文档库 最新最全的文档下载
当前位置:文档库 › 汽车车架焊接变形及控制方法

汽车车架焊接变形及控制方法

汽车车架焊接变形及控制方法
汽车车架焊接变形及控制方法

汽车车架焊接变形及控制方法

孙玉勇1滕文龙2王迪3曹建伟4

沈阳新松机器人自动化股份有限公司辽宁沈阳110168

摘要:焊接变形经常出现在汽车车架生产过程中,对产品外观产生影响的同时还有可能给企业带来损失。本文主要对焊接变形的种类以及产生的原因进行解析,并提出几点焊接变形的控制方法供大家参考。

关键词:汽车车架;焊接变形;控制

Abstract:the welding deformation is often in automobile frame production process,the influence of product appearance at the same time and may brings to the enterprise loss. This paper focuses on the welding deformation's type and the causes for the occurrence of analytical,and puts forward some of the welding deformation control method for your reference.

Keywords:auto frame;The welding deformation;control

中图分类号:F407.471文献标识码:A文章编号:

一、绪论

焊接技术在汽车工业中广泛应用,然而焊接技术为汽车工业做出巨大贡献的同时也给技术人员带来一些困扰,那就是焊接变形,焊接变形有许多种类,不同种类的焊接变形所产生的原因也不尽相同。

二、焊接变形的种类以及产生的原因

现阶段,在汽车车架生产中焊接结构的零件厚度一般为2~4mm,通常采用CO2气体保护焊,该种方法的特点有成本低、变形小、生产效率高、抗锈、易操作、焊后不清渣、抗氢和抗裂纹能力强、适合全位置焊及易于实现焊接过程的机械化及自动化等。所以,CO2气体保护焊被广泛应用于汽车车架的焊接中。此外,CO2气体保护焊的热量较为集中、热影响去较窄,但是因为母材较薄且焊缝较多,其焊接变形比汽车车身薄板点焊要大。在焊接夹具进行工装设计以及确定焊接工艺时忽略这种特点就会导致操作不便,生产效率下降,甚至有可能造成车架变形,进而影响车架最终的尺寸精度和产品质量。所以,对汽车车架焊接变形及控制方法进行研究在实际生产中有着很重要的意义。以下将列出几种比较常见的焊接变形进行分析:

1、焊接顺序引起的焊接变形

由于车架总成焊缝位置分布比较广泛,焊缝长度达到50m,所以施焊顺序对焊接变形的影响很大。在实际工作中,必须遵守“影响最小话”与变形相互抵消的原则(即后序焊缝变形对前序焊缝变形具有抵消作用)两个原则进行选择。此外,汽车车架纵梁是一种长盒形结构,其焊缝长度达到8m之多,为了见谅减少焊接变形,就要采用点固交叉、对称以及分段焊,进行处理。

2、制件与制件之间的拘束产生的焊接变形

在制件与制件之间拘束状态下进行焊接时,弹性变形将会储存于构件当中,在温度降低到原始的均匀状态或者局部外载除去之后弹性变形将会释放,导致焊接变形。所以,保证装配间隙的合理是控制焊接变形的必要条件。这对产品设计

装配间隙必须合理,制件精度公差合理化。

3、制件与制件间的贴合间隙引起的焊接变形

一般情况下,制件与制件间贴合状态正常大小0~3mm,一旦间隙过大,一方面熔化金属从缝隙中漏掉,产生施焊困难的问题;另一方面会使焊接变形增大,因为焊接变形随焊缝熔化金属的截面积增大而增大。

4、焊接工装定位与夹紧拘束不良导致的焊接变形

在工装定位装置刚性不好情况下,工件在局部外载作用下出现拘束不良情况,当温度恢复到原始的均匀状态或者局部外载除去后,在构件内部出现不能恢复的残余变形。

5、焊接规范引起的焊接变形

采用较小的焊接线能量可以有效减少焊接变形,由于要考虑实际生产中生产效率的问题。一般采用的焊接规范为:焊接电流为130~150A,电压23~24V;焊接速度保持50m/h;气体流量保持8~12L/m。

三、焊接变形的控制方法

1、设计措施

(1)尽可能减少焊缝的数量

在车架结构中,要尽量减少焊缝的数量,减少不必要的焊缝,并且焊缝不宜过分集中,尽可能避免条或条焊缝出现垂直交叉,尽可能用冲压件来代替焊接件。

(2)选择合理的焊缝尺寸和形状

在焊接时焊缝尺寸不能太大,在保证结构承载能力足够的前提下,要运用尽可能小的焊缝尺寸,对于承载强度较低的T型焊接接头,选择最小的工艺上合理的焊缝焊脚尺寸,在同样最小的焊脚尺寸时,采用断续焊缝比用连续焊缝更能减少焊接变形,对一些受力较大的T型接头或者十字接头,在保证相同的强度条件下,运用开坡口角焊缝要比一般角焊缝更多地减少焊缝金属,控制焊接变形。

(3)合理选择结构形式、安排焊缝位置

安排焊缝是要尽可能对称于截面中心轴,要使焊缝尽量靠近中心轴,以减少结构总的弯曲变形,焊缝要与中心轴一侧集中,弯曲变形大,所以安排是要尽量对称。因为横向收缩一般比纵向收缩明显,所以应尽可能将焊缝设置在平行于要求焊接变形较小的方向上。对一些长焊缝,比如纵梁焊缝,为了减小变形,通常采用分段退焊或分段跳焊法焊接,减低热量的集中输入,减小变形。

(4)焊接工装设计

厚板CO2焊的变形一定比薄板点焊大,所以在焊接工装设计时必须考虑到这些特点,保证定位装置有足够的刚性,防止拘束不良。定位销的设计要充分考虑工件装夹,取出方便的问题,一般会采取活动定位销或锥形销等形式。

2、工艺措施

(1)反变形

反变形法是事先估计好焊接结构变形的大小和方向,然后在组合点固焊时给予一个相反方向的变形来抵消焊接变形,这是使焊后构件保持设计要求的一种工艺方法,也是车架生产中较常用的一种控制变形方法。因焊接变形影响因素很多,包括焊接顺序、拘束度、焊接条件和接头特征等,焊接手册中的变形估算公式及有关图表只能提供一个大致数值。实际生产的工艺规范和相同条件下通过试验来实测确定,再根据所得数据确定反变形量,并在焊接制造中应用,可获得比较好的效果。

(2)刚性固定法

当不便采用反变形时,将零部件加以固定来限制焊接变形。车架生产中普遍采用焊接夹具定位和紧固,装夹的刚度越大,变形越小,对于刚性小的结构,可以通过采用焊接夹具或其他临时支承方法,增加结构在焊接时的刚性,达到减小焊接变形的目的。但构件本身刚性越大,则刚性固定法效果越弱,刚性固定法对角变形和波浪变形较有效

(3)选用合理的焊接工艺把车架总成适当地

分成几个分总成,分别加以装配焊接,然后将这些焊好的分总成拼焊成一个总成,可以使那些不对称的或收缩力较大的焊缝能自由收缩,而不影响车架总成,从而控制车架总成的焊接变形,按照此原则,在装配焊接比较复杂的分总成时,可把它分成几个简单的部件,分别装焊,然后再进行总装焊接,这不但有利于控制总成的焊接变形,而且可以缩短生产周期提高生产率焊接顺序对焊接结构的变形也有很大影响。为便于控制焊接变形,尽量采用对称焊接,以使焊缝引起的变形相互抵消,焊缝不对称的,先焊焊缝少的一侧因为焊缝越长,变形越大,先焊焊缝少的一侧,可以增大焊缝多的一侧焊件的结构刚度和反变形能力。

