文档库 最新最全的文档下载
当前位置:文档库 › 高架车站结构设计简述

高架车站结构设计简述

高架车站结构设计简述
高架车站结构设计简述

高架车站结构设计简述

摘要:对不同结构形式高架车站结构设计分析,探讨了在高架车站结构设计上一些主要难点;着重叙述桥建合一高架车站结构计算中模型建立与选择,以及一些参数、荷载取值等问题,以供高架车站结构设计参考。

关键词:桥建合一;框架横梁;大开洞;振型数;基础沉降

中图分类号; U448.28文献标识码:A

一、概述

高架线路在一定城市道路环境条件下,采用灵活的建筑类型使轨道交通能有较好适应性。采用一定技术措施后的低振动低噪声,能满足城市景观和环保要求,高架结构的小沉降、低变形,也能满足线路运行平顺要求。高架轨道交通建设经济效益显著,运行良好,将为城市的交通发展起着巨大的作用。本着快捷,安全,投资少,运营成本低的模式,城市高架轨道交通是未来主要发展方向。

不同形式高架车站适合于不同环境。一般来说,根据高架车站轨道梁与站房之间的关系,可分为“桥建分离”与“桥建合一”两类。

“桥建合一”型式指:桥梁和房建结构结合,桥梁盖梁、墩柱、基础为桥梁结构和房建结构共有,桥梁横向框架通过纵向房建结构梁板整体浇筑,形成空间框架体系。这种结构组合型式优点:结构受力合理,结构整体性、稳定性好,车站建筑布置灵活,柱网布置合理。缺点:列车振动对站房影响明显,结构计算较为复杂,空间框架结构构件必须满足桥梁规范和房建规范。框架结构受载不均匀,易造成基础不均匀沉降,特别是在地质条件不好地段。一旦发生基础不均匀沉降将损坏结构,且修复困难。如图1:

图1:桥建合一型式岛式站台高架站

“桥建分离”型式是:车站范围内行车部分结构与区间桥梁一致,属桥梁结构体系;其余部分结构采用框架结构,站台、站厅均在框架结构内布置,属房建结构体系。这种结构组合型式优点:结构体系传力途径明确,受力简单,可分别按桥规和房建规范设计;振动和噪音对周围环境影响小,结构耐久性好;便于处理同区间接口问题;对施工工期有利。基础不均匀沉降和车站建筑振动问题可得到解决。缺点:站厅层由于存在截面较大桥墩,故建筑平面布局不灵活,对车站功能布置有影响;由于桥梁与房建结构分开布置,车站柱有较大或较多可能,体量显得较大。如图2:

地铁车站结构设计

地铁车站结构设计 车站是旅客上、下车的集散地, 也是列车始发和折返的场所, 是地下铁道路网中的重要建筑。 在使用方面, 车站供旅客乘降, 是旅客集中处所, 故应保证使用方便、安全、迅速进出车站。为此, 要求车站有良好的通风、照明、卫生设备, 以提供旅客正常的清洁卫生环境。 地下铁道车站又是一种宏伟的建筑物, 它是城市建筑艺术整体的一个有机部分, 一条线路中各站在结构或建筑艺术上都应有独特的特点。 车站设计时, 首先要确定车站在现有城市路网中的确切位置, 这涉及到城市规范和现有地面建筑状况, 地下铁道车站不比地面建筑, 一但修建要改移位置则比较困难, 因此确定车站的位置时,必须详细调查研究, 作经济技术比较。车站位置确定后, 进行选型, 然后根据客流及其特点确定车站规模, 平面位置,断面结构形式等。然后进行车站构造设计, 内力计算, 配筋计算等等。 一、工程概况: 长沙市五一广场站设计为两层三跨岛式车站,车站全长134.6m,宽度为21.8m,上层为站厅层,下层为站台层。车站底板埋深16m,采用明挖法施工,用地下连续墙围护。 二、设计依据: 地铁设计规范(GB50157-2003); 地铁施工技术规范。 三、地铁车站结构设计 3.1 设计选用矩形框架结构。 设计为岛式车站,采用两层三跨结构。地铁车站采用明挖法。车站其矩形框架由底板、侧墙、顶板和楼板、梁、柱组合而成。顶板和楼板采用单向板,底板

按受力和功能要求,采用以纵梁和侧墙为支承的梁式板结构。采用地下连续墙和钻孔桩护壁,采用钢管和钢板桩作基坑的临时支护。临时立柱采用钢管混凝土,柱下基础采用桩基,桩基采用灌注桩。 3.2 车站开挖围护结构 地铁车站围护结构采用0.8m厚、30m深地下连续墙,入土深度比为 =0.875,其中基坑开挖深度H 为16m,入土深度D为14m 。 四、侧压力计算: 土分层及土的钻孔柱状图如图4.1: 图4.1土分层及土的钻孔柱状图(单位,m)

沥青路面结构计算书

新建路面设计 1. 项目概况与交通荷载参数 该项目位于西南地区,属于二级公路,设计时速为40Km/h,12米双车道公路,设计使用年限为12.0年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日, 交通量年增长率为8.2%, 方向系数取55.0%, 车道系数取 70.0%。根据交通历史数据,按表A.2.6-1确定该设计公路为TTC4类,根据表 A.2.6-2得到车辆类型分布系数如表1所示。 表1. 车辆类型分布系数 根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。 表2. 非满载车与满载车所占比例(%) 根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。 表3. 非满载车与满载车当量设计轴载换算系数

