法也影响矿物质的生物有效性。磨细可提高难溶元素的生物有效性。发酵后面团中锌、铁的生物有效性显著提高。

4、食品加工方法对矿物质的影响?

可能会提高某些食品中矿物元素的可利用率,但食品加工的很多手段往往会造成矿物质的损失,即不可利用。

一、预处理对食品中矿物质的影响:食品加工中一些预处理过程对食品中矿物质含量有一定的影响。果蔬原料在加工制作前,都要进行修整,比如去皮、去叶等,这给矿物质带来直接的损失。清洗、泡发、烫漂等处理也会造成矿物质的溶解损失,这一损失与矿物质的水溶性直接相关。

二、热处理对食品中矿物质的影响:热处理的方式有多种,如煮、炒、油炸等,一般情况下,热处理总体上会引起矿物质含量的减少,比如长时间煮沸牛乳会造成钙、镁等矿物质的严重损失,这可能与牛乳中的凝胶态被破坏、蛋白质沉淀有关

三、碾磨食品中矿物质的影响:谷类的矿物质主要分布于糊粉层和胚组织中,在胚乳中含量较小,因而碾磨过程很容易造成此食品矿物质含量的降低,而且碾磨的精度越高,矿物质损失量越大。

第八章色素与着色剂

1、天然色素主要有哪几种类型?天然色素有何优缺点?

按化学结构可分为以下几大类:(也可按照来源或溶解性分类)

四吡咯色素:血红素、叶绿素

类胡萝卜素:胡萝卜素、叶黄素

多酚类色素:花青素、类黄酮、单宁

其他:红曲色素、姜黄素、甜菜红素等

优点:安全性高,有些天然色素还具有特殊的功能。(不少天然色素如类胡萝卜素、类黄酮等具有抗氧化性等生理功能;另外,有的天然色素不仅可作为着色剂,同时还可赋予食品

特有的滋味与芳香,如姜黄素就是增味、增香着色剂。)

缺点:天然色素在加工和贮藏过程中不太稳定,且价格昂贵。

2、叶绿素在酸性和碱性条件下,会发生哪些变化?护绿技术?

pH影响蔬菜组织中叶绿素的热降解,在碱性介质中(pH9.0),叶绿素对热非常稳定。然而在酸性介质中(pH3.0)易降解。植物组织受热后,由于酸的作用,叶绿素发生脱镁反应,生成脱镁叶绿素,并进一步生成焦脱叶绿素,食品的绿色显著向橄榄绿到褐色转变,并且这种转变在水溶液中是不可逆的。

蔬菜腌渍时失去绿色就是因为发酵产乳酸所致。

在烹饪或罐藏杀菌时,细胞中的有机酸使叶绿素脱镁而生成脱镁叶绿素。绿色蔬菜在加工前用石灰水或Mg(OH)2处理提高pH值可保持蔬菜的绿色。

护绿技术:碱性钙盐或氢氧化镁、高温瞬时杀菌(HTST)、采用含锌或铜盐的热烫液处理

3、花色苷和黄酮类化合物化学性质及影响因素?

花色苷性质及影响因素:

1、pH对花色苷结构的影响:溶液pH不同时花青素的结构不同,颜色亦有所不同。一般情况下,花色苷类色素在酸性溶液中呈色效果最好。

2、取代基的影响:花色苷分子中,随着羟基数增加,颜色向紫蓝方向增强;随着甲氧基增加,颜色红移;在C5位有糖苷基则色泽加深。花色苷的稳定性则随糖基化程度增加而增加

3、氧和抗坏血酸的影响:花色素对空气中的氧敏感,葡萄汁一定要灌装而且要尽量装满才能减少或延缓葡萄汁的颜色变成暗棕色。工业上采用充氮贮存含有花色苷的果汁,延长果汁保质期。

抗坏血酸与花色苷同时存在于果汁中时会破坏花色苷,因为抗坏血酸氧化时产生过氧化氢,过氧化氢进攻花色苷,生成无色的酯类及香豆素衍生物,这些分解产物会进一步降解或者聚合生成果汁中常见的棕褐色沉淀。

4、光:光照常会加速花色苷的降解。

5、糖及其降解产物:高浓度的糖有利于花色苷的稳定,原因是高浓度糖可降低水分活度,但浓度低时恰恰相反,会加速花色苷的降解。

6、金属离子:花色苷的相邻羟基可以螯合多价的金属离子形成稳定的螯合物,使花色苷的颜色由红变紫。

7、SO2:果蔬用SO2处理时会造成可逆或不可逆地退色或变色。

黄酮类化合物化学性质及影响因素:

1、取代基对颜色的影响:黄酮类化合物分子中酸性酚羟基数目和位置对呈色有很大的影响。在3′或4′碳位上有羟基或甲氧基时多呈深黄色;在3碳位上有羟基时呈灰黄色。

2、碱性条件下颜色变化:自然情况下,黄酮类化合物的颜色为浅黄至无色,遇碱时变成明显的黄色,原因是碱性条件下苯并吡喃酮1,2-位的氧碳键打开,形成查尔酮,查尔酮的颜色自浅黄至深黄不等。在酸性条件下,查尔酮又回复闭环结构,于是颜色回归。

3、与金属离子反应:黄酮类化合物遇铁离子可变成蓝、蓝黑、紫、棕等不同颜色。

4、氧化反应:黄酮类化合物在空气中久置时,易氧化成褐色沉淀,这是果汁久置变褐生成沉淀的原因之一。

5、其他性质:檞皮素、橙皮素、香橼素、圣草素等在生理上具有降低毛细血管通透性作用。芸香苷即(芦丁)是降血压药物。

柚皮苷是黄烷酮类,在柑桔类植物中含量较多,具强烈苦味,是橙汁、柠檬汁等带苦味的原因。以其为原料合成柚皮苷二氢查尔酮,则是甜度为蔗糖2000倍的甜味剂。

黄酮类化合物具有多酚性质,能与金属螯合,具有抗氧化性。

第九章食品褐变

1、什么是酶促褐变?并谈谈控制酶促褐变可采取的措施。

1、较浅色的水果、蔬菜在受到机械性损伤(如削皮、切片、压伤、虫咬、磨浆、捣碎等)及处于异常环境变化(如受冻、受热等)时,在酶促(催化)下发生氧化还原反应,由于氧化产物的积累,而呈褐色,称为酶促褐变。

控制酶促褐变可采取的措施:

(1)加热处理法,常用的方法有:漂烫、巴氏杀菌、微波加热

(2)酸处理法,多数酚酶最适pH=6~7,pH < 3失活。常用酸有:柠檬酸、苹果酸、磷酸、抗坏血酸、混合酸。

(3)亚硫酸盐类处理法亚硫酸类是酚酶抑制剂。

(4)驱氧驱氧措施有:a. 涂Vc液,涂膜 b. 浸没: c. 渗入

(5)加入络合剂,抑制激活剂。如EDTA

2、什么是非酶促褐变及对食品品质的影响?并谈谈控制非酶促褐变可采取的措施。

食品在加工贮藏过程中,经常会发生变红、褐、黄等变色现象,统称为食品褐变。若食品褐变过程需要酶参与,则为酶促褐变;若没有酶参与,则是非酶褐变。

非酶褐变可改变食品的色泽、营养和风味,与食品质量关系密切。

?营养:氨基酸(尤其赖氨酸)、蛋白质、维生素C损失。

?风味:非酶褐变的产物中有一些是呈味物质,它们能赋予食品或优或劣的风味。CO2产生,会造成罐装食品的质量问题,如粉末酱油、奶粉等装罐密封,发生非酶褐变后会出现“膨听”现象。

控制非酶促褐变可采取的措施

(1)使用不易褐变的原料

(2)控制加工及贮存条件——(1)降低温度;(2)改变PH(3控制水分含量(4)氧气(3)使用褐变抑制剂——(1)亚硫酸及其盐(2)形成钙盐

(4)生物化学法——(1)发酵法(2)酶法

第十章食品风味

(5)呈味阀值

答:衡量味的敏感性的标准是阈值,即感受到某种物质时的最低浓度。

(6)甜味理论及局限性?

