文档库 最新最全的文档下载
当前位置:文档库 › 高考数学 数列与不等式的交汇题型分析及解题策略论文

高考数学 数列与不等式的交汇题型分析及解题策略论文

高考数学 数列与不等式的交汇题型分析及解题策略论文
高考数学 数列与不等式的交汇题型分析及解题策略论文

数列与不等式的交汇题型分析及解题策略

【命题趋向】

数列与不等式交汇主要以压轴题的形式出现,试题还可能涉及到与导数、函数等知识综合一起考查.主要考查知识重点和热点是数列的通项公式、前n项和公式以及二者之间的关系、等差数列和等比数列、归纳与猜想、数学归纳法、比较大小、不等式证明、参数取值范围的探求,在不等式的证明中要注意放缩法的应用.此类题型主要考查学生对知识的灵活变通、融合与迁移,考查学生数学视野的广度和进一步学习数学的潜能.近年来加强了对递推数列考查的力度,这点应当引起我们高度的重视.如08年北京文20题(12分)中档偏上,考查数列与不等式恒成立条件下的参数问题、08年湖北理21题(12分)为中档偏上,考查数列与不等式交汇的探索性问题、08年江西理19题(12分)中等难度,考查数列求和与不等式的交汇、08年全国卷Ⅰ理22(12分)压轴题,难说大,考查数学归纳法与不等式的交汇,等等.预计在2009年高考中,比较新颖的数列与不等式选择题或填空题一定会出现.数列解答题的命题热点是与不等式交汇,呈现递推关系的综合性试题.其中,以函数与数列、不等式为命题载体,有着高等数学背景的数列与不等式的交汇试题是未来高考命题的一个新的亮点,而命题的冷门则是数列与不等式综合的应用性解答题.

【考试要求】

1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.

2.理解等差数列的概念.掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题.

3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。

4.理解不等式的性质及其证明.

5.掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.

6.掌握分析法、综合法、比较法证明简单的不等式.

7.掌握简单不等式的解法及理解不等式│a│-│b│≤│a+b│≤│a│+│b│.

【考点透视】

1.以客观题考查不等式的性质、解法与数列、等差数列、等比数列的简单交汇.

2.以解答题以中档题或压轴题的形式考查数列与不等式的交汇,还有可能涉及到导数、解析几何、三角函数的知识等,深度考查不等式的证明(主要比较法、综合法、分析法、放缩法、数学归纳法、反证法)和逻辑推理能力及分类讨论、化归的数学思想,试题新颖别致,难度相对较大.

3.将数列与不等式的交汇渗透于递推数列及抽象数列中进行考查,主要考查转化及方程的思想.

【典例分析】

题型一求有数列参与的不等式恒成立条件下参数问题

求得数列与不等式绫结合恒成立条件下的参数问题主要两种策略:(1)若函数f(x)在定义域为D,则当x∈D时,有f(x)≥M恒成立?f(x)min≥M;f(x)≤M恒成立?f(x)max≤M;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得.

【例1】等比数列{a n}的公比q>1,第17项的平方等于第24项,求使a1+a2+…+

a n>1

a1+

1

a2

+…+

1

a n

恒成立的正整数n的取值范围.

【分析】 利用条件中两项间的关系,寻求数列首项a 1与公比q 之间的关系,再利用等比数列前n 项公式和及所得的关系化简不等式,进而通过估算求得正整数n 的取值范围.

【解】 由题意得:(a 1q 16)2=a 1q 23,∴a 1q 9

=1.

由等比数列的性质知:数列{1a n }是以1a 1为首项,以1

q

为公比的等比数列,要使不等式成立,

则须a 1(q n

-1)q -1>1a 1[1-(1q )n ]1-1q ,把a 21=q -18代入上式并整理,得q -18(q n

-1)>q(1-1q

n ),

q n

>q 19

,∵q>1,∴n>19,故所求正整数n 的取值范围是n≥20. 【点评】 本题解答数列与不等式两方面的知识都用到了,主要体现为用数列知识化简,用不等式知识求得最后的结果.本题解答体现了转化思想、方程思想及估算思想的应用.

【例2】 (08·全国Ⅱ)设数列{a n }的前n 项和为S n .已知a 1=a ,a n+1=S n +3n

,n∈N*.(Ⅰ)

设b n =S n -3n

,求数列{b n }的通项公式;(Ⅱ)若a n+1≥a n ,n∈N*,求a 的取值范围.

【分析】 第(Ⅰ)小题利用S n 与a n 的关系可求得数列的通项公式;第(Ⅱ)小题将条件a n+1≥a n 转化为关于n 与a 的关系,再利用a≤f(n)恒成立等价于a≤f(n)min 求解.

【解】 (Ⅰ)依题意,S n+1-S n =a n+1=S n +3n ,即S n+1=2S n +3n

由此得S n+1-3 n+1=2(S n -3n

).

因此,所求通项公式为b n =S n -3n =(a -3)2 n -1

,n∈N*, ①

(Ⅱ)由①知S n =3n +(a -3)2 n -1

,n∈N*,

于是,当n≥2时,a n =S n -S n -1=3n +(a -3)2 n -1-3n -1-(a -3)2 n -2=2×3n -1+(a -3)2 n -2

a n+1-a n =4×3

n -1

+(a -3)2

n -2

=2

n -2

·[12·(32

)n -2

+a -3],

当n≥2时,a n+1≥a n ,即2 n -2

·[12·(32)n -2+a -3]≥0,12·(32

)n -2+a -3≥0,∴a≥-

9,

综上,所求的a 的取值范围是[-9,+∞].

【点评】 一般地,如果求条件与前n 项和相关的数列的通项公式,则可考虑S n 与a n

的关系求解.本题求参数取值范围的方法也一种常用的方法,应当引起重视.

题型二 数列参与的不等式的证明问题

此类不等式的证明常用的方法:(1)比较法,特别是差值比较法是最根本的方法;(2)分析法与综合法,一般是利用分析法分析,再利用综合法分析;(3)放缩法,主要是通过分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的.

【例3】 已知数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S 4=24.(Ⅰ)求数列{a n }

的通项公式;(Ⅱ)设p 、q 都是正整数,且p ≠q ,证明:S p+q <1

2

(S 2p +S 2q ).

【分析】 根据条件首先利用等差数列的通项公式及前n 项公式和建立方程组即可解决第(Ⅰ)小题;第(Ⅱ)小题利用差值比较法就可顺利解决.

【解】 (Ⅰ)设等差数列{a n }的公差是d ,依题意得,??? a 1+2d =74a 1+6d =24,解得??? a 1=3

d =2

∴数列{a n }的通项公式为a n =a 1+(n -1)d =2n +1. (Ⅱ)证明:∵a n =2n +1,∴S n =n(a 1+a n )2

=n 2

+2n .

2S p+q -(S 2p +S 2q )=2[(p +q)2

+2(p +q)]-(4p 2

+4p)-(4q 2

+4q)=-2(p -q)2

∵p ≠q ,∴2S p+q -(S 2p +S 2q )<0,∴S p+q <1

2

(S 2p +S 2q ).

【点评】 利用差值比较法比较大小的关键是对作差后的式子进行变形,途径主要有:(1)因式分解;(2)化平方和的形式;(3)如果涉及分式,则利用通分;(4)如果涉及根式,则利用分子或分母有理化.

【例4】 (08·安徽高考)设数列{a n }满足a 1=0,a n+1=ca n 3

+1-c ,c∈N*,其中c 为实数.(Ⅰ)证明:a n ∈[0,1]对任意n∈N*成立的充分必要条件是c∈[0,1];(Ⅱ)设0<c <13,证明:a n ≥1-(3c)n -1,n∈N*;(Ⅲ)设0<c <13,证明:a 12+a 22+…+a n 2>n +1-21-3c ,n ∈N*.

【分析】 第(1)小题可考虑用数学归纳法证明;第(2)小题可利用综合法结合不等关系的迭代;第(3)小题利用不等式的传递性转化等比数列,然后利用前n 项和求和,再进行适当放缩.

