文档库 最新最全的文档下载
当前位置:文档库 › 控制系统建模、分析、设计和仿真

控制系统建模、分析、设计和仿真

控制系统建模、分析、设计和仿真
控制系统建模、分析、设计和仿真

控制系统建模、分析、设计和仿真第5组

自动化专业学生韩小康

指导老师周景雷

摘要

本次课程实践为设计两个控制器分别为最小拍无波纹和最小拍有波纹控制器。通过

这次实践可以进一步对所学的《计算机控制技术》有进一步的了解,并对Matlab软件的操作有一定程度的熟悉,为以后的工作或研究作基础。MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和

Simulink两大部分。

关键字:Matlab;计算机控制系统;建模;仿真

Control system modeling, analysis, design and simulation of group 5

Student majoring in HanXiaokang

Tutor ZhouJinglei

Abstract:

The course practice to design two controllers respectively minimum corrugated controller without ripples and minimum pat. Through this practice can be further learned to have further understanding of computer control technology, and a certain degree of familiar to the operation

of the Matlab software, the foundation for later work or study. MATLAB is short for Matrix lab (Matrix Laboratory), is produced by the American MathWorks company business mathematics software, used for algorithm development, data visualization, data analysis and numerical calculation of senior technical computing language and interactive environment, mainly including two most of MATLAB and Simulink.

Key words: Matlab; The computer control system; Modeling; The simulation

1 课程设计的性质、目的

本课程设计是信息学院自动化专业开设的计算机仿真专业选修课的实践课。通过本课程的学习实践,要求学生掌握有关控制系统计算机仿真的基本概念、工具、原理、方法和步骤,培养和增强学生运用《计算机仿真》课程中所学知识,以MATLAB为工具对控制系统进行分析、设计和仿真的技能,加深理解所学知识,牢固掌握所学知识,提高运用所学知识解决实际问题的能力。

2 MATLAB软件介绍

1、基本功能

MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。

MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB 函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。

2、基本应用

MATLAB 产品族可以用来进行以下各种工作:

(1)数值分析

(2)数值和符号计算

(3)工程与科学绘图

(4)控制系统的设计与仿真

(5)数字图像处理技术

(6)数字信号处理技术

(7)通讯系统设计与仿真

(8)财务与金融工程

(9)管理与调度优化计算(运筹学)

MATLAB 的应用范围非常广,包括信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以及计算生物学等众多应用领域。附加的工具箱(单独提供的专用MATLAB 函数集)扩展了MATLAB 环境,以解决这些应用领域内特定类型的问题。

3 课程设计的内容

1、求被控对象传递函数G(s)的MATLAB描述。

输入:

num=conv([968],conv([1 2],[1 9]));

den=conv([1 0 0],conv([1 1],conv([1 4],[1 8])));

T=0.05;

sys=tf(num,den)

显示结果:

Transfer function:

968 s^2 + 10648 s + 17424

------------------------------

s^5 + 13 s^4 + 44 s^3 + 32 s^2

2、求被控对象脉冲传递函数G(z)。

输入:

Gz=c2d(Gs,0.02,'zoh')

显示结果:

ransfer function:

0.001132 z^4 + 0.00226 z^3 - 0.006126 z^2 + 0.001831 z + 0.0009176

------------------------------------------------------------------

z^5 - 4.735 z^4 + 8.961 z^3 - 8.473 z^2 + 4.003 z - 0.7558

Sampling time: 0.02

3、转换G(z)为零极点增益模型并按z-1形式排列。

输入:

[z,p,k]=zpkdata(Gz)

Gz=zpk(z,p,k,T,'variable','z^-1')

显示结果:

z = [4x1 double]

p = [5x1 double]

k =0.0011

Zero/pole/gain:

0.001132 z^-1 (1+3.605z^-1) (1-0.9802z^-1) (1-0.8869z^-1) (1+0.2586z^-1)

------------------------------------------------------------------------

(1-z^-1)^2 (1-0.9608z^-1) (1-0.9048z^-1) (1-0.8694z^-1)

Sampling time: 0.02

4、确定误差脉冲传递函数Ge(z)形式,满足单位加速度信号输入时闭环稳态误差为零和实际闭环系统稳

定的要求。

syms z a0 a1 a2 b0 b1

Gez= (1-z^-1)^3*(b0+b1*z^-1)

5、确定闭环脉冲传递函数Gc(z)形式,满足控制器Dy(z)可实现、最少拍和实际闭环系统稳定的要求。输入:

Gcz=z^-1*(1+3.605*z^-1)*(a0+a1*z^-1+a2*z^-2)

结果:

Gcz =1/z*(1+721/200/z)*(a0+a1/z+a2/z^2)

6、根据4、5、列写方程组,求解Gc(z)和Ge(z)中的待定系数并最终求解Gc(z)和Ge(z) 。

7、求针对单位加速度信号输入的最少拍有波纹控制器Dy(z)并说明Dy(z)的可实现性。

8、用程序仿真方法分析加速度信号输入时闭环系统动态性能和稳态性能。

输入:

f1=subs(Gez,z,1)

f2=subs(diff(Gez,1),z,1)

f3=subs(diff(Gez,2),z,1)

[b0j,b1j]=solve(f1,f2,f3)

Gcz=z^-1*(1+3.605*z^-1)*(a0+a1*z^-1+a2*z^-2)

f1=subs(Gcz,z,1)-1

f2=subs(diff(Gcz,1),z,1)

f3=subs(diff(Gcz,2),z,1)

[a0j,a1j,a2j]=solve(f1,f2,f3)

结果:

f1 =921/200*a0+921/200*a1+921/200*a2-1

f2 =-821/100*a0-2563/200*a1-871/50*a2

f3 =2363/100*a0+2463/50*a1+841/10*a2

a0j =878529200/781229961

a1j =-1115305600/781229961

a2j =406424600/781229961

Gcz=1/z*(1+721/200/z)*(878529200/781229961-1115305600/781229961/z+406424600/781229961/z^2 )

Gez =(1-1/z)^3*(1-b0/z)

f4 = 0

f5 =-406424600/374805361-156245992200/270234665281*b0

b0j =-1465160683/781229961

所以:

Gez =(1-1/z)^3*(1+1465160683/781229961/z)

Gcz=1/z*(1+721/200/z)*(878529200/781229961-1115305600/781229961/z+406424600/781229961/z^2 )

Dyz=4611686018427387904/5220428572859803*(878529200/781229961-1115305600/781229961/z+4064 24600/781229961/z^2)/(1-4901/5000/z)/(1-8869/10000/z)/(1+1293/5000/z)/(1-1/z)*(1-1201/125 0/z)*(1-1131/1250/z)*(1-4347/5000/z)/(1+1465160683/781229961/z)