答:1)、AH/B生甜基团学说

特点:

a、由夏伦贝格尔等提出,是一种甜味物质的甜味与化学结构之间关系的学说

b、甜味的化合物都具有一电负性原子A(通常是O、N)并共价连接氢,即存在一个OH、=NH、NH2;

c、同时有甜味的化合物还具有另外一个电负性原子B (通常是O、N),它与AH基团的距离大约在0.3nm左右;

d、而甜味感受器内也存在着类似的AH-B结构

e、当甜味化合物的AH-B结构通过氢键与甜味感受器中的AH-B结合时便对味神经产生刺激从而产生甜味。甜味的强弱与氢键的强度有关。

局限:不能解释同样具有AH-B结构的化合物为什么甜味强度相差许多倍。

2)、AH/B-γ学说(补充学说)

克伊尔对AH-B学说进行了补充,认为在强甜味化合物中还具有第三个性征,即具有一个适当的亲脂区域γ,γ通常是-CH2,-CH3,-C6H5等,γ可以增强甜度。补充后的学说称为AH/B-γ学说(疏水基增甜说)。其立体结构的全部活性单位(AH,B和γ)都适合与感受器分子上的三角结构结合,γ位置是强甜味剂物质的一个非常重要的特征。

局限性

(1)不能解释多糖、多肽无味。

(2)D型与L型氨基酸味觉不同, D-缬氨酸呈甜味,L-缬氨酸呈苦味。

(3)未考虑甜味分子在空间的卷曲和折叠效应。

3、二肽衍生物具有甜味的条件?

(1)衍生物中天门冬氨酸必须具有游离的氨基和羧基

(2)构成二肽的氨基酸须为L-型

(3)与Asp成肽的氨基酸必须为中性氨基酸

(4)与天门冬氨酸相连的氨基酸羧基端必须酯化

4、呈酸机理?

(1)、酸味是由H+刺激舌粘膜而引起的味感,H+是定味剂,A-是助味剂。酸味的强度与酸的强度不呈正相关关系。

(2)、酸味强度主要取决于呈味物质中阴离子的影响。有机酸根A-结构上增加羟基或羧基,则亲脂性减弱,酸味减弱;增加疏水性基团,有利于A-在脂膜上的吸附,酸味增强。

5、苦味物质种类及苦味与结构的关系?

种类:食品中苦味物质主要有生物碱、糖苷、萜类、氨基酸、多肽和盐,苦味的基准物质是奎宁。

关系:(1)、嘌呤类衍生物是食品中重要的生物碱类苦味物质。咖啡碱存在于茶叶、咖啡和可可中;可可碱存在于可可和茶叶中。都有兴奋中枢神经的作用。

(2)、对于糖苷类脱苦的方法:树脂吸附,-环糊精包埋,酶制剂酶解糖苷(如下式)等。(3)、啤酒的苦味来源于酒花中的类异戊二烯衍生物,主要是葎草酮和蛇麻酮。

(4)、肽类氨基酸侧链的总疏水性使蛋白质水解物和干酪产生明显的非需宜苦味。蛋白质子平均疏水值的计算:Q=∑△g/n,Q值大于1400的肽可能有苦味,低于1300的无苦味。(5)、肽的分子量影响产生苦味的能力,分子量低于6000的肽类才可能有苦味;分子量大于6000的肽由于几何体积大,显然不能接近感受器位置。

(6)、苦味与盐类阴离子和阳离子的离子直径之和有关。离子直径小于6.5?的盐显示纯咸味;随着离子直径的增大盐的苦味逐渐增强。

6、脱涩方法?

涩味通常是像单宁等多酚类物质与唾液中的蛋白质缔合而产生沉淀或聚集体而引起的。(1)焯水处理;

(2)在果汁中加入蛋白质,使单宁沉淀。

(3)提高原料采用时的成熟度。

7、蔬菜中的香气成分有哪些?

(1)新鲜蔬菜的清香

许多新鲜蔬菜可以散发出清香-泥土香味,这种香味主要由甲氧烷基吡嗪化合物产生,

它们一般是植物以亮氨酸等为前体,经生物合成而形成的。蔬菜中的不饱和脂肪酸在自身脂氧化酶的作用下生成过氧化物,过氧化物分解后生成的醛、酮、醇等也产生清香。

(2)百合科蔬菜

百合科蔬菜的风味物质一般是含硫化合物所产生,其中主要是硫醚化合物,如二烃基硫醚、二烃基二硫化物、二烃基三硫化物、二烃基四硫化物等。此外还有硫代丙醛类、硫氰酸和硫氰酸酯类、硫醇、二甲基噻吩化合物、硫代亚磺酸酯类。

(3)十字花科蔬菜

十字花科植物有强烈的辛辣芳香气味,主要是由异硫氰酸酯产生,异硫氰酸酯是由硫代葡萄糖苷经酶水解产生,除异硫氰酸酯外,还可以生成硫氰酸酯和氰类。

(4)蕈(xun)类

蕈类的香气成分前体是香菇精酸,它经S-烷基-L-半胱氨酸亚砜裂解酶等的作用,产生蘑菇香精。

8、生物合成反应形成风味化合物的途径有哪些?

(1)脂肪氧化酶途径

在植物组织中存在脂肪氧化酶,可以催化多不饱和脂肪酸氧化(多为亚油酸和亚麻酸),生成的过氧化物经过裂解酶作用后,生成相应的醛、酮、醇等化合物。脂肪氧化酶途径生成的风味化合物中,通常C6化合物产生青草的香味,C9化合物产生类似黄瓜和西瓜香味,C8化合物有蘑菇或紫罗兰的气味。C6和C9化合物一般为醛、伯醇,而C8化合物一般为酮、仲醇。

(2)支链氨基酸的降解

支链氨基酸是果实成熟时芳香化合物的重要的风味前体物,香蕉、洋梨、猕猴桃、苹果等水果在后熟过程中生成的特征支链羧酸酯如乙酸异戊酯、3-甲基丁酸乙酯都是由支链氨基酸产生的。

(3)莽草酸合成途径

在莽草酸合成途径中能产生与莽草酸有关的芳香化合物,如苯丙氨酸和其他芳香氨基酸。

(4)萜类化合物的的合成

在柑橘类水果中,萜类化合物是重要的芳香物质,萜类化合物是由异戊二烯途径合成。萜类化合物中,二萜分子大,不挥发,不能直接产生香味。倍半萜中甜橙醛、努卡酮分别是橙和葡萄柚特征芳香成分。单萜中的柠檬醛和苧烯分别具有柠檬和酸橙特有的香味。(5)乳酸-乙醇发酵中的风味

乳酸菌异质发酵所产生的各种风味化合物中,乳酸、丁二酮(双乙酰)和乙醛是发酵奶油的主要特征香味,而均质发酵乳酸菌仅产生乳酸、乙醛和乙醇。乙醛是酸奶的特征效应化合物,丁二酮也是大多数混合发酵的特征效应化合物。啤酒中影响风味的主要有醇、酯、醛、酮、硫化物等。啤酒酒香的主要成分是异戊醇、α-苯乙醇、乙酸乙酯、乙酸异戊酯、乙酸苯乙酯。中国白酒中醇、酯、羰基化合物、酚、醚等化合物对风味影响很大。醛类化合物(以乙醛为主)在刚蒸馏出来的新酒中较多,使酒带有辛辣味和冲鼻感;糠醛通常对酒的风味有害,但在茅台酒中却是构成酱香味的重要成分;酯类对中国白酒的香味有决定性作用,对酒香气影响大的主要是C2~C12脂肪酸的乙酯和异戊酯、苯乙酸乙酯、乳酸乙酯、乙酸苯乙酯等。

