文档库 最新最全的文档下载
当前位置:文档库 › (4)POM+聚酯特性简介

(4)POM+聚酯特性简介

(4)POM+聚酯特性简介
(4)POM+聚酯特性简介

常用塑料材料的特性简介(续三)

三、聚甲醛塑料(POM)

聚甲醛是指大分子链中含有氧化亚甲基重复结构单元的一类聚合物,学名为“聚氧化亚甲基”,英文简称POM。POM为第三大通用工程塑料。

POM依结构不同可分为“均聚POM”和“共聚POM”两种。由于结构不同,两种POM在性能上存在一定的差异,如均聚POM的密度、结晶度和力学性能稍高一些,而共聚POM的热稳定性、化学稳定性及加工性较好。共聚POM的用途较均聚POM广泛。

POM的突出性能为:力学性能和刚性好,接近金属材料,是替代铜、铸锌、铝等金属材料的理想材料;耐疲劳性和耐蠕变性极好;耐磨损、自润性和摩擦性好,与UHMWPE、PA、F4一起称为四大耐磨塑料材料;热稳定性和化学稳定性高,电绝缘性优良。

POM的缺点为密度大,耐酸及耐燃性不好,后收缩大且不稳定,尺寸稳定性差,耐候性不高。

POM广泛用于电子电器、机械、汽车、仪器仪表、建筑和日用品领域。日本40%用于电子电器、27%用于汽车;美国45%用于电子电器、17.5%用于汽车;西欧39%用于汽车。

1、聚甲醛塑料的性能

(1)一般性能POM的外观为淡黄色或白色半透明或不透明的粉状或粒状,制品表面光滑并有光泽,硬而质密,与象牙相似。成型收缩率高达3.5%。易燃,其氧指数仅为14~16,火焰上端为黄色、下端为蓝色,熔融滴落,有刺激性甲醛味和鱼腥味。POM透气性小,仅为PE的几分之一。

(2)力学性能POM的力学性能优异,比强度可达50.5Mpa,比刚度达2650Mpa,与金属十分接近。POM的力学性能随温度变化小,共聚比均聚稍大一些。

POM的冲击强度较高,但常规冲击不及ABS和PC;POM对缺口敏感,有缺口可使冲击强度下降90%。

POM的疲劳强度十分突出,104交变载荷作用后,疲劳强度可达35MPa,而PA和PC仅为28MPa。POM的耐蠕变性与PA相似,在20℃、21MPa、3000h时仅为2.3%,而且受温度影响小。

POM的摩擦系数小,耐磨性好(POM>PA66>PA6>PC>ABS>HPVC>PS),极限PV值很大,自润滑性好,适用于受力摩擦制品如齿轮和轴承的生产。

(3)热学性能POM的长期耐热性不高,但短期可耐160℃,均聚POM短期耐热比共聚高10℃以上,但长期耐热共聚POM反而比均聚高10℃左右。

(4)电学性能POM的电绝缘性较好,几乎不受温度和湿度的影响;介电常数和介电损耗角正切值在很宽的温度、湿度和频率范围内变化很小;耐电弧性极好,并可在高温下保持。POM的介电强度与厚度有关,厚度0.127㎜时为82.7Kv/㎜,厚度1.88㎜时为23.6Kv/㎜。

(5)环境性能POM不耐强酸和氧化剂,对稀酸及弱酸有一定的稳定性。POM的耐溶剂性良好,可耐烃类、醇类、醛类、醚类、汽油、润滑油及弱碱等,并可在高温下保持相当的稳定性能。POM的耐候性不好,长期在紫外光作用下,力学性能下降,表面发生粉化和龟裂。

2、聚甲醛塑料的成型加工

(1)加工特性

POM熔体的流变性呈非牛顿型,其熔体的粘度对温度不敏感;对注塑而言,要增加流动性,可以从增加注塑速率、减小喷嘴尺寸等方面入手。

POM结晶度大,熔程窄,成型收缩大(可达3.5%)。对注塑厚制品,要注意保压和补料,

以免造成收缩孔太大而报废。

POM的热稳定性差,温度过高或时间过长均会引起分解。特别是温度超过250℃,分解速度会加快,并溢出强烈刺激眼睛的甲醛气体,严重时制品会产生气泡或变色,甚至引起爆炸。因此,必须严格控制加工温度和停留时间,另外,还需加入抗氧化剂和双氰胺甲醛吸收剂。POM的冷凝速度快,制品易产生表面缺陷如折皱、斑纹及熔接痕等。为此可用提高注射速度和提高模具温度等方法解决。

POM制品易产生内应力,后收缩也较大,需进行后处理。后处理的条件为:厚度

6㎜以下,温度100℃,时间0.25~1h;厚度6㎜以上,温度120~130℃,4~6h。

POM吸水率不高,但干燥处理可提高制品表面的光泽度。干燥的条件为:温度110~120℃,时间3~5h。

(2)POM可用注塑、挤出、吹塑及二次成型等方法加工,并以注塑加工为主。

3、聚甲醛塑料的改性品种

(1)增强POM

主要增强材料为玻璃纤维、玻璃微珠和碳纤维等,并以玻璃纤维最常用。增强后的力学性能可提高2~3倍,热变形温度提高50℃以上。

(2)高润滑POM

在POM中加入F4、石墨、二硫化钼、润滑油及低分子量PE等,可提高其润滑性能。例如,在POM中加入5份F4,可降低摩擦系数60%,耐磨性提高1~2倍;在POM中加入液体润滑油,可大幅度提高耐磨性和极限PV值。加入5%油的POM耐磨性提高72%,极限PV 值可达3.9MPa·m/s,(纯POM为0.213MPa·m/s),是其它工程塑料的3~20倍。

4、聚甲醛塑料的应用范围

(1)机械工业利用POM强度大、耐磨、耐疲劳、冲击强度高、自润滑性好的特点,可用于制造齿轮、轴承、滑轮、凸轮、皮带轮、泵体、壳体、阀门、水龙头及管接头等。(2)汽车工业利用其比强度高的优点,在交通工具中替代金属铜、铝、锌等,用作水箱阀门、散热器箱盖、风扇、控制杆、开关、齿轮箱外壳及轴承支架等。

(3)电子/电器利用其介电强度高、介电损耗角正切值小、耐电弧性好的优点,用于电动工具外壳、开关手柄、以及电视机、计算机、传真机的配件,计时器零件,录音机、录像机磁带座等。

(4)其他第二代拉链材料,水箱、洗漱盆及玩具等。

四、热塑性聚酯

热塑性聚酯包括聚对苯二甲酸丁二醇酯和聚对苯二甲酸乙二醇酯两类。

(一)聚对苯二甲酸丁二醇酯(PBT)

聚对苯二甲酸丁二醇酯为聚对苯二甲酸二甲酯与丁二醇的酯交换法或聚对苯二甲酸与丁二醇的直接酯化法而成的聚合物,英文简称PBT。

纯PBT的性能一般,但用玻璃纤维增强改性后,其力学和热学性能大为改善。其具体性能特点为:力学性能与PA及POM相似、摩擦系数小、自润滑性好、热稳定性和化学稳定性好、电绝缘性优异、刚性和硬度高、抗冲性好、尺寸稳定性高、加工性好、耐热性好、自熄。PBT主要用于电子电器、汽车、机械及仪器仪表等领域。我国65%用于电子电器、10%用于汽车;美国44.6%用于汽车、19.1%用于电子电器、8.9%用于仪器仪表;日本44.6%用于电子电器、29.7%用于汽车、25.7%用于机械和仪器仪表。

1、PBT的性能

纯PBT的力学性能和耐热性都不好,因而很少单独使用,用于工程塑料的PBT,80%以上都是改性品种。

(1)一般性能

PBT为结晶型热塑性树脂,无毒、无味、无臭,相对密度为1.31,吸水率为0.07%,制品表面有光泽。

(2)力学性能PBT经过玻璃纤维增强改性后的力学性能大幅提高,如拉伸强度可提高150%之多。PBT的耐蠕变性优异。力学性能受温度的影响比较小,高温下尺寸稳定性十分优良,可用于高温受力结构制件。