9、用图形仿真方法(Simulink)分析单位加速度信号输入时闭环系统动态性能和稳态性能。

输入:

[N,D]=numden(simplify(Gcz));

numc=sym2poly(N)

denc=sym2poly(D)

[N,D]=numden(simplify(Guz));

numu=sym2poly(N)

denu=sym2poly(D)

t=0:0.02:1

u=t.*t/2

hold on

dlsim(numc,denc,u)

dlsim(numu,denu,u)

hold off

[N,D]=numden(simplify(Dyz));

numdy=sym2poly(N)

dendy=sym2poly(D)

有波纹最小拍程序仿真截图:

有波纹最小拍图形仿真截图:

闭环系统输出Gcz图形仿真结果:

控制器输出U(z)图形仿真图:

10、确定误差脉冲传递函数Ge(z)形式,满足单位速度信号输入时闭环稳态误差为零和实际闭环系统稳

定的要求。

Gez =(1-1/z)^2*(e0+e1/z+e2/z^2+e3/z^3+e4/z^4)

11、确定闭环脉冲传递函数Gc(z)形式,满足控制器Dw(z)可实现、无波纹、最少拍和实际闭环系统稳

定的要求。

Gez=(1-z^-1)^2*(b0+b1*z^-1+b2*z^-2+b3*z^-3+b4*z^-4)

12、根据10、11、列写方程组,求解Gc(z)和Ge(z)中的待定系数并最终求解Gc(z)和Ge(z) 。

输入:

syms z a0 a1 b0 b1 b2 b3 b4

Gez=(1-z^-1)^2*(b0+b1*z^-1+b2*z^-2+b3*z^-3+b4*z^-4)f1=subs(Gcz,z,1)-1

f2=subs(diff(Gcz,1),z,1)

[a0j a1j]=solve(f1,f2)

A=double([a0j a1j])

Gcz=subs(Gcz,[a0 a1],A)

Gez=(1-z^-1)^2*(b0+b1*z^-1+b2*z^-2+b3*z^-3+b4*z^-4)

f3=subs(Gez,z,inf)-1

f4=subs(Gez,z,-3.427)-1

f5=subs(Gez,z,0.9512)-1

f6=subs(Gez,z,0.7408)-1

f7=subs(Gez,z,-0.245)-1

[b0j b1j b2j b3j b4j]=solve(f3,f4,f5,f6,f7)

B=double([b0j b1j b2j b3j b4j])

Gez=subs(Gez,[b0 b1 b2 b3 b4],B)

结果:

Gez=(1-1/z)^2*(1+4607117145708427/1099511627776/z+857326361880357/68719476736/z^2-5728981 633685343/549755813888/z^3-7601370565683995/2199023255552/z^4)

Gcz=5220428572859803/4611686018427387904/z*(1+721/200/z)*(1-4901/5000/z)*(1-8869/10000/z) *(1+1293/5000/z)/(1-1/z)^2/(1-1201/1250/z)/(1-1131/1250/z)/(1-4347/5000/z)

13、求针对单位速度信号输入的最少拍无波纹控制器Dw(z)并说明Dw(z)的可实现性。

Gz=0.016808*z^-1*(1+3.427*z^-1)*(1-0.9512*z^-1)*(1-0.7408*z^-1)*(1+0.245*z^-1)/(1-z^-1)^2 /(1-0.9048*z^-1)/(1-0.7788*z^-1)/(1-0.7047*z^-1)

Guz=Gcz/Gz

Dwz=Gcz/Gz/Gez

Gcz=4844576162357971/288230376151711744/z*(1+3427/1000/z)*(1-1189/1250/z)*(1-463/625/z)*( 1+49/200/z)*(-4545899597750647/274877906944+1195119780778763/68719476736/z)

Gez=(1-1/z)^2*(1+615657890023047/2199023255552/z+1796608902133647/2199023255552/z^2-71813 391245365/137438953472/z^3-6084857878461669/35184372088832/z^4)

Dwz=(-4545899597750647/274877906944+1195119780778763/68719476736/z)*(1-1131/1250/z)*(1-19 47/2500/z)*(1-7047/10000/z)/(1+615657890023047/2199023255552/z+1796608902133647/21990 23255552/z^2-71813391245365/137438953472/z^3-6084857878461669/35184372088832/z^4)

14、用程序仿真方法分析单位速度信号输入时闭环系统动态性能和稳态性能。

15、用图形仿真方法(Simulink)分析单位速度信号输入时闭环系统动态性能和稳态性能。

[N,D]=numden(simplify(Gcz))

numd=sym2poly(N)

dend=sym2poly(D)

[N,D]=numden(simplify(Guz))

numi=sym2poly(N)

deni=sym2poly(D)

t=0:0.2:10

u=t

hold on

dlsim(numd,dend,u)

dlsim(numi,deni,u)

hold off

[N,D]=numden(simplify(Dwz))

numt=sym2poly(N)

dent=sym2poly(D)

无波纹最小拍程序仿真截图:

无波纹最小拍图形仿真截图:

无波纹最小拍闭环系统输出Gcz图形仿真结果:

无波纹最小拍闭环系统数字控制器输出Guz图形仿真结果:

16、根据8、9、14、15、的分析,说明有波纹和无波纹的差别和物理意义。

有波纹和无波纹的差别在于有波纹控制器经过一定的采样周期之后,其输入跟踪输出,但其数字控制器的曲线会出现小的波动,该波动为波纹,而无波纹数字控制器D(z)的输出曲线经过一定采样周期之后会为一常数,不会产生波纹。

五、参考文献

1. 肖伟,刘忠.MATLAB程序设计与应用[M].清华大学出版社,2005

2. 周润景.基于MATLAB与fuzzyTECH的模糊与神经网络设计[M].电子工业出版社,2010

3. 陈超.MATLAB应用实例精讲-数学数值计算与统计分析篇[M].电子工业出版社,2010

4. 田敏.案例解说MATLAB典型控制应用[M].电子工业出版社,2009

5. 刘刚.MATLAB数字图像处理[M].机械工业出版社,2010

控制系统仿真课程设计报告.