食品化学试题加答案

第一章水分 一、填空题 1. 从水分子结构来看,水分子中氧的_6—个价电子参与杂化,形成_4_个_sp[杂化轨道,有—近似四面体_的结构。 2. 冰在转变成水时,静密度—增大_,当继续升温至_ 3. 98C_时密度可达到_最大值_,继续升温密度逐渐—下降_。 3. 一般来说,食品中的水分可分为—结合水_和_自由水_两大类。其中,前者可根据被结合的牢固程度细分为_化合水_、_邻近水_、_多层水_,后者可根据其在食品中的物理作用方式细分为_滞化水_、!毛细管水_、自由流动水二 4. 水在食品中的存在状态主要取决于天然食品组织、加工食品中的化学成分、化学成分的物理状态;水与不同类型溶质之间的相互作用主要表现在与离子和离子基团的相互作用、与非极性物质的相互作用、与双亲(中性)分子的相互作用等方面。 5. 一般来说,大多数食品的等温线呈_S_形,而水果等食品的等温线为—J_形。 6. 吸着等温线的制作方法主要有一解吸等温线_和_回吸等温线—两种。对于同一样品而言, 等温线的形状和位置主要与 _试样的组成、物理结构、预处理、温度、制作方法_等因素有关。 7. 食品中水分对脂质氧化存在—促进_和_抑制一作用。当食品中a w值在0.35左右时,水分对脂质起_抑制氧化作用;当食品中a w值_ >0.35时,水分对脂质起促进氧化作用。 8. 冷冻是食品储藏的最理想方式,其作用主要在于低温。冷冻对反应速率的影响主要表 现在_降低温度使反应变得非常缓慢_和_冷冻产生的浓缩效应加速反应速率两个相反的方面。 二、选择题 1. 水分子通过_________ 的作用可与另4个水分子配位结合形成四面体结构。 (A) 范德华力(B)氢键(C)盐键(D)二硫键 2. 关于冰的结构及性质,描述有误的是______ 。 (A) 冰是由水分子有序排列形成的结晶 (B) 冰结晶并非完整的警惕,通常是有方向性或离子型缺陷的 (C) 食品中的冰是由纯水形成的,其冰结晶形式为六方形 (D) 食品中的冰晶因溶质的数量和种类等不同,可呈现不同形式的结晶 3. 食品中的水分分类很多,下面哪个选项不属于同一类? ______ (A)多层水(B)化合水(C)结合水(D)毛细管水 4. 下列食品中,哪类食品的吸着等温线呈S形?______ (A)糖制品(B)肉类(C)咖啡提取物(D)水果 5. 关于BET (单分子层水),描述有误的是一。 (A) BET在区间H的商水分末端位置 (B) BET值可以准确地预测干燥产品最大稳定性时的含水量 (C) 该水分下除氧化反应外,其他反应仍可保持最小的速率 (D) 单分子层水概念是由Brunauer. Emett及Teller提出的单分子层吸附理论 三、名词解释 1.水分活度:水分活度能反应水与各种非水成分缔合的强度,其定义可用下式表示: p ERH 2矿丽 式中,p为某种食品在密闭容器中达到平衡状态时的水蒸气分压;Po表示在同一温度下

食品化学习题测验集及答案

习题集 卢金珍 武汉生物工程学院

第一章水分 一、名词解释 1.结合水 2.自由水 3.毛细管水 4.水分活度 5.滞后现象 6.吸湿等温线 7.单分子层水 8.疏水相互作用 二、填空题 1. 食品中的水是以、、、等状态存在的。 2. 水在食品中的存在形式主要有和两种形式。 3. 水分子之间是通过相互缔合的。 4. 食品中的不能为微生物利用。 5. 食品中水的蒸汽压p与纯水蒸汽压p0的比值称之为,即食品中水分的有 效浓度。 6. 每个水分子最多能够与个水分子通过结合,每个水分子在维空间有 相等数目的氢键给体和受体。 7. 由联系着的水一般称为结合水,以联系着的水一般称为自 由水。 8.在一定温度下,使食品吸湿或干燥,得到的与的关系曲线称为水分等温吸湿线。 9. 温度在冰点以上,食品的影响其Aw; 温度在冰点以下,影响食品的Aw。 10. 回吸和解吸等温线不重合,把这种现象称为。 11、在一定A W时,食品的解吸过程一般比回吸过程时更高。 12、食品中水结冰时,将出现两个非常不利的后果,即____________和____________。 13、单个水分子的键角为_________,接近正四面体的角度______,O-H核间距______,氢和氧的范德华半径分别为1.2A0和1.4A0。 14、单分子层水是指_________________________,其意义在于____________________。 15、结合水主要性质为:①② ③④。 三、选择题 1、属于结合水特点的是()。 A具有流动性B在-40℃下不结冰 C不能作为外来溶质的溶剂D具有滞后现象 2、结合水的作用力有()。 A配位键B氢键C部分离子键D毛细管力 3、属于自由水的有()。 A单分子层水B毛细管水C自由流动水D滞化水 4、可与水形成氢键的中性基团有()。 A羟基B氨基C羰基D羧基

食品化学复习题及答案

第2章水分习题 选择题 1 水分子通过_______的作用可与另4个水分子配位结合形成正四面体结构。 (A)范德华力(B)氢键(C)盐键(D)二硫键 2 关于冰的结构及性质描述有误的是_______。 (A)冰是由水分子有序排列形成的结晶 (B)冰结晶并非完整的晶体,通常是有方向性或离子型缺陷的。 (C)食品中的冰是由纯水形成的,其冰结晶形式为六方形。 (D)食品中的冰晶因溶质的数量和种类等不同,可呈现不同形式的结晶。 3 稀盐溶液中的各种离子对水的结构都有着一定程度的影响。在下述阳离子中,会破坏水的网状结构效应的是 _______。(A)Rb+(B)Na+(C)Mg+(D)Al3+ 4 若稀盐溶液中含有阴离子_______,会有助于水形成网状结构。 (A)Cl-(B)IO3 -(C)ClO4 - (D)F- 5 食品中有机成分上极性基团不同,与水形成氢键的键合作用也有所区别。在下面这些有机分子的基团中,_______ 与水形成的氢键比较牢固。 (A)蛋白质中的酰胺基(B)淀粉中的羟基(C)果胶中的羟基(D)果胶中未酯化的羧基 6 食品中的水分分类很多,下面哪个选项不属于同一类_______。 (A)多层水(B)化合水(C)结合水(D)毛细管水 7 下列食品中,哪类食品的吸着等温线呈S型?_______ (A)糖制品(B)肉类(C)咖啡提取物(D)水果 8 关于等温线划分区间内水的主要特性描述正确的是_______。 (A)等温线区间Ⅲ中的水,是食品中吸附最牢固和最不容易移动的水。 (B)等温线区间Ⅱ中的水可靠氢键键合作用形成多分子结合水。 (C)等温线区间Ⅰ中的水,是食品中吸附最不牢固和最容易流动的水。 (D)食品的稳定性主要与区间Ⅰ中的水有着密切的关系。 9 关于水分活度描述有误的是_______。 (A)αW能反应水与各种非水成分缔合的强度。 (B)αW比水分含量更能可靠的预示食品的稳定性、安全性等性质。 (C)食品的αW值总在0~1之间。 (D)不同温度下αW均能用P/P0来表示。 10 关于BET(单分子层水)描述有误的是_______。 (A)BET在区间Ⅱ的高水分末端位置。 (B)BET值可以准确的预测干燥产品最大稳定性时的含水量。 (C)该水分下除氧化反应外,其它反应仍可保持最小的速率。 (D)单分子层水概念由Brunauer、Emett及Teller提出的单分子层吸附理论。 11 当食品中的αW值为0.40时,下面哪种情形一般不会发生?_______ (A)脂质氧化速率会增大。(B)多数食品会发生美拉德反应。 (C)微生物能有效繁殖(D)酶促反应速率高于αW值为0.25下的反应速率。 12 对食品冻结过程中出现的浓缩效应描述有误的是_______ (A)会使非结冰相的pH、离子强度等发生显著变化。(B)形成低共熔混合物。 (C)溶液中可能有氧和二氧化碳逸出。(D)降低了反应速率 13 下面对体系自由体积与分子流动性二者叙述正确的是_______。 (A)当温度高于Tg时,体系自由体积小,分子流动性较好。 (B)通过添加小分子质量的溶剂来改变体系自由体积,可提高食品的稳定性。 (C)自由体积与Mm呈正相关,故可采用其作为预测食品稳定性的定量指标。