【解】(Ⅰ)必要性:∵a 1=0,a 2=1-c ,

又∵a 2∈[0,1],∴0≤1-c≤1,即c∈[0,1].

充分性:设c∈[0,1],对n∈N*用数学归纳法证明a n ∈[0,1]. (1)当n =1时,a 1∈[0,1].

(2)假设当n =k 时,a k ∈[0,1](k≥1)成立,则

a k +1=ca k 3+1-c≤c+1-c =1,且a k +1=ca k 3

+1-c≥1-c≥0, ∴a k +1∈[0,1],这就是说n =k +1时,a n ∈[0,1]. 由(1)、(2)知,当c∈[0,1]时,知a n ∈[0,1]对所胡n∈N*成立. 综上所述,a n ∈[0,1]对任意n∈N*成立的充分必要条件是c∈[0,1].

(Ⅱ)设0<c <1

3

,当n =1时,a 1=0,结论成立.

当n≥2时,由a n =ca n -13+1-c ,∴1-a n =c(1-a n -1)(1+a n -1+a n -12

)

∵0<c <13

,由(Ⅰ)知a n -1∈[0,1],所以1+a n -1+a n -12

≤3,且1-a n -1≥0,∴1-a n ≤3c(1

-a n -1),

∴1-a n ≤3c(1-a n -1)≤(3c)2(1-a n -2)≤…≤(3c) n -1(1-a 1)=(3c) n -1

,∴a n ≥1-

(3c)n -1

,n∈N*.

(Ⅲ)设0<c <13,当n =1时,a 12

=0>2-21-3c

,结论成立.

当n≥2时,由(Ⅱ)知a n ≥1-(3c)n -1

>0,

∴a n 2≥[(1-(3c)n -1)] 2=1-2(3c)n -1+(3c)(n -1)>1-2(3c)n -1

, a 12+a 22+…+a n 2=a 22+…+a n 2>n -1-2[3c +(3c)2+…+(3c)n -1]

=n -1-2[1+3c +(3c)2+…+(3c)n -1

-1]=n +1-2[1-(3c)n

]1-3c >n +1-21-3c

.

【点评】 本题是数列与不等式、数学归纳法的知识交汇题,属于难题,此类试题在高考中点占有一席之地,复习时应引起注意.本题的第(Ⅰ)小题实质也是不等式的证明,

题型三 求数列中的最大值问题

求解数列中的某些最值问题,有时须结合不等式来解决,其具体解法有:(1)建立目标函数,通过不等式确定变量范围,进而求得最值;(2)首先利用不等式判断数列的单调性,然后确定最值;(3)利用条件中的不等式关系确定最值.

【例5】 (08·四川高考)设等差数列{a n }的前n 项和为S n ,若S 4≥10,S 5≤15,则a 4

的最大值为______.

【分析】 根据条件将前4项与前5项和的不等关系转化为关于首项a 1与公差d 的不等式,然后利用此不等关系确定公差d 的范围,由此可确定a 4的最大值.

【解】 ∵等差数列{a n }的前n 项和为S n ,且S 4≥10,S 5≤15,

∴????? S 4=4a 1+4×3

2d≥10S 5=5a 1+5×42

d≤15,即??? a 1+3d≥5a 1+2d≤3,∴??

? a 4=a 1+3d≥5-3d 2+3d =5+3d 2a 4=a 1+3d =(a 1+2d)+d≤3+d , ∴5+3d 2

≤a 4≤3+d ,则5+3d≤6+2d ,即d≤1.

∴a 4≤3+d≤3+1=4,故a 4的最大值为4. 【点评】 本题最值的确定主要是根据条件的不等式关系来求最值的,其中确定数列的公差d 是解答的关键,同时解答中要注意不等式传递性的应用.

【例6】 等比数列{a n }的首项为a 1=2002,公比q =-1

2

.(Ⅰ)设f(n)表示该数列的前

n 项的积,求f(n)的表达式;(Ⅱ)当n 取何值时,f(n)有最大值.

【分析】 第(Ⅰ)小题首先利用等比数列的通项公式求数列{a n }的通项,再求得f(n)的表达式;第(Ⅱ)小题通过商值比较法确定数列的单调性,再通过比较求得最值.

【解】 (Ⅰ)a n =2002·(-12)n -1,f(n)=2002n

·(-12

)n(n -1)

2

(Ⅱ)由(Ⅰ),得|f(n +1)||f(n)|=2002

2n ,则

当n≤10时,|f(n +1)||f(n)|=2002

2n >1,∴|f(11)|>|f(10)|>…>|f(1)|,

当n≥11时,|f(n +1)||f(n)|=2002

2

n <1,∴|f(11)|>|f(12)|>|f(13)|>…,

∵f(11)<0,f(10)<0,f(9)>0,f(12)>0,∴f(n)的最大值为f(9)或f(12)中的最大者.

∵f(12)f(9)=200212

·(12)

6620029

·(12

)

36=20023

·(12)30=(2002210)3>1, ∴当n =12时,f(n)有最大值为f(12)=200212

·(12

)66.

【点评】 本题解答有两个关键:(1)利用商值比较法确定数列的单调性;(2)注意比较f(12)与f(9)的大小.整个解答过程还须注意f(n)中各项的符号变化情况.

题型四 求解探索性问题

数列与不等式中的探索性问题主要表现为存在型,解答的一般策略:先假设所探求对象存在或结论成立,以此假设为前提条件进行运算或逻辑推理,若由此推出矛盾,则假设不成立,从而得到“否定”的结论,即不存在.若推理不出现矛盾,能求得在范围内的数值或图形,就得到肯定的结论,即得到存在的结果.

【例7】 已知{a n }的前n 项和为S n ,且a n +S n =4.(Ⅰ)求证:数列{a n }是等比数列;(Ⅱ)是否存在正整数k ,使S k+1-2S k -2

>2成立.

【分析】 第(Ⅰ)小题通过代数变换确定数列a n +1与a n 的关系,结合定义判断数列{a n }为等比数列;而第(Ⅱ)小题先假设条件中的不等式成立,再由此进行推理,确定此不等式成立的合理性.

【解】 (Ⅰ)由题意,S n +a n =4,S n +1+a n +1=4,

由两式相减,得(S n +1+a n +1)-(S n +a n )=0,即2a n +1-a n =0,a n +1=1

2

a n ,

又2a 1=S 1+a 1=4,∴a 1=2,∴数列{a n }是以首项a 1=2,公比为q =1

2

的等比数列.

(Ⅱ)由(Ⅰ),得S n =2[1―(12)n

]

1―12=4-22-n

.

又由S k+1-2S k -2>2,得4-21-k

-24-22-k

-2>2,整理,得23<21-k <1,即1<2 k -1

<32

, ∵k ∈N *,∴2k -1∈N *,这与2k -1

∈(1,32

)相矛盾,故不存在这样的k ,使不等式成立.

【点评】 本题解答的整个过程属于常规解法,但在导出矛盾时须注意条件“k ∈N *”,这是在解答数列问题中易忽视的一个陷阱.

【例8】 (08·湖北高考)已知数列{a n }和{b n }满足:a 1=λ,a n+1=2

3a n +n -4,b n =(-

1)n

(a n -3n +21),其中λ为实数,n 为正整数.(Ⅰ)对任意实数λ,证明数列{a n }不是等比数列;(Ⅱ)试判断数列{b n }是否为等比数列,并证明你的结论;(Ⅲ)设0<a <b,S n 为数列{b n }的前n 项和.是否存在实数λ,使得对任意正整数n ,都有a <S n <b?若存在,求λ的取值范围;若不存在,说明理由.

【分析】 第(Ⅰ)小题利用反证法证明;第(Ⅱ)小题利用等比数列的定义证明;第(Ⅲ)小题属于存在型问题,解答时就假设a <S n <b 成立,由此看是否能推导出存在存在实数λ.

【解】 (Ⅰ)证明:假设存在一个实数λ,使{a n }是等比数列,则有a 22

=a 1a 3,即 (23λ-3)2

=λ(49λ-4)?49λ2-4λ+9=49λ2-4λ?9=0,矛盾,所以{a n }不是等比数列.