(3)热学性能PBT经增强改性后的热变形温度可提高280%之多,在塑料中是增幅最大的。在热塑性工程塑料中,增强PBT的线膨胀系数最小。

(4)电学性能PBT的电绝缘性能优良,增强改性后的介电强度高达23Kv/㎜。电绝缘性受温度和湿度的影响比较小,但受频率的影响较大。

(5)化学性能PBT属酯类聚合物,不耐强酸、强碱及苯酚类化学试剂,耐油性好,对醇类、醚类、脂肪烃、高分子量酯类等稳定,对有机溶剂有很强的耐应力开裂性。

2、PBT的改性品种

PBT最主要的改性品种为增强PBT,此外还有共混等改性品种。

(1)增强PBT 增强PBT的90%以上为玻璃纤维增强,增强后PBT在力学性能和热学性能两方面的改性效果十分突出,具体如前述。

(2)PBT合金

PBT/PET合金改善PBT的翘曲及制品的表面光泽。

PBT/PC合金改善耐热温度及冲击强度。

PBT/PU/PC合金三者共混比例为50/25/25时,缺口冲击强度为850~1400J/m。

低翘曲PBT 采用滑石粉、云母及玻璃微珠等无机填料填充PBT,以改善翘曲性。3、PBT的成型加工

(1)PBT的加工特性

PBT和增强PBT都具有良好的成型流动性,可制成薄壁制品。但PBT的流变曲线比较陡,成型温度范围比较窄,成型过程中对温度的要求比较严格,温度太高会溢料,温度太低会堵塞喷嘴。

PBT的结晶速度快,成型周期短。在流动方向的收缩率为0.25%,在垂直方向的收缩率为1%,两者相差悬殊。PBT是工程塑料中吸水率最低的品种之一,一般可不必干燥。如要干燥,具体条件为:120~130℃,3~5h,使含水量在0.05%以下。

PBT加工废料一般不单独使用,常以20%~30%的比例加入新料中。

(2)PBT容易加工,可用注塑及挤出方法成型,但以注塑为主。

4、PBT的应用范围

(1)电子电器如连接器、开关、插座盖、断路器罩、显像管插座、数码管座、集成电路基座、线圈绕线管、变压器骨架及小型电动机罩盖等。

(2)汽车目前用量不及PA、PC及POM多,主要用于保险杠、挡泥板、方向盘、汽车点火器、后转角格栅、发动机放热孔罩及电刷支架等。

(3)机械制造齿轮、凸轮、传动轴及按钮等。

(4)仪器仪表办公设备外壳、照相机零件及电表配件等。

(二)聚对苯二甲酸乙二醇酯(PET)

聚对苯二甲酸乙二醇酯为聚对苯二甲酸和乙二醇直接酯化法或聚对苯二甲酸二甲酯与乙二醇酯交换法制成的聚合物,俗称“涤纶”。英文简称PET。

目前,PET用于纤维和塑料制品基本各半,塑料制品主要用于透明瓶、薄膜和片材;用作工程塑料正在迅速兴起,今后会有较大增长。

PET薄膜的突出优点是阻隔性、力学性能和韧性好;PET玻璃纤维增强改性后的特点是力学性能高且受温度影响小、耐热温度高、冲击强度高、耐摩擦、耐蠕变性好、刚性大、硬度

大且尺寸稳定性好。增强PET在力学性能、刚性、耐热性方面都超过增强PBT,但加工性不及PBT。

1、PET的性能

(1)一般性能PET树脂为乳白色半透明或无色透明体,相对密度1.38,透光率为90%。PET属于中等阻隔性材料,对O2的透过系数为50~90cm3·mm/(m2·d·MPa),对CO2的透过系数为180cm3·mm/(m2·d·MPa)。PET的吸水率为0.6%,吸水性较大。

(2)力学性能PET膜的拉伸强度很高,可与铝箔媲美,是HDPE膜的9倍,是PC和PA膜的3倍。增强PET的蠕变性小、耐疲劳极好(好于增强PC和PA)、耐磨性和耐摩擦性良好。PET的力学性能受温度影响较小。

(3)热学性能纯PET的耐热性能不高,但增强处理后大幅度提高,在180℃时的机械性能比PF层压板好,是增强的热塑性工程塑料中耐热较好的品种。PET的耐热老化性好,脆化温度为-70℃,在-30℃时仍具有一定韧性。PET不易燃烧,火焰呈黄色,有滴落。(4)电学性能PET虽为极性聚合物,但电绝缘性优良,在高频下仍能很好保持。PET 的耐电晕性较差,不能用于高压绝缘;电绝缘性受温度和湿度影响,并以湿度的影响较大。(5)环境性能PET含有酯键,在高温和水蒸气的条件下不耐水、酸、及碱的作用。PET 对有机溶剂如丙酮、苯、甲苯、三氯乙烷、四氯化碳和油类稳定,对一些氧化剂如过氧化氢、次氯酸钠及重铬酸钾等也有较高的抵抗性。PET耐候性优良,可长期用于户外。

2、PET的改性品种

(1)增强改性PET 主要用玻璃纤维,此外还可用碳纤维、硅纤维、硼纤维等。增强改性主要改善PET在高负荷下的耐热性、高温下的力学性能和尺寸稳定性。

(2)共混改性PET

PET/PBT PET与PBT共混并加入0.5%滑石粉作为成核剂,共混物具有收缩率低、耐热、冲击性优良等性能。

PET/PC 改善制品的冲击强度,具体有PET/PC中加入少量马来酸酐接枝PE,或PET/PC/ABS三元共混并加入滑石粉为成核剂。

PET/PA改善制品的冲击强度和尺寸稳定性,常在PET/PA共混体系中加入PP-MAH 相容剂。

此外,还有PET/PE、PET/EPDM和PET/SBS,目的是为了改善冲击性能。

(3)结晶改性PET

结晶改性是为了加快结晶速度,常加入乙烯-甲基丙烯酸聚合物的钠盐、聚乙二醇二缩水甘油醚、聚氧化乙烯、乙烯-马来酸酐共聚物的钠盐、缩水甘油甲基丙烯酸酯、乙酰醋酸钠及聚己二酸二丁酯等。

3、PET的成型加工

(1)PET的加工特性

PET属极性聚合物,熔融温度和熔体粘度都较大;PET属非牛顿流体,粘度对温度的敏感性小而对剪切速率敏感性大。

PET吸水性大,加工前必须干燥处理,干燥条件为:130~150℃,3~4h。

PET的加工温度范围较窄一般为270~290℃,接近分解温度300℃,因此,加工中要注意温度不能太高。PET结晶速度慢,为了促进结晶,常采用高温模,模温为100~130℃。

PET成型收缩率较大,增强改性后可大大降低,但生产高精度制品时要进行后处理。后处理的条件为:130~140℃,1~2h。

(2)PET的加工方法

注塑透明制品常采用热流道,螺杆长径比要大。

挤出用于生产薄膜和片类制品。为改善制品的力学性能和光学性能,,常进行双向拉伸

处理。

吹塑用于生产PET瓶体,常用注-拉-吹方法成型,以保证拉伸改性效果。

4、PET的应用范围

PET除纤维之外主要用于薄膜和片材、瓶类及工程塑料三大类。

(1)薄膜和片材主要用于包装材料,如食品、药品及无毒无菌的卫生包装;纺织品、精密仪器、电子元件的高档包装;录音带、录像带、照相底片、电影胶片、磁盘、光盘、及磁卡等基材;电容器膜、柔性印刷电路板及薄膜开关等。

(2)瓶类PET瓶透明度高、阻隔性好,可用于保鲜包装材料。如啤酒、白酒、碳酸饮料、食用油、食品、调味品、药品、化妆品及保健食品等。

(3)工程塑料PET的增强改性品种主要用于如下几个方面:

电子电器连接器、线圈绕线管、集成电路外壳、电容器外壳、变压器外壳、电视机配件、调谐器、开关、计时器外壳及继电器等。

汽车配件配电盘罩、阀门、排气零件、分电器盖及小型电动机壳体等。

机械零件齿轮、凸轮、泵壳体、皮带轮、电动机架框及钟表零件等。

拉链材料是继PA和POM之后的第三代拉链材料,可用于宽窄两种规格。

五、聚苯醚塑料

聚苯醚又称为聚2,6-二甲基1,4-苯撑醚树脂,英文简称PPO。纯PPO加工困难,难以实际应用,直到开发出改性的MPPO后,才获得迅速发展,成为继PA、PC、POM、PBT和PET 之后的第五大通用工程塑料。

PPO改性的目的为改善加工性能,目前主要为PPO和PS的共混或接枝,即PPO/PS改性品种。

PPO突出性能为刚性大、耐蠕变性好、拉伸强度高、电性能在工程塑料中最好、线膨胀系数小等,不足之处为耐疲劳性和耐应力开裂性不好。

MPPO广泛用于汽车、电子电器、办公用品及机械工业。

1、PPO的性能

(1)一般性能PPO及MPPO的外观为透明琥珀色,难燃,离火即灭,火焰明亮有浓黑烟,并发出花果臭气味。吸水率低,耐水及水蒸气。收缩小,尺寸稳定性高。

(2)机械性能PPO具有突出的机械性能,尤其以拉伸强度、冲击强度及耐蠕变性最好。以耐蠕变性为例,在2MPa负荷下3000h,蠕变值仅为0.75%;而同样条件下,PC为1%,POM2.3%,PA6为2%,ABS为3%。

PPO的冲击强度比PC还要高。PPO的机械强度随温度及湿度变化小,在沸水中700h,拉伸强度无明显下降。

PPO的刚性和硬度都比较大,耐磨性好,摩擦系数低。但PPO的耐疲劳性和耐应力开裂性不好。

(3)热学性能PPO具有较高的耐热性,纯PPO的热变形温度可达173℃,可在

-127~121℃范围内长期使用,在无负荷条件下间歇使用温度可达205℃。MPPO的耐热温度稍低一些,但高于PC、PA及ABS,与PF(酚醛树脂)接近。PPO的热膨胀系数在塑料中最低,与金属接近,适于金属嵌件的放置

(4)电学性能PPO具有优异的电性能,它的介电常数和介电损耗角正切值都比较低,在工频范围内属工程塑料中最低的,且在很宽的频率、温度、湿度范围内变化很小。其介电强度高,但耐电晕性差。

(5)环境性能PPO对稀酸、稀碱及盐稳定,在乙酸乙酯、丙酮及汽油等脂肪烃和芳香烃中溶胀,在氯化烃中溶解;在受力状态下,矿物油、酮类及酯类会导致应力开裂。PPO 的抗氧性不好,需加入磷酸酯类抗氧剂。

2、PPO的成型加工

(1)加工特性

PPO吸水性虽小,但加工前需要干燥,干燥条件为:130℃,2~4h,料层厚度50mm以下。PPO的熔体在低温时为牛顿流体,在高温时为非牛顿流体,加工时需要温度与压力兼调,并以调温为主。

PPO分子链刚性大,制品易产生内应力,最好在180℃的甘油中进行热处理或加入2%环氧十八酸异辛酯。

PPO的废料可以重复加工三次。

(2)加工方法

MPPO可用注塑、挤出、压制等热塑性塑料加工方法加工:

注塑螺杆的L/D应大于25,压缩比应大于2.5~3.5。

挤出最好用排气式挤出机。

3、PPO的改性品种

PPO与PS共混共聚,以改善加工性能。

PPO与ABS共混,以改善耐应力开裂性能。

PPO与其它工程塑料共混,以改善综合性能。

玻璃纤维增强PPO,以进一步增大其力学性能

4、PPO的应用范围

(1)电子电器PPO约有30%用于电子电器,适用于潮湿且具有载荷的绝缘场合,并可用于超高频上。如线圈绕线管、接线柱、接线盒、电气开关、蓄电池接合器、定时器、继电器、超高频调谐器、电子管插座及高压绝缘罩等。

(2)汽车配件在美国,PPO的40%用于汽车工业,以大量取代铸铁、铸铝、ABS及PA等。如仪表板、保险杠、自动定位按钮、防冻器格栅、减震器、吊杆、加热器支架与挡板、扬声器格栅等。

(3)办公设备西欧及日本40%的PPO用于办公设备,如计算机、打字机、传真机、复印机、印刷机的壳体等。

(4)机器零件用量占PPO的10%左右,可用于无声齿轮、凸轮、轴承及紧固件等。

气体灭火系统简介

灭火系统简介 ●灭火特点 1)保护环境。IG-541灭火系统采用的IG-541混合气体灭火剂是由 大气层中的氮气(N 2)、氩气(Ar)和二氧化碳(CO 2 )三种气体 以52%、40%、8%的比例混合而成,故它的释放只是将这些天然的气体放回大气层,对臭氧耗损潜能值(ODP)为零、温室效应潜能值(GWP)为零,且此灭火剂在灭火时不会发生化学反应,不污染环境、无毒、无腐蚀、电绝缘性能好。 2)保护生命安全。IG-541混合气体是一种无色透明的气体,喷放时 不会形成浓雾而影响视野,利于逃生,且防护区内的工作人员仍能正常地呼吸,便于火灾发生后能及时扑救,减少损失。 3)保护财产安全。IG-541混合气体以压缩气体的形式储存,喷放时 温度变化很小,不会对保护设备构成伤害。 ●灭火机理 通过降低防护区内的氧气浓度(由空气正常含氧量的21%降至 12.5%),使其不能维持燃烧而达到灭火的目的。 ●适用范围 A类——固体表面火灾;B类——易燃液体火灾,包括一定量的庚烷火灾;C类——电气设备火灾,如计算机房、控制室、变压器、油浸开关、电路断路器、泵和电动机等。 IG-541混合气体灭火系统可广泛应用于电子计算机房、广播通讯机房和电子设备密集等灭火场所,同时也可用于油类仓库以及图书

馆、文物档案库等场所。 ●产品特点 本公司精心研制开发的ZI系列IG-541混合气体自动灭火系统设计合理、先进,关键部位采用新材料,产品性能可靠,其主要指标达到国内领先水平。产品通过了国家固定灭火系统和耐火构件质量监督检验测试中心的检测,各项指标均符合经国家固定灭火系统技术委员会审查的QHSB06-2000《IG-541混合气体灭火系统》的标准要求。 ●产品型式 本公司投放市场的IG-541混合气体自动灭火系统有单元独立系统和组合分配系统两种型式。 单元独立系统主要部件及管网示意图见图1。 组合分配系统主要部件及管网示意图见图2。

几种常见气体灭火系统的比较分析示范文本

几种常见气体灭火系统的比较分析示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

几种常见气体灭火系统的比较分析示范 文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 随着哈龙(1301,1221)气体灭火系统的使用在全球范 围内日益受到限制和淘汰,替代哈龙产品的新型洁净气体 灭火系统的开发和应用越来越受到人们的重视,目前使用 的最多的是二氧化碳、七氟丙烷(FM-200)和烟烙尽 (INERGEN)系统。其中二氧化碳作为气体灭火剂应用已有 近一百年的历史,而七氟丙烷和烟烙尽是近年来新开发出 的产品,下面谨就这三种系统的各项性能及其优缺点作一 分析比较。 一、环保特性 所谓洁净气体灭火剂,除了必须有良好的灭火性能以 外,还要求具备良好的环保特性。评价一种气体灭火剂环

保特性的好坏,主要有三个指标,即该气体物质臭氧消耗潜能值(ODP),对全球温室效应的影响指标(GWP)及其在大气中存留的时间。 在上述三种气体灭火剂中,环保特性最好的首推烟烙尽气体,因为组成该种气体的主要成分来源于大气本身,其ODP值和GWP值都为零,当然也不存在气体在大气中存流时间问题。 七氟丙烷气体的ODP值也为零,但GWP值为2050(哈龙1301的GWP值为5800),在大气中的存留时间为30-40年,这说明七氟丙烷气体虽然对臭氧层无影响,但对全球温室效应的影响比较大。从环保特性上讲,它还算不上一种好的洁净气体灭火剂。 二氧化碳气体的ODP值同样为零,GWP值也不高(仅为1),但目前造成的全球温室效应,使气候变暖的最主要原因却是人类大量使用石油、煤炭等所产生的二氧化碳气

