文档库 最新最全的文档下载
当前位置:文档库 › 操作系统实验报告—磁盘调度算法

操作系统实验报告—磁盘调度算法

操作系统实验报告—磁盘调度算法
操作系统实验报告—磁盘调度算法

操作系统实验报告—磁盘调度算法

操作系统实验报告

实验3磁盘调度算法

报告日期:20XX-6-17

姓名:学号:班级:任课教师:

实验3磁盘调度算法

一、实验内容

模拟电梯调度算法,实现对磁盘的驱动调度。

二、实验目的

磁盘是一种高速、大量旋转型、可直接存取的存储设备。它作为计算机系统的辅助存储器,负担着繁重的输入输出任务,在多道程序设计系统中,往往同时会有若干个要求访问磁盘的输入输出请示等待处理。系统可采用一种策略,尽可能按最佳次序执行要求访问磁盘的诸输入输出请求,这就叫驱动调度,使用的算法称驱动调度算法。驱动调度能降低为若干个输入输出请求服务所须的总时间,从而提高系统效率。本实验要求学生模拟设计一个驱动调度程序,观察驱动调度程序的动态运行过程。

三、实验原理

模拟电梯调度算法,对磁盘调度。

磁盘是要供多个进程共享的存储设备,但一个磁盘每个

时刻只能为一个进程服务。当有进程在访问某个磁盘时,其他想访问该磁盘的进程必须等待,直到磁盘一次工作结束。当有多个进程提出输入输出请求处于等待状态,可用电梯调度算法从若干个等待访问者中选择一个进程,让它访问磁盘。当存取臂仅需移到一个方向最远的所请求的柱面后,如果没有访问请求了,存取臂就改变方向。

假设磁盘有200个磁道,用C语言随机函数随机生成一个磁道请求序列放入模拟的磁盘请求队列中,假定当前磁头在100号磁道上,并向磁道号增加的方向上移动。请给出按电梯调度算法进行磁盘调度时满足请求的次序,并计算出它们的平均寻道长度。

四、实验过程

1.画出算法流程图。

2.源代码

#include #include #include int *Init(intarr) {

int i = 0;

srand((unsignedint)time(0)); for (i = 0; i = num) {

a[j+1] = arr[i]; j++; } else {

b[k+1] = arr[i]; k++; } }

printf(\访问序列:\\n\); for (i = 1; i 0; i--) { printf(\, b[i]); }

sum = ((a[j]-100)*2+(100- b[1]))/15;

printf(\平均寻道长度:%d\, sum); }

int main {

int arr[15] = { 0 }; int *ret=Init(arr); two_part(ret); getchar ; return 0;

}

4运行结果:

五、实验小结

通过本次实验,我对scan算法更加深入理解,用C语

言模拟电梯调度算法,实现对磁盘的驱动调度,这个相比前

两个实验实现起来相对简单,理解了算法实现起来尤为简单,程序敲出来之后没有错误,可直接运行,结果验证也无误。实验总能让我对理论知识理解的更加透彻。

操作系统实验报告--实验一--进程管理

实验一进程管理 一、目的 进程调度是处理机管理的核心内容。本实验要求编写和调试一个简单的进程调度程序。通过本实验加深理解有关进程控制块、进程队列的概念,并体会和了解进程调度算法的具体实施办法。 二、实验内容及要求 1、设计进程控制块PCB的结构(PCB结构通常包括以下信息:进程名(进程ID)、进程优先数、轮转时间片、进程所占用的CPU时间、进程的状态、当前队列指针等。可根据实验的不同,PCB结构的内容可以作适当的增删)。为了便于处理,程序中的某进程运行时间以时间片为单位计算。各进程的轮转时间数以及进程需运行的时间片数的初始值均由用户给定。 2、系统资源(r1…r w),共有w类,每类数目为r1…r w。随机产生n进程P i(id,s(j,k),t),0<=i<=n,0<=j<=m,0<=k<=dt为总运行时间,在运行过程中,会随机申请新的资源。 3、每个进程可有三个状态(即就绪状态W、运行状态R、等待或阻塞状态B),并假设初始状态为就绪状态。建立进程就绪队列。 4、编制进程调度算法:时间片轮转调度算法 本程序用该算法对n个进程进行调度,进程每执行一次,CPU时间片数加1,进程还需要的时间片数减1。在调度算法中,采用固定时间片(即:每执行一次进程,该进程的执行时间片数为已执行了1个单位),这时,CPU时间片数加1,进程还需要的时间片数减1,并排列到就绪队列的尾上。 三、实验环境 操作系统环境:Windows系统。 编程语言:C#。 四、实验思路和设计 1、程序流程图