根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为8,109,551, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为562,339,245。本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。 2. 初拟路面结构方案 初拟路面结构如表4所示。 表4. 初拟路面结构 路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取1.00,干湿与冻融循环作用折减系数Kη取1.00,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa。 3. 路面结构验算 3.1 沥青混合料层永久变形验算 根据表G.1.2,基准等效温度Tξ为20.1℃,由式(G.2.1)计算得到沥青混合料层永久变形等效温度为21.5℃。可靠度系数为1.04。 根据B.3.1条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。根据式(B.3.2-3)和式(B.3.2-4),计算得到d1=-8.23,d2=0.77。把d1和d2的计算结果带入式(B.3.2-2),可得到各分层的永久变形修正系数(kRi),并进而利用式(B.3.2-1)计算各分层永久变形量(Rai)。各计算结果汇总于表5中。 各层永久变形累加得到沥青混合料层总永久变形量Ra=19.2(mm),根据表3.0.6-1,沥青层容许永久变形为20.0(mm),拟定的路面结构满足要求。

地铁车站结构设计方法探讨

地铁车站结构设计方法探讨 摘要:伴随着我国社会经济的快速发展,地面上的交通压力也逐渐得到社会各 界的广泛重视,为了减轻地面交通状况,各大城市开始修建地铁,在地铁车站建 造中,结构设计是一个主要的环节,对地铁的安全运转有着至关重要的影响。这 篇文章论述了城市轨道交通中地铁车站的规划原则、规划思路,对地铁车站的规 划提出了合理化的主张,对中国将来地铁工作的建造与开展,具有一定的参考价值。 关键词:地铁车站;结构设计;设计方法 引言 在城市交通日渐拥堵的局势下,加速地铁建造的呼声越来越高涨。现在,地 铁车站变成城市轨道交通的一个主要纽带,能够每天承载很多的乘客,一定程度 上减轻了城市交通压力。本文主要谈谈地铁车站结构设计办法,以供同行参考。 1 地铁车站的设计原则 车站是城市轨道交通路网中非常重要的建筑物,它是供旅客乘降、换乘和候 车的场所,给旅客提供舒适清洁的环境以保证旅客安全、迅速地进出车站。车站 应容纳主要的技术设备和运营管理系统,从而保证城市轨道交通的安全运行。地 铁车站由站台层、站厅层、设备层以及出入口组成。地铁站台按照线路分布情况,又可分为岛式站台、侧式站台以及混合式站台。地铁车站里的辅助设备包括自动 扶梯、直升电梯、卷帘门、防洪门、旅客引导、照明、售检票系统、车站设备自 控系统等。关于地铁车站的设计应当从线路、车站建筑、车站结构、动力照明系统、车站通风与空调系统、给排水及消防系统以及区间的角度考虑其设计原则。 2 地铁车站结构设计方法 2.1功能设计关注人的行为及需求 密集型流动是地铁车站、地铁站的基本特征,人们的行为也可分为两种,即 通过或保留。主要行为是“通过”,“保留行为是短的”。所以,通过这个过程,人 们期望通过路径应该是一个非阻塞的快速路径,尽可能避免“通过”和“保留”之间 的相互影响。例如在站外的人需要从入口进去然后去售票进入的通道,这些环节 过程并不困难,对于这部分的保留和聚集是最明显的,聚集的人群通过会有影响,所以设计的面积应尽可能满足宽敞的购票。若自动售票机设置在站在通道上,人 群通过影响更大。因此,在车站设计时,应考虑足够的综合性,如香港地铁在墙 上嵌入售票机可以很好的解决这个问题。可见深入了解人们的行为需要可以更好 地组织和规划出站的流量、创新地铁站建设的设计。 2.2雨水系统设计要点 将局部排水泵与集水井设置在车站风亭、出入口等敞开位置,主要用于收集 废水、雨水及结构渗漏水。为保证集水井正常工作,设置两台排污泵,一台备用,当出现暴雨或结构大量渗漏水时,可以同时开启两台排污泵,将雨水提升至地面 消能后,直接排入城市雨水管网,根据该市50年一遇特大暴雨强度计算露天出 入口雨水排水量;(2)废水系统设计要点。将废水泵房设计在沿线路坡度的最 低点,同样设有2台排污泵,平时一台备用,消防时同时开启,其中废水集水池 容积≤最大一台排水泵20min的出水量。废水提升到地面后排入市政排水系统中,地下结构渗水量各地情况不同,根据实际情况设计。本地铁站渗水量按照0.5L/ (m2?d)标准进行计算;(3)污水系统设计要点。前文已经提到,站厅层设有 一处工作人员卫生间,站台层设有一处污水泵房、一处公共卫生间,卫生间污水

沥青路面结构设计与计算书

沥青路面结构设计与计算书 1 工程简介 本路段属于安图至汪清段二级公路.K0+000~K3+500,全线设计时速为60km/h的二级公路,路面采用60km/h的二级公路标准。路基宽度为10m,行车道宽度为2×3. 5m,路肩宽度为2×0.75m硬路肩、2×0.75土路肩。路面设计为沥青混凝土路面,设计年限为12年。路面设计以双轮组单轴载100KN为标准轴载,以BZZ-100表示;根据沿线工程地质特征及结合当地筑路材料确定路面结构为:路面的面层采用4cm厚细粒式沥青混凝土和6cm厚中粒式沥青混凝土,基层采用20cm厚水泥稳定碎石,底基层采用石灰粉煤灰土。 2 土基回弹模量的确定 本设计路段自然区划位于Ⅱ3区,当地土质为粘质土,由《公路沥青路面设计规范(JTG D50-2004)》表F.2查得,土基回弹模量在干燥状态取39Mpa,在中湿状态取34.5Mpa. 3 设计资料 (1)交通量年增长率:5% 设计年限:12年