控制系统仿真课程设计 (2011级) 题目控制系统仿真课程设计学院自动化 专业自动化 班级 学号 学生姓名 指导教师王永忠/刘伟峰 完成日期2014年6月

控制系统仿真课程设计一 ———交流异步电机动态仿真 一 设计目的 1.了解交流异步电机的原理,组成及各主要单元部件的原理。 2. 设计交流异步电机动态结构系统; 3.掌握交流异步电机调速系统的调试步骤,方法及参数的整定。 二 设计及Matlab 仿真过程 异步电机工作在额定电压和额定频率下,仿真异步电机在空载启动和加载过程中的转速和电流变化过程。仿真电动机参数如下: 1.85, 2.658,0.2941,0.2898,0.2838s r s r m R R L H L H L H =Ω=Ω===, 20.1284Nm s ,2,380,50Hz p N N J n U V f =?===,此外,中间需要计算的参数如下: 21m s r L L L σ=-,r r r L T R =,22 2 s r r m t r R L R L R L +=,10N m TL =?。αβ坐标系状态方程: 其中,状态变量: 输入变量: 电磁转矩: 2p m p s r s L r d ()d n L n i i T t JL J βααωψψβ=--r m r r s r r d 1d L i t T T ααβαψψωψ=--+r m r r s r r d 1d L i t T T ββαβψψωψ=-++22s s r r m m m s r r s s 2r r r r d d i R L R L L L L i u t L T L L ααβαα σψωψ+=+-+22 s s r r m m m s r r s s 2 r r r r d d i R L R L L L L i u t L T L L ββαββ σψωψ+=--+[ ] T r r s s X i i αβαβωψψ=[ ] T s s L U u u T αβ=()p m e s s s s r n L T i i L βααβ ψψ=-

气动张力控制系统的建模与仿真

气动张力控制系统的建模与仿真 摘要:本文简单介绍了张力控制的相关知识及气动张力控制系统的组成及工作原理,并对张力控制系统的收卷控制部分进行了数学建模与仿真。建立了比例压力阀控缸开环系统的简化模型,采用PID控制方法,在Matlab仿真平台进行系统模型仿真,得到了系统仿真曲线。 关键词:张力控制气动比例控制系统建模与仿真 近年来,气动技术以其自身独特的传动方式和优点,如清洁、结构简单、气体来源充足和成本相对较低,已在工业自动化领域广泛应用。将气动技术应用于恒张力控制系统已成为一个重要研究领域,PID控制,现代控制理论,智能控制等都被应用到气动系统的控制中。但是气动控制系统,由于气体的可压缩性,阀口非线性及气缸摩擦力等因素的影响,导致了气动伺服系统的强非线性、固有频率低、刚度小、阻尼小等特点,要得到满意的控制伺服系统比较困难。要对气动伺服控制系统进行分析和研究,一般需要首先建立该控制系统的数学模型。 本文通过介绍张力控制的相关知识及气动比例控制系统原理与组成,针对张力控制系统的收卷控制部分建立简单的比例压力阀控缸开环控制系统的数学模型,并在Matlab环境下进行了仿真。 一、张力控制的基础知识 张力控制,简单地说就是要控制物体在设备上输送时物体上相互拉长或绷紧的力。张力控制系统往往是张力传感器和张力控制器的一种系统集成,是一种实现恒张力或者锥度张力控制的自动控制系统,主要应用于造纸、纺织、薄膜、电线等轻工业中,其作用主要是实现辊间的同步,收卷和放卷的均匀控制。在带材或线材的收卷和放卷过程中,为保证生生产的质量和效率,保持恒定张力是很重要的。 这种控制对机器的任何运行速度都必须保持有效,包括机器的加速、减速和匀速。即使在紧急停车情况下,也应有能力保证被分切物不破损。张力控制的稳定与否直接关系到分切产品的质量。若张力不足,原料在运行中产生漂移,会出现分切复卷后成品纸起皱现象;若张力过大,原料又易被拉断,使分切复卷后成品纸断头增多。 一套典型的张力控制系统主要由张力控制器,张力读出器,张力检测器,制动器和离合器构成。根据环路可分为开环,闭环或自由环张力控制系统;根据对不同卷材的监测方式又可分为超声波式,浮辊式,跟踪臂式等。 1.典型收卷张力控制示意图

控制系统仿真与设计实验报告

控制系统仿真与设计实验报告 姓名: 班级: 学号: 指导老师:刘峰 7.2.2控制系统的阶跃响应 一、实验目的 1.观察学习控制系统的单位阶跃响应; 2.记录单位阶跃响应曲线; 3.掌握时间相应的一般方法; 二、实验内容 1.二阶系统G(s)=10/(s2+2s+10)

键入程序,观察并记录阶跃响应曲线;录系统的闭环根、阻尼比、无阻尼振荡频率;记录实际测去的峰值大小、峰值时间、过渡时间,并与理论值比较。 (1)实验程序如下: num=[10]; den=[1 2 10]; step(num,den); 响应曲线如下图所示: (2)再键入: damp(den); step(num,den); [y x t]=step(num,den); [y,t’] 可得实验结果如下:

记录实际测取的峰值大小、峰值时间、过渡时间,并与理论计算值值比较 实际值理论值 峰值 1.3473 1.2975

峰值时间 1.0928 1.0649 过渡时间+%5 2.4836 2.6352 +%2 3.4771 3.5136 2. 二阶系统G(s)=10/(s2+2s+10) 试验程序如下: num0=[10]; den0=[1 2 10]; step(num0,den0); hold on; num1=[10]; den1=[1 6.32 10]; step(num1,den1); hold on; num2=[10]; den2=[1 12.64 10]; step(num2,den2); 响应曲线:

(2)修改参数,分别实现w n1= (1/2)w n0和w n1= 2w n0响应曲线试验程序: num0=[10]; den0=[1 2 10]; step(num0,den0); hold on; num1=[2.5]; den1=[1 1 2.5]; step(num1,den1); hold on; num2=[40]; den2=[1 4 40]; step(num2,den2); 响应曲线如下图所示:

实验七-对汽车控制系统的设计与仿真

实验七 对汽车控制系统的设计与仿真 一、实验目的: 通过实验对一个汽车运动控制系统进行实际设计与仿真,掌握控制系统性能的分析和仿真处理过程,熟悉用Matlab 和Simulink 进行系统仿真的基本方法。 二、实验学时:4 个人计算机,Matlab 软件。 三、实验原理: 本实验是对一个汽车运动控制系统进行实际设计与仿真,其方法是先对汽车运动控制系统进行建摸,然后对其进行PID 控制器的设计,建立了汽车运动控制系统的模型后,可采用Matlab 和Simulink 对控制系统进行仿真设计。 注意:设计系统的控制器之前要观察该系统的开环阶跃响应,采用阶跃响应函数step( )来实现,如果系统不能满足所要求达到的设计性能指标,需要加上合适的控制器。然后再按照仿真结果进行PID 控制器参数的调整,使控制器能够满足系统设计所要求达到的性能指标。 1. 问题的描述 如下图所示的汽车运动控制系统,设该系统中汽车车轮的转动惯量可以忽略不计,并且假定汽车受到的摩擦阻力大小与汽车的运动速度成正比,摩擦阻力的方向与汽车运动的方向相反,这样,该汽车运动控制系统可简化为一个简单的质量阻尼系统。 根据牛顿运动定律,质量阻尼系统的动态数学模型可表示为: ? ??==+v y u bv v m & 系统的参数设定为:汽车质量m =1000kg , 比例系数b =50 N ·s/m , 汽车的驱动力u =500 N 。 根据控制系统的设计要求,当汽车的驱动力为500N 时,汽车将在5秒内达到10m/s 的最大速度。由于该系统为简单的运动控制系统,因此将系统设计成10%的最大超调量和2%的稳态误差。这样,该汽车运动控制系统的性能指标可以设定为: 上升时间:t r <5s ; 最大超调量:σ%<10%; 稳态误差:e ssp <2%。 2、系统的模型表示