(4)机械矫正法

车架焊接过程中,虽然在车架结构设计和工艺上采取多种措施来控制焊接过程中所产生的焊接变形,但由于焊接过程的特点和车架焊接工艺的复杂性,还或多或少地产生焊接变形为此必须矫正超过公差要求的焊接变形机械矫正法是在室温条件下,以车架中部为基准将车架放置于校正夹具上,对车架前端或后端四点施加向上或向下的外力,使车架总成压缩塑性变形区的金属伸展减少或消除焊缝区的塑性变形,达到矫正变形的目的。实际操作中还应注意自然时效的作用。必须通过经验积累和严格检验手段保证矫正的精度。矫正工艺只限于矫正焊接构件的局部变形,如角变形,弯曲变形和波浪变形等,对于车架结构的整体变形如纵向和横向收缩总尺寸缩短,只能通过下料或装配时预放余量来补偿。

结语:

在现代汽车工业的车架制造过程中,焊接变形是无法避免的,只有运用科学的焊接工艺和合理的工装设计等一系列措施对焊接变形进行控制,此外,还要矫正超出公差要求的焊接变形,以使车架尺寸精度达标,保证产品质量。

参考文献:

[1]彭斌周平香赵霞:《汽车车架焊接变形及控制方法》,《热加工工艺》,2011年07期

[2]韩根云:《汽车车架焊接变形的控制》,《汽车工艺与材料》,2000年02期

[3]刘松贾东乐:《自卸车焊接变形的控制和矫正》,《专用汽车》,2011年06期

[4]董涛李兴春:《焊接变形的控制方法》,《现代制造技术与装备》,2007年02期

各种焊接方法的比较

各种焊接方法的比较 2012-02-21 21:50 从原理、特点,冶金反应,熔滴过渡,电弧控制,焊接材料,从原理、特点,冶金反应,熔滴过渡,电弧控制,焊接材料,适用范围等方面比较各种焊接方法。 一、埋弧焊Submerged Metal Arc Welding (SMAW) 埋弧焊是以颗粒状焊剂为保护介质,电弧掩藏在焊剂层下的一种熔化极电焊接方法。埋弧焊的施焊过程由三个环节组成:1 在焊件待焊接缝处均匀堆敷足够的颗粒状焊剂;2 导电嘴和焊件分别接通焊接电源两级以产生焊接电弧;3 自动送进焊丝并移动电弧实施焊接。 埋弧焊的主要特点如下:1、电弧性能独特(1)焊缝质量高熔渣隔绝空气保护效果好,电弧区主要成分为CO2,焊缝金属中含氮量、含氧量大大降低,焊接参数自动调节,电弧行走机械化,熔池存在时间长,冶金反应充分,抗风能力强,所以焊缝成分稳定,力学性能好;(2)劳动条件好熔渣隔离弧光有利于焊接操作;机械化行走,劳动强度较低。2、弧柱电场强度较高比之熔化极气体保护焊有如下特点:(1)设备调节性能好,由于电场强度较高,自动调节系统的灵敏度较高,使焊接过程的稳定性提高;(2)焊接电流下限较高。3、生产效率高由于焊丝导电长度缩短,电流和电流密度显著提高,使电弧的熔透能力和焊丝的熔敷速率大大提高;又由于焊剂和熔渣的隔热作用,总的热效率大大增加,使焊接速度大大提高。 冶金反应:焊剂参与冶金反应,Si 、Mn被还原,C 部分烧毁,限制杂质S、P 去H,防止产生氢气孔。 熔滴过渡:渣壁过渡 电源:直流电源用于小电流情况,等速送丝,自身电弧调节;大电流一般用交流电源,变速送丝(SAW 焊丝一般较粗),弧压反馈电弧调节焊接材料:焊丝和焊剂。焊丝和焊剂的选配必须保证获得高质量的焊接接头,同时又要尽可能减低成本,还要注意适用的电流种类和极性。 适用范围:由于埋弧焊熔深大、生产率高、机械操作的程度高,因而适于焊接中厚板结构的长焊缝。在造船、锅炉与压力容器、桥梁、超重机械、核电站结构、海洋结构、武器等制造部门有着广泛的应用,是当今焊接生产中最普遍使用的焊接方法之一。埋弧焊除了用于金属结构中构件的连接外,还可在基体金属表面堆焊耐磨或耐腐蚀的合金层。随着焊接冶金技术与焊接材料生产技术的发展,埋弧焊能焊的材料已从碳素结构钢发展到低合金结构钢、不锈钢、耐热钢等以及某些有色金属,如镍基合金、钛合金、铜合金等。

焊接变形控制方法

1、利用反变形法控制焊接变形 为了抵消和补偿焊接变形,在焊前进行装配时,先将工件向与焊接变形相反的方向进行人为的变形,这种方法称为反变形法。反变形法是生产中最常用的方法,通常适用于控制焊件的角变形和弯曲变形。 2、用刚性固定法控制焊接变形 利用夹具、支撑、专用胎具、定位焊等方法来增大结构的刚性,减小焊接变形的方法称为刚性固定法。刚性固定法简单易行,是生产中常用的一种减小焊接变形的方法。生产中常用刚性固定配合反变形来控制焊接变形。 3、选择合理的装焊顺序控制焊接变形 同一焊接结构,采用不同的装焊顺序,所引起的焊接变形量往往不同,应选择引起焊接变形最小的装焊顺序。一般采取先总装后焊接的顺序,结构焊后焊接变形较小。 4、选择合理的焊接顺序控制焊接变形 当焊接结构上有多条焊缝时,不同的焊接顺序将会引起不同的焊接变形量。合理的焊接顺序是指:当焊缝对称布置时,应采用对称焊接;当焊缝不对称布置时,应先焊焊缝小的一侧。此外,采用跳焊法、分段退焊法等控制焊接变形均有较好的效果。 5、散热法 散热法又称强迫冷却法。就是把焊接处热量散走,使焊缝附近的金属受热面大大减小,达到减小变形的目的。散热法有水浸法和散热垫法。 6、锤击法 利用锤击焊缝使焊缝延伸,就能在一定程度上克服由焊缝收缩所引起的变形。例如,薄板对接焊后会产生波浪变形,就可以用锤在焊缝长度方向上对焊缝进行锤击来克服其变形。 7、选择合理的焊接方法 选用能量比较集中的焊接方法如CO2气体保护焊、等离子弧焊来代替气焊和手工电弧焊进行薄板焊接,可减小变形量。 焊接电弧 焊接电弧是一种强烈的持久的气体放电现象。在这种气体放电过程中产生大量的热能和强烈的光辉 。通常,气体是不导电的,但是在一定的电场和温度条件下,可以使气体离解而导电。 焊接电弧就是在一定的电场作用下,将电弧空间的气体介质电离 ,使中性分子或原子离解为带正电荷的正离子和带负电荷的电子(或负离子), 这两种带电质点分别向着电场的两极方向运动,使局部气体空间导电,而形成电弧。 1、焊缝位置的影响 2.结构的刚性对焊接变形的影响3、装配和焊接顺序对结构变形的影响