2、主要程序代码 //PCB结构体 struct pcb { public int id; //进程ID public int ra; //所需资源A的数量 public int rb; //所需资源B的数量 public int rc; //所需资源C的数量 public int ntime; //所需的时间片个数 public int rtime; //已经运行的时间片个数 public char state; //进程状态,W(等待)、R(运行)、B(阻塞) //public int next; } ArrayList hready = new ArrayList(); ArrayList hblock = new ArrayList(); Random random = new Random(); //ArrayList p = new ArrayList(); int m, n, r, a,a1, b,b1, c,c1, h = 0, i = 1, time1Inteval;//m为要模拟的进程个数,n为初始化进程个数 //r为可随机产生的进程数(r=m-n) //a,b,c分别为A,B,C三类资源的总量 //i为进城计数,i=1…n //h为运行的时间片次数,time1Inteval为时间片大小(毫秒) //对进程进行初始化,建立就绪数组、阻塞数组。 public void input()//对进程进行初始化,建立就绪队列、阻塞队列 { m = int.Parse(textBox4.Text); n = int.Parse(textBox5.Text); a = int.Parse(textBox6.Text); b = int.Parse(textBox7.Text); c = int.Parse(textBox8.Text); a1 = a; b1 = b; c1 = c; r = m - n; time1Inteval = int.Parse(textBox9.Text); timer1.Interval = time1Inteval; for (i = 1; i <= n; i++) { pcb jincheng = new pcb(); jincheng.id = i; jincheng.ra = (random.Next(a) + 1); jincheng.rb = (random.Next(b) + 1); jincheng.rc = (random.Next(c) + 1); jincheng.ntime = (random.Next(1, 5)); jincheng.rtime = 0;

操作系统磁盘调度算法实验报告

《操作系统原理》 课程设计报告书 题目:磁盘调度 专业:网络工程 学号: 学生姓名: 指导教师: 完成日期:

目录 第一章课程设计目的 (1) 1.1编写目的 (1) 第二章课程设计内容 (2) 2.1设计内容 (2) 2.1.1、先来先服务算法(FCFS) (2) 2.1.2、最短寻道时间优先算法(SSTF) (2) 2.1.3、扫描算法(SCAN) (3) 2.1.4、循环扫描算法(CSCAN) (3) 第三章系统概要设计 (4) 3.1模块调度关系图 (4) 3.2模块程序流程图 (4) 3.2.1 FCFS算法 (5) 3.2.2 SSTF算法 (6) 3.2.3 SCAN算法 (7) 3.2.4 CSCAN算法 (8) 第四章程序实现 (9) 4.1 主函数的代码实现 (9) 4.2.FCFS算法的代码实现 (11) 4.3 SSTF算法的代码实现 (13) 4.4 SCAN算法的代码实现 (15) 4.5 CSCAN算法的代码实现 (17) 第五章测试数据和结果 (20) 第六章总结 (23)

第一章课程设计目的 1.1编写目的 本课程设计的目的是通过磁盘调度算法设计一个磁盘调度模拟系统,从而使磁盘调度算法更加形象化,容易使人理解,使磁盘调度的特点更简单明了,能使使用者加深对先来先服务算法、最短寻道时间优先算法、扫描算法以及循环扫描算法等磁盘调度算法的理解 1