食品化学习题+答案

水分活度章节的习题+答案 一、填空题 1. 冰的导热系数在0℃时近似为同温度下水的导热系数的(4)倍,冰的热扩散系数约为水的(5)倍,说明在同一环境中,冰比水能更(迅速)的改变自身的温度。水和冰的导热系数和热扩散系数上较大的差异,就导致了在相同温度下组织材料冻结的速度比解冻的速度(快)。 2. 一般的食物在冻结解冻后往往(组织结构会遭到破坏),其主要原因是(水在冻结成冰时,体积增加)。 3. 按照食品中的水与其他成分之间相互作用强弱可将食品中的水分成(自由水)和(结合水),微生物赖以生长的水为(自由水)。 4. 就水分活度对脂质氧化作用的影响而言,在水分活度较低时由于(水对氢过氧化物的保护作用和水使金属离子对脂肪氧化反应的催化作用降低)而使氧化速度随水分活度的增加而减小;当水分活度大于时,由于(氧在水中的溶解度增加和脂肪分子通过溶胀作用更加暴露),而使氧化速度随水分活度的增加而增大;当水分活度大于由于(反应物和催化物的浓度降低),而使氧化速度随水分活度的增加而减小。 5. 按照定义,水分活度的表达式为(aw=样品水的蒸气压?纯水蒸气压的比值)。 6. 结合水与自由水的区别在于,a.(结合水-40°不结冰,几乎没有溶剂能力); … b.(体相水可被微生物所利用,结合水则不能); c.(结合水的量与食品中所含极性物质的量有比较固定的关系)。 7. 根据与食品中非水组分之间的作用力的强弱可将结合水分成(化合水)、 (邻近水)和(多层水)。 8. 食品中水与非水组分之间的相互作用力主要有(疏水作用)、(氢键)和(静电引力)。 9. 一般说来,大多数食品的等温吸湿线都呈(S)形。 10. 一种食物一般有两条等温吸湿线,一条是(解析等温稀释线),另一条是(回吸等温稀释线),往往这两条曲线是(不重合的),把这种现象称为(等温线的滞后现象)。 11. 食物的水分活度随温度的升高而(升高,但在冰点以下,变化率更明显)。 二、名词解释 - 1. 结合水:又称为束缚水或固定水,指存在于溶质或其他非水组分附近的、与溶质分子之间通过化学键结合的那一部分水。 2. 自由水:又称为体相水或游离水,指食品中除了结合水以外的那部分水。 3. 毛细管水:指在生物组织的细胞间隙和食品组织结构中,有毛细管力所截留的水,在生物组织中又称为细胞间水。 4. 水分活度:指食品中水的蒸汽压与同温下纯水的饱和蒸汽压的比值。 5. “滞后”现象:向干燥的样品(食品)中添加水(回吸作用)后绘制的吸湿等温线和由样品(食品)中取出一些水(解吸作用)后绘制的解吸等温线并不完

食品化学复习题与答案

第2章水分习题 一、填空题 1.从水分子结构来看,水分子中氧的_______个价电子参与杂化,形成_______个_______杂化轨道,有_______的结 构。 2.冰在转变成水时,净密度_______,当继续升温至_______时密度可达到_______,继续升温密度逐渐_______。 3.在生物大分子的两个部位或两个大分子之间,由于存在可产生_______作用的基团,生物大分子之间可形成由几 个水分子所构成的_______。 4.当蛋白质的非极性基团暴露在水中时,会促使疏水基团_______或发生_______,引起_______;若降低温度,会 使疏水相互作用_______,而氢键_______。 5.一般来说,食品中的水分可分为_______和_______两大类。其中,前者可根据被结合的牢固程度细分为_______、 _______、_______,后者可根据其食品中的存在形式细分为_______、_______、_______。 6.水与不同类型溶质之间的相互作用主要表现在_______、_______、_______等方面。 7.一般来说,大多数食品的等温线呈_______形,而水果等食品的等温线为_______形。 8.吸着等温线的制作方法主要有_______和_______两种。对于同一样品而言,等温线的形状和位置主要与_______、 _______、_______、_______、_______等因素有关。 9.食品中水分对脂质氧化存在_______和_______作用。当食品中αW值在_______左右时,水分对脂质起_______ 作用;当食品中αW值_______时,水分对脂质起_______作用。 10.食品中αW与美拉德褐变的关系表现出_______形状。当αW值处于_______区间时,大多数食品会发生美拉德反应; 随着αW值增大,美拉德褐变_______;继续增大αW,美拉德褐变_______。 11.冷冻是食品贮藏的最理想的方式,其作用主要在于_______。冷冻对反应速率的影响主要表现在_______和_______ 两个相反的方面。 12.随着食品原料的冻结、细胞冰晶的形成,会导致细胞_______、食品汁液_______、食品结合水_______。一般可 采取_______、_______等方法可降低冻结给食品带来的不利影响。 13.玻璃态时,体系黏度_______而自由体积_______,受扩散控制的反应速率_______;而在橡胶态时,其体系黏度 _______而自由体积_______,受扩散控制的反应速率_______。 二、选择题 1 水分子通过_______的作用可与另4个水分子配位结合形成正四面体结构。 (A)德华力(B)氢键(C)盐键(D)二硫键 2 关于冰的结构及性质描述有误的是_______。 (A)冰是由水分子有序排列形成的结晶 (B)冰结晶并非完整的晶体,通常是有方向性或离子型缺陷的。 (C)食品中的冰是由纯水形成的,其冰结晶形式为六方形。 (D)食品中的冰晶因溶质的数量和种类等不同,可呈现不同形式的结晶。 3 稀盐溶液中的各种离子对水的结构都有着一定程度的影响。在下述阳离子中,会破坏水的网状结构效应的是 _______。(A)Rb+(B)Na+(C)Mg+(D)Al3+ 4 若稀盐溶液中含有阴离子_______,会有助于水形成网状结构。 (A)Cl-(B)IO3 -(C)ClO4 - (D)F- 5 食品中的水分分类很多,下面哪个选项不属于同一类_______。 (A)多层水(B)化合水(C)结合水(D)毛细管水 6 下列食品中,哪类食品的吸着等温线呈S型?_______ (A)糖制品(B)肉类(C)咖啡提取物(D)水果 7 关于等温线划分区间水的主要特性描述正确的是_______。 (A)等温线区间Ⅲ中的水,是食品中吸附最牢固和最不容易移动的水。 (B)等温线区间Ⅱ中的水可靠氢键键合作用形成多分子结合水。 (C)等温线区间Ⅰ中的水,是食品中吸附最不牢固和最容易流动的水。