TVOC气体基本特性

1. VOCs的定义 VOCs的学术定义:是指在正常状态下(20℃,101.3kPa),蒸气压在0.1mmHg(13.3Pa)以上沸点在260℃(500℉)以下的有机化学物质。 2.VOCs的特性 ●均含有碳元素,还含有H、O、N、P、S及卤素等非金属元素。 ●熔点低,易分解,易挥发,均能参加大气光化学反应,在阳光下产生光化学烟雾。 ●常温下,大部分为无色液体,具有刺激性或特殊气味。 ●大部分不溶于水或难溶于水,易溶于有机溶剂。 ●种类达数百万种,大部分易燃易爆,部分有毒甚至剧毒。 ●相对蒸气密度比空气重。 3.VOCs的分类 VOCs按其化学结构,可以分为:烃类(烷烃、烯烃和芳烃)、酮类、酯类、醇类、酚类、醛类、胺类、腈(氰)类等。

4.常见VOCs的理化性质 所列部分VOCs选自GBZ2.1《国家职业卫生标准---工作场所有害因素职业接触限值—化学有害因素》 VOCs的主要危害 1.总体危害 (1)危害环境 ①在阳光和热的作用下参与氧化氮反应形成臭氧,导致空气质 量变差并且是夏季光化学烟雾、城市灰霾的主要成分; ②VOCs是形成细粒子(PM2.5)和臭氧的重要前体物质,大气 中VOCs在PM2.5中的比重占20%~40%左右,还有部分PM2.5由

VOCs转化而来; ③VOCs大多为溫室效应气体--导致全球范围内的升温。 (2)危害健康 ①刺激性&毒性 VOCs超过一定浓度时,会刺激人的眼睛和呼吸道,使皮肤过敏、咽痛与乏力;VOCs很容易通过血液-大脑的障碍,损害中枢神经;VOCs伤害人的肝脏、肾脏、大脑和神经系统。 ②致癌性、致畸作用和生殖系统毒性 2.常见毒性VOCs的具体危害 注:皮:指因皮肤、黏膜和眼睛直接接触蒸气、液体和固体,通过完整的皮肤吸收引起的全身效应敏:指已被人或动物资料证实该物质可能有致敏作用 G1:指国际癌症组织(IARC)确认为致癌物; G2B:指为可疑人类致癌物

常见金属材料特性

45—优质碳素结构钢{最常用中碳调质钢} 主要特性最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。 应用举例 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。(焊接件注意焊前预热,焊后消除应力退火)。 Q235A(A3钢){最常用中碳素结构钢} 主要特性具有高的塑性、韧性和焊接性能、冷却性能,以及一定的强度,好的冷弯性能。 应用举例广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构。 40Cr{合金结构钢} 主要特性经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊接前应预热100~150℃,一般在调质状态下室使用,还可以进行碳氮共参和高频表面淬火处理。

应用举例调质处理后用于制造中速,中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等。调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等。经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等。经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮 等。 HT150{灰铸铁} 应用举例 齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等。 35{各种标准件、紧固件的常用材料} 主要特性强度适当,塑性较好,冷塑性高,焊接性尚可。冷态下可局部镦粗和拉丝。淬透性低,正火或调 质后使用。 应用举例适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固 件。

气体灭火系统介绍

气体灭火系统介绍 七氟丙烷(HFC-227ea)柜式灭火装置 将七氟丙烷(HFC-227ea)贮存装置和喷头等部件组装成套的预制灭火装置,可直接放置于被保护的房间内。七氟丙烷柜式灭火装置具有无需另设气瓶间、无需安装管网、可移动、占地少、方便安装使用等特点,广泛应用于发电机房、通讯基站、主机房等面积较小的场所。

*注:适用于通讯机房和电子计算机房等防护区、灭火设计浓度8%。 七氟丙烷(HFC-227ea)气体灭火系统 1.概述: 七氟丙烷(HFC-227ea)灭火剂具有清洁、低毒、良好电绝缘性、灭火效率高、不破坏大气臭氧层的特点,是替代卤代烷灭火剂的洁净气体中的较优者。 七氟丙烷对臭氧层的耗损潜能值ODP=0,温室效应潜能值GWP=0.6,大气中存留寿命ALT=31年,灭火剂毒性-“未观察到不良反应浓度”NOAEL =9%,灭火设计基本浓度C=8%,以化学灭火方式为主。作为卤代烷的较理想的替代物,七氟丙烷按照毒性指标可作为全淹没灭火系统适用于有人区域,可用于保护经常有人工作或停留的场所。目前,在国际上七氟丙烷灭火系统用以替代卤代烷系统的应用越来越多,从应用经验中表明七氟丙烷灭火系统能有效达到预期的保护目的。 2.适用范围: 七氟丙烷灭火剂具有良好的清洁性—-在大气中完全汽化不留残渣、良好的气相电绝缘性,适用于以全淹没灭火方式扑救电气火灾、

液体火灾或可熔固体火灾、固体表面火灾、灭火前能切断气源的气体火灾,保护计算机房、通讯机房、变配电室、精密仪器室、发电机房、油库、化学易燃品库房及图书库、资料库、档案库、金库等场所。本公司生产的七氟丙烷灭火系统结构合理、动作可靠,已广泛应用于电子计算机房、档案馆、程控交换机房、电视广播中心及金融机构、政府机关等重要场所。 按照设计规范,用于需不间断保护的防护区的灭火系统和超过8个防护区组合成的组合分配系统,应设七氟丙烷备用量,备用量应按原设置用量的100%确定。可见,对于超过4个被保护对象的情况,选用七氟丙烷灭火系统可能较经济合理。 3.产品特点: 储存装置密封性能优异。灭火剂储存装置的容器阀采用反向压迫式活塞结构,密封圈选用优质材料精加工而成,密封效果理想。 电磁驱动准确可靠。电磁驱动装置的阀门设计精巧,驱动电流小,动作灵活可靠。 锁定机构防止误动作。储存装置和驱动装置均设有锁定机构,防止在运输过程误动作。 压力表开关。灭火剂储存装置和电磁驱动装置上设有压力表开关,可防止在运输过程中撞坏压力表而造成泄漏。 选择阀结构设计合理。确保先打开选择阀再打开储存装置释放灭火剂。 机械手动启动。电磁驱动装置、选择阀及灭火剂储存装置均可手动启动,安全可靠。 规格形式多样。储存钢瓶有40L、70L、100L、120L、150L、180L六种规格,悬挂式装置有14L、20L、30L、40L、50L、60L 五种规格。结构形式有单元独立系统、组合分配系统、主备转换系统、柜式装置、悬挂式装置等,完全能满足各种设计方案的要求。 系统结构合理。系统各部件的安装布置合理简练,方便维修、检查和操作。 工艺成熟,质量保证。产品投产多年、工艺成熟,ISO9001:2000质量体系及中国太平洋保险公司承保产品责任险,为广大用户提供最贴心的产品质量保证。

工业气体危险特性概述

工业气体危险特性概述集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

工业气体危险特性概述 工业气体的危险特性主要有燃烧性、毒害性、窒息性、腐蚀性、爆炸性以及可能发生氧化、分解、聚合等产生的危险特性。由于工业气体用气瓶属于移动式压力容器,流动范围广,使用条件复杂,无专人监督其日常使用,因此工业气体的危险特性导致事故的可能性及危害性会很大,必须引起足够重视。熟悉掌握工业气体的各种危险特性,对于预防事故和减少灾害,具有十分重要的作用。本节将对工业气体的危险特性进行概述。 一、燃烧性 可燃气体的燃烧往往同时伴有发光、发热的激烈反应,对周围环境的破坏很大,危险性十分明显。根据燃烧条件,燃烧必须同时具备可燃物,助燃物和点火源。而对易燃气体而言,一旦泄露,与空气接触,就已存在两个条件,如若存在点火源,则燃烧就无法避免。由 此可知,要消除易燃气体的燃烧危险性,就必须严防易燃气体泄露到空气中,同时阻止点火源引入其中;或在易燃气体容易泄露的场所,严格控制点火源的出现。能导致易燃气体燃烧的点火源种类很多,主要