控制系统仿真课程设计

控制系统仿真课程设计 (2010级) 题目控制系统仿真课程设计学院自动化 专业自动化 班级 学号 学生姓名 指导教师王永忠/刘伟峰 完成日期2013年7月

控制系统仿真课程设计(一) ——锅炉汽包水位三冲量控制系统仿真1.1 设计目的 本课程设计的目的是通过对锅炉水位控制系统的Matlab仿真,掌握过程控制系统设计及仿真的一般方法,深入了解反馈控制、前馈-反馈控制、前馈-串级控制系统的性能及优缺点,实验分析控制系统参数与系统调节性能之间的关系,掌握过程控制系统参数整定的方法。 1.2 设计原理 锅炉汽包水位控制的操作变量是给水流量,目的是使汽包水位维持在给定的范围内。汽包液位过高会影响汽水分离效果,使蒸汽带水过多,若用此蒸汽推动汽轮机,会使汽轮机的喷嘴、叶片结垢,严重时可能使汽轮机发生水冲击而损坏叶片。汽包液位过低,水循环就会被破坏,引起水冷壁管的破裂,严重时会造成干锅,甚至爆炸。 常见的锅炉汽水系统如图1-1所示,锅炉汽包水位受汽包中储水量及水位下汽包容积的影响,而水位下汽包容积与蒸汽负荷、蒸汽压力、炉膛热负荷等有关。影响水位变化的因素主要是锅炉蒸发量(蒸汽流量)和给水流量,锅炉汽包水位控制就是通过调节给水量,使得汽包水位在蒸汽负荷及给水流量变化的情况下能够达到稳定状态。 图1-1 锅炉汽水系统图

在给水流量及蒸汽负荷发生变化时,锅炉汽包水位会发生相应的变化,其分别对应的传递函数如下所示: (1)汽包水位在给水流量作用下的动态特性 汽包和给水可以看做单容无自衡对象,当给水增加时,一方面会使得汽包水位升高,另一方面由于给水温度比汽包内饱和水的温度低,又会使得汽包中气泡减少,导致水位降低,两方面的因素结合,在加上给水系统中省煤器等设备带来延迟,使得汽包水位的变化具有一定的滞后。因此,汽包水位在给水流量作用下,近似于一个积分环节和惯性环节相串联的无自衡系统,系统特性可以表示为 ()111()()(1)K H S G S W S s T s ==+ (1.1) (2)汽包水位在蒸汽流量扰动下的动态特性 在给水流量及炉膛热负荷不变的情况下,当蒸汽流量突然增加时,瞬间会导致汽包压力的降低,使得汽包内水的沸腾突然加剧,水中气泡迅速增加,将整个水位抬高;而当蒸汽流量突然减小时,汽包内压力会瞬间增加,使得水面下汽包的容积变小,出现水位先下降后上升的现象,上述现象称为“虚假水位”。虚假水位在大中型中高压锅炉中比较显著,会严重影响锅炉的安全运行。“虚假水位”现象属于反向特性,变化速度很快,变化幅值与蒸汽量扰动大小成正比,也与压力变化速度成正比,系统特性可以表示为 222()()()1f K K H s G s D s T s s ==-+ (1.2) 常用的锅炉水位控制方法有:单冲量控制、双冲量控制及三冲量控制。单冲量方法仅是根据汽包水位来控制进水量,显然无法克服“虚假水位”的影响。而双冲量是将蒸汽流量作为前馈量用于汽包水位的调节,构成前馈-反馈符合控制系统,可以克服“虚假水位”影响。但双冲量控制系统要求调节阀具有好的线性特性,并且不能迅速消除给水压力等扰动的影响。为此,可将给水流量信号引入,构成三冲量调节系统,如图1-2所示。图中LC 表示水位控制器(主回路),FC 表示给水流量控制器(副回路),二者构成一个串级调节系统,在实现锅炉水位控制的同时,可以快速消除给水系统扰动影响;而蒸汽流量作为前馈量用于消除“虚假水位”的影响。

控制系统设计与仿真实验报告

阅读使人充实,会谈使人敏捷,写作使人精确。——培根 控制系统设计与仿真上机实验报告 学院:自动化学院 班级:自动化 姓名: 学号: 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根 一、第一次上机任务 1、熟悉matlab软件的运行环境,包括命令窗体,workspace等,熟悉绘图命令。 2、采用四阶龙格库塔法求如下二阶系统的在幅值为1脉宽为1刺激

下响应的数值解。 2?,??n10?0.5,??(s)G n22?????2ss nn3、采用四阶龙格库塔法求高阶系统阶单位跃响应曲线的数值解。 2?,,??5T?n100.5,???Gs)( n22???1)?s(?2s)(Ts?nn4、自学OED45指令用法,并求解题2中二阶系统的单位阶跃响应。 程序代码如下: 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根

;曲线如下: 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。.阅读使人充实,会谈使人敏捷,写作使人精确。——培根

法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。.阅读使人充实,会谈使人敏捷,写作使人精确。——培根

法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根 二、第二次上机任务 试用simulink方法解微分方程,并封装模块,输出为。得到各、1x i 状态变量的时间序列,以及相平面上的吸引子。 ?x?x??xx?3121? ??xx?x???322 ??xx?xx??x??32321参数入口为的值以及的初值。(其中,以及??????x28?10,?8/,,3,?i1模块输入是输出量的微分。)初值分别为提示:0.001xxx?0,?0,?312s:Simulink