第二章课程设计内容 2.1设计内容 系统主界面可以灵活选择某种算法,算法包括:先来先服务算法(FCFS)、最短寻道时间优先算法(SSTF)、扫描算法(SCAN)、循环扫描算法(CSCAN)。 2.1.1、先来先服务算法(FCFS) 这是一种比较简单的磁盘调度算法。它根据进程请求访问磁盘的先后次序进行调度。此算法的优点是公平、简单,且每个进程的请求都能依次得到处理,不会出现某一进程的请求长期得不到满足的情况。此算法由于未对寻道进行优化,在对磁盘的访问请求比较多的情况下,此算法将降低设备服务的吞吐量,致使平均寻道时间可能较长,但各进程得到服务的响应时间的变化幅度较小。 2.1.2、最短寻道时间优先算法(SSTF) 该算法选择这样的进程,其要求访问的磁道与当前磁头所在的磁道距离最近,以使每次的寻道时间最短,该算法可以得到比较好的吞吐量,但却不能保证平均寻道时间最短。其缺点是对用户的服务请求的响应机会不是均等的,因而导致响应时间的变化幅度很大。在服务请求很多的情况下,对内外边缘磁道的请求将会无限期的被延迟,有些请求的响应时间将不可预期。 2

操作系统实验报告模板

操作系统上机 实验报告 成绩 教师: 2012 年 12月 5日 班级: 学号: 姓名: 实验地点: 实验时间:

实验一进程的建立 【实验目的】 创建进程及子进程 在父子进程间实现进程通信 【实验软硬件环境】 Linux 、Windows98、Windows2000 【实验内容】 创建进程并显示标识等进程控制块的属性信息; 显示父子进程的通信信息和相应的应答信息。 (进程间通信机制任选) 【实验程序及分析】 编程思路:首先本程序在Linux用C语言完成的,父子进程的创建用fork函数来实现,然后是父子进程间的通信,这里用pipe实现。可以定义chan1[2], chan1[2],chanx[0]表示读,chanx[1]表示写。他们配合使用。 【实验截图】 【实验心得体会】 通过这次上机练习,我熟悉了用c++实现进程的创建,销毁,父子进程间的通讯等一系列课程中需要学习的内容。本来进程的概念在一开始我始终无法清晰地理解,但是通过自己用mfc的方法去实现它后,我开始慢慢地理解操作系统的进程的运作机制。 虽然,我只是实现了一个父子进程的创建和通讯,但是,管中窥豹,我想自己开始明白一个操作系统正是由很多这种进程实现功能的。其中,系统整体的进程调度,管理等等还有很多东西等着我们去进一步学习、理解。 实验二进程间的同步 【实验目的】

理解进程同步和互斥模型及其应用 【实验软硬件环境】 Linux 、Windows98、Windows2000 【实验内容】 利用通信API实现进程之间的同步: 建立司机和售票员进程; 并实现他们间的同步运行。 【实验程序及分析】 程序总体思路:由于本次试验时用PV操作实现的互斥与同步模型,所以先实现P、V操作的函数,然后在主程序中利用PV操作函数实现司机和售票员的同步。司机和售票员分别为父进程和子进程,假设司机停车开门,此时为父进程中运行,然后申请开车,但是此时乘客没上车,所以只能阻塞。此时进入子进程,乘客上车,关门,售票员检票,释放开车,然后死机开车,到站,释放开车门。如此循环。 示意图 #include #include

嵌入式操作系统实验报告

中南大学信息科学与工程学院实验报告 姓名:安磊 班级:计科0901 学号: 0909090310

指导老师:宋虹

目录 课程设计内容 ----------------------------------- 3 uC/OS操作系统简介 ------------------------------------ 3 uC/OS操作系统的组成 ------------------------------ 3 uC/OS操作系统功能作用 ---------------------------- 4 uC/OS文件系统的建立 ---------------------------- 6 文件系统设计的原则 ------------------------------6 文件系统的层次结构和功能模块 ---------------------6 文件系统的详细设计 -------------------------------- 8 文件系统核心代码 --------------------------------- 9 课程设计感想 ------------------------------------- 11 附录-------------------------------------------------- 12