焊接变形的影响因素与控制

摘要 焊接过程是对焊件的局部进行高温加热使其达到融化状态,随后快速冷却结晶形成焊缝,由于急剧的非平衡加热及冷却,结构将不可避免地产生焊后残余变形、应力以及金属组织的变化。焊接应力与变形直接影响焊件的尺寸精度、强度、刚度、稳定性以及耐腐蚀性能等。是影响结构设计完整性、制造工艺合理性和结构使用可靠性的关键因素。焊接应力与变形过大时,不仅给产品制造工艺增加困难,还会因焊接裂纹或变形过大无法矫正而导致构件报废,造成巨大经济损失。本文主要阐述焊接变形的影响因素、控制措施和方法。 关键词:焊接变形;影响因素;控制措施

目录 第一章 1页

第一章焊接应力 在没有外力的情况下,物体内部存在的应力称为内应力,内应力在物体内部自相平衡,即物体内部各方向的内应力总和等于零,内应力对于任何一点的力矩总和等于零。常见的内应力有以下几种: 1、热应力:又称温度应力。它是在不均匀加热及冷却过程中所产生的应力,它与加热温度和加热不均匀程度、焊件的钢度以及焊件材料的热物理性能等因素有关。 2、相变应力:金属发生相变时,由于体积发生变化而引起的应力。 3、装配应力:在装配和安装过程中产生的应力。例如:紧固螺栓、热套结构等均匀有内应力产生。 4、残余应力:当构件上承受局部荷载或经受不均匀加热时,都会在局部地区产生塑性应变。当局部外载撤去后或热源离去,构件温度恢复到原始的均匀状态时,由于构件内部发生了不能恢复的塑性变形,因而产生了内应力,即残余应力。残留下来的变形即残余变形。 焊接过程中焊件的热应力是随时间而变化的瞬时应力,焊后残余下来,即为残余应力。按照焊接应力在空间的方向可以分为单项应力、双向应力和三项应力。薄板对接时,可以认为是双向应力。大厚度焊件的焊缝,三个焊缝的交叉处以及存在裂缝、加渣等缺陷通常出现三向应力,三相应力使材料的塑性降低、容易导致脆性断裂,它是一种最危险的应力状态。 第二章焊接变形 一、焊接变形发生的原因 钢材的焊接通常采用熔化焊方法,把焊接局部连接处加热至溶化状态形成熔池,待其冷却结晶后形成焊缝,使原来分开的钢材连接成整体。由于焊接加热时还焊接接头局部加热不均匀,金属冷却后沿焊缝纵向收缩时受到焊件低温部分的阻碍,使焊缝及其附近区域受拉应力,远离焊缝区域受压应力。因加热、冷却这种热变化在局部范围急速地进行,膨胀和收缩变形均受到拘束而产生塑性变形,焊接完成并冷却至常温后该塑性变形残留下来,焊接变形因此产生。 二、焊接变形的主要形式

常用焊接设备说明

钨极氩弧焊 钨极氩弧焊是气体保护焊中的一种方法,也叫TIG焊,这种方法以燃烧于非熔化极与工件之间的电弧作为热源来进行焊接。钨极氩弧焊可焊易氧化的有色金属及其合金、不锈钢、高温合金、钛及钛合金等。钨极氩弧焊能够焊接各种接头形式的焊缝,焊缝优良、美观、平滑、均匀,特别适用于薄板焊接;焊接时几乎不发生飞溅或烟尘;容易观察和操作;被焊工件可开坡口或不开坡口;焊接时可填充焊丝或不填充焊丝。采用钨极氩弧焊,电弧稳定、热量集中、合金元素烧损小、焊缝的质量高,可靠性高,可以焊接重要构件,可用于核电站及航空、航天工业,是一种高效、优质、经济节能的工艺方法。但钨极氩弧焊焊缝容易受风或外界气流的影响,生产效率低,生产成本较高。根据电流种类,钨极氩弧焊又分为直流钨极氩弧焊、直流脉冲钨极氩弧焊和交流钨极氩弧焊,它们各有不同的工艺特点,应用于不同的场合。 钨极氩弧焊机钨极氩弧焊实际操作

用手工操纵焊条进行焊接的电弧焊方法称为手弧焊,它是利用焊条和焊件之间产生的电弧将焊条和焊件局部加热到熔化状态,焊条端部熔化后的熔滴和熔化的线母材融合一起形成熔池,随着电弧向前移动,熔池液态金属逐步冷却结晶,形成焊缝。 手弧焊的优点是使用的设备简单,方法简便灵活,适应性强,对大部分金属材料的焊接均适用。缺点是生产率较低,特别是在焊接厚板多层焊时,焊接质量不够稳定;可焊最小厚度为 1.0mm,一般易掌握的最小焊接厚度为 1.5mm;对焊工的操作技术要求高,焊接质量在一定程度上决定于焊工的操作技术;对于活泼金属(Ti、Nb、Zr等)和难熔金属(如Mo)由于其保护效果较差,焊接质量达不到要求,不能采用手弧焊。另外对于低熔点金属(如Pb、Sn、Zn)及其合金由于电弧温度太高,也不可能用手弧焊。 手弧焊的主要设备是电焊机,电弧焊时所用的电焊机实际上就是一种弧焊电源,按产生电流种类不同,这种电源可分为弧焊变压器(交流)和直流弧焊发电机及弧焊整流器(直流)。手弧焊适用于碳钢、低合金钢、不锈钢、铜及铜合金等金属材料的焊接。 直流电焊机交流电焊机手弧焊实际操作

【最新编排】焊接变形的原因及控制方法

在焊接过程中由于急剧地非平衡加热及冷却,结构将不可避免地产生不可忽视地焊接残余变形。焊接残余变形是影响结构设计完整性、制造工艺合理性和结构使用可靠性地关键因素。针对钢结构工程焊接技术地重点和难点,根据多年地工程实践经验, 本文主要阐述实用焊接变形地影响因素及控制措施和方法。 钢材地焊接通常采用熔化焊方法,是在接头处局部加热,使被焊接材料与添加地焊接材料熔化成液体金属,形成熔池,随后冷却凝固成固态金属,使原来分开地钢材连接成整体。由于焊接加热,融合线以外地母材产生膨胀,接着冷却,熔池金属和熔合线附近母材产生收缩,因加热、冷却这种热变化在局部范围急速地进行,膨胀和收缩变形均受到拘束而产生塑性变形。这样,在焊接完成并冷却至常温后该塑性变形残留下来。 焊接变形地影响因素 焊接变形可以分为在焊接热过程中发生地瞬态热变形和在室温条件下地残余变形。 影响焊接变形地丙素很多,但归纳起来主要有材料、结构和工艺3个方而。 1 . 1材料因素地影响 材料对于焊接变形地影响不仅和焊接材料有关,而且和耳材也有关系,材料地热物理性能参数和力学性能参数都对焊接变形地产生过程有重要地影响。英中热物理性能参数地影响主要体现在热传导系数上,一般热传导系数越小,温度梯度越大,焊接变形越显箸。力学性能对焊接变形地影响比较复杂,热膨胀系数地影响最为明显,随着热膨胀系数地增加焊接变形相应增加。同时材料在高温区地屈服极限和弹性模量及其随温度地变化率也超着十分重要地作用,一般情况下,随着弹性模量地增大,焊接变形随Z减少而较高地屈服极限会引起较高地残余应力,焊接结构存储地变形能量也会因此而增大,从而可能促使脆性断裂,此外,由于塑性应变较小且塑性区范協不大, 因而焊接变形得以减少。 1 ? 2结构因素地影响 焊接结构地设讣对焊接变形地影响最关键,也是最复杂地因素-其总体原则是随拘束度地增加,焊接残余应力增加,而焊接变形则相应减少。结构在焊接变形过程中, 工件本身地拘束度是不断变化着地,因此自身为变拘束结构,同时还受到外加拘束地影响。一般情况下复杂结构自身地拘束作用在焊接过程中占据主导地位,而结构本身在焊接过程中地拘束度变化情况随结构复杂程度地增加而增加,在设il焊接结构时,常需要采用筋板或加强板来提高结构地稳左性和刚性,这样做不但增加了装配和焊接工作S,而且在某些区域,如筋板、加强板等,拘束度发生较大地变化,给焊接变形分析与控制带来了一泄地难度。因此,在结构设汁时针对结构板地厚度及筋板或加强筋地位置数量等进行优化.对减小焊接变形有着十分重要地作用。 1.3工艺因素地彩响