控制系统的MATLAB仿真与设计课后答案

控制系统的MATLAB 仿真与设计课后答 案

第二章 1>>x=[15 22 33 94 85 77 60] >>x(6) >>x([1 3 5]) >>x(4:end) >>x(find(x>70)) 2>>T=[1 -2 3 -4 2 -3] ; >>n=length(T); >>TT=T'; >>for k=n-1:-1:0 >>B(:,n-k)=TT.^k; >>end >>B >>test=vander(T) 3>>A=zeros(2,5); >>A(:)=-4:5 >>L=abs(A)>3 >>islogical(L) >>X=A(L) 4>>A=[4,15,-45,10,6;56,0,17,-45,0] >>find(A>=10&A<=20) 5>>p1=conv([1,0,2],conv([1,4],[1,1]));

>>p2=[1 0 1 1]; >>[q,r]=deconv(p1,p2); >>cq='商多项式为 '; cr='余多项式为 '; >>disp([cq,poly2str(q,'s')]),disp([cr,poly2str(r,'s')]) 6>>A=[11 12 13;14 15 16;17 18 19]; >>PA=poly(A) >>PPA=poly2str(PA,'s') 第三章 1>>n=(-10:10)'; >>y=abs(n); >>plot(n,y,'r.','MarkerSize',20) >>axis equal >>grid on >>xlabel('n') 2>>x=0:pi/100:2*pi; >>y=2*exp(-0.5*x).*sin(2*pi*x); >>plot(x,y),grid on; 3>>t=0:pi/50:2*pi; >>x=8*cos(t); >>y=4*sqrt(2)*sin(t); >>z=-4*sqrt(2)*sin(t); >>plot3(x,y,z,'p');

MATLAB控制系统与仿真设计

MATLAB控制系统与仿真 课 程 设 计 报 告 院(系):电气与控制工程学院 专业班级:测控技术与仪器1301班 姓名:吴凯 学号:1306070127

指导教师:杨洁昝宏洋 基于MATLAB的PID恒温控制器 本论文以温度控制系统为研究对象设计一个PID控制器。PID控制是迄今为止最通用的控制方法,大多数反馈回路用该方法或其较小的变形来控制。PID控制器(亦称调节器)及其改进型因此成为工业过程控制中最常见的控制器(至今在全世界过程控制中用的84%仍是纯PID调节器,若改进型包含在内则超过90%)。在PID控制器的设计中,参数整定是最为重要的,随着计算机技术的迅速发展,对PID参数的整定大多借助于一些先进的软件,例如目前得到广泛应用的MATLAB仿真系统。本设计就是借助此软件主要运用Relay-feedback法,线上综合法和系统辨识法来研究PID控制器的设计方法,设计一个温控系统的PID控制器,并通过MATLAB中的虚拟示波器观察系统完善后在阶跃信号下的输出波形。 关键词:PID参数整定;PID控制器;MATLAB仿真。 Design of PID Controller based on MATLAB Abstract This paper regards temperature control system as the research object to design a pid controller. Pid control is the most common control method up until now; the great majority feedback loop is controlled by this method or its small deformation. Pid controller (claim regulator also) and its second generation so become the most common controllers in the industry process control (so far, about 84% of the controller being used is the pure pid controller, it’ll exceed 90% if the second generation included). Pid parameter setting is most important in pid controller designing, and with the rapid development of the computer technology, it mostly recurs to some advanced software, for example, mat lab simulation software widely used now. this design is to apply that soft mainly use Relay feedback law and synthetic method on the line to study pid

复杂过程控制系统设计与Simulink仿真

银河航空航天大学 课程设计 (论文) 题目复杂过程控制系统设计与Simulink仿 真 班级 学号 学生姓名 指导教师

目录 0. 前言 (1) 1. 总体方案设计 (2) 2. 三种系统结构和原理 (3) 2.1 串级控制系统 (3) 2.2 前馈控制系统 (3) 2.3 解耦控制系统 (4) 3. 建立Simulink模型 (5) 3.1 串级 (5) 3.2 前馈 (5) 3.3 解耦 (7) 4. 课设小结及进一步思想 (15) 参考文献 (15) 附录设备清单 (16)

复杂过程控制系统设计与Simulink仿真 姬晓龙银河航空航天大学自动化分校 摘要:本文主要针对串级、前馈、解耦三种复杂过程控制系统进行设计,以此来深化对复杂过程控制系统的理解,体会复杂过程控制系统在工业生产中对提高产品产量、质量和生产效率的重要作用。建立Simulink模型,学习在工业过程中进行系统分析和参数整定的方法,为毕业设计对模型进行仿真分析及过程参数整定做准备。 关键字:串级;前馈;解耦;建模;Simulink。 0.前言 单回路控制系统解决了工业过程自动化中的大量的参数定制控制问题,在大多数情况下这种简单系统能满足生产工艺的要求。但随着现代工业生产过程的发展,对产品的产量、质量,对提高生产效率、降耗节能以及环境保护提出了更高的要求,这便使工业生产过程对操作条件要求更加严格、对工艺参数要求更加苛刻,从而对控制系统的精度和功能要求更高。为此,需要在单回路的基础上,采取其它措施,组成比单回路系统“复杂”一些的控制系统,如串级控制(双闭环控制)、前馈控制大滞后系统控制(补偿控制)、比值控制(特殊的多变量控制)、分程与选择控制(非线性切换控制)、多变量解耦控制(多输入多输出解耦控制)等等。从结构上看,这些控制系统由两个以上的回路构成,相比单回路系统要多一个以上的测量变送器或调节器,以便完成复杂的或特殊的控制任务。这类控制系统就称为“复杂过程控制系统”,以区别于单回路系统这样简单的过程控制系统。 计算机仿真是在计算机上建立仿真模型,模拟实际系统随时间变化的过程。通过对过程仿真的分析,得到被仿真系统的动态特性。过程控制系统计算机仿真,为流程工业控制系统的分析、设计、控制、优化和决策提供了依据。同时作为对先进控制策略的一种检验,仿真研究也是必不可少的步骤。控制系统的计算机仿真是一门涉及到控制理论、计算机数学与计算机技术的综合性学科。控制系统仿真是以控制系统的模型为基础,主要用数学模型代替实际控制系统,以计算机为工具,对控制系统进行实验和研究的一种方法。在进行计算机仿真时,十分耗费时间与精力的是编制与修改仿真程序。随着系统规模的越来越大,先进过程控制的出现,就需要行的功能强大的仿真平台Math Works公司为MATLAB提供了控制系统模型图形输入与仿真工具Simulink,这为过程控制系统设计与参数整定的计算与仿真提供了一个强有力的工具,使过程控制系统的设计与整定发生了革命性的变化。

自动控制原理及系统仿真课程设计

自动控制原理及系统仿 真课程设计 学号:1030620227 姓名:李斌 指导老师:胡开明 学院:机械与电子工程学院

2013年11月

目录 一、设计要求 (1) 二、设计报告的要求 (1) 三、题目及要求 (1) (一)自动控制仿真训练 (1) (二)控制方法训练 (19) (三)控制系统的设计 (23) 四、心得体会 (27) 五、参考文献 (28)