有:撞击、摩擦、绝热压缩、冲击波、明火、加热、高温、热辐射、电火花、电弧、静电、雷击、紫外线、红外线、放射线辐射、化学反应热、催化作用等,必须处处注意、时刻防备。在国家标准GB16163-1996中,列入可燃气体的工业纯气品种多达四十余种,其中,以可燃性液化气体居多。液化气体的特点是沸点低,极易气化,泄压时闪蒸且扩散,与空气混合形成易燃、易爆气体,火灾危险性极大。易燃气体酿成火灾的严重后果不堪设想:人员受到直接辐射热或沾附可燃性液化气体,就会烧伤或死亡,其他可燃物会受到大量辐射热,形成大面积火灾,而且灭火以后极有可能会发生二次燃爆危险。此外,易燃气体会发生空间燃爆。 二、毒害性 工业气体的毒害性通过吸入途径侵入人体,与人体组织发生化学或物理化学作用,从而造成对人体器官的损害,并破坏人体的正常生理机能,引起功能或器质性病变,导致暂时性或持久性病理损害,甚至危及生命。瓶装气体中有一部分属于有毒气体。有毒气体的毒性影响,与有毒气体的本身性质、侵入人体的途径及侵入数量、暴露接触时间长短、作业人员防护设施用品及身体素质等各种因素有关。有毒气体易散发于作业场所的空气中,对作业人员的影响最大。有毒气体的气瓶在充装、储运、使用过程中,其主要危害是由于有毒气体泄露造成人体慢性中毒或由于气瓶(包括瓶阀)破损导致有毒气体外溢所引起的人体急性中毒。

TVOC气体基本特性.

1. VOCs 的定义 VOCs 的学术定义:是指在正常状态下(20℃,101.3kPa ),蒸气压在0.1mmHg (13.3Pa )以上沸点在260℃(500℉以下的有机化学物质。 2.VOCs 的特性 ●均含有碳元素,还含有H 、O 、N 、P 、S 及卤素等非金属元素。● 熔点低,易分解,易挥发,均能参加大气光化学反应,在阳光下产生光化学烟雾。

●常温下,大部分为无色液体,具有刺激性或特殊气味。● 大部分不溶于水或难溶于水,易溶于有机溶剂。 ● 种类达数百万种,大部分易燃易爆,部分有毒甚至剧毒。● 相对蒸气密度比空气重。 3.VOCs 的分类 VOCs 按其化学结构,可以分为:烃类(烷烃、烯烃和芳烃)、酮类、酯类、醇类、酚类、醛类、胺类、腈(氰)类等。 4. 常见VOCs 的理化性质 所列部分VOCs 选自GBZ2.1《国家职业卫生标准---工作场所有害因素职业接触限值—化学有害因素》 VOCs 的主要危害

1. 总体危害 (1)危害环境 ①在阳光和热的作用下参与氧化氮反应形成臭氧,导致空气质量变差并且是夏季光化学烟雾、城市灰霾的主要成分; ② VOCs 是形成细粒子(PM2.5)和臭氧的重要前体物质,大气 中VOCs 在PM2.5中的比重占20%~40%左右,还有部分PM2.5由 VOCs转化而来; ③ VOCs 大多为溫室效应气体--导致全球范围内的升温。 (2)危害健康 ①刺激性&毒性 VOCs超过一定浓度时,会刺激人的眼睛和呼吸道,使皮肤过敏、 咽痛与乏力; VOCs 很容易通过血液-大脑的障碍,损害中枢神经;VOCs 伤害人的肝脏、肾脏、大脑和神经系统。 ②致癌性、致畸作用和生殖系统毒性 2. 常见毒性VOCs 的具体危害

金属材料性能及国家标准

金属材料性能 为更合理使用金属材料,充分发挥其作用,必须掌握各种金属材料制成的零、构件在正常工作情况下应具备的性能(使用性能)及其在冷热加工过程中材料应具备的性能(工艺性能)。 ???? 材料的使用性能包括物理性能(如比重、熔点、导电性、导热性、热膨胀性、磁性等)、化学性能(耐用腐蚀性、抗氧化性),力学性能也叫机械性能。 ???? 材料的工艺性能指材料适应冷、热加工方法的能力。 ???? (一)、机械性能 ???? 机械性能是指金属材料在外力作用下所表现出来的特性。 ??? 1 、强度:材料在外力(载荷)作用下,抵抗变形和断裂的能力。材料单位面积受载荷称应力。 ??? 2 、屈服点(бs ):称屈服强度,指材料在拉抻过程中,材料所受应力达到某一临界值时,载荷不再增加变形却继续增加或产生 0.2%L 。时应力值,单位用牛顿 / 毫米 2 ( N/mm2 )表示。 ??? 3 、抗拉强度(бb )也叫强度极限指材料在拉断前承受最大应力值。单位用牛顿 / 毫米 2 ( N/mm2 )表示。 ??? 4 、延伸率(δ):材料在拉伸断裂后,总伸长与原始标距长度的百分比。 ?? 5、断面收缩率(Ψ)材料在拉伸断裂后、断面最大缩小面积与原断面积百分比。??? 6 、硬度:指材料抵抗其它更硬物压力其表面的能力,常用硬度按其范围测定分布氏硬度( HBS 、 HBW )和洛氏硬度( HKA 、 HKB 、 HRC ) ??? 7 、冲击韧性( Ak ):材料抵抗冲击载荷的能力,单位为焦耳 / 厘米 2 ( J/cm 2 ) . (二)、工艺性能 ???? 指材料承受各种加工、处理的能力的那些性能。 8 、铸造性能:指金属或合金是否适合铸造的一些工艺性能,主要包括流性能、充满铸模能力;收缩性、铸件凝固时体积收缩的能力;偏析指化学成分不均性。 9 、焊接性能:指金属材料通过加热或加热和加压焊接方法,把两个或两个以上金属材料焊接到一起,接口处能满足使用目的的特性。 10 、顶气段性能:指金属材料能承授予顶锻而不破裂的性能。 11 、冷弯性能:指金属材料在常温下能承受弯曲而不破裂性能。弯曲程度一般用弯曲角度α(外角)或弯心直径 d 对材料厚度 a 的比值表示, a 愈大或 d/a 愈小,则材料的冷弯性愈好。 12 、冲压性能:金属材料承受冲压变形加工而不破裂的能力。在常温进行冲压叫冷冲压。检验方法用杯突试验进行检验。 13 、锻造性能:金属材料在锻压加工中能承受塑性变形而不破裂的能力。 (三)、化学性能 ???? 指金属材料与周围介质扫触时抵抗发生化学或电化学反应的性能。 14 、耐腐蚀性:指金属材料抵抗各种介质侵蚀的能力。 15 、抗氧化性:指金属材料在高温下,抵抗产生氧化皮能力。 >> 返回 金属材料的检验

几种常见气体灭火系统的比较分析标准范本

解决方案编号:LX-FS-A50808 几种常见气体灭火系统的比较分析 标准范本 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

几种常见气体灭火系统的比较分析 标准范本 使用说明:本解决方案资料适用于日常工作环境中对未来要做的重要工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 随着哈龙(1301,1221)气体灭火系统的使用在全球范围内日益受到限制和淘汰,替代哈龙产品的新型洁净气体灭火系统的开发和应用越来越受到人们的重视,目前使用的最多的是二氧化碳、七氟丙烷(FM-200)和烟烙尽(INERGEN)系统。其中二氧化碳作为气体灭火剂应用已有近一百年的历史,而七氟丙烷和烟烙尽是近年来新开发出的产品,下面谨就这三种系统的各项性能及其优缺点作一分析比较。 一、环保特性 所谓洁净气体灭火剂,除了必须有良好的灭火性