食品化学及答案

东北农业大学成人教育学院考试题签 食品化学(A) 一、选择题(每题2分,共30分) 1 水分子通过_______的作用可与另4个水分子配位结合形成正四面体结构。 (A)范德华力(B)氢键(C)盐键( D)二硫键 2 关于冰的结构及性质描述有误的是_______。 (A)冰是由水分子有序排列形成的结晶 (B)冰结晶并非完整的晶体,通常是有方向性或离子型缺陷的。 (C)食品中的冰是由纯水形成的,其冰结晶形式为六方形。 (D)食品中的冰晶因溶质的数量和种类等不同,可呈现不同形式的结晶。 3 稀盐溶液中的各种离子对水的结构都有着一定程度的影响。在下述阳离子中,会破坏水的网状 结构效应的是_______。 (A)Rb+(B)Na+(C)Mg+(D)Al3+ 4 若稀盐溶液中含有阴离子_______,会有助于水形成网状结构。 (A)Cl-(B)IO 3 -(C)ClO 4 - (D)F- 5 食品中有机成分上极性基团不同,与水形成氢键的键合作用也有所区别。在下面这些有机分子 的基团中,_______与水形成的氢键比较牢固。 (A)蛋白质中的酰胺基(B)淀粉中的羟基(C)果胶中的羟基(D)果胶中未酯化的羧基 6 食品中的水分分类很多,下面哪个选项不属于同一类_______。 (A)多层水(B)化合水(C)结合水(D)毛细管水 7 下列食品中,哪类食品的吸着等温线呈S型?_______ (A)糖制品(B)肉类(C)咖啡提取物(D)水果 8 关于等温线划分区间内水的主要特性描述正确的是_______。 (A)等温线区间Ⅲ中的水,是食品中吸附最牢固和最不容易移动的水。 (B)等温线区间Ⅱ中的水可靠氢键键合作用形成多分子结合水。 (C)等温线区间Ⅰ中的水,是食品中吸附最不牢固和最容易流动的水。 (D)食品的稳定性主要与区间Ⅰ中的水有着密切的关系。 9 关于水分活度描述有误的是_______。 (A)α W 能反应水与各种非水成分缔合的强度。 (B)α W 比水分含量更能可靠的预示食品的稳定性、安全性等性质。 (C)食品的α W 值总在0~1之间。 (D)不同温度下α W 均能用P/P 来表示。 10 关于BET(单分子层水)描述有误的是_______。 (A)BET在区间Ⅱ的高水分末端位置。 (B)BET值可以准确的预测干燥产品最大稳定性时的含水量。 (C)该水分下除氧化反应外,其它反应仍可保持最小的速率。 (D)单分子层水概念由Brunauer、Emett及Teller提出的单分子层吸附理论。 11 当食品中的α W 值为0.40时,下面哪种情形一般不会发生?_______ (A)脂质氧化速率会增大。(B)多数食品会发生美拉德反应。 (C)微生物能有效繁殖(D)酶促反应速率高于α W 值为0.25下的反应速率。 12 对食品冻结过程中出现的浓缩效应描述有误的是_______ (A)会使非结冰相的pH、离子强度等发生显著变化。(B)形成低共熔混合物。(C)溶液中可能有氧和二氧化碳逸出。(D)降低了反应速率 13 下面对体系自由体积与分子流动性二者叙述正确的是_______。

食品化学思考题答案

食品化学思考题答案 第一章绪论 1、食品化学定义及研究内容? 食品化学定义:论述食品的成分与性质以及食品在处理、加工与贮藏中经受的化学变化。研究内容: 食品材料中主要成分的结构与性质;这些成分在食品加工与保藏过程中产生的物理、化学、与生物化学变化;以及食品成分的结构、性质与变化对食品质量与加工性能的影响等。 第二章水 1 名词解释 (1)结合水(2)自由水(3)等温吸附曲线(4)等温吸附曲线的滞后性(5)水分活度 (1) 结合水:存在于溶质及其她非水组分临近的水,与同一体系中“体相”水相比,它们呈现出低的流动性与其她显著不同的性质,这些水在-40℃下不结冰。 (2) 自由水:食品中的部分水,被以毛细管力维系在食品空隙中,能自由运动, 这种水称为自由水。 (3)等温吸附曲线:在恒温条件下,以食品含水量(gH2O/g干物质)对Aw作图所得的曲线。又称等温吸湿曲线、等温吸着曲线、水分回吸等温线、 (4)如果向干燥样品中添加水(回吸作用)的方法绘制水分吸着等温线与按解吸过程绘制的等温线并不相互重叠,这种不重叠性称为滞后现象。 (5)水分活度: 食品的水蒸汽分压(P)与同条件下纯水蒸汽压(P0)之比。它表示食品中水的游离程度,水分被微生物利用的程度。也可以用相对平衡湿度表aw=ERH/100。 2 、结合水、自由水各有何特点? 答:结合水:-40℃不结冰,不能作为溶剂,100 ℃时不能从食品中释放出来,不能被微生物利用,决定食品风味。 自由水:0℃时结冰,能作为溶剂,100 ℃时能从食品中释放出来很适于微生物生长与大多数化学反应,易引起Food的腐败变质,但与食品的风味及功能性紧密相关。 3 、分析冷冻时冰晶形成对果蔬类、肉类食品的影响。 答:对于肉类、果蔬等生物组织类食物,普通冷冻(食品通过最大冰晶生成带的降温时间超过30min)时形成的冰晶较粗大,冰晶刺破细胞,引起细胞内容物外流(流汁),导致营养素及其它成分的损失;冰晶的机械挤压还造成蛋白质变性,食物口感变硬。 速冻,为了不使冷冻食品产生粗大冰晶,冷冻时须迅速越过冰晶大量形成的低温阶段,即在几十分钟内越过-3、9~0℃。冷冻食品中的冰晶细小则口感细腻(冰淇淋),冰晶粗大则口感粗糙。 4、水与溶质相互作用分类:偶极—离子相互作用,偶极—偶极相互作用,疏水水合作用,疏水相互作用。 浄结构形成效应:在稀盐溶液中,一些离子具有净结构形成效应(溶液比纯水具有较低的流动性),这些离子大多就是电场强度大,离子半径小的离子,或多价离子。如:Li+, Na+, Ca2+, Ba2+, Mg2+, Al3+,F-,OH-, 等。主要就是一些小离子或多价离子,具有强电场,所以能紧密地结合水分子。那么这些离子加到水中同样会对水的净结构产生破坏作用,打断原有水分子与水分子通过氢键相连的结构,另一方面,正因为它与水分子形成的结合力更强烈,远远超过对水结构的破坏,就就是说正面影响超过负面影响,整体来说,使水分子与水分子结合的更紧密,可以想象,这些水流动性比纯水流动性更差,因为拉的更紧,堆积密度更大。 浄结构破坏效应:在稀盐溶液中一些离子具有净结构破坏效应(溶液比纯水具有较高的流动

完整版食品化学试题及答案

选择题 1、美拉德反应不利的一面是导致氨基酸的损失,其中影响最大的人体必需氨基酸:( ) A Lys B Phe C Val D Leu 2、下列不属于还原性二糖的是……………………………………………………………() A麦芽糖B蔗糖C乳糖D纤维二糖 3、下列哪一项不是食品中单糖与低聚糖的功能特性……………………………………( ) A产生甜味B结合有风味的物质C亲水性D有助于食品成型4、对面团影响的两种主要蛋白质是……………………………………………………( ) A麦清蛋白和麦谷蛋白B麦清蛋白和麦球蛋白 C麦谷蛋白和麦醇溶蛋白D麦球蛋白和麦醇溶蛋白 5、在人体必需氨基酸中,存在ε-氨基酸的是…………………………………………() A亮氨酸B异亮氨酸C苏氨酸D赖氨酸 6、某油有A、B、C三种脂肪酸,则可能存在几种三酰基甘油酯……………………( ) A、3 B、8 C、9 D、27 7、下列哪一项不是油脂的作用。…………………………………………………………( ) A、带有脂溶性维生素 B、易于消化吸收风味好 C、可溶解风味物质 D、吃后可增加食后饱足感 8、下列哪些脂类能形成β晶体结构………………………………………………………( ) A、豆油 B、奶油 C、花生油 D、猪油E菜籽油F、棉籽油 9、水的生性作用包括……………………………………………………………………() A、水是体内化学作用的介质 B、水是体内物质运输的载体。 C、水是维持体温的载温体, D、水是体内摩擦的滑润剂 10、利用美拉德反应会……………………………………………………………………() A、产生不同氨基酸 B、产生不同的风味 C、产生金黄色光泽 D、破坏必需氨基酸 11、影响油脂自氧化的因素………………………………………………………………() A、油脂自身的脂肪酸组成 B、H2O对自氧化的影响 C、金属离子不促俱自氧化 D、光散化剂对自氧化的影响 12、油脂的热解不会使……………………………………………………………………()A、平均分子量升高B、粘度增大C、I2值降低D、POV值降低