自行车车架焊接工艺设计说明书

自行车车架焊接工艺设计说明书 成控0708班 070201214 高浩天

1 拟用的焊接方式 某车辆厂长久以来主要采用液化石油气焊从事自行车前叉、车架等的生产,积累了一定的经验,但产品成本较高且焊接质量有时不够稳定。近年来,随着生产的发展先后开发了BMX一20轻便自行车、人力三轮车和电动车车架等新产品,为了降低产品成本,提高生产效率,企业考虑改用其他焊接方法。首先考虑采用手工电弧焊,但因其飞溅多、电流易击穿管壁,焊接质量不能保证而被放弃。然后选用了CO2 气体保护焊,并首先在BMX一20轻便车车架上应用。 2 BMX一20自行车车架构件及其焊接要求 2.1 车架构件及焊缝 BMX一20自行车车架如图1所示。它由10种13 件管、板类零件构成,其配套零件见表1。需拼装施焊 的计有33条焊缝(直缝、环缝和曲线焊缝),多数是“无 接头”(焊缝无堆起现象)的焊接结构。 2.2 对施焊的主要要求 (1)焊缝要有足够的强度,用250YPM 偏心度250 的凸轮,经4次冲击后,各焊接部位不得有裂纹、断裂 和脱焊现象。 (2)焊缝要均匀美观,无明显缺陷。 (3)焊后车架变形要小,能保证各零件与主管的几 何位置和相关尺寸公差;在施焊后免予校正或减少校 正工作量。

3 BMX一20自行车车架CO2气体保护焊的应用方案 3.1 拟用的焊接设备及辅助装置 主要设备由焊机(包括焊接电源、控制系统等)、送丝机构、焊枪、供气装置等几部分组成。 (1)焊机NBC一200型,其技术数据符合产品要求。 其中电源用硅整流式直流电源,它和旋转式电源相比具有性能好、无噪声、结构简单等优点。电源的技术数据如表2所示。 表 2 电源技术参数 电源电压工作电压调节范围焊接电流调节范围整流方式调压方式 380(V)14V~30V40A~200A三相桥全波抽头 控制系统主要是对供气、送丝和供电等实施控制。控制程序如下: (2)送丝机构采用等速送丝系统,送丝方式为推丝式。根据所选的焊丝直径(φ0.8 mm),选用弹簧钢丝软管,内径为φ1.5 mm,长度取2.5 m左右。 (3)焊枪选用手枪式焊枪。使用前在喷嘴的内外表面涂以硅油,以便于清除飞溅物。 (4)供气系统包括气瓶和附属供气装置。附属供气装置包括电热式预热器、干燥器、减压器和3.01—1型浮标式流量计等,选用流量调节范围在0~15 L/min的气阀。 3.2 主要焊接材料 (1)CO2气体 液体状态的CO2采用钢瓶灌装,满瓶(80%容积)压力在5~7 MPa之间。CO2气体中的水气是主要的有害杂质,对焊缝质量有很大影响,过高的水气含量将导致焊缝产生气孔。为保证焊接质量,要求所购CO2气体的纯度>99.5% ,水、氮含量不得超过0.1 %。但实际所购CO2 气体一般达不到这一要求,含水量偏高,故规定施焊前现场采取下列措施:a.将新灌气瓶倒 置放水(放水结束仍将气瓶放正);经倒置放水后的气瓶仍需先放气2~3 min。b.当瓶中气压降至980 kPa时,该气瓶不再使用。这是因为当瓶中液态CO2。全部挥发后气体压力降至

控制压力容器管板焊接变形的方法

行业资料:________ 控制压力容器管板焊接变形的方法 单位:______________________ 部门:______________________ 日期:______年_____月_____日 第1 页共8 页

控制压力容器管板焊接变形的方法 在压力容器制造中,由于在控制压力容器管板进行焊接时,没有对焊接工艺参数进行合理的选择,导致在焊接过程管板焊接变形,本文主要对控制压力容器管板焊接变形的方法进行探讨。随着科学技术的迅猛发展,压力容器被普遍应用到能源工业、石油化学工业、科研工业等工业的生产过程中。因为压力容器属于危险性比较高的一类物品,很容易出现燃烧起火、爆炸等情况,对相关人员和单位造成一定的经济损失和伤害。在压力容器在压力容器制造中,往往由于组装与施焊的顺序不当,以及焊接工艺参数选择的不合理,易引起管板焊接变形,导致密封不严,管子拉脱。因此,在压力容器制作的过程中,对密封性要求非常的高。为了有效的避免因为各种不利因素对导致压力容器的密封性降低,本文主要对控制压力容器管板焊接变形的方法进行探讨。管板焊接变形的原因及影响因素 管板焊接变形的原因主要表现在两个方面。一是主要是由于筒体与管板焊接的横向收缩变形在厚度方向上的不均匀分布引起的;管板与筒体的焊缝一般为单面单边V型坡口,焊接时焊缝的背面和正面的熔敷金属的填充量不一致,造成了构件平面的偏转,所以这种变形在客观上是绝对存在的;二是管板与筒体焊接角变形主要由两种变形组成,即筒体与管板角度变化和管板本身的角变形,前者相当于两个工件对接焊接引起的角变形,后者相当于在管板上堆焊时引起的角变形。而焊接变形的大小的主要取决于管板的刚性、焊接线能量、坡口角度、焊缝截面形状、熔敷金属填充量焊接操作等因素有关。根据管板变形的原因及影响因素,由于管板焊接不能实现双面焊,焊接时电流过大会引起烧穿伤及换 第 2 页共 8 页

车架电泳线线技术要求

车架以及底盘小件以及薄板件电泳线技术要求 甲方(需方): 乙方(供方): 乙方向甲方提供车架、底盘小件以及薄板件电泳线设备 1 台(台套),由乙方进行设备的设计、制造、安装、调试,验收合格后一次性交付甲方使用。为确保项目质量,需满足如下要求: 一、技术要求 1、项目总体要求 1.1涂装工件名称:车架以及底盘小件以及薄板件; 1.2零件最大组挂尺寸:长12米*宽1.1米*高1.6米, 1.3最大重量:1500KG 1.4动力来源:电、压缩空气、天然气; 1.3生产纲领: 车架产量50000台/年,底盘小件和薄板件25000挂/年; 1.4工作制度: 工作制度:每年300天,每天工作20个小时,三班制; 生产节拍:4.8分钟/件 1.5工艺过程: 工艺温度:预脱脂、脱脂温度不低于45℃;磷化温度为35~45℃;电泳温度为28~32℃; 电泳烘干工件表面温度为180℃以上,其余工序常温。