气体特性及系统简介

课程内容:大宗与特殊气体特性介绍 一、大宗气体种类: 半导体厂所使用的大宗气体,以台积厂常见有:CDA、GN2、PN2、PAr、PO2、PH2、PHe等七种。 二、大宗气体的制造: CDA / ICA (Clean Dry Air / Instrument Air): CDA之来源取之于大气经压缩机压缩后除湿,再经过滤器或活性炭吸附去除粉尘及炭氢化合物以供给无尘室CDA/ICA (Clean Dry Air)。 GN2 (Nitrogen): 利用压缩机压缩冷却气体成液态气体,经过触媒转化器,将CO反应成CO2,将H2反应成H2O,再由分子筛吸附CO2、H2O,再经分溜分离O2 & CnHm。 N2=-195.6℃,O2=-183℃。 PN2 (Nitrogen): 将GN2经由纯化器(Purifier)纯化处理,产生高纯度的氮气。 一般液态氮气纯度约为99.9999﹪,总共是6个9。 经纯化器纯化过的氮气纯度约为99.9999999﹪,总共是9个9。 PO2 (Oxygen): 利用压缩机压缩冷却气体成液态气体,经二次分溜获得99.0﹪以上纯度之氧,再除去N2、Ar、CnHm。另外可由水电解方式解离H2 &O2,产品液化后易于运送储存。 PAr (Argon): 利用压缩机压缩冷却气体成液态气体,经二次分溜获得99.0﹪以上纯度之氩气,因氩气在空气中含量仅0.93﹪,生产成本相对较高。 PH2 (Hydrogen): 利用压缩机压缩冷却气体成液态气体,经二次分溜获得99.0﹪以上纯度之氢气。另外可由水电解方式解离H2 &O2,制程廉价但危险性高易触发爆炸,液化后易于运送储存。 PHe (Helium): 由稀有富含氦气之天然气中提炼,其主要产地为美国及俄罗斯。利用压缩机压缩

机械常用金属材料与特性

1、45——优质碳素结构钢,是最常用中碳调质钢。(欢迎关注自动化爱好者论坛,更多学习资料,更多交流者) 主要特征: 最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。应用举例: 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。焊接件注意焊前预热,焊后消除应力退火。 2、Q235(A3钢)——最常用的碳素结构钢。 主要特征: 具有高的塑性、韧性和焊接性能、冷冲压性能,以及一定的强度、好的冷弯性能。应用举例: 广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构、桥梁等。 3、40Cr——使用最广泛的钢种之一,属合金结构钢。 主要特征: 经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊前应预热到100~150℃,一般在调质状态下使用,还可以进行碳氮共渗和高频表面淬火处理。应用举例:调质处理后用于制造中速、中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等,调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等,经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等,经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮等。 4、HT150——灰铸铁应用举例:齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等 5、35——各种标准件、紧固件的常用材料 主要特征: 强度适当,塑性较好,冷塑性高,焊接性尚可。冷态下可局部镦粗和拉丝。淬透性低,正火或调质后使用应用举例: 适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固件

常用危险品种类特性及处置方法(精)

常见危险品及其安全处理 ID 名称压缩气体和液化气体有关知识 三甲胺名称:三甲胺别名:无水三甲胺拼音缩写:SJA 分子式: 灭火物质:水 , 泡沫 , 二氧化碳 , 干粉 主要信息相对密度 =0.662闪点 =-6.67自燃点 =190沸点 =3爆炸下限 =2爆炸上限 =11.6理化特性:无色液化气体 , 有鱼腥的氨气味 , 能溶于水 , 易燃烧 , 有毒处置方法:雾状水 , 泡沫 , 二氧化碳 , 干粉 二甲胺名称:二甲胺别名:无水二甲胺拼音缩写:RJWWS 分子式: 灭火物质:水 , 泡沫 , 二氧化碳 , 干粉 主要信息相对密度 =0.680闪点 =-17.78自燃点 =400沸点 =6.88爆炸下限 =2.8爆炸上限 =14.4理化特性:无色易燃气体或液体 , 具有强烈的令人不愉快的胺味 , 浓度极低时有鱼腥恶臭 . 易溶于水 , 有毒 . 处置方法:雾状水 , 泡沫 , 二氧化碳 , 干粉急救措施:吸入时 , 离开现场 , 进行休息 一甲胺名称:一甲胺别名:无水一甲胺拼音缩写:YJAWS AJ 分子式: 灭火物质:水 , 泡沫 , 二氧化碳 , 干粉 主要信息相对密度 =1.09闪点 =0自燃点 =430沸点 =-6.79爆炸下限 =4.95爆炸上限 =20.75理化特性:无色气体或液体 , 有氨的气味 . 易溶于水 . 易燃烧 , 其蒸气能与空气形成爆炸性混合物 . 有毒 . 处置方法:雾状水 , 泡沫 , 二氧化碳 , 干粉急救措施:吸入时 , 离开现场 , 进行休息 环氧乙烷名称:环氧乙烷别名:氧化乙烯拼音缩写:HYYW(YHY分子式:

灭火物质:水 , 泡沫 , 二氧化碳 主要信息相对密度 =0.871闪点 =<-17,78自燃点 =429沸点 =10.7爆炸下限 =3.0爆炸上限 =100理化特性:在常温下为气体 ,4度以下为无色液体 . 易溶于水 . 易燃 , 有毒 . 对皮肤和眼睛有剌激性 . 遇火星 , 高热有燃烧爆炸危险 处置方法:水 , 泡沫 , 二氧化碳 溴代乙烯 名称:溴代乙烯别名:溴乙烯 ; 乙烯基溴拼音缩写:XDYX XYX 分子式:灭火物质:水 , 泡沫 , 二氧化碳 , 干粉 主要信息相对密度 =1.51沸点 =-15.6理化特性:无色气体 , 在 15度以下为液体 . 易燃 , 有微毒 . 不溶于水 处置方法:雾状水 , 泡沫 , 二氧化碳 , 干粉急救措施:中毒者速移离毒区 , 作人工呼吸 氯乙烯名称:氯乙烯别名:拼音缩写:LYX 分子式: 灭火物质:水 , 泡沫 , 二氧化碳 主要信息相对密度 =0.919闪点 =-78自燃点 =472沸点 =-13.4爆炸下限 =3.6爆炸上限 =33理化特性:在常温常压下为无色气体 , 在 -12--14度以下为液体 . 略带芳香气味 , 其蒸气易燃 . 难溶于水 . 见光及含有催化剂时易聚合 . 有麻醉作用 , 吸入有毒处置方法:雾状水 , 泡沫 , 二氧化碳急救措施:中毒者速移离毒区 , 作人工呼吸 氯乙烷名称:氯乙烷别名:氯化乙烷 ; 乙基氯拼音缩写:LYW LHYW 分子式: 灭火物质:水 , 泡沫 , 二氧化碳