。 4 设计任务 4.1 沥青路面结构组合设计 4.2 沥青路面结构层厚度计算,并进行结构层层底拉应力验算 4.3 绘制沥青路面结构图 5 沥青路面结构组合设计 5.1 路面设计以双轮组单轴载100KN 为标准轴载,以BZZ -100表示。标准轴载计算参数如表10-1所示。 5.1.1.1 轴载换算 轴载换算采用如下的计算公式: 35 .41 21∑=? ?? ??=k i i i P P n C C N ,()11 1.211c m =+?-=,计算结果如下表所示。

注:轴载小于25KN 的轴载作用不计 5.1.1.2 累计当量轴次 根据设计规范,二级公路沥青路面设计年限取12年,车道系数η=0.7,γ=5.0% 累计当量轴次: ()[][] 329841405 .07 .005.8113651)05.01(3651112 =???-+=??-+= ηγ γN N t e 次 5.1.2 验算半刚性基层层底拉应力的累计当量轴次 5.1.2.1 轴载验算 验算半刚性基层层底拉应力的轴载换算公式为:

(完整word版)2014年土木工程专业(地铁车站)毕业设计任务书

土木工程专业 城市地下空间工程方向毕业设计任务书 中南林业科技大学土木工程与力学学院 二0一四年三月

××地铁车站初步设计 一、毕业设计目的 毕业设计是按教学计划完成理论教学和相关实践教学之后的综合性教学,是对专业方向教学的继续深化和拓宽,是培养学生工程实践能力的重要教学阶段,其目的在于全面培养、训练学生运用已学的专业基本理论、基本知识、基本技能,进行本专业工程设计或科学研究的综合素质。 二、毕业设计基本要求 1、按设计课题的要求,独立完成设计任务,做出不同的设计方案,交出各自的成果。 2、认真设计、准确计算、细致绘图、文字表达确切流畅。 3、树立科学态度,注重钻研精神、独立工作能力的培养。 4、严格按照有关文件要求进行毕业设计管理,努力提高毕业设计质量。 5、图纸绘制要求:全部采用A3图纸(可加长);计算机出图必须有3张;图纸布局要协调,要紧凑而不拥挤;线条粗细要正确,位置要准确; 6、注重资料的收集、分析和整理工作,设计完成后,设计成果应按如下要求装订成册:(1)《毕业设计计算书》A4一份;(2)《毕业设计图纸》A4一份。 7、图纸装订顺序:封面,目录,设计总说明,设计图纸、表格。 8、设计计算书装订顺序:封面、目录、中英文摘要、设计总说明、设计计算的全部内容、致谢(300字左右)。 三、设计任务与要求 (一)、设计资料 1、车站地质勘察报告 2、预测客流(见附表) 3、车辆外形尺寸:A型车或B型车。 4、车辆编组:设计时采用远期列车6辆编组。 5、防水等级:一级;二次衬砌混凝土抗渗等级不小于S6。 6、主要技术标准:执行《地铁设计规范》(GB50157-2003)的有关技术标

高架结构设计与施工

1.桥梁的组成:上部结构(包括桥跨结构、桥面构造)、下部结构(包括桥墩与桥台)、支座、附属结构物。 主桥:桥梁跨越主要障碍物(如通航河道)的结构部分。 引桥:从桥台至正桥的结构部分,连接主桥和两端道路。 跨度/径:表示桥梁的跨越能力,对于多跨桥,最大跨度称为主跨。 计算跨径:桥跨结构相邻两支点间的距离L1。 净跨径:设计洪水位线上相邻两桥墩(台)间水平净距L0,各孔净跨径之和称为总跨径。标准跨径的目的:有利于桥梁制造和施工的机械化,也有利于桥梁养护维修和战备需要。标准跨径:公路常用10m、16m、20m、40m 铁路常用20m、24m、32m、48m 桥长:两桥台侧墙或八字墙尾端之间的距离。 桥下净空高度:设计洪水位(通航水位)与桥跨结构最下缘的高差H。 桥梁建筑高度:桥面与桥跨结构最下缘的高差h。 2.桥梁按结构体系分类:梁式桥、拱桥、悬索桥、组合体系桥;按桥面位置:上承式桥、中承式桥、下承式桥。 3.桥梁的主要桥型:梁桥、刚构桥,拱桥,斜拉桥,悬索桥,组合桥。 4.①梁桥主要分类:简支梁桥,悬臂梁桥,等截面连续梁桥,变截面连续梁桥,连续刚构桥 ②刚构(架)桥主要分类:门型刚构、T型刚构、斜腿刚构、V型刚构。 ③拱桥主要分类:三铰拱、两铰拱、无铰拱、系杆拱。 5.中国最大跨径的混凝土连续梁桥——虎门辅航道桥;世界上最大跨径的混凝土拱桥——万县长江大桥;中国最大跨径斜拉桥——苏通长江大桥(世界最大是俄罗斯岛大桥);中国最大跨径悬索桥——舟山西侯门大桥。 第二章:混凝土桥 1.①混凝土桥按材料使用分类:混凝土圬工桥、钢筋混凝土桥、预应力混凝土桥 ②按结构形式分类:梁桥(简支梁、连续梁)、拱桥、索桥、组合体系桥(刚构桥、斜拉桥) 2.混凝土桥与钢桥对比:混凝土桥:自重大(重)、刚度大(刚)、造价低(低)、强度低(弱) 钢桥:自重小(轻)、刚度小(柔)、造价高(高)、强度高(强)3.简支梁桥与连续梁桥受力对比:

地铁车站主体结构设计

地铁车站主体结构设计 (地下矩形框架结构) 西南交通大学地下工程系 目录 第一章课程设计任务概述 (3) 1.1 课程设计目的 (3)

1.2 设计规范及参考书 (3) 1.3 课程设计方案 (3) 1.4 课程设计的基本流程 (5) 第二章平面结构计算简图及荷载计算 (6) 2.1平面结构计算简图 (6) 2.2.荷载计算 (6) 2.3荷载组合 (7) 第三章结构内力计算 (11) 3.1建模与计算 (11) 本课程设计采用ANSYS进行建模与计算,结构模型如下图: (11) 3.2基本组合 (12) 3.2 标准组合 (16) 第四章结构(墙、板、柱)配筋计算 (21) 4.1 车站顶板上缘的配筋计算 (21) 4.2 负一层中柱配筋计算 (27) 4.3 顶纵梁上缘的配筋计算 (29) 4.4 顶纵梁上缘裂缝宽度验算 (31)

第一章 课程设计任务概述 1.1 课程设计目的 初步掌握地铁车站主体结构设计的基本流程;通过课程设计学习,熟悉地下工程“荷载—结构”法的有限元计算过程;掌握平面简化模型的计算简图、荷载分类及荷载的组合方式、弹性反力及其如何在计算中体现;通过实际操作,掌握有限元建模、划分单元、施加约束、施加荷载的方法;掌握地下矩形框架结构的内力分布特点,并根据结构内力完成配筋工作。为毕业设计及今后的实际工作做理论和实践上的准备。 1.2 设计规范及参考书 1、《地铁设计规范》 2、《建筑结构荷载规范》 3、《混凝土结构设计规范》 4、《地下铁道》(高波主编,西南交通大学出版社) 5、《混凝土结构设计原理》教材 6、计算软件基本使用教程相关的参考书(推荐用ANSYS ) 1.3 课程设计方案 1.3.1方案概述 某地铁车站采用明挖法施工,结构为矩形框架结构,结构尺寸参数详见表1-1。车站埋深3m ,地下水位距地面3m ,中柱截面的横向(即垂直于车站纵向)尺寸固定为0.8m (如图1-1标注),纵向柱间距8m 。为简化计算,围岩为均一土体,土体参数详见表1-2,采用水土分算。路面荷载为2/20m kN ,钢筋混凝土重度3/25m kN co =γ,中板人群与设备荷载分别取2/4m kN 、2/8m kN 。荷载组合按表1-3取用,基本组合用于承载能力极限状态设计,标准组合用于正常使用极

地铁车站主体结构设计.docx

地铁车站主体结构设计(地下矩形框架结构)

目录 第一章课程设计任务概述 (3) 1.1 课程设计目的 (3) 1.2 设计规范及参考书 (3) 1.3 课程设计方案 (4) 1.4 课程设计的基本流程 (5) 第二章平面结构计算简图及荷载计算 (6) 2.1平面结构计算简图 (6) 2.2.荷载计算 (7) 2.3荷载组合 (8) 第三章结构内力计算 (11) 3.1建模与计算 (11) 本课程设计采用ANSYS进行建模与计算,结构模型如下图: (11) 3.2基本组合 (12) 3.2 标准组合 (15) 第四章结构(墙、板、柱)配筋计算 (20) 4.1 车站顶板上缘的配筋计算 (20)

4.2 负一层中柱配筋计算 (26) 4.3 顶纵梁上缘的配筋计算 (28) 4.4 顶纵梁上缘裂缝宽度验算 (30) 第一章课程设计任务概述 1.1课程设计目的 初步掌握地铁车站主体结构设计的基本流程;通过课程设计学习,熟悉地下工程“荷载—结构”法的有限元计算过程;掌握平面简化模型的计算简图、荷载分类及荷载的组合方式、弹性反力及其如何在计算中体现;通过实际操作,掌握有限元建模、划分单元、施加约束、施加荷载的方法;掌握地下矩形框架结构的内力分布特点,并根据结构内力完成配筋工作。为毕业设计及今后的实际工作做理论和实践上的准备。 1.2设计规范及参考书 1、《地铁设计规范》 2、《建筑结构荷载规范》 3、《混凝土结构设计规范》 4、《地下铁道》(高波主编,西南交通大学出版社) 5、《混凝土结构设计原理》教材 6、计算软件基本使用教程相关的参考书(推荐用ANSYS)

路面结构设计计算书

公路路面结构设计计算示例 、刚性路面设计 交通组成表 1 )轴载分析 路面设计双轮组单轴载 100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ①轴载换算: 双轴一双轮组时,按式 i 1.07 10 5 p °型;三轴一双轮组时,按式 N s i N i P i 16 100 式中:N s ——100KN 的单轴一双轮组标准轴载的作用次数; R —单轴一单轮、单轴一双轮组、双轴一双轮组或三轴一双轮组轴型 i 级轴载的总重KN ; N i —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i —轴一轮型系数,单轴一双轮组时, i =1 ;单轴一单轮时,按式 3 2.22 10 P 0.43 计算; 8 0.22 2.24 10 R 计算