(Ⅱ)解:因为b n+1=(-1)n+1

[a n+1-3(n +1)+21]

=(-1)n+1(2

3a n -2n +14)=-23(a n -3n -21)=-23

b n ,

又b 1=-(λ+18),所以

当λ=-18时,b n =0(n∈N*),此时{b n }不是等比数列;

当λ≠-18时,b 1=-(λ+18)≠0,由上可知b n ≠0,∴b n+1b n =-2

3(n∈N*).

故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-2

3

为公比的等比数列.

(Ⅲ)由(Ⅱ)知,当λ=-18,b n =0(n∈N*),S n =0,不满足题目要求;.

∴λ≠-18,故知b n =-(λ+18)×(-23)n -1,于是S n =-35(λ+18)·[1-(-23

)n

]

要使a <S n <b 对任意正整数n 成立,即a <--35(λ+18)·[1-(-23

)n

]<b ,(n∈N*).

得a 1-(-23)n <-35(λ+18)<b 1-(-23

)

n

,(n∈N*) ①

令f(n)=1-(-23)n ,则当n 为正奇数时,1<f(n)≤53,当n 为正偶数时5

9

≤f(n)<1;

∴f(n)的最大值为f(1)=53,f(n)的最小值为f(2)=5

9

,

于是,由①式得59a <-35(λ+18)<3

5

b ,∴-b -18<λ<-3a -18,(必须-b <-3a ,

即b >3a).

当a <b <3a 时,由-b -18≥-3a -18,不存在实数满足题目要求;

当b >3a 存在实数λ,使得对任意正整数n ,都有a <S n <b,且λ的取值范围是(-b -18,-3a -18). 【点评】 存在性问题指的是命题的结论不确定的一类探索性问题,解答此类题型一般是从存在的方面入手,寻求结论成立的条件,若能找到这个条件,则问题的回答是肯定的;若找不到这个条件或找到的条件与题设矛盾,则问题的回答是否定的.其过程可以概括为假设——推证——定论.本题解答注意对参数λ及项数n 的双重讨论.

【专题训练】 一、选择题

1.已知无穷数列{a n }是各项均为正数的等差数列,则有

( )

A .a 4a 6<a 6a 8

B .a 4a 6≤a 6a 8

C .a 4a 6>a 6a 8

D .a 4a 6≥a 6a 8

2.设{a n }是由正数构成的等比数列,b n =a n+1+a n+2,c n =a n +a n+3,则

( ) A .b n >c n

B .b n <c n

C .b n ≥c n

D .b n ≤c n

3.已知{a n }为等差数列,{b n }为正项等比数列,公比q≠1,若a 1=b 1,a 11=b 11,则( )

A .a 6=b 6

B .a 6>b 6

C .a 6<b 6

D .a 6>b 6或a 6<b 6

4.已知数列{a n }的前n 项和S n =n 2

-9n ,第k 项满足5<a k <8,则k = ( )

A .9

B .8

C .7

D .6

5.已知等比数列{a n }的公比q >0,其前n 项的和为S n ,则S 4a 5与S 5a 4的大小关系是( )

A .S 4a 5<S 5a 4

B .S 4a 5>S 5a 4

C .S 4a 5=S 5a 4

D .不确定 6.设S n =1+2+3+…+n ,n∈N*,则函数f(n)=S n

(n +32)S n+1

的最大值为

( )

A .120

B .130

C .140

D .150

7.已知y 是x 的函数,且lg3,lg(sinx -1

2),lg(1-y)顺次成等差数列,则

( ) A .y 有最大值1,无最小值 B .y 有最小值11

12,无最大值

C .y 有最小值11

12

,最大值1

D .y 有最小值-1,最大值1

8.已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是

( )

A.(-∞,-1] B.(-∞,-1)∪(1,+∞) C.[3,+∞) D.(-∞,-1]∪[3,+∞)

9.设3b 是1-a 和1+a 的等比中项,则a +3b 的最大值为( ) A .1 B .2 C .3 D .4

10.设等比数列{a n }的首相为a 1,公比为q ,则“a 1<0,且0<q <1”是“对于任意n∈N*

都有a n+1>a n ”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分比要条件 D .既不充分又不必要条件

11.{a n }为等差数列,若a 11

a 10

<-1,且它的前n 项和S n 有最小值,那么当S n 取得最小正值时,

n = ( )

A .11

B .17

C .19

D .21

12.设f(x)是定义在R 上恒不为零的函数,对任意实数x 、y∈R,都有f(x)f(y)=f(x +y),

若a 1=1

2,a n =f(n)(n∈N*),则数列{a n }的前n 项和S n 的取值范围是

( )

A .[1

2,2)

B .[1

2

,2]

C .[1

2

,1)

D .[1

2

,1]

二、填空题

13.等差数列{a n }的前n 项和为S n ,且a 4-a 2=8,a 3+a 5=26,记T n =S n

n

2,如果存在正整数

M ,使得对一切正整数n ,T n ≤M 都成立.则M 的最小值是__________.

14.无穷等比数列{a n }中,a 1>1,|q|<1,且除a 1外其余各项之和不大于a 1的一半,则q

的取值范围是________. 15.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则(a +b)

2

cd 的最小

值是________. A.0 B.1 C.2 D.4

16.等差数列{a n }的公差d 不为零,S n 是其前n 项和,给出下列四个命题:①A.若d <0,

且S 3=S 8,则{S n }中,S 5和S 6都是{S n }中的最大项;②给定n ,对于一定k∈N*(k<n),都有a n -k +a n+k =2a n ;③若d >0,则{S n }中一定有最小的项;④存在k∈N*,使a k -a k+1和a k -a k -1同号

其中真命题的序号是____________. 三、解答题

17.已知{a n }是一个等差数列,且a 2=1,a 5=-5.(Ⅰ)求{a n }的通项n a ;(Ⅱ)求{a n }前

n 项和S n 的最大值.

18.已知{a n }是正数组成的数列,a 1=1,且点(a n ,a n +1)(n ∈N *)在函数y =x 2

+1的图象

上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n }满足b 1=1,b n +1=b n +2a n ,求证:

b n ·b n +2<b 2

n +1.

19.设数列{a n }的首项a 1∈(0,1),a n =3-a n -1

2

,n =2,3,4,….

(Ⅰ)求{a n }的通项公式;

(Ⅱ)设b n =a n 3-2a n ,证明b n <b n+1,其中n 为正整数.

20.已知数列{a n }中a 1=2,a n+1=(2-1)( a n +2),n =1,2,3,….

(Ⅰ)求{a n }的通项公式;

(Ⅱ)若数列{a n }中b 1=2,b n+1=3b n +4

2b n +3,n =1,2,3,….证明:2<b n ≤a 4n -3,n =1,

2,3,…

21.已知二次函数y =f(x)的图像经过坐标原点,其导函数为f '(x)=6x -2,数列{a n }的前

n 项和为S n ,点(n ,S n )(n∈N*)均在函数y =f(x)的图像上.(Ⅰ)求数列{a n }的通项

公式;(Ⅱ)设b n =1a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m

20对所有n∈N*都成

立的最小正整数m ;

22.数列{}n a 满足11a =,21()n n a n n a λ+=+-(12n =,,),λ是常数.(Ⅰ)当21

a =-时,求λ及3a 的值;(Ⅱ)数列{}n a 是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由;(Ⅲ)求λ的取值范围,使得存在正整数m ,当n m >时总有

0n a <.

【专题训练】参考答案 一、选择题

1.B 【解析】a 4a 8=(a 1+3d)(a 1+7d)=a 12+10a 1d +21d 2,a 62=(a 1+5d)2=a 12+10a 1d +25d 2

,故a 4a 6≤a 6a 8

. 2.D 【解析】设其公比为q,则b n -c n =a n (q -1)(1-q 2

)=-a n (q -1)2

(q +1),当q =1时,b n =c n ,当q >0,且q≠1时,b n <c n ,故b n ≤c n .