(以上处理方式厂家可按照投标方的最优方案来制定)(每个工位有几个工作点根据工艺平面图确定) 1.6输送方式: 空中输送部分单独招标、地面输送包含在电泳线内 1.7作业点:每个工位有几个工作点根据工艺平面图确定 1.8厂房参数:210×18,厂房高度: 13米 1.9能源: 动力电: 380 V三相 50HZ 照明电: 220 V单相 50HZ 自来水:2~3 Kg/cm2(以实际情况为准) 压缩空气:5~6 Kg/cm2(以实际情况为准) 加热源:天然气 1.10有在著名工程机械单位或者汽车行业设计和建设大型阴极电泳涂装线的工程案例,且所承制的单个涂装线项目规模不小于1000万(出具合同证明); 2、项目内容 2.1项目工作流程 1)工件在上件点上件; 2)工件经前处理、电泳; 3)电泳后转挂至地面链,进入电泳烘房进行烘烤、强冷; 2.2分项工程

焊接变形的控制和预防

1、焊接变形的定义 在焊接过程中,焊缝金属和基材的冷热循环所引起的膨胀和收缩形成焊接变形。焊接时,沿 同一边持续焊接引起的变形比两边交叉焊接的变形大。在焊接引起的冷热循环中,很多因素 影响金属的收缩并导致变形,如金属在受热时其物理、机械性能发生变化。当热膨胀增加、 热量增大时(见图1),焊接区域温度升高,焊接区域钢板的弯曲强度、弹性、热导性能将降低。 2、产生焊接变形的原因 在金属冷热变化过程中,应了解怎样产生变形、为什么产生变形。图2 为一组钢板冷热变化 时产生的变形示例。均匀加热钢板时,向各个方向均匀膨胀,见图2a。当钢板冷却至室温时,也是均匀收缩并恢复至原始尺寸。如果钢板在加热时给予刚性约束(见图2b),两个侧边就不 会产生变形。但是,加热时钢板一定会膨胀,所以只能在无约束的垂直方向膨胀(厚度方向),从而使钢板变得更厚。同样,当钢板温度降至室温时,也将在各方向上收缩(见图2c),这样,工件就发生了永久性弯曲或扭曲变形。

在焊接受热过程中,膨胀和收缩作用于焊接金属和基材上,焊缝和基材因局部被加热而形成 很大的温度梯度。冷却时,焊接金属试图正常收缩至室温时的体积。但是,熔化的焊接金属 因基材而受到约束,焊缝金属和基材之间就会产生应力集中。焊缝附近区域因此产生应力集 中而伸展或弯曲或变薄,这些超过焊缝金属屈服应力的集中释放就形成了永久变形。当焊接 温度接近室温,整个基材受到约束而无 法变形,金属的伸缩应力接近屈服应力。如果约束(夹具固定工件或反收缩力)取消,残余应 力释放,基材将发生迁移,焊接工件将产生变形。金属内部结构因焊接不均匀的加热和冷却 产生的内应力叫焊接应力,由焊接应力造成的变形叫焊接变形。不同的焊接工艺引起的焊接 变形量不同。 3 影响焊接结构变形的主要因素和变形的种类 (1)影响焊接结构变形的主要因素。 a.焊缝在结构中的位置; b.结构刚性的大小; c.装配和焊接顺序; d.焊接规范的选择。 (2)焊接变形的种类。 a.纵向收缩和横向收缩(在焊缝长度方向上的收缩称纵向收缩,在垂直于焊缝纵向的收缩称 横向收缩); b.角变形; c.弯曲变形; d.波浪变形; e.扭曲变形。 (3)从焊接工艺上分析,影响焊接收缩量的因素。 a.采用焊条电弧焊焊接长焊缝时,一般采用焊前沿焊缝进行点固焊,有利于减小焊接变形,同时也有利于减小焊接内应力。 b.备料情况和装配质量对焊接变形也会产生影响。 c.焊接工艺中影响焊缝收缩量的因素有: ①线膨胀系数大的金属材料其焊接变形大,反之焊接变形小。 ②焊缝的纵向收缩量随着焊缝长度的增加而增加。 ③角焊缝的横向收缩比对接焊缝的横向收缩小。 ④间断焊缝比连续焊缝的收缩量小。 ⑤多层焊时,第一层引起的收缩量最大,以后各层逐渐减小。 ⑥在夹具固定条件下的焊接收缩量比没有夹具固定的焊接收缩量小,减少约40%~70%。

焊接变形控制技术要点

钢结构制造事业部焊接变形控制工艺 编制: 校对: 审核: 批准: 重庆建工工业有限公司 钢结构事业部 2015年6月11日

1 焊接应力 (2) 1.1焊接应力的种类 (2) 2 焊接变形 (2) 2.1焊接变形发生的原因 (2) 2.2焊接变形的主要形式 (2) 3 焊接变形的影响因素 (3) 3.1材料因素的影响 (3) 3.2结构设计因素的影响 (3) 3.3焊接工艺的影响 (3) 3.3.1焊接方法的影响 (3) 3.3.2焊接接头形式的影响 (3) 3.3.3焊接层数的影响 (4) 3.4焊接参数的影响 (4) 3.4.1电弧电压 (4) 3.4.2焊接电压过高 (4) 3.4.3焊接速度 (4) 3.4.4焊丝伸出长度 (4) 3.4.5焊枪倾斜角度 (4) 4 焊接变形的预防与控制措施 (5) 4.1设计措施 (5) 4.4.1尽量减少焊缝数量 (5) 4.4.2合理地选择焊接的尺寸和形式 (5) 4.4.3合理设计结构形式及合理安排焊缝位置 (5) 4.2工艺措施 (5) 4.2.1焊前预防措施 (5) 4.2.2焊接过程控制措施 (6) 4.3焊后矫正措施 (6) 4.3.1机械矫正 (6) 4.3.2加热矫正 (6)

1 焊接应力 焊接时,由于焊缝局部加热到高温状态,焊件温度均匀不分布,造成钢结构不均匀冷却收缩而产生变形。其次,在焊接时,由于不同焊接热循环作用引起金相组织发生转变,随之而出现体积的变化,当体积变化受到周围金属阻碍时便产生了应力,从而出现整体变形。 焊接变形分为局部变形和整体变形。局部变形指焊接结构的某部分发生变形,在焊接中易于矫正;整体变形指整个结构的形状或尺寸发生变化,是由于焊接在各个方向上收缩不均所引起的,这在焊接中尤为重要,一般不允许发生整体变形。焊接变形产生的原因很多,不均匀的局部加热和冷却是最主要原因。焊接时,焊件局部加热到熔化状态,形成了温度不均匀分布区,使焊接出现不均匀的热膨胀,热膨胀受到周围金属的阻碍不能自由膨胀而受到压应力,周围的金属则受到拉应力。当被加热金属受到的压应力超过屈服点时,就会产生塑性变形;焊接冷却时,由于加热的金属在加热时已产生了压缩的塑性变形,所以,最后的长度要比未被加热金属的长度短些,从而产生变形。 1.1焊接应力的种类 1.1.1热应力:又称温度应力。它是在不均匀加热及冷却过程中所产生的应力,它与加热温度和加热不均匀程度、焊件的钢度以及焊件材料的热物理性能等因素有关。 1.1.2相变应力:金属发生相变时,由于体积发生变化而引起的应力。 1.1.3装配应力:在装配和安装过程中产生的应力。 1.1.4残余应力:当构件上承受局部荷载或经受不均匀加热时,都会在局部地区产生塑性应变。当局部外载撤去后或热源离去,构件温度恢复到原始的均匀状态时,由于构件内部发生了不能恢复的塑性变形,因而产生了内应力,即残余应力。残留下来的变形即残余变形。 焊接过程中焊件的热应力是随时间而变化的瞬时应力,焊后残余下来,即为残余应力。 2 焊接变形 2.1焊接变形发生的原因 钢材的焊接通常采用熔化焊方法,把焊接局部连接处加热至溶化状态形成熔池,待其冷却结晶后形成焊缝,使原来分开的钢材连接成整体。由于焊接加热时还焊接接头局部加热不均匀,金属冷却后沿焊缝纵向收缩时受到焊件低温部分的阻碍,使焊缝及其附近区域受拉应力,远离焊缝区域受压应力。因加热、冷却这种热变化在局部范围急速地进行,膨胀和收缩变形均受到拘束而产生塑性变形,焊接完成并冷却至常温后该塑性变形残留下来,焊接变形因此产生。 2.2焊接变形的主要形式 焊接变形主要有收缩变形、角变形、弯曲变形、扭曲变形和破浪变形五种基本形式。其成因如下: 收缩变形是由于焊缝的纵向(沿焊缝方向)和横向(垂直焊缝方向)收缩引起的 角变形由于V型坡口对接焊焊缝布置不对称,造成焊缝上下横向收缩量不均匀而引起的变形