课程设计内容 在uC/OS操作系统中增加一个简单的文件系统。 要求如下: (1)熟悉并分析uc/os操作系统 (2)设计并实现一个简单的文件系统 (3)可以是存放在内存的虚拟文件系统,也可以是存放在磁盘的实际文件系统 (4)编写测试代码,测试对文件的相关操作:建立,读写等 课程设计目的 操作系统课程主要讲述的内容是多道操作系统的原理与技术,与其它计算机原理、编译原理、汇编语言、计算机网络、程序设计等专业课程关系十分密切。 本课程设计的目的综合应用学生所学知识,建立系统和完整的计算机系统概念,理解和巩固操作系统基本理论、原理和方法,掌握操作系统开发的基本技能。 I.uC/OS操作系统简介 μC/OS-II是一种可移植的,可植入ROM的,可裁剪的,抢占式的,实时多任务操作系统内核。它被广泛应用于微处理器、微控制器和数字信号处理器。 μC/OS 和μC/OS-II 是专门为计算机的嵌入式应用设计的,绝大部分代码是用C语言编写的。CPU 硬件相关部分是用汇编语言编写的、总量约200行的汇编语言部分被压缩到最低限度,为的是便于移植到任何一种其它的CPU 上。用户只要有标准的ANSI 的C交叉编译器,有汇编器、连接器等软件工具,就可以将μC/OS-II嵌入到开发的产品中。μC/OS-II 具有执行效率高、占用空间小、实时性能优良和可扩展性强等特点,最小内核可编译至2KB 。μC/OS-II 已经移植到了几乎所有知名的CPU 上。 严格地说uC/OS-II只是一个实时操作系统内核,它仅仅包含了任务调度,任务管理,时间管理,内存管理和任务间的通信和同步等基本功能。没有提供输入输出管理,文件系统,网络等额外的服务。但由于uC/OS-II良好的可扩展性和源码开放,这些非必须的功能完全 可以由用户自己根据需要分别实现。 uC/OS-II目标是实现一个基于优先级调度的抢占式的实时内核,并在这个内核之上提供最基本的系统服务,如信号量,邮箱,消息队列,内存管理,中断管理等。 uC/OS操作系统的组成 μC/OS-II可以大致分成核心、任务处理、时间处理、任务同步与通信,CPU的移植等5个部分。如下图:

操作系统磁盘调度算法实验报告

操作系统磁盘调度算法 实验报告 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

目录

1.课程设计目的 编写目的 本课程设计的目的是通过磁盘调度算法设计一个磁盘调度模拟系统,从而使磁盘调度算法更加形象化,容易使人理解,使磁盘调度的特点更简单明了,能使使用者加深对先来先服务算法、最短寻道时间优先算法、扫描算法以及循环扫描算法等磁盘调度算法的理解。 2.课程设计内容 设计内容 系统主界面可以灵活选择某种算法,算法包括:先来先服务算法(FCFS)、最短寻道时间优先算法(SSTF)、扫描算法(SCAN)、循环扫描算法(CSCAN)。 1、先来先服务算法(FCFS) 这是一种比较简单的磁盘调度算法。它根据进程请求访问磁盘的先后次序进行调度。此算法的优点是公平、简单,且每个进

程的请求都能依次得到处理,不会出现某一进程的请求长期得不到满足的情况。此算法由于未对寻道进行优化,在对磁盘的访问请求比较多的情况下,此算法将降低设备服务的吞吐量,致使平均寻道时间可能较长,但各进程得到服务的响应时间的变化幅度较小。 2、最短寻道时间优先算法(SSTF) 该算法选择这样的进程,其要求访问的磁道与当前磁头所在的磁道距离最近,以使每次的寻道时间最短,该算法可以得到比较好的吞吐量,但却不能保证平均寻道时间最短。其缺点是对用户的服务请求的响应机会不是均等的,因而导致响应时间的变化幅度很大。在服务请求很多的情况下,对内外边缘磁道的请求将会无限期的被延迟,有些请求的响应时间将不可预期。 3、扫描算法(SCAN) 扫描算法不仅考虑到欲访问的磁道与当前磁道的距离,更优先考虑的是磁头的当前移动方向。例如,当磁头正在自里向外移动时,扫描算法所选择的下一个访问对象应是其欲访问的磁道既在当前磁道之外,又是距离最近的。这样自里向外地访问,直到