食品化学复习题及答案集合版

第2章水分习题 一、填空题 1、从水分子结构来看,水分子中氧的6个价电子参与杂化,形成4个SP3杂化轨道,有近似四面体的结 构。 2、冰在转变成水时,净密度增大,当继续升温至3。98℃时密度可达到最大值,继续升温密度逐渐下降。 3、液体纯水的结构并不是单纯的由氢键构成的四面体形状,通过H-桥的作用,形成短暂存在的多变形结构。 4、离子效应对水的影响主要表现在改变水的结构、影响水的介电常数、影响水对其他非水溶质和悬浮物质的相容程度等几个方面。 5、在生物大分子的两个部位或两个大分子之间,由于存在可产生氢键作用的基团,生物大分子之间可形成由几个水分子所构成的水桥。 6、当蛋白质的非极性基团暴露在水中时,会促使疏水基团缔合或发生疏水相互作用,引起蛋白质折叠;若降低温度,会使疏水相互作用变弱,而氢键增强。 7、食品体系中的双亲分子主要有脂肪酸盐、蛋白脂质、糖脂、极性脂类、核酸等,其特征是同一分子中同时存在亲水和疏水基团.当水与双亲分子亲水部位羧基、羟基、磷酸基、羰基、含氮基团等基团缔合后,会导致双亲分子的表观增溶。 8、一般来说,食品中的水分可分为自由水和结合水两大类.其中,前者可根据被结合的牢固程度细分为化合水、邻近水、多层水,后者可根据其食品中的物理作用方式细分为滞化水、毛细管水。 9、食品中通常所说的水分含量,一般是指常压下,100~105℃条件下恒重后受试食品的减少量。 10、水在食品中的存在状态主要取决于天然食品组织、加工食品中的化学成分、化学成分的物理状态。水与不同类型溶质之间的相互作用主要表现在离子和离子基团的相互作用、与非极性物质的相互作用、与双亲分子的相互作用等方面。 11、一般来说,大多数食品的等温线呈S形,而水果等食品的等温线为J形。 12、吸着等温线的制作方法主要有解吸等温线和回吸等温线两种。对于同一样品而言,等温线的形状和位置主要与试样的组成、物理结构、预处理、温度、制作方法等因素有关。 13、食品中水分对脂质氧化存在促进和抑制作用.当食品中α W 值在0.35左右时,水分对脂质起抑制 氧化作用;当食品中α W 值>0。35时,水分对脂质起促进氧化作用。 14、食品中α W 与美拉德褐变的关系表现出钟形曲线形状。当α W 值处于0.3~0.7区间时,大多数食品 会发生美拉德反应;随着α W值增大,美拉德褐变增大至最高点;继续增大α W ,美拉德褐变下降. 15、冷冻是食品贮藏的最理想的方式,其作用主要在于低温。冷冻对反应速率的影响主要表现在降低温

食品化学试题加答案

第一章水分 一、填空题 1。从水分子结构来看,水分子中氧的6个价电子参与杂化,形成4个sp3杂化轨道,有近似四面体的结构. 2. 冰在转变成水时,静密度增大 ,当继续升温至3. 98℃时密度可达到最大值,继续升温密度逐渐下降 . 3。一般来说,食品中的水分可分为结合水和自由水两大类.其中,前者可根据被结合的牢固程度细分为化合水、邻近水、多层水,后者可根据其在食品中的物理作用方式细分为滞化水、毛细管水、自由流动水。 4。水在食品中的存在状态主要取决于天然食品组织、加工食品中的化学成分、化学成分的物理状态;水与不同类型溶质之间的相互作用主要表现在与离子和离子基团的相互作用、与非极性物质的相互作用、与双亲(中性)分子的相互作用等方面。 5。一般来说,大多数食品的等温线呈S形,而水果等食品的等温线为J形。 6。吸着等温线的制作方法主要有解吸等温线和回吸等温线两种。对于同一样品而言,等温线的形状和位置主要与试样的组成、物理结构、预处理、温度、制作方法等因素有关。 7.食品中水分对脂质氧化存在促进和抑制作用。当食品中aw值在0.35左右时,水分对脂质起抑制氧化作用;当食品中aw值 >0.35时,水分对脂质起促进氧化作用. 8。冷冻是食品储藏的最理想方式,其作用主要在于低温。冷冻对反应速率的影响主要表现在降低温度使反应变得非常缓慢和冷冻产生的浓缩效应加速反应速率两个相反的方面。 二、选择题 1.水分子通过的作用可与另4个水分子配位结合形成四面体结构。 (A)范德华力(B)氢键(C)盐键(D)二硫键 2. 关于冰的结构及性质,描述有误的是。 (A)冰是由水分子有序排列形成的结晶 (B)冰结晶并非完整的警惕,通常是有方向性或离子型缺陷的 (C)食品中的冰是由纯水形成的,其冰结晶形式为六方形 (D)食品中的冰晶因溶质的数量和种类等不同,可呈现不同形式的结晶 3。食品中的水分分类很多,下面哪个选项不属于同一类? (A)多层水(B)化合水(C)结合水 (D)毛细管水 4. 下列食品中,哪类食品的吸着等温线呈S形? (A)糖制品(B)肉类 (C)咖啡提取物(D)水果 5.关于BET(单分子层水),描述有误的是一。 (A) BET在区间Ⅱ的商水分末端位置 (B) BET值可以准确地预测干燥产品最大稳定性时的含水量 (C)该水分下除氧化反应外,其他反应仍可保持最小的速率 (D)单分子层水概念是由Brunauer. Emett及Teller提出的单分子层吸附理论三、名词解释 1。水分活度:水分活度能反应水与各种非水成分缔合的强度,其定义可用下式表示:

食品化学试题及答案

水 的作用:①保持体温恒定②作为溶剂③天然润滑剂④优良增塑剂 水的三种模型:①混合型②填隙式③连续结构模型 冰是有水分子在有序排列形成的结晶,水分子间靠氢键连接在一起形成非常“疏松”的刚性建构,冰有11种结晶型。主要有四种:六方形,不规则树形,粗糙球状,易消失的球晶, 蛋白质的构象与稳定性将受到共同离子的种类与数量的影响。 把疏水性物质加入到水中由于极性的差异发生了体系熵的减少,在热力学上是不利的,此过程称为疏水水合。结合水指存在于溶质或其他非水组分附近的、于溶质分子之间通过化学键结合的那一部分锥,具有与同一体系中体相水显著不同的性质,分为①化合水②邻近水③多层水 体相水称为游离水指食品中除了结合水以外的那部分水,分为不移动水、毛细管水、和自由流动水。 结合水与体相水的区别:①结合水的量与食品中有机大分子的极性基团的数量有比较固定的比例关系②结合水的蒸汽压比体相水低得多,所以在一定温度下结合水不能从食品中分离③结合水不易结冰④结合水不能作为溶质的溶剂⑤体相水能被微生物利用,大部分结合水不能。 水分活度是指食品中水的蒸汽压与同温下纯水的饱和蒸汽压的比值。Aw=P/P0 水分活度与微生物生命活动的关系:水分活度决定微生物在食品中萌发的时间、生长速率及死亡率,不同微生物对水分的活度不同,细菌对低水分活度最敏感,酵母菌次之,霉菌的敏感性最差。当水分活度低于某种微生物生长所需的最低水分活度时微生物就不能生长。食品的变质以细菌为主;水分活度低于0.91时就可以抑制细菌生长。 低水分活度提高食品稳定性的机理:①大多数化学反应都必须在水溶液中进行②很多化学反应属于离子反应③很多化学反应和生物化学反应都必须有水分子参加才能进行,水分活度低反应就慢④许多酶为催化剂的酶促反应,水除了起着一种反应物的作用外,还能作为底物向酶扩散输送介质,通过水化促使酶和底物活化⑤食品中微生物的生长繁殖都要求有一定限度的Aw:细菌0.99-0.94,霉菌0.94-0.8,耐盐细菌0.75,干燥霉菌和耐高渗透压酵母味0.65-0.6,低于0.6时多数无法生长。 冷冻与食品稳定性:低温下微生物的繁殖被抑制,可提高食品储存期,不利后果:①水变为冰体积增大9%会造成机械损伤计液流失,酶与底物接住导致不良影响。②冷冻浓缩效应。有正反两方面影响:降低温度,减慢反应速度,溶质浓度增加,加快反应速度。冷冻有速冻和慢冻。 碳水化合物:多羟基醛或酮及其衍生物和缩合物。自然界中最丰富的碳水化合物是纤维素。蔗糖是糖甜度的基准物,相对分子大,溶解度越小,甜度小。 糖的吸润性是指在较高的空气湿度下,糖吸收水分的性质,糖的保湿性是指在较低空气湿度下,糖保持水分的性质。 糖的抗氧化性是氧在糖中的含量比在水中含量低的缘故。 水解反应:低聚糖或双糖在酸或酶的催化作用下可以水解成单糖,旋光方向发生变化。 酵母菌 发酵性: 醋酸杆菌 产酸机理 功能性低聚糖:①改善人体内的微生态环境②高品质的低聚糖很难被人体消化道唾液酶和小肠消化酶水解③类似于水溶性植物纤维,能降低血脂,改善脂质代谢④难消化低聚糖属非胰岛素依赖型,不易使血糖升高,可供糖尿病人使用⑤低聚糖对牙齿无不良影响。 淀粉的糊化:由于水分子的穿透,以及更多、更长的淀粉链段分离,增加了淀粉分子结构的无序性,减少了结晶区域的数目和大小,最终使淀粉分子分散而呈糊状,体系的黏度增加,双折射现象消失,最后得到半透明的粘稠体系的过程。 淀粉的老化:表示淀粉由分散态向不溶的微晶态、聚集态的不可逆转变。 即是直链淀粉分子的重新定位过程。

食品化学总复习思考题

第四节油脂 一、名词解释 必需脂肪酸油脂的烟点油脂的塑性酪化性酪化值皂化值酸值 油脂的自动氧化酸败油脂的氢化油脂的分提 二、填空 1、脂质可以分为和两类。真脂就是常说的油脂,通常把室温下呈液态的称为,呈固态的称为。 2、天然油脂的主要成分是和形成的脂。 3、三脂酰甘油分子中的3个脂肪酸残基,则属于单纯三脂酰甘油;三脂酰甘油分子中的3个脂肪酸残基,则属于混合三脂酰甘油。 4、室温下呈液态的油主要来源于植物,含较多脂肪酸;呈固态的脂肪主要来源于动物,含较多脂肪酸。 5、油脂的熔点与脂肪酸的组成有关,组成油脂的脂肪酸饱和程度越,碳链越,油脂的熔点越。 6、油脂中脂肪酸碳链、含游离脂肪酸越,则油脂的烟点,品质较差。 7、油脂折光率的大小与组成有关,因此通过折光率的测定可以判断油脂的性质。油脂分子中碳链越、不饱和程度越,油脂的折光率越;油脂与有机溶剂混合后,折光率。 8、调制面团时,加入的塑性油脂形成面积较大的薄膜和细条,覆盖在面粉颗粒表面,面团的延展性,同时使已形成的面筋微粒不易黏合,了面团的可塑性;塑性油脂还能包含一定量的空气,使面团的体积,烘烤时形成蜂窝状的细密小孔,能改善制品质地;油脂的覆盖还可限制面粉吸水,从而面筋的形成,这对酥性饼干的制作是相当重要的。 9、同种油脂的纯度越,皂化值越;油脂分子中所含碳链越,皂化值越。一般油脂的皂化值在左右。 10、酸值越,游离脂肪酸含量越。食用油脂的酸值应小于。 11、油脂的酸败途径概括起来可分为两方面:一为,另一为。 12、油脂的自动氧化可分3个阶段:、和。 13、油脂自动氧化的诱导期,油脂在、、等影响下被活化分解成不稳定的自由基R·。 14、油脂自动氧化的增殖期,在诱导期形成的自由基,与空气中的结合,形成,过氧自由基又从其他油脂分子中亚甲基部位夺取,形成,同时使其他油脂分子成为新的自由基。 15、影响油脂自动氧化变质的因素有、、、、、 和。 16、油脂中的饱和脂肪酸和不饱和脂肪酸都能发生氧化,但饱和脂肪酸的氧化需要较特殊的条件,所以油脂的不饱和程度越,则越发生自动氧化变质;共轭双键越,自动氧化越。 17、水分活度对油脂自动氧化的影响比较复杂。水分过低时,了油脂与氧的接触,氧化的进行;当水分增加时,溶氧量增加,氧化速度也。实验表明,当水分活度控制在0.3~0.4 时,食品中油脂的氧化速度。 18、氢过氧化物的分解首先发生在位置,然后再形成醛、酮、醇、酸等,是一个复杂的过程。 19、油脂在高温条件下,经长时间加热后,发生聚合与分解等化学反应,形成许多聚合、分解产物从而造成油脂的色泽,流动性,味感变,发烟等,导致食品品质及营养价值的下降。 20、油脂变质以后,都有可能产生一些有毒物质。自动氧化变质中,主要的有毒物是;热变质中,主要的有毒物是、、、等。 21、油脂的氢化是利用催化剂,使油脂的不饱和双键发生加氢反应。氢化后的油脂饱和程度,熔点,固体脂含量,称为氢化油或硬化油。 22、油脂氢化后可以色泽、熔点、塑性、去除某些异味、油脂的氧化稳定性,油脂的耐贮藏性。 23、酯交换可改变油脂的、以及,生产低温下仍能保持清亮的色拉油、稳定性较高的人造奶油及符合熔化要求的硬奶油。 24、起酥油要求有良好的、、、和。 25、人造奶油应具有良好的性能,性能和性能。在室温下不熔化,不变形、置于口中能熔化,并产生清凉感,具有类似奶油的风味。 三、单项选择题 1、下列脂肪酸不属于必须脂肪酸的是( )