3.B 【解析】因为q≠1,b 1>0,b 11>0,所以b 1≠b 11,则a 6=a 1+a 112=b 1+b 11

2>b 1b 11=

b 6.

4.B 【解析】因数列为等差数列,a n =S n -S n -1=2n -10,由5<2k -10<8,得到k =8. 5.A 【解析】S 4a 5-S 5a 4 =(a 1+a 2+a 3+a 4)a 4q -(a 1+a 2+a 3+a 4+

a 5)a 4=-a 1a 4=-a 12q 3

<0,∴S 4a 5<S 5a 4. 6.D 【解析】由S n =

n(n +1)2,得f(n)=n (n +32)(n +2)=n

n 2+34n +64

=1

n +64n

+34

1

264+34=150

,当n =64n ,即n =8时取等号,即f(n)max =f(8)=150.

7.B 【解析】由已知y =-13(sinx -12)2+1,且sinx >1

2,y <1,所以当sinx =1时,y

有最小值11

12

,无最大值.

8.D 【解】∵等比数列{a n }中a 2=1,∴S 3=a 1+a 2+a 3=a 2(1q +1+q)=1+q +1

q .∴当公比

q >0时,S 3=1+q +1

q ≥1+2

q·1q =3,当公比q <0时,S 3=1-(-q -1

q

)≤1-2

(-q)·(-1

q )=-1,

∴S 3∈(-∞,-1]∪[3,+∞).

9.B 【解析】3b 是1-a 和1+a 的等比中项,则3b 2

=1-a 2

?a 2

+3b 2

=1,令a =cos θ,

3b =sin θ,θ∈(0,2π),所以a +3b =cos θ+3in θ=2sin(θ+π

6)≤2.

10.A 【解析】当a 1<0,且0<q <1时,数列为递增数列,但当数列为递增数列时,还存

在另一情况a 1>0,且q >1,故选A. 11.C 【解析】由a 11a 10<-1,得a 10+a 11a 10<0?a 1+a 20a 10<0?1

2×20(a 1+a 20)12

×19(a 1+a 19)<0?S 20

S 19

<0,则要

使S n 取得最小正值必须满足S 19>0,且S 20<0,此时n =19.

12.C 【解析】f(x)是定义在R 上恒不为零的函数,对任意实数x 、y∈R,都有f(x)f(y)

=f(x +y),a 1=12,a n =f(n)(n∈N*),a n+1=f(n +1)=f(1)f(n)=1

2a n ,∴S n =

12[1-(12)n ]1-

1

2=1-(12)n .则数列{a n }的前n 项和的取值范围是[1

2

,1).

二、填空题

13.2 【解析】由a 4-a 2=8,可得公差d =4,再由a 3+a 5=26,可得a 1=1,故S n =n +2n (n -1)=2n 2

-n ,∴T n =2n -1n =2-1n

,要使得T n ≤M ,只需M ≥2即可,故M 的最小值为2,

答案:2

14.(-1,0]∪(0,13] 【解析】a 1q 1-q ≤a 12?q≤1

3,但|q|<1,且q≠0,故q∈(-1,0]∪(0,

1

3

]. 15.4 【解析】∵(a +b)2

cd =(x +y)2

xy ≥(2xy)

2

xy

=4.

16.D 【解析】对于①:∵S 8-S 3=a 4+a 5+a 6+a 7+a 8=5a 6=0,∴S 5=S 6,又d <0,S 5=

S 6为最大,故A 正确;对于②:根据等差中项知正确;对于③:∵d>0,点(n ,S n )分布在开口向上的抛物线,故{S n }中一定有最小的项,故③正确;而a k -a k+1=-d ,a k -a k -1=d ,且d≠0,故④为假命题. 三、解答题

17.【解】(Ⅰ)设{a n }的公差为d ,由已知条件,??? a 1+d =1

a 1+4d =-5

,解出a 1=3,d =-2.

所以a n =a 1+(n -1)d =-2n +5.

(Ⅱ)S n =na 1+n(n -1)2

d =-n 2+4n =-(n -2)2

+4,所以n =2时,S n 取到最大值4.

18.【解】(Ⅰ)由已知得a n +1=a n +1,即a n +1-a n =1,

又a 1=1,所以数列{a n }是以1为首项,公差为1的等差数列,故a n =1+(a -1)×1=n.

(Ⅱ)由(Ⅰ)知:a n =n 从而b n +1-b n =2n

.

b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=2n -1+2n -2+…+2+1=1-2n

1-2

=2n

-1.

因为b n ·b n +2-b 21+n =(2n

-1)(2n +2

-1)-(2n -

1

-1)

2

=(22n +2

-2n +2-2n +1)-(2

2n +2

-2-2n +1-1)=-5·2n +4·2n =-2n

<0,

所以b n ·b n +2<b 21+n .

19.【解】(Ⅰ)由a n =3-a n -1

2,n =2,3,4,….整理得

1-a n =-1

2

(1-a n -1).

又1-a 1≠0,所以{1-a n }是首项为1-a 1,公比为-1

2的等比数列,得a n =1-(1-a 1)(-

12

)n -1

, (Ⅱ)由(Ⅰ)可知0<a n <3

2,故b n >0.那么,

b n+12

-b n 2

=a n+12

(3-2a n+1)-a n 2

(3-2a n )=(

3-a n 2)2(3-2×3-a n 2)-a n 2

(3-2a n )=9a n 4

(a n -1)2.

又由(Ⅰ)知a n >0,且a n ≠1,故b n+12-b n 2

>0,因此

b n <b n+1,为正整数.

20.【解】(Ⅰ)由题设:a n+1=(2-1)(a n +2)=(2-1)(a n -2)+(2-1)(2+2),

=(2-1)(a n -2)+2,∴a n+1-2=(2-1)(a n -2). 所以,数列{a n -2}a 是首项为2-2,公比为2-1)的等比数列,a n -2=2(2-1)n

即a n 的通项公式为a n =2[(2-1)n

+1],n =1,2,3,…. (Ⅱ)用数学归纳法证明.

(ⅰ)当n =1时,因2<2,b 1=a 1=2,所以2<b 1≤a 1,结论成立. (ⅱ)假设当n =k 时,结论成立,即2<b k ≤a 4k -3,,也即0<b n -2≤a 4k -3-2, 当n =k +1时,b k+1-2=3b k +42b k +3-2=(3-22)b k +(4-32)2b k +3=

(3-22)(b k -2)2b k +3

>0,

又12b k +3<122+3=3-22, 所以b k+1-2=

(3-22)(b k -2)2b k +3

<(3-22)2(b k -2)≤(2-1)4

(a 4k -3-2)=a 4k+1

- 2

也就是说,当n =k +1时,结论成立.

根据(ⅰ)和(ⅱ)知2<b n ≤a 4n -3,n =1,2,3,….

21.【解】(Ⅰ)设这二次函数f(x)=ax 2

+bx (a≠0) ,则 f`(x)=2ax +b ,由于f`(x)=6x -2,

得a =3 ,b =-2,所以f(x)=3x 2-2x.,

又因为点(n ,S n )(n∈N*)均在函数y =f(x)的图像上,所以S n =3n 2

-2n , 当n≥2时,a n =S n -S n -1=(3n 2

-2n )-[3(n -1)2

-2(n -1)]=6n -5, 当n =1时,a 1=S 1=3×12

-2=6×1-5,所以,a n =6n -5(n∈N*). (Ⅱ)由(Ⅰ)得知b n =

3a n a n +1=3(6n -5)[6(n -1)-5]=12(16n -5-16n +1

), 故T n =∑n

i=1b i =12[(1-17)+(17–113)+…+(16n -5-16n +1)]=12(1–1

6n +1

),

因此,要使12(1-16n +1)<m 20(n∈N*)成立的m ,必须且仅须满足12≤m

20,即m≥10,

所以满足要求的最小正整数m 为10.

22.【解】(Ⅰ)由于21()(12)n n a n n a n λ+=+-=,,,且11a =.