实时操作系统报告

实时操作系统课程实验报告 专业:通信1001 学号:3100601025 姓名:陈治州 完成时间:2013年6月11日

实验简易电饭煲的模拟 一.实验目的: 掌握在基于嵌入式实时操作系统μC/OS-II的应用中,基于多任务的模式的编程方法。锻炼综合应用多任务机制,任务间的通信机制,内存管理等的能力。 二.实验要求: 1.按“S”开机,系统进入待机状态,时间区域显示当前北京时间,默认模式“煮饭”; 2.按“C”选择模式,即在“煮饭”、“煮粥”和“煮面”模式中循环选择; 3.按“B”开始执行模式命令,“开始”状态选中,时间区域开始倒计时,倒计时完成后进入“保温”状态,同时该状态显示选中,时间区域显示保温时间; 4.按“Q”取消当前工作状态,系统进入待机状态,时间区域显示北京时间,模式为当前模式; 5.按“X”退出系统,时间区域不显示。 6.煮饭时长为30,煮粥时长为50,煮面时长为40. 三.实验设计: 1.设计思路: 以老师所给的五个程序为基础,看懂每个实验之后,对borlandc的操作有了大概的认识,重点以第五个实验Task_EX为框架,利用其中界面显示与按键扫描以及做出相应的响应,对应实现此次实验所需要的功能。 本次实验分为界面显示、按键查询与响应、切换功能、时钟显示与倒计时模块,综合在一起实验所需功能。 2.模块划分图: (1)界面显示: Main() Taskstart() Taskstartdispinit() 在TaskStartDispInit()函数中,使用PC_DispStr()函数画出界面。

(2)按键查询与响应: Main() Taskstart() 在TaskStart()函数中,用if (PC_GetKey(&key) == TRUE)判断是否有按键输入。然后根据key 的值,判断输入的按键是哪一个;在响应中用switch语句来执行对应按键的响应。 (3)切换功能: l计数“C”按 键的次数 M=l%3 Switch(m) M=0,1,2对应于煮饭,煮粥,煮面,然后使用PC_DispStr()函数在选择的选项前画上“@”指示,同时,在其余两项钱画上“”以“擦出”之前画下的“@”,注意l自增。 四.主要代码: #include "stdio.h" #include "includes.h" #include "time.h" #include "dos.h" #include "sys/types.h" #include "stdlib.h" #define TASK_STK_SIZE 512 #define N_TASKS 2 OS_STK TaskStk[N_TASKS][TASK_STK_SIZE]; OS_STK TaskStartStk[TASK_STK_SIZE]; INT8U TaskData[N_TASKS];

天津理工大学操作系统实验3:磁盘调度算法的实现

人和以吟实验报告学院(系)名称:计算机与通信工程学院

【实验过程记录(源程序、测试用例、测试结果及心得体会等) 】 #include #include #include using namespace std; void Inith() { cout<<" 请输入磁道数: "; cin>>M; cout<<" 请输入提出磁盘 I/O 申请的进程数 cin>>N; cout<<" 请依次输入要访问的磁道号: "; for(int i=0;i>TrackOrder[i]; for(int j=0;j>BeginNum; for(int k=0;k=0;i--) for(int j=0;jSortOrder[j+1]) const int MaxNumber=100; int TrackOrder[MaxNumber]; int MoveDistance[MaxNumber]; // ------- int FindOrder[MaxNumber]; // ---------- double AverageDistance; // ----------- bool direction; // int BeginNum; // int M; // int N; // int SortOrder[MaxNumber]; // ------ bool Finished[MaxNumber]; 移动距离 ; 寻好序列。 平均寻道长度 方向 true 时为向外, false 开始磁道号。 磁道数。 提出磁盘 I/O 申请的进程数 排序后的序列 为向里