焊接变形的控制方法之令狐采学创编

令狐采学创作 焊接变形的控制 方法 令狐采学 1 焊接应力与变形 焊接是一种局部加热的工艺过程。焊接过程中以及焊后,构件不可避免地会产生焊接应力和变形。焊接应力和变形在一定条件下还影响焊接结构的性能,如强度、刚度、尺寸精度和稳定性、受压时的稳定性和抗腐蚀性等。不仅如此,过大的焊接应力与变形, 还会大大增加制造工艺中的困难和经济消耗, 而且往往因焊接裂纹或变形过大无法矫正而导致产品的报废。 2 焊接应力与变形的形成过程 焊接应力与变形是由焊接产生的不均匀温度场而引起的。 假设有一块平板条( 如图所示) , 在他中心堆置一条焊缝。 图1 假定是焊接加热时的情况。 图 2 为焊接以后, 温度恢复到室温时的情况。与此同时, 由于不均匀加热还会产生垂直焊缝方向( 横向) 的盈利和 变形, 厚度则还产生板厚度方向的应力。 3 影响焊接应力与变形的主要因素

令狐采学创作 影响焊接应力与变形的因素主要有两个方面,第一个方面是焊缝及其附近不均匀加热的范围和程度, 也就是产生热变形的范围和程度; 第二个方面是焊件本身的刚度以及受到周围拘束的程度; 实际上也就是就是阻止焊缝及其附近加热所产生热变形的程度。两个方面作用的结果决定了焊缝附近压缩塑性变形区的大小和分布, 也决定了残余应力与残余变形的大小。 焊缝尺寸和焊缝数量及为止, 材料的热物理性能( 导热系数、比热、膨胀系数等) , 焊接工艺方法( 气焊、手工焊、埋弧焊、气体保护焊等) , 焊接参数( 焊接电流、电弧电压、焊接速度等) 以及施焊方法( 直通焊、跳焊、逆向分段汉等) 等因素影响到焊缝及其附近区不均加热的范围和程度, 影响到热变形的大小和分布; 焊接构件的尺寸和形状, 胎夹具的应用, 焊缝的布置以及装配焊接顺序等因素影响到焊接构件的刚度和周围的约束程度。一般来说, 焊接构件在约束小的条件下, 焊接变形达而应力小; 反之, 则焊接变形小而应力大。 4 焊接残余变形的预防和矫正 4.1 设计措施

造船焊接变形和反变形控制范文

造船中的焊接变形和反变形控制 1.研究背景 船舶工业是传统的劳动密集型装配制造业,焊接操作是其中主要的作业形式之一,焊接水平的高低在很大程度上决定了船体的质量和生产效率,而焊接变形又是焊接过程中最难控制的一环。焊接变形的存在不仅造成了焊接结构形状变异,尺寸精度下降和承载能力降低,而且在工作荷载作用下引起的附加弯矩和应力集中现象是船舶结构早期失效的主要原因,也是造成船舶结构疲劳强度降低的原因之一[1]。焊接变形对现代造船技术的应用产生了障碍。由于焊接变形对船舶建造质量、成本和周期都具有重要影响,工业界一直对其非常重视,对焊接变形从实验和理论上进行了大量研究,希望能够对焊接过程进行有效预测和控制。反变形可以控制焊接变形,降低残余应力,且方法简单易行,在船舶行业有广泛的应用。 2.背景内容 针对造船中的焊接变形,国内外专家进行大量的研究。焊接过程是一个非平衡的、时变的、带有随机因素影响的物理化学过程,它涉及电弧物理、传质传热和力学等方面。至今对焊接过程变形的实时检测与监控仍是困难的,不仅需要特殊的方法,而且对设备的要求也很高。随着计算机软、硬件技术的快速发展,使得焊接热加工过程的数值模拟应运而生,实践证明数值模拟对于研究焊接现象是一种非常有用的方法。 2.1国外专家的预测和研究 20世纪30年代以来,许多苏联学者就开始了焊接变形计算与控制研究。如C.A.库兹米诺夫[2]研究了典型船体结构总变形和局部变形的计算方法,提出了减少和补偿焊接变形以及矫正主船体结构的解决方案。Greene和Holzbaur[3]开展了降低焊接残余应力和变形的研究,目前降低残余应力和焊接变形技术大多数由他们制定的法则演变而来。法国的国际焊接研究所对“焊接结构中残余

车架焊接工艺规范

本守则适用于车架车间生产的四轮车车架、三轮车车架的装焊。 3 引用文件 3.1 Q/FTB026-1999 四轮农用运输车车架总成技术条件 3.2 GB6417-86 金属熔化焊焊缝缺陷分类及说明 3.3 GB8110-95 二氧化碳气体保护焊用钢焊丝 3.4《焊接手册》机械工业出版社 3.5《焊接技术手册》山西科学技术出版社 4 焊接设备 4.1各车型车架焊接均采用CO2气体保护焊。 4.2焊接设备由电源与控制系统、送丝机构、供气系统、联接电缆、送气管道、焊枪、调节旋钮及指示表组成。 4.3焊接设备及其配套装置上的仪表、开关、按钮、旋钮、阀门、指示灯等元件必须完好,设备调节灵活,指示数据清晰、准确,使用方便。 4.4焊接设备的外壳必须有良好的接地,且地线截面积大于 12mm2,其接地线不能随意拆除,并应经常检查接地的可靠性。 4.5焊机接到配套装置和工件的电缆线、送丝软管、气管等附件应保持完好,联接牢固,并便于操作和检查。 编制(日期)校对 (日 期) 审核 (日 期) 标准 化 (日 期) 会签 (日 期) 批准 (日 期) 标记处 数 更改文 件号 签字 (日 期) 奔驰汽车股份有限公司北京汽车厂车架装焊通用工艺 守则 第2页 共6页