所以当21a =-时,得12λ-=-,故3λ=.从而23(223)(1)3a =+-?-=-. (Ⅱ)数列{}n a 不可能为等差数列,证明如下:由11a =,21()n n a n n a λ+=+- 得22a λ=-,3(6)(2)a λλ=--,4(12)(6)(2)a λλλ=---.

若存在λ,使{}n a 为等差数列,则3221a a a a -=-,即(5)(2)1λλλ--=-, 解得3λ=.于是2112a a λ-=-=-,43(11)(6)(2)24a a λλλ-=---=-. 这与

{}n a 为等差数列矛盾.所以,对任意λ,{}n a 都不可能是等差数列.

(Ⅲ)记2(12)n b n n n λ=+-=,,,根据题意可知,10b <且0n b ≠,即2λ> 且2

*

()n n n λ≠+∈N ,这时总存在*

0n ∈N ,满足:当0n n ≥时,0n b >;

当01n n -≤时,0n b <.所以由1n n n a b a +=及110a =>可知,若0n 为偶数,

则00n a <,从而当0n n >时,0n a <;若0n 为奇数,则00n a >, 从而当0n n >时0n a >.因此“存在*

m ∈N ,当n m >时总有0n a <” 的充分必要条件是:0n 为偶数,

记02(12)n k k ==,,,则λ满足2

2221(2)20(21)210k k b k k b k k λλ-?=+->??=-+--

故λ的取值范围是

22*

4242()k k k k k λ-<<+∈N

仅供个人用于学习、研究;不得用于商业用途。

For personal use only in study and research; not for commercial use.

Nur für den pers?nlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.

Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.

толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.

以下无正文

不得用于商业用途

数列难题放缩法的技巧

数列难题放缩法的技巧 一、基本方法 1.“添舍”放缩 通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。 例1. 设a ,b 为不相等的两正数,且a 3 -b 3 =a 2 -b 2 ,求证143 <+<a b 。 例2. 已知a 、b 、c 不全为零,求证: a a b b b b c c c ac a a b c 22222232 ++++++++++>() [变式训练]已知* 21().n n a n N =-∈求证: *12 231 1...().23n n a a a n n N a a a +-<+++∈ 2. 分式放缩 一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分 母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。 例3. 已知a 、b 、c 为三角形的三边,求证:12<++<a b c b a c c a b +++。 3. 裂项放缩 若欲证不等式含有与自然数n 有关的n 项和,可采用数列中裂项求和等方法来解题。 例4. 已知n ∈N*,求n 2n 13 12 11<…+ ++ + 。 例5. 已知* N n ∈且)1n (n 3221a n +++?+?=Λ,求证:2 )1(2)1(2 +< <+n a n n n 对所有正整数n 都成立。 4. 公式放缩 利用已知的公式或恒不等式,把欲证不等式变形后再放缩,可获简解。 例6. 已知函数1212)(+-=x x x f ,证明:对于* N n ∈且3≥n 都有1 )(+>n n n f 。 例7. 已知2x 1)x (f +=,求证:当a b ≠时f a f b a b ()()-<-。 5. 换元放缩 对于不等式的某个部分进行换元,可显露问题的本质,然后随机进行放缩,可达解题目

2018上海高考数学大题解题技巧

上海高考数学大题解题技巧 一、立体几何题 1.证明线面位置关系,一般不需要去建系,更简单; 2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系; 3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。 二、三角函数题 注意归一公式、二倍角公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!),正弦定理,余弦定理的应用。 三、函数(极值、最值、不等式恒成立(或逆用求参)问题) 1.先求函数的定义域,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号); 2.注意最后一问有应用前面结论的意识; 3.注意分论讨论的思想; 4.不等式问题有构造函数的意识; 5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法); 四、圆锥曲线问题 1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法; 2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等; 3.战术上整体思路要保10分,争12分,想16分。 五、数列题 1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列; 2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用数列的单调性(或者放缩法);如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证; 3.如果是新定义型,一定要严格的套定义做题(仔细理解新定义)。 4.战术上整体思路要保10分,争12分,想16分。

高考数学题型全归纳

2010-2016高考理科数学题型全归纳题型1、集合的基本概念 题型2、集合间的基本关系 题型3、集合的运算 题型4、四种命题及关系 题型5、充分条件、必要条件、充要条件的判断与证明 题型6、求解充分条件、必要条件、充要条件中的参数范围 题型7、判断命题的真假 题型8、含有一个量词的命题的否定 题型9、结合命题真假求参数的范围 题型10、映射与函数的概念 题型11、同一函数的判断 题型12、函数解析式的求法 题型13、函数定义域的求解 题型14、函数定义域的应用 题型15、函数值域的求解 题型16、函数的奇偶性 题型17、函数的单调性(区间) 题型18、函数的周期性 题型19、函数性质的综合 题型20、二次函数、一元二次方程、二次不等式的关系

题型21、二次方程ax2+bx+c=0(a≠0)的实根分布及条件题型22、二次函数"动轴定区间"、"定轴动区间"问题 题型23、指数运算及指数方程、指数不等式 题型24、指数函数的图像及性质 题型25、指数函数中的恒成立的问题 题型26、对数运算及对数方程、对数不等式 题型27、对数函数的图像与性质 题型28、对数函数中的恒成立问题 题型29、幂函数的定义及基本性质 题型30、幂函数性质的综合应用 题型31、判断函数的图像 题型32、函数图像的应用 题型33、求函数的零点或零点所在区间 题型34、利用函数的零点确定参数的取值范围 题型35、方程根的个数与函数零点的存在性问题 题型36、函数与数列的综合 题型37、函数与不等式的综合 题型38、函数中的创新题 题型39、导数的定义 题型40、求函数的导数 题型41、导数的几何意义 题型42、利用原函数与导函数的关系判断图像

高考数学考试的答题技巧和方法_答题技巧

高考数学考试的答题技巧和方法_答题技巧 一、答题和时间的关系 整体而言,高考数学要想考好,必须要有扎实的基础知识和一定量的习题练习,在此基础上辅以一些做题方法和考试技巧。往年考试中总有许多考生抱怨考试时间不够用,导致自己会做的题最后没时间做,觉得很“亏”。 高考考的是个人能力,要求考生不但会做题还要准确快速地解答出来,只有这样才能在规定的时间内做完并能取得较高的分数。因此,对于大部分高考生来说,养成快速而准确的解题习惯并熟练掌握解题技巧是非常有必要的。 二、快与准的关系 在目前题量大、时间紧的情况下,“准”字则尤为重要。只有“准”才能得分,只有“准”你才可不必考虑再花时间检查,而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。 三、审题与解题的关系 有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量(如“至少”,“a0”,自变量的取值范围等等),从中获取尽可能多的信息,才能迅速找准解题方向。 四、“会做”与“得分”的关系 要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现“会而不对”“对而不全”的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的“跳步”,使很多人丢失1/3以上得分,代数论证中“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转译为“文字语言”,得分少得可怜;再如去年理17题三角函数图像变换,许多考生“心中有数”却说不清楚,扣分者也不在少数。只有重视解题过程的语言表述,“会做”的题才能“得分”,高中生物。 五、难题与容易题的关系 拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。近年来考题的顺序并不完全是难易的顺序,如去年理19题就比理20、理21要难,因此在答题时要合理安排时间,不要在某个卡住的题上打“持久战”,那样既耗费时间又拿不到分,会做的题又被耽误了。这几年,数学试题已从“一题把关”转为“多题把关”,因此解答题都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有“咬手”的关卡,看似难做的题也有可得分之处。所以考试中看到“容易”题不可掉以轻心,看到新面孔的“难”题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。 选择题绝大部分是低中档题,所以必须争取多得分或得满分。选择题的答法审题要慢,答题要快。因此对选择题除直接求解外,还要做到不择手段,即小题要小做,小题要尽量巧做。答选择题常用的方法还有:数形结合法(根据题意做出草图,结合图象解决问题);特例检验法(利用特殊情况代替题设中的普遍条件,得出结论);筛选法(根据各选项的不同,从选项中选特殊情况检验是否符合题意);等价转化法(化陌生为熟悉);构造法(如立几中的“割补”思想)。另外,答选择题不要恋战,要学会暂时放弃。