食品化学复习题及答案03261

《食品化学》碳水化合物 一、填空题 1 碳水化合物根据其组成中单糖的数量可分为_______、_______、和_______. 2 单糖根据官能团的特点分为_______和_______,寡糖一般是由_______个单糖分子缩合而成,多糖聚合度大于 _______,根据组成多糖的单糖种类,多糖分为_______或_______. 3 根据多糖的来源,多糖分为_______、_______和_______;根据多糖在生物体内的功能,多糖分为_______、_______和_______,一般多糖衍生物称为_______. 4 糖原是一种_______,主要存在于_______和_______中,淀粉对食品的甜味没有贡献,只有水解成_______或_______才对食品的甜味起作用。 5 糖醇指由糖经氢化还原后的_______,按其结构可分为_______和_______. 6 肌醇是环己六醇,结构上可以排出_______个立体异构体,肌醇异构体中具有生物活性的只有_______,肌醇通常以_______存在于动物组织中,同时多与磷酸结合形成_______,在高等植物中,肌醇的六个羟基都成磷酸酯,即_______. 7 糖苷是单糖的半缩醛上_______与_______缩合形成的化合物。糖苷的非糖部分称为_______或_______,连接糖基与配基的键称_______.根据苷键的不同,糖苷可分为_______、_______和_______等。 8 多糖的形状有_______和_______两种,多糖可由一种或几种单糖单位组成,前者称为_______,后者称为_______. 9 大分子多糖溶液都有一定的黏稠性,其溶液的黏度取决于分子的_______、_______、_______和溶液中的_______. 10 蔗糖水解称为_______,生成等物质的量_______和_______的混合物称为转化糖。 11 含有游离醛基的醛糖或能产生醛基的酮糖都是_______,在碱性条件下,有弱的氧化剂存在时被氧化成_______,有强的氧化剂存在时被氧化成_______. 12 凝胶具有二重性,既有_______的某些特性,又有_______的某些属性。凝胶不像连续液体那样完全具有_______,也不像有序固体具有明显的_______,而是一种能保持一定_______,可显著抵抗外界应力作用,具有黏性液体某些特性的黏弹性_______. 13 糖的热分解产物有_______、_______、_______、_______、_______、酸和酯类等。 14 非酶褐变的类型包括:_______、_______、_______、_______等四类。 15 通常将酯化度大于_______的果胶称为高甲氧基果胶,酯化度低于_______的是低甲氧基果胶。果胶酯酸是甲酯化程度_______的果胶,水溶性果胶酯酸称为_______果胶,果胶酯酸在果胶甲酯酶的持续作用下,甲酯基可全部除去,形成_______. 16 高甲氧基果胶必须在_______pH值和_______糖浓度中可形成凝胶,一般要求果胶含量小于_______%,蔗糖浓度_______%~75%,pH2.8~_______. 17 膳食纤维按在水中的溶解能力分为_______和_______膳食纤维。按来源分为_______、_______和_______膳食纤维。 18 机体在代谢过程中产生的自由基有_______自由基、_______自由基、_______自由基,膳食纤维中的_______、_______类物质具有清除这些自由基的能力。 19 甲壳低聚糖在食品工业中的应用:作为人体肠道的_______、功能性_______、食品_______、果蔬食品的_______、可以促进_______的吸收。 20 琼脂除作为一种_______类膳食纤维,还可作果冻布丁等食品的_______、_______、_______、固定化细胞的_______,也可凉拌直接食用,是优质的_______食品。 二、选择题 1 根据化学结构和化学性质,碳水化合物是属于一类_______的化合物。 (A)多羟基酸(B)多羟基醛或酮(C)多羟基醚(D)多羧基醛或酮 2 糖苷的溶解性能与_______有很大关系。(A)苷键(B)配体(C)单糖(D)多糖 3 淀粉溶液冻结时形成两相体系,一相为结晶水,另一相是_______. (A)结晶体(B)无定形体(C)玻璃态(D)冰晶态 4 一次摄入大量苦杏仁易引起中毒,是由于苦杏仁苷在体内彻底水解产生_______,导致中毒。 (A)D-葡萄糖(B)氢氰酸(C)苯甲醛(D)硫氰酸

食品化学试题及答案00

食品化学 (一) 名词解释 1. 吸湿等温线(MSI ):在一定 温度条件下用来联系食品的含水量(用每单位干物质的含水量表示)与其水活度的图。 2. 过冷现象:无晶核存在,液 体水温度降低到冰点以下仍不析出固体。 3. 必需氨基酸:人体必不可少, 而机体内又不能合成的,必须从食物中补充的氨基酸,称必需氨基酸。 4. 还原糖:有还原性的糖成为 还原糖。分子中含有醛(或酮)基或半缩醛(或酮)基的糖。 5. 涩味:涩味物质与口腔内的 蛋白质发生疏水性结合,交联反应产生的收敛感觉与干燥感觉。食品中主要涩味物质有:金属、明矾、醛类、单宁。 6. 蛋白质功能性质:是指在食 品加工、贮藏和销售过程中蛋白质对食品需宜特征做出贡献的那些物理和化学性质。 7. 固定化酶:是指在一定空间 内呈闭锁状态存在的酶,能连续的进行反应,反应后的酶可以回收重复使用。 8. 油脂的酯交换:指三酰基甘 油酯上的脂肪酸与脂肪酸、醇、自身或其他酯类作用而进行的酯交换或分子重排的过程。 9. 成碱食品:食品中钙、铁、 钾、镁、锌等金属元素含量较高,在体内经过分解代谢后最终产生碱性物质,这类 食品就叫碱性食品(或称食 物、或成碱食品)。 10. 生物碱:指存在于生物体 (主要为植物)中的一类除蛋白质、肽类、氨基酸及维生素B 以外的有含氮碱基的有机化合物,有类似于碱的性质,能与酸结合成盐。 11. 水分活度:水分活度是指食 品中水分存在的状态,即水分与食品结合程度(游离程度)。或f/fo,f,fo 分别为食品中水的逸度、相同条件下纯水的逸度。 12. 脂肪:是一类含有醇酸酯化 结构,溶于有机溶剂而不溶于水的天然有机化合物。 13. 同质多晶现象:指具有相同 的化学组成,但有不同的结晶晶型,在融化时得到相同的液相的物质。 14. 酶促褐变反应:是在有氧 的条件下,酚酶催化酚类物质形成醌及其聚合物的反应过程。 15. 乳化体系:乳浊液是互不 相溶的两种液相组成的体系,其中一相以液滴形式分散在另一相中,液滴的直径为0.l ~ 50um 间。 16. 必需元素:维持正常生命活 动不可缺少的元素。包括 大量元素与微量元素。 17. 油脂的过氧化值(POV ): 是指1㎏油脂中所含过氧化物的毫摩尔数。 18. 油脂氧化: (二) 填空题 1. 4,7,10,13,16,19-二 十二碳六烯酸的俗名:DHA 2. 9,12,15-十八碳二烯酸的 俗名是:α-亚麻酸。 3. 5,8,11,14.17-二十碳五烯 酸:EPA 。 4. 由1,4-α-D 葡萄糖构成的 多糖是:淀粉 5. 铬元素通过协同作用和增 强胰岛素的作用影响糖类、脂类、蛋白质及核酸的代谢。 6. 最常见的非消化性的多糖 是纤维素。 7. 苯并芘在许多高温加工食 品存在特别是油炸食品中是一种有毒的化学物质,可诱发癌变,是一种神经毒素,同时可能导致基因损伤。 8. 生产上常用奶酪生产的酶 是凝乳酶,用于肉的嫩化的的酶是巯基蛋白酶 9. 生产上常用α-淀粉酶和葡 萄糖淀粉酶酶共同作用将淀粉水解生产葡萄糖。 10. 人体一般只能利用D-构型 单糖。 11. 对美拉德反应敏感的氨基 酸是Lys 赖氨酸。 12. 常见的还原性二糖有麦芽 糖和乳糖。 13. 过冷度愈高,结晶速度愈 慢,这对冰晶的大小是很重要的 14. 食品质量包括营养、安全、 颜色、风味(香气与味道)、质构 15. 由一分子葡萄糖与一分子 半乳糖基缩合而成的双糖是乳糖。 16. 在冻结温度以下水分活度 之变化主要受温度的影响。 17. 水中动物脂肪含较多个多 不饱和脂肪酸,熔点较 18. 在豆类,谷类等植物中存在 的消化酶抑制剂主要包括蛋白酶抑制剂和а-淀粉酶抑制剂 19.

相关文档