4.6经常检查导电嘴、送丝滚轮的磨损情况,导电嘴内径过大与焊丝接触不良、送丝滚轮过度磨损都会影响焊接质量和正常送丝,必须更换。 4.7要随时检查、及时清理喷嘴内部附着飞溅物,以免喷嘴与导电嘴短路而烧损元件。 4.8应经常保持焊接设备的清洁完好,并有日保记录,保持工作环境良好,满足焊机的使用要求。 5 工装焊胎 5.1焊胎必须保证焊合件的装配尺寸,使用安全、可靠,操作要灵活、方便。 5.2焊胎上的定位元件应正确牢固、夹紧装置动作正常。 5.3夹具、气缸上的夹紧和定位部件应经常紧固,防止松动,未经维修人员同意,不得随意拆除。 5.4夹具的气缸及滑动部件应经常维护,并添加润滑剂。 5.5严禁在焊胎上试焊或引弧。 5.6焊胎中气路、阀门不得漏气,若有漏气应及时处理。 5.7定位销等易损件若有磨损,应及时更换。 6 焊接材料 6.1装焊零部件必须经过检验,符合产品图纸要求。 6.2装焊零部件必须清洁,无油污、锈蚀、氧化皮等,对不干净的须经清理后方可焊接。 6.3焊丝应符合GB8110-1995的规定,并经有关部门检验合格,严禁使用不符合规定的材料。 6.4焊丝表面必须光滑、平整、清洁、无油污锈蚀、无毛刺划痕,对不干净的焊丝须经擦试后方可焊接。 编制(日校对 (日 审核 (日 标准 化会签 (日 批准 (日

各种焊接方法的代号(实操分享)

代号焊接方法 1 电弧焊 11 无气体保护电弧焊 111 手弧焊 112 重力焊 113 光焊丝电弧焊 114 药芯焊丝电弧焊 115 涂层焊丝电弧焊 116 熔化极电弧点焊 118 躺焊 12 埋弧焊 121 丝极埋弧焊 122 带极埋弧焊 13 熔化极气体保护电弧焊 131 MIG焊:熔化极惰性气体保护焊(含熔化极Ar弧焊) 135 MAG焊:熔化极非惰性气体保护焊(含CO 保护焊) 2 136 非惰性气体保护药芯焊丝电弧焊 137 非惰性气体保护熔化极电弧点焊 14 非熔化极气体保护电弧焊 141 TIG焊:钨极惰性气体保护焊(含钨极Ar弧焊) 142 TIG点焊 149 原子氢焊 15 等离子弧焊 151 大电流等离子弧焊 152 微束等离子弧焊 153 等离子弧粉末堆焊(喷焊) 154 等离子弧填丝堆焊(冷、热丝) 155 等离子弧MIG焊 156 等离子弧点焊 18 其它电弧焊方法 181 碳弧焊 185 旋弧焊 2 电阻焊 21 点焊 22 缝焊 221 搭接缝焊 223 加带缝焊 23 凸焊 24 闪光焊

25 电阻对焊 29 其它电阻焊方法 291 高频电阻焊 3 气焊 31 氧-燃气焊 311 氧-乙炔焊 312 氧-丙烷焊 313 氢-氧焊 32 空气-燃气焊 321 空气-乙炔焊 322 空气-丙烷焊 33 氧-乙炔喷焊(堆焊) 4 压焊 41 超声波焊 42 摩擦焊 43 锻焊 44 高机械能焊 441 爆炸焊 45 扩散焊 47 气压焊 48 冷压焊 7 其它焊接方法 71 铝热焊 72 电渣焊 73 气电立焊 74 感应焊 75 光束焊 751 激光焊 752 弧光光束焊 753 红外线焊 76 电子束焊 77 储能焊 78 螺柱焊 781 螺柱电弧焊 782 螺柱电阻焊 9 硬钎焊、软钎焊、钎接焊91 硬钎焊 911 红外线硬钎焊 912 火焰硬钎焊

如何防止焊接变形

焊接变形的种类。 焊接过程中焊件产生的变形称为焊接变形。焊后,焊件残留的变形称为焊接残余变形。焊接残余变形有纵向收缩变形、横向收缩变形、角变形、弯曲变形、扭曲变形和波浪变形等共六种,见图1,其中焊缝的纵向收缩变形和横向收缩变形是基本的变形形式,在不同的焊件上,由于焊缝的数量和位置分布不同,这两种变形又可表现为其它几种不同形式的变形。 2 焊件在什么情况下会产生纵向收缩变形? 焊件焊后沿平行于焊缝长度方向上产生的收缩变形称为纵向收缩变形。当焊缝位于焊件的中性轴上或数条焊缝分布在相对中性轴的对称位置上,焊后焊件将产生纵向收缩变形,其焊缝位置见表1。

焊缝的纵向收缩变形量随焊缝的长度、焊缝熔敷金属截面积的增加而增加,随焊件截面积的增加而减少,其近似值见表2。 表2 焊缝纵向收缩变形量的近似值(mm/m) 对接焊缝连续角焊缝间断角焊缝 0.15~0.3 0.2~0.4 0~0.1 注:表中所表示的数据是在宽度大约为15倍板厚的焊缝区域中的纵向收缩变形量,适用于中等厚度的低碳钢板。 3 试述焊缝的横向收缩变形量及其计算。 焊件焊后在垂直于焊缝方向上发生的收缩变形称为横向收缩变形,横向收缩变形量随板厚的增加而增加。低碳钢对接接头、T形接头和搭接接头的横向收缩变形量,见表3、表4。

对接接头横向收缩变形量的近似计算公式,见表5。 表5 对接接头横向收缩变形量的近似计算公式坡口形式横向缩短量计算公式 Y形双Y形△L横=0.1δ①+0.6 △L横=0.1δ+0.4 ①δ——板厚(mm)。 当两板自由对接、焊缝不长、横向没有约束时,横向收缩变形量要比纵向的大得多。 4 焊件在什么情况下会产生弯曲变形? 如果焊件上的焊缝不位于焊件的中性轴上,并且相对于中性轴不对称(上下、左右),则焊后焊件将会产生弯曲变形。如果焊缝集中在中性轴下方(或下方焊缝较多)则焊件焊后将产生上拱弯曲变形;相反如果焊缝集中在中性轴上方(或上方焊缝较多),则焊件焊后将产生下凹弯曲变形。又如果焊件相对焊件中性轴左、右不对称,则焊后将产生旁弯,焊件产生弯曲变形的焊缝位置,见表6。

车架装焊通用工艺守则范文

车架装焊通用工艺守则范文 1 目的 为规范焊接车架装焊工艺过程及稳定车架装焊质量,特制订本工艺守则。 2 适用范围 本守则适用于车架车间生产的四轮车车架、三轮车车架的装焊。 3 引用文件 3.1 Q/FTB026-1999 四轮农用运输车车架总成技术条件 3.2 GB6417-86 金属熔化焊焊缝缺陷分类及说明 3.3 GB8110-95 二氧化碳气体保护焊用钢焊丝 3.4《焊接手册》机械工业出版社 3.5《焊接技术手册》山西科学技术出版社 4焊接设备 4.1各车型车架焊接均采用CO2气体保护焊。 4.2焊接设备由电源与控制系统、送丝机构、供气系统、联接电缆、送气管道、焊枪、调节旋钮及指示表组成。 4.3焊接设备及其配套装置上的仪表、开关、按钮、旋钮、阀门、指示灯等元件必须完好,设备调节灵活,指示数据清晰、准确,使用方便。 4.4焊接设备的外壳必须有良好的接地,且地线截面积大于12mm2,其接地线不能随意拆除,并应经常检查接地的可靠性。 4.5焊机接到配套装置和工件的电缆线、送丝软管、气管等附件应保持完好,联接牢固,并便于操作和检查。 4.6经常检查导电嘴、送丝滚轮的磨损情况,导电嘴内径过大与焊丝接触不良、送