自动控制原理及系统仿真课程设计 一:设计要求: 1、 完成给定题目中,要求完成题目的仿真调试,给出仿真程序和图形。 2、 自觉按规定时间进入实验室,做到不迟到,不早退,因事要请假。严格遵守实验室各项规章制度,实验期间保持实验室安静,不得大声喧哗,不得围坐在一起谈与课程设计无关的空话,若违规,则酌情扣分。 3、 课程设计是考查动手能力的基本平台,要求独立设计操作,指导老师只检查运行结果,原则上不对中途故障进行排查。 4、 加大考查力度,每个时间段均进行考勤,计入考勤分数,按照运行的要求给出操作分数。每个人均要全程参与设计,若有1/3时间不到或没有任何运行结果,视为不合格。 二:设计报告的要求: 1.理论分析与设计 2.题目的仿真调试,包括源程序和仿真图形。 3.设计中的心得体会及建议。 三:题目及要求 一)自动控制仿真训练 1.已知两个传递函数分别为:s s x G s x G +=+= 22132)(,131)(

①在MATLAB中分别用传递函数、零极点、和状态空间法表示; MATLAB代码: num=[1] den=[3 1] G=tf(num,den) [E F]=zero(G) [A B C D]=tf2ss(num,den) num=[2] den=[3 1 0] G=tf(num,den) [E F]=zero(G) [A B C D]=tf2ss(num,den) 仿真结果: num =2 den =3 1 0 Transfer function: 2 --------- 3 s^2 + s

matlab控制系统仿真课程设计

课程设计报告 题目PID控制器应用 课程名称控制系统仿真院部名称机电工程学院专业 班级 学生姓名 学号 课程设计地点 课程设计学时 指导教师 金陵科技学院教务处制成绩

一、课程设计应达到的目的 应用所学的自动控制基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行控制系统的初步设计。 应用计算机仿真技术,通过在MATLAB软件上建立控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 二、课程设计题目及要求 1.单回路控制系统的设计及仿真。 2.串级控制系统的设计及仿真。 3.反馈前馈控制系统的设计及仿真。 4.采用Smith 补偿器克服纯滞后的控制系统的设计及仿真。 三、课程设计的内容与步骤 (1).单回路控制系统的设计及仿真。 (a)已知被控对象传函W(s) = 1 / (s2 +20s + 1)。 (b)画出单回路控制系统的方框图。 (c)用MatLab的Simulink画出该系统。 (d)选PID调节器的参数使系统的控制性能较好,并画出相应的单位阶约响应

曲线。注明所用PID调节器公式。PID调节器公式Wc(s)=50(5s+1)/(3s+1) 给定值为单位阶跃响应幅值为3。 有积分作用单回路控制系统 无积分作用单回路控制系统

大比例作用单回路控制系统 (e)修改调节器的参数,观察系统的稳定性或单位阶约响应曲线,理解控制器参数对系统的稳定性及控制性能的影响? 答:由上图分别可以看出无积分作用和大比例积分作用下的系数响应曲线,这两个PID调节的响应曲线均不如前面的理想。增大比例系数将加快系统的响应,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏;增大积分时间有利于减小超调,减小振荡,使系统的稳定性增加,但是系统静差消除时间变长,加入微分环节,有利于加快系统的响应速度,使系统超调量减小,稳定性增加。 (2).串级控制系统的设计及仿真。 (a)已知主被控对象传函W 01(s) = 1 / (100s + 1),副被控对象传函W 02 (s) = 1 / (10s + 1),副环干扰通道传函W d (s) = 1/(s2 +20s + 1)。 (b)画出串级控制系统方框图及相同控制对象下的单回路控制系统的方框图。(c)用MatLab的Simulink画出上述两系统。

温度控制系统的设计与仿真..

远程与继续教育学院 本科毕业论文(设计) 题目:温控系统的设计及仿真(MATLAB) 学习中心: 学号: 姓名: 专业:机械设计制造及自动化 指导教师: 2013 年 2 月 28 日

摘要 温度是工业对象中一个主要的被控参数,它是一种常见的过程变量,因为它直接影响燃烧、化学反应、发酵、烘烤、煅烧、蒸馏、浓度、挤压成形,结晶以及空气流动等物理和化学过程。温度控制不好就可能引起生产安全,产品质量和产量等一系列问题。温度控制是许多设备的重要的构成部分,它的功能是将温度控制在所需要的温度范围内,以利于进行工件的加工与处理。 一直以来,人们采用了各种方法来进行温度控制,都没有取得很好的控制效果。如今,随着以微机为核心的温度控制技术不断发展,用微机取代常规控制已成必然,因为它确保了生产过程的正常进行,提高了产品的数量与质量,减轻了工人的劳动强度以及节约了能源,并且能够使加热对象的温度按照某种指定规律变化。 实践证明,用于工业生产中的炉温控制的微机控制系统具有高精度、功能强、经济性好的特点,无论在提高产品质量还是产品数量,节约能源,还是改善劳动条件等方面都显示出无比的优越性。 本设计以89C51单片机为核心控制器件,以ADC0809作为A/D转换器件,采用闭环直接数字控制算法,通过控制可控硅来控制热电阻,进而控制电炉温度,最终设计了一个满足要求的电阻炉微型计算机温度控制系统。 关键词:1、单片机;2、PLC;3、MATLAB

目录 1单片机在炉温控制系统中的运用 (3) 1、1系统的基本工作原理 (3) 2温控系统控制算法设计 (3) 2.1温度控制算法的比较 (3) 2.2数字PID算法 (6) 3 结论................................................ 错误!未定义书签。致谢 (17) 参考文献 (18)

控制系统建模、分析、设计和仿真

北京理工大学珠海学院 《计算机仿真》课程设计说明书题目: 控制系统建模、分析、设计和仿真 学院:信息学院 专业班级:自动化四班 学号: 学生姓名: 指导教师: 2012年 6 月 9 日

北京理工大学珠海学院 课程设计任务书 2011 ~2012 学年第2学期 学生姓名:专业班级: 指导教师:范杰工作部门:信息学院 一、课程设计题目 《控制系统建模、分析、设计和仿真》 本课程设计共列出10个同等难度的设计题目,编号为:[0号题]、[1号题]、[2号题]、[3号题]、[4号题]、[5号题]、[6号题]、[7号题]、[8号题]、[9号题]。 学生必须选择与学号尾数相同的题目完成课程设计。例如,学号为09xxxxxxxx2的学生必须选做[2号题]。 二、课程设计内容 (一)《控制系统建模、分析、设计和仿真》课题设计内容 最少拍有波纹控制系统