用用放缩法证明与数列和有关的不等式

用放缩法证明与数列和有关的不等 数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1 a a ,又由条

高考数学大题题型解答技巧

高考数学大题题型解答技巧 六月,有一份期待,年轻绘就畅想的星海,思想的热血随考卷涌动,灵魂的脉搏应分 数澎湃,扶犁黑土地上耕耘,总希冀有一眼金黄黄的未来。下面就是小编给大家带来 的高考数学大题题型解答技巧,希望大家喜欢! 高考数学大题必考题型(一) 排列组合篇 1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单 的应用问题。 4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。 5.了解随机事件的发生存在着规律性和随机事件概率的意义。 6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件 的概率。 7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事 件的概率乘法公式计算一些事件的概率。 8.会计算事件在n次独立重复试验中恰好发生k次的概率. 立体几何篇 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的 课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从 历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是 常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺 少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握

高考数学题型全归纳:数学家高斯的故事(含答案)

数学家高斯的故事 高斯(Gauss,1777—1855)、著名的德国数学家。1777年4月30日出生在德国的布伦兹维克。父亲是一个砌砖工人,没有什么文化。 还在少年时代、高斯就显示出了他的数学才能。据说、一天晚上,父亲在计算工薪账目、高斯在旁边指出了其中的错误、令父亲大吃一惊。10岁那年、有一次老师让学生将1、2、3、…连续相加、一直加到100、即1+2+3+…+100。高斯没有像其他同学那样急着相加、而是仔细观察、思考、结果发现: 1+100=101、2+99=101、3+98=101、…、50+51=101一共有50个101、于是立刻得到: 1+2+3+…+98+99+100=50×101=5050 老师看着小高斯的答卷、惊讶得说不出话。其他学生过了很长时间才交卷、而且没有一个是算对的。从此、小高斯“神童”的美名不胫而走。村里一位伯爵知道后、慷慨出钱资助高斯、将他送入附近的最好的学校进行培养。 中学毕业后、高斯进入了德国的哥廷根大学学习。刚进入大学时、还没立志专攻数学。后来听了数学教授卡斯特纳的讲课之后、决定研究数学。卡斯特纳本人并没有多少数学业绩、但他培养高斯的成功、足以说明一名好教师的重要作用。 从哥廷根大学毕业后、高斯一直坚持研究数学。1807年成为该校的数学教授和天文台台长、并保留这个职位一直到他逝世。 高斯18岁时就发明了最小二乘法、19岁时发现了正17边形的尺规作图法、并给出可用尺规作出正多边形的条件、解决了这个欧几里得以来一直悬而未决的问题。为了这个发现、在他逝世后、哥廷根大学为他建立了一个底座为17边形棱柱的纪念像。

对代数学、高斯是严格证明代数基本定理的第一人。他的《算术研究》奠定了近代数论的基础、该书不仅在数论上是划时代之作、就是在数学史上也是不可多得的经典著作之一。高斯还研究了复数、提出所有复数都可以用平面上的点来表示、所以后人将“复平面”称为高斯平面、高斯还利用平面向量与复数之间的一一对应关系、阐述了复数的几何加法与乘法、为向量代数学奠定了基础。1828年高斯出版《关于曲面的一般研究》、全面系统地阐述了空间曲面的微分几何学。并提出了内蕴曲面理论。高斯的数学研究几乎遍及当时的所有数学领域、而且在不少方面的研究走在了时代的前列。他在数学历史上的影响可以和阿基米德、牛顿、欧拉并列。 高斯一生共有155篇论文。他治学严谨、把直观的概念作为入门的向导、然后试图在完整的逻辑体系上建立其数学的理论。他为人谨慎、他的许多数学思想与结果从不轻易发表、而且、他的论文很少详细写明思路。所以有的人说:“这个人、像狐狸似的、把沙土上留下的足迹、用尾巴全部扫掉。”

数列与不等式知识点及练习

数列与不等式 一、看数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=--②211-++=n n n a a a (2≥n )③b kn a n +=(k n ,为常数). 二、看数列是不是等比数列有以下两种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n ②112 -+?=n n n a a a (2≥n ,011≠-+n n n a a a ) (2)在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足?? ? ≤≥+0 01m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足?? ?≥≤+0 1m m a a 的项数m 使得m s 取最小值.在解含绝 对值的数列最值问题时,注意转化思想的应用。 四.数列通项的常用方法: (1)利用观察法求数列的通项.(2)利用公式法求数列的通项:①;②{}n a 等差、等比数列{}n a 公式.(3)应用迭加(迭乘、迭代)法求数列的通项:①;②(4)造等差、等比数列求通项:;②;③;④.第一节通项公式常用方法题型1 利用公式法求通项 例1:1.已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 2.已知为数列{}n a 的前项和,求下列数列{}n a 的通项公式: ⑴ ; ⑵.总结:任何一个数列,它的前项和n S 与通项n a 都存在关系:???≥-==-)2() 1(11n S S n S a n n n 若1a 适合n a ,则把它们 统一起来,否则就用分段函数表示. 题型2 应用迭加(迭乘、迭代)法求通项 例2:⑴已知数列{}n a 中,,求数列{}n a 的通项公式; ⑵已知为数列{}n a 的前项和,,,求数列{}n a 的通项公式. 总结:⑴迭加法适用于求递推关系形如“”; 迭乘法适用于求递推关系形如““;⑵迭加法、迭乘法公式:① ② . 题型3 构造等比数列求通项 例3已知数列{}n a 中,,求数列{}n a 的通项公式. 总结:递推关系形如“” 适用于待定系数法或特征根法: ①令;② 在中令,;③由得,. 例4已知数列{}n a 中,,求数列{}n a 的通项公式. 总结:递推关系形如“”通过适当变形可转化为: “”或“求解. 数列求和的常用方法

高考数学解答题解题技巧

高考数学解答题解题技巧 大题是高考数学科目的重要组成部分,也是比分占得很重的一部分,考生需要掌握解题技巧,才能正确答题,下面学习啦小编给大家带来高考数学大题的最佳解题技巧,希望对你有帮助。 一、三角函数题 三角函数题是高考数学试卷的第一道解答题,试题难度一般不大,但其战略意义重大,所以稳拿该题12分对学生至关重要。主要有以下几类: 1.运用同角三角函数关系、诱导公式、和、差、倍、半等公式进行化简求值类。 2.运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。 3.解三角形问题,判断三角形形状,正余弦定理的应用。 注意辅助角公式、诱导公式的正确性(转化成同名同角三角函数时,套用辅助角公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输! 二、数列题 1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

2、证明不等式时,有时构造函数,利用函数单调性很简单,所以要有构造函数的意识。构造新数列思想,如“累加、累乘、错位相减、倒序相加、裂项求和”等方法的应用与创新。 3、数列自身内部问题的综合考查,如前n项和与通项公式的关系问题、递推数列问题的考查一直是高考的热点,求数列的通项与求数列的和是最常见的题目,数列求和与极限等综合性探索性问题也考查较多。 全国卷的数列大题上手容易,但这不意味着容易拿满分,因为考的很广,像复习时没放在心上的冷门求和方法也会考查。因此全国卷考生复习时不能偷懒耍滑,老师讲解的各种数列解题方法都要掌握,深入复习好累加累乘法、待定系数法、错位相减法等方法。例如总能得到命题人青睐的错位相减法,因难度较大抱着侥幸心理的学生就会放低了对自己的学习要求。 三、立体几何题

高考数学选择题的解题技巧精选.