N i1 NA 注:轴载小于40KN 的轴载作用不计。 ②计算累计当量轴次 根据表设计规范,一级公路的设计基准期为 30年,安全等级为二级,轮迹横向分布系数 g r 0.08,则 , :t 30 N N s (1 g r ) 1 365 834.389 (1 0.08) g r 4 4 量在100 10 ~ 2000 10中,故属重型交通。 2) 初拟路面结构横断面 由表3.0.1,相应于安全等级二级的变异水平为低 ~中。根据一级公路、重交通等级和低级变异水平等 级,查表 初拟普通混凝土面层厚度为 24cm ,基层采用水泥碎石,厚 20cm ;底基层采用石灰土,厚 20cm 。 普通混凝土板的平面尺寸为宽 3.75m ,长5.0m 。横缝为设传力杆的假缝。 式中:E t ――基层顶面的当量回弹模量,; E 0——路床顶面的回弹模量, E x ――基层和底基层或垫层的当量回弹模量, E 1,E 2 ――基层和底基层或垫层的回弹模量, h x ――基层和底基层或垫层的当量厚度, 1 365 0.2 6900125362 其交通 0.08 查表的土基回弹模量 设计弯拉强度:f cm 结构层如下: E 。 35.0MP a ,水泥碎石 E 1 1500MP a ,石灰土 E ? 550 MP a 5.0MP a E c 3.1 104 MP a 水泥混凝土 24cm E = . x .g'-iF 水泥碎石20cm E :=150OMP Q 石灰土 20cm E =53C MPa E x h 2 D x h ; E z h ; h x 12 3 1500 0.2 12 4.700(MN ( 12D ( W E t 12 6.22 0.202 1500 0.202 550 2 2 1025MP a 0.202 0.202 m 0)2 ( 1 4 3 550 0.2 (0.2 12 m) ( 1025 0.380m 1 )1 E 2h 2 0.2) 4 2 ( 1500 0.2 550 0.2 1 )1 1.51(牙) E 。 0.45 6.22 1 1.51 (^) 0.45 35 4.165 E x 、0.55 1 1.44( ) 1 E E 1 ah E ( -) 4.165 0.38635 1.44 (些)0.55 35 0.786 1025 丄 ( )3 212276MP a 35 按式() s tc 计算基层顶面当量回弹模量如下: h 12 E 1 h ;E 2 2 3) 确定基层 E , E

ansys课程设计-地铁车站主体结构设计

目录 课程设计任务书 ................................................................................................................ - 1 - GUI方式 ............................................................................................................................... - 3 - 一、打开ANSYS........................................................................................................... - 3 - 二、建立模型.............................................................................................................. - 3 - 1、定义单元类型.................................................................................................. - 3 - 2、定义单元实常数.............................................................................................. - 3 - 3、定义材料特性.................................................................................................. - 3 - 4、定义截面.......................................................................................................... - 3 - 5、建立几何模型.................................................................................................. - 3 - 6、划分网格.......................................................................................................... - 4 - 7、建立弹簧单元.................................................................................................. - 4 - 三、加载求解.............................................................................................................. - 5 - 1、施加位移约束.................................................................................................. - 5 - 2、施加荷载.......................................................................................................... - 6 - (1)计算结构所受荷载................................................................................ - 6 - (2)施加结构所受荷载................................................................................ - 6 - (3)施加重力场............................................................................................ - 7 - 3、求解.................................................................................................................. - 8 - 四、查看计算结果...................................................................................................... - 8 - 1、添加单元表...................................................................................................... - 8 - 2、查看变形图...................................................................................................... - 8 - 3、查看各内力图.................................................................................................. - 9 - 4、查看内力列表.................................................................................................. - 9 - 单元内力表........................................................................................................................ - 11 - APDL方式......................................................................................................................... - 17 -

东莞至惠州城际轨道交通高架站结构设计概述

东莞至惠州城际轨道交通高架站结构设计概述 【摘要】随着城市轨道交通建设的发展,各种型式的区间高架车站相继出现。该文章着重介绍了东莞至惠州城际轨道交通项目中建桥合一型式的车站结构设计思路,及施工图设计中应注意的要点等。 【关键词】建桥合一 1 工程概述 1.1 工程概况 谢岗站为东莞至惠州城际轨道交通项目高架车站之一(以下简称本工程)。该站为路侧侧式二层车站,采用框架结构,轨道梁简支在框架横梁上,钻孔灌注桩基础。车站主体设计使用年限:100年;车站主体结构安全等级:一级;建筑抗震设防类别:乙类;建筑抗震设防烈度:6度(0.05g),设计地震分组第一组;框架抗震等级:三级;建筑结构耐火等级:二级;钢筋混凝土结构构件裂缝宽度限值:柱墩及盖梁:0.2mm;其余框架梁0.3mm。钢筋混凝土的材料、容许应力、结构安全系数、结构计算方法及构造要求符合现行《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》和《铁路桥梁钢结构设计规范》的规定。 1.2 结构特点及选型 车站一般采用混凝土框架结构形式,车站结构是建筑结构与桥梁结构融合在一起的结构体系,建筑结构和运行列车的轨道梁的连接方案使车站形成多种结构方案,根据连接方案、受力特点及建筑布置可分为两大型式: (1)“建、桥分离”式车站,即运行列车的轨道梁与车站结构分开设置,轨道粱支承在桥墩上,两种结构自成独立受力体系,能相对自由沉降,各专业受力明确,建筑和桥梁可执行各自的设计规范,各有比较成熟的结构计算程序和构造措施,车站的振动较小。但建、桥分开体系需增加相应的柱网,切断了框架的横向联系,削弱了结构的整体性,降低了整个车站的空间协调性,给作为公共交通建筑的车站大空间布置带来不便。 (2)“建、桥合一”式车站,这种结构的特点是轨道梁结构与车站结构相互作用,车站建筑布置时能统一考虑,简化了柱网,使建筑平面有较大的空间,车站用房布置灵活,功能布置上相对合理,建筑立面造型灵活。但列车荷载对站房震动效应明显。结构受力须满足现行“铁路桥涵设计规范”和“建筑结构设计规范”,结构设计、计算较为复杂。 比较两种结构形式,高架车站由于综合考虑用地条件及城市景观要求,一般情况在车站体量较大,服务水平要求高,以车站建筑功能为主进行设计时多采用“建、桥合一”式车站。结构体系以框架结构为主体,轨道梁简支在框架横梁上,