[8号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用零阶保持器离散化,采样周期取0.02秒,分别设计一单位加速度信号输入时的最少拍有波纹 控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 (二)《控制系统建模、分析、设计和仿真》课题设计要求及评分标准【共100分】 1、求被控对象传递函数G(s)的MATLAB 描述。(2分) 2、求被控对象脉冲传递函数G(z)。(4分) 3、转换G(z)为零极点增益模型并按z-1形式排列。(2分) 4、确定误差脉冲传递函数Ge(z)形式,满足单位加速度信号输入时闭环稳态误差为零和实际闭环系统稳 定的要求。(6分) 5、确定闭环脉冲传递函数Gc(z)形式,满足控制器Dy(z)可实现、最少拍和实际闭环系统稳定的要求。 (8分) 6、根据4、5、列写方程组,求解Gc(z)和Ge(z)中的待定系数并最终求解Gc(z)和Ge(z) 。(12分) 7、求针对单位加速度信号输入的最少拍有波纹控制器Dy(z)并说明Dy(z)的可实现性。(3分) 8、用程序仿真方法分析加速度信号输入时闭环系统动态性能和稳态性能。(7分) 9、用图形仿真方法(Simulink)分析单位加速度信号输入时闭环系统动态性能和稳态性能。(8分) 10、确定误差脉冲传递函数Ge(z)形式,满足单位速度信号输入时闭环稳态误差为零和实际闭环系统稳 定的要求。(6分) 11、确定闭环脉冲传递函数Gc(z)形式,满足控制器Dw(z)可实现、无波纹、最少拍和实际闭环系统稳 定的要求。(8分) 12、根据10、11、列写方程组,求解Gc(z)和Ge(z)中的待定系数并最终求解Gc(z)和Ge(z) 。(12分) 13、求针对单位速度信号输入的最少拍无波纹控制器Dw(z)并说明Dw(z)的可实现性。(3分) 14、用程序仿真方法分析单位速度信号输入时闭环系统动态性能和稳态性能。(7分) 15、用图形仿真方法(Simulink)分析单位速度信号输入时闭环系统动态性能和稳态性能。(8分) 16、根据8、9、14、15、的分析,说明有波纹和无波纹的差别和物理意义。(4分) ) 7)(5)(2()6)(1(879)(2+++++= s s s s s s s G

控制系统的matlab仿真与设计

第二章: 2.1 x=[15 22 33 94 85 77 60] x(6) x([1 3 5]) x(4:end) x(find(x>70)) 2.2 T=[1 -2 3 -4 2 -3] ; n=length(T); TT=T'; for k=n-1:-1:0 B(:,n-k)=TT.^k; end B test=vander(T) 2.3 A=zeros(2,5); A(:)=-4:5 L=abs(A)>3 islogical(L) X=A(L) 2.4 A=[4,15,-45,10,6;56,0,17,-45,0] find(A>=10&A<=20) 2.5 p1=conv([1,0,2],conv([1,4],[1,1]));

p2=[1 0 1 1]; [q,r]=deconv(p1,p2); cq='商多项式为 '; cr='余多项式为 '; disp([cq,poly2str(q,'s')]),disp([cr,poly2str(r,'s')]) 2.6 A=[11 12 13;14 15 16;17 18 19]; PA=poly(A) PPA=poly2str(PA,'s') 第三章: 3.1 n=(-10:10)'; y=abs(n); plot(n,y,'r.','MarkerSize',20) axis equal grid on xlabel('n') 3.2 x=0:pi/100:2*pi; y=2*exp(-0.5*x).*sin(2*pi*x); plot(x,y),grid on; 3.3 t=0:pi/50:2*pi; x=8*cos(t); y=4*sqrt(2)*sin(t); z=-4*sqrt(2)*sin(t); plot3(x,y,z,'p');

控制系统仿真与设计课程设计报告

《控制系统仿真与设计》课程设计报告

一、目录 摘要 (3) 一、概述 (3) 二、设计任务与要求 (4) 2.1 设计任务 (4) 2.2 设计要求 (4) 三、理论设计 (5) 3.1 方案论证 (5) 3.2 系统设计 (6) 3.2.1 电流调节器设计 (6) 3.2.2 速度调节器设计 (9) 四、系统建模及仿真实验 (11) 4.1 MATLAB 仿真软件介绍 (11) 4.2 仿真建模 (12) 4.3 仿真实验 (12) 五、总结与体会 (15) 参考文献 (15)

摘要 在直流双闭环调速系统教学中, 电流环和转速环参数的简化计算是教学关键环节, 文章针对某双闭环直流调速系统, 进行了参数的详细计算和电流环和转速环的设计, 并采用MA TL AB /SI MULI NK对实际系统进行了仿真, 给出了起动过程中的电枢电流和转速变化的波形, 并对结果进行了分析。结果表明在实验中引入MA TLAB /SI MULI NK仿真是对实际实验的良好补充, 能够加深学生对实验的认识。 关键词:MATLAB;直流调速;双闭环;转速调节器;电流调节器;干扰 一、概述 直流电动机具有调速性能好,起动转矩大,易于在大范围内平滑调速等优点,其调速控制系统历来在工业控制中占有及其重要的地位。随着电力技术的发展,特别是在大功率电力电子器件问世以后,直流电动机拖动将有逐步被交流电动机拖动所取代的趋势,但在中、小功率的场合,常采用永磁直流电动机,只需对电枢回路进行控制,相对比较简单。特别是在高精度位置伺服控制系统、在调速性能要求高或要求大转矩的场所,直流电动机仍然被广泛采用[2],直流调速控制系统中最典型一种调速系统就是速度、电流双闭调速系统。直流调速系统的设计要完成开环调速、单闭环调速、双闭环调速等过程,需要观察比较多的性能,再加上计算参数较多,往往难以如意。如在设计过程中使用Matlab中的SimuLink实用工具来辅助设计,由于它可以构建被控系统的动态模型,直观迅速观察各点波形,因此调速系统性能的完善可以通过反复修改其动态模型来完成,而不必对实物模型进行反复拆装调试[4]。Matlab中的动态建模、仿真工具SimuLink具有模块组态方便,性能分析直观等优点,可缩短产品的设计开发过程,也可以给教学提供了虚拟的实验平台。