丝滚轮过度磨损都会影响焊接质量和正常送丝,必须更换。 4.7要随时检查、及时清理喷嘴内部附着飞溅物,以免喷嘴与导电嘴短路而烧损元件。 4.8应经常保持焊接设备的清洁完好,并有日保记录,保持工作环境良好,满足焊机的使用要求。 5 工装焊胎 5.1焊胎必须保证焊合件的装配尺寸,使用安全、可靠,操作要灵活、方便。 5.2焊胎上的定位元件应正确牢固、夹紧装置动作正常。 5.3夹具、气缸上的夹紧和定位部件应经常紧固,防止松动,未经维修人员同意,不得随意拆除。 5.4夹具的气缸及滑动部件应经常维护,并添加润滑剂。 5.5严禁在焊胎上试焊或引弧。 5.6焊胎中气路、阀门不得漏气,若有漏气应及时处理。 5.7定位销等易损件若有磨损,应及时更换。 6 焊接材料 6.1装焊零部件必须经过检验,符合产品图纸要求。 6.2装焊零部件必须清洁,无油污、锈蚀、氧化皮等,对不干净的须经清理后方可焊接。 6.3焊丝应符合GB8110-1995的规定,并经有关部门检验合格,严禁使用不符合规定的材料。 6.4焊丝表面必须光滑、平整、清洁、无油污锈蚀、无毛刺划痕,对不干净的焊丝须经擦试后方可焊接。 6.5 CO2气体纯度不应低于99.5%(体积法)。

如何防止焊接变形

如何防止焊接变形 1、焊接变形的种类: 焊接过程中焊件产生的变形称为焊接变形。焊后,焊件残留的变形称为焊接残余变形。焊接残余变形有纵向收缩变形、横向收缩变形、角变形、弯曲变形、扭曲变形和波浪变形等共六种,见图1,其中焊缝的纵向收缩变形和横向收缩变形是基本的变形形式,在不同的焊件上,由于焊缝的数量和位置分布不同,这两种变形又可表现为其它几种不同形式的变形。 2、如何利用合理的装配焊接顺序来控制焊接残余变形? 不同的构件形式应采用不同的装配焊接方法。 1)结构截面对称、焊缝布置对称的焊接结构,采用先装配成整体,然后再按一定的焊接顺序进行生产,使结构在整体刚性较大的情况下焊接,能有效地减少弯曲变形。 例如,工字梁的装配焊接过程,可以有两种不同方案,见图4。若采用图4b所示的边装边焊顺序进行生产,焊后要产生较大的上拱弯曲变形;若采用图4c所示的整装后焊顺序,就可有效地减少弯曲变形的产生。

2)结构截面形状和焊缝不对称的焊接结构,可以分别装焊成部件,最后再组焊在一起见图5。图5b所示的方案由于焊缝1离中性轴距离较大,所以弯曲变形较大,而图5a所示的焊缝1 的位置几乎与上盖板截面中性轴重合,所以对整个结构的弯曲变形没有影响。 3、如何利用合理的焊接顺序来控制焊接残余变形? ⑴对称焊缝采用对称焊接当构件具有对称布置的焊缝时,可采用对称焊接减少变形。如 图4所示工字梁,当总体装配好后先焊焊缝1、2,然后焊接3、4,焊后就产生上拱的弯曲变形。 如果按1、4、2、3的顺序进行焊接,焊后弯曲变形就会减小。但对称焊接不能完全消除变形, 因为焊缝的增加,结构刚度逐渐增大,后焊的焊缝引起的变形比先焊的焊缝小,虽然两者方向 相反,但并不能完全抵消,最后仍将保留先焊焊缝的变形方向。 ⑵不对称焊缝先焊焊缝少的一侧因为先焊焊缝的变形大,故焊缝少的一侧先焊时,使它 产生较大的变形,然后再用另一侧多的焊缝引起的变形来加以抵消,就可以减少整个结构的变 形。

焊接变形的控制及预防措施探究

焊接变形的控制及预防措施探究 焊接过程中,由于焊缝金属和基础材料的冷热循环问题所引发的收缩、膨胀,被称之为是焊 接变形问题。在进行焊接工作的时候,沿着同一边进行焊接,可能会引发变形超过两边交叉 焊接,并且由于焊接所引发的冷热循环中,会对金属的收缩性造成影响,并导致变形问题的 出现,像金属在受热过程中,其机械、物理性能都会有所变化,当热膨胀增大、热量增大的 时候,焊接区域的温度会升高,进而导致焊接区域钢板的弹性、强度和热导性能出现降低的 情况。 1 焊接应力和焊接变形的定义 在钢结构焊接过程中,由于焊接时产生的热源以及焊接热循环的影响,使焊件不均匀受热, 在焊件上形成了不均匀的温度区域,致使焊件根据钢结构的特性不均匀的收缩及膨胀,使焊 件内部形成焊接应力引起形变。焊接应力根据焊件材质、焊接时施工方法、焊接工艺及固定 时的拘束程度等,造成不同的焊接应力大小及分布,按照焊接应力作用方向可将其分为三大类,分别为单向力、双向应力及三向应力。薄板的对接焊划归为双向应力;大厚度焊件、丁 字焊缝划归为三向应力,其具有纵向应力、横向应力及厚度方向产生的应力。三向应力会使 钢结构的脆性断裂更易发生,降低材料的塑性,是一种存在安全隐患的应力状态。焊接残余 应力和变形,对钢结构的承载能力以及构件的加工精度有着很大的影响,施工中应该从源头 抓起,强化设计方案,增强焊接工艺、焊接方法的精确度,降低焊接应力和残余变形对钢结 构造成的影响。 2 导致焊接变形的原因 1)焊接应力的产生是导致焊接变形最主要的原因。焊接工件的大小程度,复杂情况会产生大 小数量不等的复杂焊缝。在处理焊缝的过程中,就有难以预测的复杂应力产生,从而导致焊 接变形。变形度越大那么工件的外观和质量就会受影响。甚至可能会报废,或发生安全事故,造成经济损失。2)受焊接材料的影响。焊接材料的质量好坏对焊接变形会产生影响。材料基 本都是金属,金属本身有特殊的热物理性。焊接材料的热传导系数越大,温度梯度较小,这 样焊接变形的几率也就越小。焊接是向母材料焊口加热,让其产生高温,使焊材与母材料完 全融合。如果在加热过程中,受热不均匀,都会导致焊接变形。3)焊接结构的设计。焊接结 构因素是焊接变形的最大原因。焊接结构设计非常复杂。工件自身是拘束体,它随焊接而慢 慢变化。所以工作的难度比较大。焊接会出现数量、结构不一样的焊缝。如果焊缝的结构复杂,焊接就更难掌握。因为一部分结构件设计繁琐。技术含量要求比较高,所以对焊接的各 环节的要求都很严格。假设焊接结构设计不合理,其中随便哪一个地方出现问题,都会出现 焊接变形的情况。4)没有制定合理的焊接工艺。不合理的焊接工艺会影响产品的质量和生产 效率。焊接工艺也考验师傅的手艺。当然,对技师的要求也必须要高。焊接时所需要的电压、工件的固定、焊接的前后顺序,怎么选择合理的焊接设备,等各方面用到的工具都是焊接工 艺对焊接变不变形的重要影响部分。这就需要丰富的理论知识和实践经验的技师来制定合理 的焊接工艺。 3 钢结构焊接变形与焊接应力的分类 3.1 钢结构焊接变形的种类 钢结构焊接变形可以分为两大类,即为面内变形和面外变形。而面内变形可分为纵向收缩变形、焊缝回转变形及横向收缩变形三小类,面外变形多为弯曲形变、扭曲形变、角形变及失 稳波浪形变等。其中,钢结构多表现为纵向收缩变形和横向收缩变形,而在不同焊件中,这 两种变形往往会因焊缝的数量及位置分布不同,表现出其他形式的变形。 3.2 残余应力的分类

相关文档
相关文档 最新文档