高考数学选择题解题技巧 数学选择题在当今高考试卷中,不但题目多,而且占分比例高。数学选择题具有概括性强,知识覆盖面广,小巧灵活,且有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,成为高考成功的关键。 解答选择题的基本策略是准确、迅速。准确是解答选择题的先决条件,选择题不设中间分,一步失误,造成错选,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于选择题的答题时间,应该控制在不超过40分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完,要避免“超时失分”现象的发生。 高考中的数学选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择。解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略。 1、直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础。 例1、某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目标的概率为 ( ) 125 27 . 12536.12554.12581.D C B A 解析:某人每次射中的概率为0.6,3次射击至少射中两次属独立重复实验。 125 27)106(104)106(33 3223= ?+??C C 故选A 。 例2、有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a 的任一个平面与b 都不垂直。其中正确命题的个数为( ) A .0 B .1 C .2 D .3 解析:利用立几中有关垂直的判定与性质定理对上述三个命题作出判断,易得都是正确的,故选D 。 例3、已知F 1、F 2是椭圆162x +9 2 y =1的两焦点,经点F 2的的直线交椭圆于点A 、B ,若|AB|=5,则|AF 1|+|BF 1|等于 ( ) A .11 B .10 C .9 D .16 解析:由椭圆的定义可得|AF 1|+|AF 2|=2a=8,|BF 1|+|BF 2|=2a=8,两式相加后将|AB|=5=|AF 2|+|BF 2|代入,得|AF 1|+|BF 1|=11,故选A 。 例4、已知log (2)a y ax =-在[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(1,2) C .(0,2) D .[2,+∞) 解析:∵a>0,∴y 1=2-ax 是减函数,∵ log (2)a y ax =-在[0,1]上是减函数。 ∴a>1,且2-a>0,∴1tan α>cot α(2 4 π απ < <-),则α∈( ) A .(2π- ,4π-) B .(4π-,0) C .(0,4π) D .(4π,2 π) 解析:因24παπ<<-,取α=-6 π 代入sin α>tan α>cot α,满足条件式,则排除A 、C 、D ,故选B 。 例6、一个等差数列的前n 项和为48,前2n 项和为60,则它的前3n 项和为( ) A .-24 B .84 C .72 D .36 解析:结论中不含n ,故本题结论的正确性与n 取值无关,可对n 取特殊值,如n=1,此时a 1=48,a 2=S 2-S 1=12,a 3=a 1+2d= -24,所以前3n 项和为36,故选D 。 (2)特殊函数 例7、如果奇函数f(x) 是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( ) A.增函数且最小值为-5 B.减函数且最小值是-5 C.增函数且最大值为-5 D.减函数且最大值是-5

2017年高考数学题型归纳完整版

第一章集合与常用逻辑用语 第一节集合 题型1-1 集合的基本概念 题型1-2 集合间的基本关系 题型1-3 集合的运算 第二节命题及其关系、充分条件与必要条件题型1-4 四种命题及关系 题型1-5 充分条件、必要条件、充要条件的判断与证明 题型1-6 求解充分条件、必要条件、充要条件中的参数取值范围 第三节简单的逻辑联结词、全称量词与存在量词 题型1-7 判断命题的真假 题型1-8 含有一个量词的命题的否定 题型1-9 结合命题真假求参数的取值范围 第二章函数 第一节映射与函数 题型2-1 映射与函数的概念 题型2-2 同一函数的判断 题型2-3 函数解析式的求法 第二节函数的定义域与值域(最值) 题型2-4 函数定义域的求解 题型2-5 函数定义域的应用 题型2-6 函数值域的求解 第三节函数的性质——奇偶性、单调性、周期性 题型2-7 函数奇偶性的判断 题型2-8 函数单调性(区间)的判断 题型2-9 函数周期性的判断 题型2-10 函数性质的综合应用 第四节二次函数 题型2-11 二次函数、一元二次方程、二次不等式的关系 题型2-12 二次方程的实根分布及条件 题型2-13 二次函数“动轴定区间” “定轴动区间”问题 第五节指数与指数函数 题型2-14 指数运算及指数方程、指数不等式题型2-15 指数函数的图象及性质 题型2-16 指数函数中恒成立问题 第六节对数与对数函数 题型2-17 对数运算及对数方程、对数不等式 题型2-18 对数函数的图象与性质 题型2-19 对数函数中恒成立问题 第七节幂函数 题型2-20 求幂函数的定义域 题型2-21 幂函数性质的综合应用 第八节函数的图象 题型2-22 判断函数的图象 题型2-23 函数图象的应用 第九节函数与方程 题型2-24 求函数的零点或零点所在区间 题型2-25 利用函数的零点确定参数的取值范 围 题型2-26 方程根的个数与函数零点的存在性 问题 第十节函数综合 题型2-27 函数与数列的综合 题型2-28 函数与不等式的综合 题型2-29 函数中的信息题 第三章导数与定积分 第一节导数的概念与运算 题型3-1 导数的定义 题型3-2 求函数的导数 第二节导数的应用 题型3-3 利用原函数与导函数的关系判断图像 题型3-4 利用导数求函数的单调性和单调区间 题型3-5 函数的极值与最值的求解 题型3-6 已知函数在区间上单调或不单调,求 参数的取值范围 题型3-7 讨论含参函数的单调区间 题型3-8 利用导数研究函数图象的交点和函数 零点个数问题 题型3-9 不等式恒成立与存在性问题 题型3-10 利用导数证明不等式 题型3-11 导数在实际问题中的应用 第三节定积分和微积分基本定理 题型3-12 定积分的计算 题型3-13 求曲边梯形的面积 第四章三角函数 第一节三角函数概念、同角三角函数关系式和 诱导公式 题型4-1 终边相同角的集合的表示与识别 题型4-2 α 2 是第几象限角 题型4-3 弧长与扇形面积公式的计算 题型4-4 三角函数定义 题型4-5 三角函数线及其应用 题型4-6 象限符号与坐标轴角的三角函数值 题型4-7 同角求值——条件中出现的角和结论 中出现的角是相同的 题型4-8 诱导求值与变形 第二节三角函数的图象与性质 题型4-9 已知解析式确定函数性质 题型4-10 根据条件确定解析式 题型4-11 三角函数图象变换 第三节三角恒等变换 题型4-12 两角和与差公式的证明 题型4-13 化简求值 第四节解三角形 题型4-14 正弦定理的应用 题型4-15 余弦定理的应用 题型4-16 判断三角形的形状 题型4-17 正余弦定理与向量的综合 题型4-18 解三角形的实际应用 第五章平面向量 第一节向量的线性运算 题型5-1 平面向量的基本概念 题型5-2 共线向量基本定理及应用 题型5-3 平面向量的线性运算 题型5-4 平面向量基本定理及应用 题型5-5 向量与三角形的四心 题型5-6 利用向量法解平面几何问题 第二节向量的坐标运算与数量积 题型5-7 向量的坐标运算 题型5-8 向量平行(共线)、垂直充要条件的坐 标表示 题型5-9 平面向量的数量积 题型5-10 平面向量的应用 第六章数列 第一节等差数列与等比数列 题型6-1 等差、等比数列的通项及基本量的求 解 题型6-2 等差、等比数列的求和 题型6-3 等差、等比数列的性质应用 题型6-4 判断和证明数列是等差、等比数列 题型6-5 等差数列与等比数列的综合 第二节数列的通项公式与求和 题型6-6 数列的通项公式的求解 题型6-7 数列的求和 第三节数列的综合 题型6-8 数列与函数的综合 题型6-9 数列与不等式综合 第七章不等式 第一节不等式的概念和性质 题型7-1 不等式的性质 题型7-2 比较数(式)的大小与比较法证明不 等式 第二节均值不等式和不等式的应用 题型7-3 均值不等式及其应用 题型7-4 利用均值不等式求函数最值 题型7-5 利用均值不等式证明不等式 题型7-6 不等式的证明 第三节不等式的解法 题型7-7 有理不等式的解法 题型7-8 绝对值不等式的解法 第四节二元一次不等式(组)与简单的线性规 划问题 题型7-9 二元一次不等式组表示的平面区域 题型7-10 平面区域的面积 题型7-11 求解目标函数中参数的取值范围 题型7-12 简单线性规划问题的实际运用 第五节不等式综合 题型7-13 不等式恒成立问题中求参数的取值 范围

高中数学解题方法及解析大全

最全面的高考复习资料 目录 前言 (2) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第一章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案……………………………………

前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和 演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想 等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