气体灭火系统简介

气体灭火系统简介 第一节基本术语 1. 全淹没灭火系统 在规定的时间内,向防护区喷射一定浓度的气体灭火剂,并使其均匀地充满整个防护区的灭火系统。 2. 局部应用灭火系统 向保护对象以设计喷射率直接喷射灭火剂,并持续一定时间的灭火系统。 3. 防护区 能满足全淹没灭火系统应用条件,并被其保护的封闭空间。 4. 组合分配系统 用一套灭火剂储存装置保护两个或两个以上防护区或保护对象的灭火系统。 5. 灭火浓度 在101kpa大气压和规定的温度条件下,扑灭某种火灾所需二氧化碳在空气与二氧化碳的混合物中的最小体积百分比。 6. 设计浓度 由灭火浓度乘以1.7得到的用于工程设计的浓度。 13. 高压二氧化碳灭火系统 指在5.7MPa、20℃的条件下储存,随着温度的上升而压力急剧上升(当温度上升到49℃,压力达到15MPa)随温度下降,压力急剧下降(下降到0℃时,压力在4MPa左右)。充装率在百分之六十至六十五之间的灭火系统。 14. 低压二氧化碳灭火系统 指在2.0±0.2MPa、-18℃的条件下储存,装量系数在百分之九十至九十五之间的灭火系统。 19. GWP值 GWP值是指温室效应潜能值,以CO2历年值为基准。 20. ALT值 ALT值是指在大气中存活寿命,潜在危险指标。 21. ODP值 ODP值是指臭氧消耗潜能值,以CFC11为基准。 22. NOAEL值 NOAEL值是指未观察到不良反应的浓度。 第二节气体灭火系统概述 气体灭火系统最早出现于19世纪,美国将高压二氧化碳用于灭火,20世纪处,美国开发成功了卤代烷灭火系统。气体灭火系统在世界各国得到广泛的应用。气体灭火系统一般包括卤代烷灭火系统、二氧化碳灭火系统、惰性气体灭火系统、氟化烃灭火系统、混合气体灭火系统和烟雾灭火系统。通常采用冷却、窒息、隔离、化学抑制方法中的一种或多种方法扑救不宜用水灭火的场合或设备的火灾。 第三章二氧化碳灭火系统 第一节概述 一、二氧化碳的基本特性 二氧化碳是无色、无味、绝缘性能好(不会使电器火灾中带电物出现击穿等现象)的惰性气体,其性能稳定,可长期储存。不会与其它气体发生化学反应。

气体燃料的组成及特性(精)上课讲义

《锅炉与锅炉房设备施工》教案模块一:锅炉房设备的基本知识 单元三:锅炉燃料 1.3.3 气体燃料的组成及特性 学院内蒙古建筑职业技术学院 院(部)机电与暖通工程学院 教师王思文 气体燃料的组成及特性

教学目的 通过课程教学,挖掘学生潜在创造力,激发学生的工程设计能力。以工作任务形式组织学生进行项目训练,培养学生团队意识,组织协调能力、创新思维能力,沟通交流能力,自我学习能力、分析问题和解决问题的能力。通过学习,学生能够掌握锅炉与锅炉房的基本知识,为今后继续学习锅炉打下结实的基础。 教学目标 能力(技能)目标知识目标素质目标 1.具有分析气体燃料基 本特性的能力。 1.掌握燃气的组成成分。 2.掌握燃气的基本特性(体 积分数;平均密度;比体 积;相对密度;粘度;临 界参数;体积热容;着火 温度;爆炸极限;发热量; 华白数) 1.挖掘学生潜在创造力, 激发学生的自主学习积极 性; 2.培养学生的与人交流、 与人合作的能力,培养学 生解决问题、自我学习能 力。 任务与案例任务:根据教学内容,掌握燃气的组成成分及基本特性。案例:1. 利用教材的内容进行理论学习。 重点难点 及 解决方法重点:1.燃气的组成成分及基本特性。难点:无 参考资料《锅炉与锅炉房设备》夏喜英主编哈尔滨工业大学出版社《锅炉及锅炉房设备》杜渐主编中国电力出版社 《工业锅炉设备》丁崇功主编机械工业出版社 工具 与 媒体计算机、打印机、录像、课件、图纸、笔、橡皮、专业相关资料等。 授课教案

一、气体燃料的基本概念 1.气体燃料:指在常温、常压下保持气态的燃料,简称燃气。 2.燃气的特点:易点火、易燃烧、易操作、易实现自动调节,而且燃烧产物 中无废渣和废液,烟气中SO x和NO x的含量少。燃气是最理想的洁净燃料。 二、燃气的组成 1.可燃组分 一氧化碳(CO)、氢气(H2)和碳氢化合物(C m H n)等。 2.不可燃组分 氮气(N2)、氧气(O2)和二氧化碳(CO2)等。 3.有害杂质 1)焦油与灰尘的危害:堵塞通道、附件及燃烧器喷嘴,影响锅炉正常燃烧。 2)萘的危害:当燃气中含萘量大于燃气温度相应的饱和含萘量时,过饱和 部分的气态萘以结晶状态析出,沉积于管内而使管道流通断面减小,堵 塞甚至堵死管道,造成供气中断。 3)硫化氢的危害:可燃的有害杂质,腐蚀储罐、管道、设备和燃烧器,硫 化氢燃烧产生的SO2和SO3,不仅腐蚀锅炉金属受热面,而且还污染大 气环境。 4)一氧化碳的危害:无色、无臭、无味、有剧毒的气体。规定燃气中一氧 化碳的体积分数应小于10%。 5)氨的危害:氨对燃气管道、设备及燃烧器起腐蚀作用。燃烧时产生NO、 NO2等有害气体,影响人体健康,并污染大气环境。 6)水分的危害:水和水蒸汽能与液态和气态碳氢化合物作用,生成固态结 晶水化物,堵塞管道、阀门、仪表(流量计、压力表、液位计等)和设 备(调压器、过滤器等),影响正常供气;水蒸气还能加剧O2、H2S、SO2 对管道、阀门、燃烧器及锅炉金属受热面的腐蚀作用。 7)残液的危害:液化石油气中C5及C5以上的碳氢化合物组分的沸点高, 在常温、常压下不能气化,而留存在钢瓶、储罐等压力容器内,称为残 液。它增加了用户更换气瓶的次数,而且增加了交通运输量。

气体灭火系统规范与标准

*气体灭火系统及部件 GB 25972 -2010 1 围 本标准规定了气体灭火系统及构成部件的术语和定义、基本参数和型号编制方法、要求、试验方法、检验规则、使用说明书编写要求、灭火剂充装要求。 本标准适用于七氟丙烷(HFC227ea)灭火系统、三氟甲烷(HFC23)灭火系统、惰性气体灭火系统[包括: IG-01(氩气)灭火系统、IG-100(氮气)灭火系统、IG-55(氩气、氮气)灭火系统、IG-541(氩气、氮气、二氧化碳)灭火系统]。 5.5.11 手动操作要求 容器阀应具有机械应急启动功能,按6.16 规定的方法进行应急启动手动操作试验,应符合下列要 求: a) 手动操作力不应大于150 N; b) 指拉操作力不应大于50 N; c) 指推操作力不应大于10 N; 1

b 指充装密度为950 kg/m3 时。 5.1.1.3 系统喷射时间 灭火系统的最大喷射时间为: a) 七氟丙烷灭火系统:10 s; b) 三氟甲烷灭火系统:10 s; c) 惰性气体灭火系统:60 s。 5.1.2 系统构成 5.1.2.1 贮压式七氟丙烷灭火系统、三氟甲烷灭火系统至少应由灭火剂瓶组、驱动气体瓶组、单向 阀、选择阀(适用于组合分配系统)、驱动装置、集流管、连接管、喷嘴、信号回馈装置、安全泄放装 置、控制盘、检漏装置、低泄高封阀(适用于具有驱动气体瓶组的系统)、管路管件等部件构成。 5.1.2.2 惰性气体灭火系统至少应由灭火剂瓶组、驱动气体瓶组(不适用于直接驱动灭火剂瓶组的系 统)、单向阀、选择阀(适用于组合分配系统)、减压装置、驱动装置、集流管、连接管、喷嘴、信号反 馈装置、安全泄放装置、控制盘、检漏装置、低泄高封阀(适用于具有驱动气体瓶组的系统)、管路管 件等部件构成。 5.1.2.3 同一系统各部件应固定牢固、连接可靠,部件安装位置正确,整体布局合理,便于操作、检 查和维修。 5.1.2.4 系统中相同功能部件的规格应一致(选择阀、喷嘴除外),各灭火剂贮存容器的容积、充装密 度或充装压力应一致。 *气体灭火系统设计规 GB50370-2005