带状态观测器的控制系统综合设计与仿真

带状态观测器的控制系统综合设计与仿真 一、主要技术参数: 1.受控系统如图所示: 图1 受控系统方框图 2.性能指标要求: (1)动态性能指标: 超调量 5%p σ≤; 超调时间 0.5p t ≤秒; 系统频宽 10b ≤ω; (2)稳态性能指标: 静态位置误差0=p e (阶跃信号) 静态速度误差2.0≤v e (速度信号) 二、设计思路 1、按图中选定的状态变量建立系统的状态空间数学模型。 2、对原系统在Simulink 下进行仿真分析,对所得的性能指标与要求的性能指标进行比较。 3、根据要求的性能指标确定系统综合的一组期望极点。 4、假定系统状态均不可测,通过设计系统的全维状态观测器进行系统状态重构。 5、通过状态反馈法对系统进行极点配置,使系统满足要求的动态性

能指标。 6、合理增加比例增益,使系统满足要求的稳态性能指标。 7、在Simulink 下对综合后的系统进行仿真分析,验证是否达到要求的性能指标的要求。 三、实验设计步骤 I 、按照极点配置法确定系统综合的方案 1、按图1中选定的状态变量建立系统的状态空间数学模型 ① 列写每一个环节的传递函数 由图1有: 112235()()510()()10()()U s x s s x s x s s x s x s s ?=?+? ? = ?+? ? =?? ②叉乘拉式反变换得一阶微分方程组 由上方程可得 1213 2(5)()5()(10)()10() ()() s x s U s s x s x s sx s x s +=?? +=??=?

即 112123 2()5()5()()10()10() ()() sx s x s U s sx s x s x s sx s x s =-+?? =-??=? 拉式反变换为 1121232551010x x U x x x x x ?=-+??=-???=? g g g 输出由图1可知为 3y x = ③用向量矩阵形式表示 11223350051010000100x x x x u x x ?? ??-??????????????=-+???????? ????????? ????????? g g g []001y x = 2、对原系统在Simulink 下进行仿真分析,对所得的性能指标与要求的性能指标进行比较

磁悬浮控制系统建模与仿真大学毕设论文

2010届毕业设计说明书 磁悬浮控制系统建模及仿真系部:电气与信息工程系 专业:电气自动化技术 完成时间:2010年5月

目录 1 绪论 (2) 1.1 磁悬浮技术的发展与现状 (3) 1.2 磁悬浮技术研究的意义 (3) 1.3 磁悬浮的主要应用 (3) 1.3.1 磁悬浮列车 (3) 1.3.2 高速磁悬浮电机 (4) 2 磁悬浮系统概述 (4) 2.1 磁悬浮实验本体 (5) 2.2 磁悬浮电控箱 (6) 2.3 控制平台 (6) 3 控制系统的数学描述 (7) 3.1 控制系统数学模型的表示形式 (7) 3.1.1 微分方程形式 (7) 3.1.2 状态方程形式 (8) 3.1.3 传递函数形式 (8) 3.1.4 零极点增益形式 (9) 3.1.5 部分分式形式 (9) 3.2 控制系统建模的基本方法 (10) 3.2.1 机理模型法 (10) 3.2.2 统计模型法 (11) 3.2.3 混合模型法 (11) 3.2.4 控制系统模型选择 (12) 3.3 控制系统的数学仿真实现 (12) 4 MATLAB软件的介绍 (13) 4.1 MATLAB简介 (13) 4.2 Simulink概述 (13) 4.3 Simulink用法 (14) 5 磁悬浮系统基于MATLAB建模及仿真 (20) 5.1 磁悬浮系统工作原理 (20) 5.2 控制对象的运动方程 (21) 5.3 系统的电磁力模型 (21) 5.4 电磁铁中控制电压与电流的模型 (21) 5.5 平衡时的边界条件 (23) 5.6 系统数学模型 (23) 5.7 系统物理参数 (23) 5.8 Matlab下数学模型的建立 (24)

控制系统仿真与CAD课程设计报告

控制系统仿真与CAD 课程设计 学院:物流工程学院 专业:测控技术与仪器 班级:测控102 姓名:杨红霞 学号:201010233037 指导教师:兰莹 完成日期:2013年7月4日

一、目的和任务 配合《控制系统仿真与CAD》课程的理论教学,通过课程设计教学环节,使学生掌握当前流行的演算式MATLAB语言的基本知识,学会运用MATLAB 语言进行控制系统仿真和辅助设计的基本技能,有效地提高学生实验动手能力。 一、基本要求: 1、利用MATLAB提供的基本工具,灵活地编制和开发程序,开创新的应用; 2、熟练地掌握各种模型之间的转换,系统的时域、频域分析及根轨迹绘制; 3、熟练运用SIMULINK对系统进行仿真; 4、掌握PID控制器参数的设计。 二、设计要求 1、编制相应的程序,并绘制相应的曲线; 2、对设计结果进行分析; 3、撰写和打印设计报告(包括程序、结果分析、仿真结构框图、结果曲线)。 三、设计课题 设计一:二阶弹簧—阻尼系统的PID控制器设计及其参数整定 考虑弹簧-阻尼系统如图1所示,其被控对象为二阶环节,传递函数G(S)如下,参数为M=1kg,b=2N.s/m,k=25N/m,F(S)=1。 设计要求: (1)控制器为P控制器时,改变比例系数大小,分析其对系统性能的影响并绘制相应曲线。 (2)控制器为PI控制器时,改变积分时间常数大小,分析其对系统性能的影响并绘制相应曲线。(例如当kp=50时,改变积分时间常数) (3)设计PID控制器,选定合适的控制器参数,使闭环系统阶跃响应曲线的超调量σ%<20%,过渡过程时间Ts<2s, 并绘制相应曲线。

控制系统建模、分析、设计和仿真

控制系统建模、分析、设计和仿真第5组 自动化专业学生韩小康 指导老师周景雷 摘要 本次课程实践为设计两个控制器分别为最小拍无波纹和最小拍有波纹控制器。通过 这次实践可以进一步对所学的《计算机控制技术》有进一步的了解,并对Matlab软件的操作有一定程度的熟悉,为以后的工作或研究作基础。MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和 Simulink两大部分。 关键字:Matlab;计算机控制系统;建模;仿真 Control system modeling, analysis, design and simulation of group 5 Student majoring in HanXiaokang Tutor ZhouJinglei Abstract: The course practice to design two controllers respectively minimum corrugated controller without ripples and minimum pat. Through this practice can be further learned to have further understanding of computer control technology, and a certain degree of familiar to the operation of the Matlab software, the foundation for later work or study. MATLAB is short for Matrix lab (Matrix Laboratory), is produced by the American MathWorks company business mathematics software, used for algorithm development, data visualization, data analysis and numerical calculation of senior technical computing language and interactive environment, mainly including two most of MATLAB and Simulink. Key words: Matlab; The computer control system; Modeling; The simulation

相关文档