路面结构设计计算书有计算过程的样本

公路路面结构设计计算示例 一、 刚性路面设计 交通组成表 1) 轴载分析 路面设计双轮组单轴载100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ① 轴载换算: 16 1100∑=? ?? ??=n i i i i s P N N δ 式中 : s N ——100KN 的单轴—双轮组标准轴载的作用次数; i P —单轴—单轮、 单轴—双轮组、 双轴—双轮组或三轴—双轮组轴型i 级轴载的总重KN; i N —各类轴型i 级轴载的作用次数; n —轴型和轴载级位数; i δ—轴—轮型系数, 单轴—双轮组时, i δ=1; 单轴—单轮时, 按 式43.031022.2-?=i i P δ计算; 双轴—双轮组时, 按式22.05 1007.1--?=i i P δ; 三轴—双轮组时, 按式22.08 1024.2--?=i i P δ计算。

轴载换算结果如表所示 车型 i P i δ i N 16)(P P N i i i δ 解放CA10B 后轴 60.85 1 300 0.106 黄河JN150 前轴 49.00 43.03491022.2-?? 540 2.484 后轴 101.6 1 540 696.134 交通SH361 前轴 60.00 43.03601022.2-?? 120 12.923 后轴 2?110.00 22.052201007.1--?? 120 118.031 太脱拉138 前轴 51.40 43.0340.511022.2-?? 150 1.453 后轴 2?80.00 22.051601007.1--?? 150 0.969 吉尔130 后轴 59.50 1 240 0.059 尼桑CK10G 后轴 76.00 1 1800 2.230 16 1 )( P P N N i i i n i δ∑== 834.389 注: 轴载小于40KN 的轴载作用不计。 ② 计算累计当量轴次 根据表设计规范, 一级公路的设计基准期为30年, 安全等级为二级, 轮迹横向分布系数η是0.17~0.22取0.2, 08.0=r g , 则 [][] 362 .69001252.036508 .01 )08.01(389.8343651)1(30=??-+?=?-+=ηr t r s e g g N N 其 交通量在4 4102000~10100??中, 故属重型交通。 2) 初拟路面结构横断面 由表3.0.1, 相应于安全等级二级的变异水平为低~中。根据一级公路、 重交通等级和低级变异水平等级, 查表 4.4.6 初拟普通混凝土面层厚度为24cm, 基层采用水泥碎石, 厚20cm; 底基层采用石灰土, 厚20cm 。普通混凝土板的平面尺寸为宽3.75m, 长5.0m 。横缝为设传力杆的假缝。 3) 确定基层顶面当量回弹模量tc s E E , 查表的土基回弹模量a MP E 0.350=, 水泥碎石a MP E 15001=, 石灰土

地铁车站结构设计原则

7.1 地下车站结构设计 1. 地下车站结构设计,应满足施工、运营、城市规划、防水、防迷流以及人防的有关要求。车站结构设计应符合强度、刚度、稳定性、耐久性、抗浮和裂缝开展宽度验算的要求。 2. 地下车站结构设计,必须以地质勘察资料为依据,并考虑不同施工方法对地质勘探的特殊要求,通过施工过程中对地质的直接观察或监控量测反馈进行验证,必要时应根据实际情况修改设计。 3. 地下车站结构设计的净空尺寸,应满足地铁建筑限界或其它使用及施工工艺的要求,并考虑施工误差、结构变形及后期沉降的影响。 4. 地下车站结构设计,应根据沿线不同地段的工程地质和水文地质条件及城市规划要求,结合周边既有建(购)筑物、地下管线以及道路交通状况等通过对其技术经济、环境影响和使用功能等方面的综合比较,合理的选择施工方法和结构型式。 5. 地下车站结构设计,应减少施工和建成后对环境造成不利的影响。 6. 地下车站结构设计,宜与车站周围规划中的相关建筑协调统一、同步规划,应考虑设计、施工方案的相互影响。 7. 地下车站结构设计,应根据该地区的地震设防烈度、场地条件、结构类型和隧道埋深等因素考虑地震的影响,进行抗震验算,并在结构设计时采取相应的构造措施,以提高结构的整体抗震能力。 8. 地下车站结构防水设计,应满足《地下工程防水技术规范》(GB50108-2001)的规定,遵循“防、排、堵、截相结合,刚柔相济,因地制宜,综合治理”的原则。 9. 地下车站结构设计,应采取防止杂散电流腐蚀的措施。钢结构及钢连接件,应按有关规范要求进行防锈蚀处理。 10. 地下车站结构的所有受力构件,应根据《建筑设计防火规范》(GBJ 16-87)修订本,1997年版,第2.0.1条和附录二“建筑构件的燃烧性能和耐火极限”的规定要求进行设计。 11. 地下车站结构设计,应根据地区城市规划的人防要求,严格按《人民防空工程设计规范》(GB 5 0225-95)的规定进行设计。 12. 地下车站结构设计,应结合支护结构特点、地质条件、周边既有建(购)筑物、地下管线以及道路状况,根据《建筑基坑支护技术规程》(JGJ 120-89)及该地区基坑支护规范(规程)的规定,确定基坑安全等级,提出监测要求,有效控制地表沉降。必要时应采取预加固措施,以确保邻近建筑和重要地下管线的正常使用。 13. 地下车站结构设计,可视其使用条件和荷载特性等情况,选用与其特点相近的现行相关结构设计规范进行设计。