半导体厂GAS系统基础知识

GAS 系 统 基 础 知 识

概述 HOOK-UP专业认知 一、厂务系统HOOK UP定义 HOOK UP 乃是藉由连接以传输UTILITIES使机台达到预期的功能。HOOK UP是将厂务提供的UTILITIES ( 如水,电,气,化学品等),经由预留之UTILITIES连接点( PORT OR STICK),藉由管路及电缆线连接至机台及其附属设备( SUBUNITS)。 机台使用这些UTILITIES,达成其所被付予的制程需求并将机台使用后,所产生之可回收水或废弃物( 如废水,废气等),经由管路连接至系统预留接点,再传送到厂务回收系统或废水废气处理系统。HOOK UP 项目主要包括∶CAD,MOVE IN ,CORE DRILL,SEISMIC ,VACUU,GAS,CHEMICAL, D.I ,PCW,CW,EXHAUST,ELECTRIC, DRAIN. 二、GAS HOOK-UP专业知识的基本认识 在半导体厂,所谓气体管路的Hook-up(配管衔接)以Buck Gas (一般性气体如CDA、GN2、PN2、PO2、PHE、PAR、H2等)而言,自供气源之气体存贮槽出口点经主管线(Main Piping)至次主管线(Sub-Main Piping)之Take Off点称为一次配(SP1

Hook-up),自Take Off出口点至机台(Tool)或设备(Equipment)的入口点,谓之二次配(SP2 Hook-up)。以Specialty Gas(特殊性气体如:腐蚀性、毒性、易燃性、加热气体等之气体)而言其供气源为气柜(Gas Cabinet)。自G/C出口点至VMB(Valve Mainfold Box.多功能阀箱)或VMP(Valve Mainfold Panel多功能阀盘)之一次测(Primary)入口点,称为一次配(SP1 Hook-up),由VMB或VMP Stick之二次侧(Secondary)出口点至机台入口点谓之二次配(SP2 Hook-up)。

各种金属材料的特点

各种金属材料的特点 铝材类 铝材属于金属类别中有色金属之一,由于应用较广,单独介绍如下:常用有铝型材和压铸铝合金两种。其中主要由纯度高达92%以上的铝锭为主要原材料,同时添加增加强度、硬度、耐磨性等性能金属元素,如碳、镁、硅、硫等,组成多种成分“合金”。 1.1铝型材 铝型材常见如屏风、铝窗等。它是采用挤出成型工艺,即铝锭等原材料在熔炉中熔融后,经过挤出机挤压到模具流出成型,它还可以挤出各种不同截面的型材。主要性能即强度、硬度、耐磨性均按国家标准GB6063。优点有:重量轻仅2.8,不生锈、设计变化快、模具投入低、纵向伸长高达10米以上。铝型材外观有光亮、哑光之分,其处理工艺采用阳极氧化处理,表面处理氧化膜达到0.12m/m厚度。铝型材壁厚依产品设计最优化来选择,不是市场上越厚越好,应看截面结构要求进行设计,它可以在0.5~5mm不均。外行人认为越厚越强硬,其实是错误的看法。 铝型材表面质量也有较难克服的缺陷:翘曲、变形、黑线、凸凹及白线。设计者水平高者及模具设计及生产工艺合理,可避免上述缺陷不太明显。检查缺陷应按国家规定检验方法进行,即视距40~50CM来判别缺陷。 铝型材在家具中用途十分广泛:屏风骨架、各种悬挂梁、桌台脚、装饰条、拉手、走线槽及盖、椅管等等,可进行千变万化设计和运用! 铝型材虽然优点多,但也存在不理想的地方: 未经氧化处理的铝材容易“生锈”从而导致性能下降,纵向强度方面比不上铁制品.表面氧化层耐磨性比不上电镀层容易刮花.成本较高,相对铁制品成本高出3~4倍左右。 1.2压铸铝合金 压铸合金和型材加工方法相比,使用设备均不同,它的原材料以铝锭(纯度92%左右)和合金材料,经熔炉融化,进入压铸机中模具成型。压铸铝产品形状可设计成像玩具那样,造型各异,方便各种方向连接,另外,它硬度强度较高,同时可以与锌混合成锌铝合金。 压铸铝成型工艺分: 1、压铸成型 2、粗抛光去合模余料 3、细抛光 另一方面,压铸铝生产过程,应有模具才能制造,其模具造价十分昂贵,比注塑模等其它模具均高。同时,模具维修十分困难,设计出错误时难以减料修复。 压铸铝缺点: 每次生产加工数量应多,成本才低。抛光较复杂生产周期慢产品成本较注塑件高3~4倍左右。螺丝孔要求应大一点(直径4.5mm)连接力才稳定 适应范围:台脚、班台连接件、装饰头、铝型材封口件、台面及茶几顶托等,范围十分广泛。 (2)五金类 “五金”概念属通俗说法,标准分类应划分为黑色金属和有色金属两大类,它在家具中运用有管状、棒状、板状、线、角状几种。

气体灭火系统分类和组成通用版

安全管理编号:YTO-FS-PD646 气体灭火系统分类和组成通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

气体灭火系统分类和组成通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 气体灭火系统一般由灭火剂储存装置、启动分配装置、输送释放装置、监控装置等组成。为满足各种保护对象的需要,最大限度地降低火灾损失,根据其充装不同种类灭火剂、采用不同增压方式,气体灭火系统具有多种应用形式。 一、系统分类 (一)按使用的灭火剂分类 1.二氧化碳灭火系统 二氧化碳灭火系统是以二氧化碳作为灭火介质的气体灭火系统。二氧化碳是一种惰性气体,对燃烧具有良好的窒息和冷却作用。 二氧化碳灭火系统按灭火剂储存压力不同可分为高压系统(指灭火剂在常温下储存的系统)和低压系统(指将灭火剂在-18℃~-20℃低温下储存的系统)两种应用形式。管网起点计算压力(绝对压力):高压系统应取 5.17MPa,低压系统应取2.07MPa。 高压储存容器中二氧化碳的温度与储存地点的环境温

厂务大宗气体及特殊气体系统知识

系 统 基 础 知 识 概述

专业认知 一、厂务系统定义 乃是藉由连接以传输使机台达到预期的功能。是将厂务提供的 ( 如水,电,气,化学品等),经由预留之连接点( ),藉由管路及电缆线连接至机台及其附属设备( )。 机台使用这些 ,达成其所被付予的制程需求并将机台使用后,所产生之可回收水或废弃物( 如废水,废气等),经由管路连接至系统预留接点,再传送到厂务回收系统或废水废气处理系统。项目主要包括∶,,,,,,, , . 二、专业知识的基本认识 在半导体厂,所谓气体管路的(配管衔接)以(一般性气体如、2、2、2、、、H2等)而言,自供气源之气体存贮槽出口点经主管线()至次主管线()之点称为一次配(1 ),自出口点至机 台()或设备()的入口点,谓之二次配(2 )。以(特殊性气 体如:腐蚀性、毒性、易燃性、加热气体等之气体)而言其供气 源为气柜()。自出口点至( .多功能阀箱)或(多功能阀盘)之一次测()入口点,称为一次配(1 ),由或之二次侧()出

口点至机台入口点谓之二次配(2 )。 简单知识基本掌握 第一章气体概述 由于制程上的需要,在半导体工厂使用了许多种类的气体,

一般我们皆依气体特性来区分,可分为一般气体()与特殊气体()两大类。 前者为使用量较大之气体,如N2、等,因用量较大,一般气体常以大宗气体称之。 后者为使用量较小之气体?一般指用量小,极少用量便会对人体造成生命威胁的气体,如4、3等 1.1 介绍 半导体厂所使用的大宗气体,一般有: 、2、2、、2、2、等七种。 1.大宗气体的制造: / ( / ): 之来源取之于大气经压缩机压缩后除湿,再经过滤器或活性炭吸附去除粉尘及炭氢化合物以供给无尘室 ( )。 2 (): 利用压缩机压缩冷却气体成液态气体,经过触媒转化器,将反应成2,将H2反应成H2O,再由分子筛吸附2、H2O,再经分溜分离O2 & 。 N2=-195.6℃,O2=-183℃。 2 (): 将2经由纯化器()纯化处理,产生高纯度的氮气。

相关文档