高考数学数列不等式证明题放缩法十种方法技巧总结

1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n Λ求证 .2 )1(2)1(2 +<<+n S n n n 例2 已知函数 bx a x f 211 )(?+= ,若5 4)1(= f ,且 )(x f 在[0,1]上的最小值为21,求证: .2 1 21)()2()1(1 -+ >++++n n n f f f Λ 例3 求证),1(22 1321 N n n n C C C C n n n n n n ∈>?>++++-Λ. 例4 已知222121n a a a +++=L ,222 121n x x x +++=L ,求证:n n x a x a x a +++Λ2 211≤1. 2.利用有用结论 例5 求证.12)1 21 1()511)(311)(11(+>-+++ +n n Λ 例6 已知函数 .2,,10,)1(321lg )(≥∈≤x x f x f 对任意*∈N n 且2≥n 恒成立。 例7 已知1 1211 1,(1).2 n n n a a a n n +==+ ++ )(I 用数学归纳法证明2(2)n a n ≥≥; )(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828e ≈L ) 例8 已知不等式 21111 [log ],,2232 n n N n n *+++>∈>L 。2[log ]n 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(111≥+≤ >=--n a n na a b b a n n n 求证.3,] [log 222≥+

高考数学大题题型总结及答题技巧

高考数学大题题型总结及答题技巧 高考数学大题题型一般有5种,关于后面的大题,通常17题是三角函数,18题是立 体几何,19题是导数,但也不排除变更的可能,前面三道题和后面两道大题比起来会简单很多。 如何学好高中数学高中数学解题方法与技巧怎样学好高中数学高中数学怎么学成绩提 高快 17题三角函数 17题考的知识点比较简单,只要在平时多加注意和总结就不成问题,但是重要的公式譬如二倍角公式等一定要熟记,这些是做题的基础; 18题立体几何 18题的第一小题通常是证明题,有时利用现成的条件马上就可以证明,但是也不排除需要做辅助线有一点难度的可能,而且形势越来越偏向后一种,所以在平时要多多注意需 要做辅助线的证明题,第二小题通常是求线面角和线线角的大小,也有可能是求相关的体积,不过这样也是变相的让你求线面角或线线角的大小,至于求面面角大小,我们老师说 不大可能,因为求面面角的难度稍大所需要的时间也会比较多,这样对后面的发挥会有比 较大的影响,虽然高考的目的是选拔人才,但是全省的平均分也不能太低。 点击查看:高考数学大题有哪几种题型 提醒一点:如果做第二小题时没有很快有思路,那就果断选择向量法,向量法的难点 是空间直角坐标系的建立,一定要找到三条相互垂直的线分别作为x轴y轴z轴,相互垂 直一定要是能证明出来的,如果单凭感觉建立空间直角坐标系万一错了后面的就完全错了。 19题导数 19题的难点是求导,如果你对复杂函数的求导掌握的很熟练,那第一小题就不用担心啦,第二小题会比较有难度,但是基础还是求导,无论有没有思路都要先求导,说不定在 求导的过程中就找到思路了; 最适合高考学生的书,淘宝搜索《高考蝶变》购买 20题圆锥曲线 20题是圆锥曲线,第一小题还是比较基础的但完全正确的前提是要掌握椭圆、双曲线、抛物线的定义,因为很有可能会出现让你判断某某是椭圆、双曲线、还是抛物线的题目。 第二小题比较难,但是简单在有一定的套路,做题做多了就知道的套路就是1.设立坐标,一般是求什么设什么.2.将坐标带入所在曲线的方程中.3.利用韦达定理求出x1+x2,x1x2,y1+y2,y1y2.4.所求的内容尽力转换为与x1、x2、y1、y2相关的式子,在转换的过程中

高考数学题型全归纳

题型1、集合的基本概念 题型2、集合间的基本关系 题型3、集合的运算 题型4、四种命题及关系 题型5、充分条件、必要条件、充要条件的判断与证明 题型6、求解充分条件、必要条件、充要条件中的参数范围题型7、判断命题的真假 题型8、含有一个量词的命题的否定 题型9、结合命题真假求参数的范围 题型10、映射与函数的概念 题型11、同一函数的判断 题型12、函数解析式的求法 题型13、函数定义域的求解 题型14、函数定义域的应用 题型15、函数值域的求解 题型16、函数的奇偶性 题型17、函数的单调性(区间) 题型18、函数的周期性 题型19、函数性质的综合 题型20、二次函数、一元二次方程、二次不等式的关系 题型21、二次方程ax2+bx+c=0(a≠0)的实根分布及条件 题型22、二次函数"动轴定区间"、"定轴动区间"问题 题型23、指数运算及指数方程、指数不等式 题型24、指数函数的图像及性质

题型25、指数函数中的恒成立的问题 题型26、对数运算及对数方程、对数不等式 题型27、对数函数的图像与性质 题型28、对数函数中的恒成立问题 题型29、幂函数的定义及基本性质 题型30、幂函数性质的综合应用 题型31、判断函数的图像 题型32、函数图像的应用 题型33、求函数的零点或零点所在区间 题型34、利用函数的零点确定参数的取值范围 题型35、方程根的个数与函数零点的存在性问题 题型36、函数与数列的综合 题型37、函数与不等式的综合 题型38、函数中的创新题 题型39、导数的定义 题型40、求函数的导数 题型41、导数的几何意义 题型42、利用原函数与导函数的关系判断图像 题型43、利用导数求函数的单调区间 题型44、含参函数的单调性(区间) 题型45、已知含参函数在区间上单调或不单调或存在单调区间,求参数范围题型46、函数的极值与最值的求解 题型47、方程解(函数零点)的个数问题 题型48、不等式恒成立与存在性问题

【数学】数列与不等式的交汇题型分析及解题策略

数列与不等式的交汇题型分析及解题策略 【命题趋向】 数列与不等式交汇主要以压轴题的形式出现,试题还可能涉及到与导数、函数等知识综合一起考查.主要考查知识重点和热点是数列的通项公式、前n项和公式以及二者之间的关系、等差数列和等比数列、归纳与猜想、数学归纳法、比较大小、不等式证明、参数取值范围的探求,在不等式的证明中要注意放缩法的应用.此类题型主要考查学生对知识的灵活变通、融合与迁移,考查学生数学视野的广度和进一步学习数学的潜能.近年来加强了对递推数列考查的力度,这点应当引起我们高度的重视.如08年北京文20题(12分)中档偏上,考查数列与不等式恒成立条件下的参数问题、08年湖北理21题(12分)为中档偏上,考查数列与不等式交汇的探索性问题、08年江西理19题(12分)中等难度,考查数列求和与不等式的交汇、08年全国卷Ⅰ理22(12分)压轴题,难说大,考查数学归纳法与不等式的交汇,等等.预计在2009年高考中,比较新颖的数列与不等式选择题或填空题一定会出现.数列解答题的命题热点是与不等式交汇,呈现递推关系的综合性试题.其中,以函数与数列、不等式为命题载体,有着高等数学背景的数列与不等式的交汇试题是未来高考命题的一个新的亮点,而命题的冷门则是数列与不等式综合的应用性解答题. 【考试要求】 1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项. 2.理解等差数列的概念.掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题. 3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。 4.理解不等式的性质及其证明. 5.掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用. 6.掌握分析法、综合法、比较法证明简单的不等式. 7.掌握简单不等式的解法及理解不等式│a│-│b│≤│a+b│≤│a│+│b│. 【考点透视】 1.以客观题考查不等式的性质、解法与数列、等差数列、等比数列的简单交汇. 2.以解答题以中档题或压轴题的形式考查数列与不等式的交汇,还有可能涉及到导数、解析几何、三角函数的知识等,深度考查不等式的证明(主要比较法、综合法、分析法、放缩法、数学归纳法、反证法)和逻辑推理能力及分类讨论、化归的数学思想,试题新颖别致,难度相对较大. 3.将数列与不等式的交汇渗透于递推数列及抽象数列中进行考查,主要考查转化及方程的思想. 【典例分析】

相关文档
相关文档 最新文档