明挖地铁车站结构设计

关于明挖地铁车站结构设计中若干问题的探讨摘要:随着中国经济持续快速发展和城市化水平的提高,我国城市地铁的建设正大规模地开展。本文以明挖法地铁车站框架结构为研究对象,简述地铁车站结构设计及构造中存在的一些值得商榷的地方,以供同行参考,进行设计优化。 引言 为解决城市交通拥堵问题,修建具有超强运力的地铁与轻轨已逐渐成为大城市的首选手段。目前国内绝大多数直辖市及省会城市已经部分建成或正在修建地铁。地铁在城市中的经济效益与社会效益也是有目共睹的。但是对于以地下工程为主的地铁结构,在结构设计中由于岩土性质的复杂性、设计理论的局限性,使地铁结构设计及构造中存在的一些值得商榷的地方,需要我们在实践中不断的探索、求解,不断优化地铁设计。 一、地震作用对地铁整体现浇框架结构的影响 1.侧墙大开洞对抗震设计的影响 标准的两层地下车站结构型式一般为单柱双跨或双轴三跨两层整体现浇砼框架结构,结构刚度分布均匀、对称。但在车站主体结构与出入口、风亭以及大外挂物业用房相接处,侧墙必须大开洞。大开洞严重削弱了结构侧向刚度,且造成结构两侧刚度不对称,对结构抗震产生不利影响,结构设计时此影响应予以考虑。 2.结构中柱设计对抗震设计的影响 车站结构中的中柱在抗震设计中基本是一种脆性破坏,是框架结

构中受力最薄弱的部位,和首先遭到破坏的构件。因此,提高地下框架抗震性能的最有效的方法是改善中柱的受力性能和受力特征。目前,中柱基本采用的是普通钢筋砼柱,砼强度较高,轴压比偏大,对抗震不利。故中柱应尽量采用塑性性能良好的钢管砼柱。 二、侧向水土压力的不确定性对结构设计的影响问题 1.对中板配筋设计的影响 各层板在侧向水土压力和竖向荷载的共同作用下,实际上处于偏压受力的状态。但是,由于侧向水土压力计算理论上的缺陷以及水压力的多变性,目前各层板的配筋大多按纯弯构件计算,按偏压进行验算,所得结果是偏于安全的。笔者参与的多条地铁线路设计总体技术要求,均有此规定。一般情况下,按上述方法设计时,偏压验算都能满足,因此,设计人员往往不进行偏压验算。但是,在板的轴向压力很大的时候,属小偏压构件,如仍按纯弯构件进行配筋计算,受力上偏于不安全。在这种情况下,应按偏压构件设计,按纯弯构件验算,以保证结构安全。 2.对车站侧墙设计的影响 水位的变化对侧墙剪力的大小影响很大,当水位取至抗浮设计水位时,由于底板所受水浮力很大,向上凸起,侧墙向外侧鼓出,导致侧墙外侧土体产生被动土压力,侧墙剪力最大。以一般两层站为例,侧墙在与底板的节点处,剪力可以达到800kN以上,大于不配箍墙(板)构件抗剪承载力。可见,侧向水土压力的取值,对侧墙的剪力设计值影响很大。

高架车站结构设计简述

高架车站结构设计简述 摘要:对不同结构形式高架车站结构设计分析,探讨了在高架车站结构设计上一些主要难点;着重叙述桥建合一高架车站结构计算中模型建立与选择,以及一些参数、荷载取值等问题,以供高架车站结构设计参考。 关键词:桥建合一;框架横梁;大开洞;振型数;基础沉降 中图分类号; U448.28文献标识码:A 一、概述 高架线路在一定城市道路环境条件下,采用灵活的建筑类型使轨道交通能有较好适应性。采用一定技术措施后的低振动低噪声,能满足城市景观和环保要求,高架结构的小沉降、低变形,也能满足线路运行平顺要求。高架轨道交通建设经济效益显著,运行良好,将为城市的交通发展起着巨大的作用。本着快捷,安全,投资少,运营成本低的模式,城市高架轨道交通是未来主要发展方向。 不同形式高架车站适合于不同环境。一般来说,根据高架车站轨道梁与站房之间的关系,可分为“桥建分离”与“桥建合一”两类。 “桥建合一”型式指:桥梁和房建结构结合,桥梁盖梁、墩柱、基础为桥梁结构和房建结构共有,桥梁横向框架通过纵向房建结构梁板整体浇筑,形成空间框架体系。这种结构组合型式优点:结构受力合理,结构整体性、稳定性好,车站建筑布置灵活,柱网布置合理。缺点:列车振动对站房影响明显,结构计算较为复杂,空间框架结构构件必须满足桥梁规范和房建规范。框架结构受载不均匀,易造成基础不均匀沉降,特别是在地质条件不好地段。一旦发生基础不均匀沉降将损坏结构,且修复困难。如图1: 图1:桥建合一型式岛式站台高架站 “桥建分离”型式是:车站范围内行车部分结构与区间桥梁一致,属桥梁结构体系;其余部分结构采用框架结构,站台、站厅均在框架结构内布置,属房建结构体系。这种结构组合型式优点:结构体系传力途径明确,受力简单,可分别按桥规和房建规范设计;振动和噪音对周围环境影响小,结构耐久性好;便于处理同区间接口问题;对施工工期有利。基础不均匀沉降和车站建筑振动问题可得到解决。缺点:站厅层由于存在截面较大桥墩,故建筑平面布局不灵活,对车站功能布置有影响;由于桥梁与房建结构分开布置,车站柱有较大或较多可能,体量显得较大。如图2:

路面结构设计计算书(有计算过程的)DOC.doc

公路路面结构设计计算示例 一、刚性路面设计 交通组成表 车型 前轴重 后轴重 后轴数 后轴轮组数 后轴距 交通量 ( m ) 小客车 1800 解放 CA10B 19.40 60.85 1 双 — 300 黄河 JN150 49.00 101.60 1 双 — 540 交通 SH361 60.00 2× 110.00 2 双 130.0 120 太脱拉 138 51.40 2× 80.00 2 双 132.0 150 吉尔 130 25.75 59.50 1 双 — 240 尼桑 CK10G 39.25 76.00 1 双 — 180 1)轴载分析 路面设计双轮组单轴载 100KN ⑴ 以设计弯沉值为指标及验算面层层底拉力中的累计当量轴次。 ① 轴载换算: n 16 P i N s i N i 100 i 1 式中 : N s —— 100KN 的单轴—双轮组标准轴载的作用次数; P i —单轴—单轮、单轴—双轮组、双轴—双轮组或三轴—双轮组轴型 i 级轴载的总重 KN ; N i —各类轴型 i 级轴载的作用次数; n —轴型和轴载级位数; i —轴—轮型系数,单轴—双轮组时, i =1;单轴—单轮时,按式 i 2.22 103 P i 0.43 计算; 双轴—双轮组时,按式 i 1.07 10 5 P i 0. 22 ;三轴—双轮组时,按式 i 2.24 10 8 P i 0. 22 计算。 轴载换算结果如表所示 车型 P i N i P i 16 i i N i ( P ) 解放 CA10B 后轴 60.85 1 300 0.106 黄河 JN150 前轴 49.00 2.22 103 49 0.43 540 2.484 后轴 101.6 1 540 696.134 交通 SH361 前轴 60.00 2.22 103 60 0.43 120 12.923 后轴 2 110.00 1.07 10 5 220 0.22 120 118.031

车站结构设计

目录 第一章程设计任务概述 (2) 1、课程设计目的 (2) 2、设计规范及参考书 (2) 3、课程设计方案 (2) 3.1方案概述 (2) 3.2主要材料 (5) 4、课程设计基本流程 (5) 第二章平面结构计算简图及荷载计算 (6) 1、中柱的简化 (6) 2、墙和板的简化 (6) 3、截面特性 (6) 4、截面尺寸 (7) 5、荷载计算 (7) 5.1车站横断面计算简图 (7) 5.2荷载基本组合计算 (8) 5.3荷载标准组合计算 (9) 第三章结构内力计算 (10) 1、有限元建模 (10) 2、计算结果 (10) 第四章结构配筋计算 (14) 1、车站顶板上缘的配筋计算 (14) 2、中柱的配筋计算 (17) 3、准截面配筋计算表 (19) 4、配筋图 (20)

第一章 课程设计任务概述 1、 课程设计目的 初步掌握地铁车站主体结构设计的基本流程;通过课程设计学习,熟悉地下工程“荷载—结构”法的有限元计算过程;掌握平面简化模型的计算简图、主动荷载及荷载的组合方式、地层抗力及其如何在计算中体现;通过实际操作,掌握有限元建模、划分单元、施加约束、施加荷载的方法;掌握地下矩形框架结构的内力分布特点,并根据结构内力完成配筋工作。为毕业设计及今后的实际工作做理论和实践上的准备。 2、 设计规范及参考书 1、《混凝土结构设计规范》 2、《地下铁道》(高波主编,西南交通大学出版社) 3、《混凝土结构设计原理》教材 4、计算软件基本使用教程相关的参考书(推荐用ANSYS ) 3、课程设计方案 3.1 方案概述 某地铁车站采用明挖法施工,结构为矩形框架结构,结构尺寸参数详见表1-1。车站埋深3m ,地下水位距地面3m ,中柱尺寸0.8m ×0.8m ,纵向柱间距8m 。为简化计算,围岩为均一土体,土体参数详见1-2,采用水土分算。路面荷载为 3/20m kN (超载系数1.1),钢筋混凝土重度3/25m kN co =γ,中板人群与设备 荷载分别取3/4m kN 、3/8m kN 。荷载组合按表1-3取用,基本组合用于承载能力极限状态设计,标准组合用于正常使用极限状态设计。 要求用电算软件完成结构内力计算,并根据《混凝土结构设计规范》完成墙、板、柱的配筋。

相关文档