天津理工大学 操作系统实验3:磁盘调度算法地实现

实验报告学院(系)名称:计算机与通信工程学院

【实验过程记录(源程序、测试用例、测试结果及心得体会等)】 #include #include #include using namespace std; const int MaxNumber=100; int TrackOrder[MaxNumber]; int MoveDistance[MaxNumber]; //----移动距离; int FindOrder[MaxNumber]; //-----寻好序列。 double AverageDistance; //-----平均寻道长度 bool direction; //-----方向 true时为向外,false为向里 int BeginNum; //----开始磁道号。 int M; //----磁道数。 int N; //-----提出磁盘I/O申请的进程数 int SortOrder[MaxNumber]; //----排序后的序列 bool Finished[MaxNumber]; void Inith() { cout<<"请输入磁道数:"; cin>>M; cout<<"请输入提出磁盘I/O申请的进程数:"; cin>>N; cout<<"请依次输入要访问的磁道号:"; for(int i=0;i>TrackOrder[i]; for(int j=0;j>BeginNum; for(int k=0;k=0;i--) for(int j=0;jSortOrder[j+1])

嵌入式实时操作系统实验报告

嵌入式实时操作系统实验报告 任务间通信机制的建立 系别计算机与电子系 专业班级***** 学生姓名****** 指导教师 ****** 提交日期 2012 年 4 月 1 日

一、实验目的 掌握在基于嵌入式实时操作系统μC/OS-II的应用中,任务使用信号量的一般原理。掌握在基于优先级的可抢占嵌入式实时操作系统的应用中,出现优先级反转现象的原理及解决优先级反转的策略——优先级继承的原理。 二、实验内容 1.建立并熟悉Borland C 编译及调试环境。 2.使用课本配套光盘中第五章的例程运行(例5-4,例5-5,例5-6),观察运行结果,掌握信号量的基本原理及使用方法,理解出现优先级反转现象的根本原因并提出解决方案。 3.试编写一个应用程序,采用计数器型信号量(初值为2),有3个用户任务需要此信号量,它们轮流使用此信号量,在同一时刻只有两个任务能使用信号量,当其中一个任务获得信号量时向屏幕打印“TASK N get the signal”。观察程序运行结果并记录。 4. 试编写一个应用程序实现例5-7的内容,即用优先级继承的方法解决优先级反转的问题,观察程序运行结果并记录。 5.在例5-8基础上修改程序增加一个任务HerTask,它和YouTask一样从邮箱Str_Box里取消息并打印出来,打印信息中增加任务标识,即由哪个任务打印的;MyTask发送消息改为当Times为5的倍数时才发送,HerTask接收消息采用无等待方式,如果邮箱为空,则输出“The mailbox is empty”, 观察程序运行结果并记录。 三、实验原理 1. 信号量 μC/OS-II中的信号量由两部分组成:一个是信号量的计数值,它是一个16位的无符号整数(0 到65,535之间);另一个是由等待该信号量的任务组成的等待任务表。用户要在OS_CFG.H中将OS_SEM_EN开关量常数置成1,这样μC/OS-II 才能支持信号量。

磁盘调度实验报告

操作系统实验报告课程名称:计算机操作系统 实验项目名称:磁盘调度实验时间: 班级:姓名:学号: 实验目的: 对操作系统的磁盘调度基础理论和重要算法的理解,加强动手能力。 实验环境: PC机 win7 Visual C++ 实验内容: 编程序实现下述磁盘调度算法,并求出每种算法的平均寻道长度,要求设计主界面以灵 活选择某算法,且以下算法都要实现: 1、先来先服务算法(FCFS) 2、最短寻道时间优先算法(SSTF) 3、扫描算法(SCAN) 4、循环扫描算法(CSCAN) 实验过程: 1.依次输入8个磁道数:123 45 31 67 20 19 38,并以0 结束 2.选择调度算法: (1)先来先服务算法(FCFS) (2)最短寻道时间优先算法(SSTF) 成绩: 指导教师(签名):

(3)扫描算法(SCAN) (4)循环扫描算法(CSCAN) 实验心得: 通过本次实验,学习了解磁盘调度的工作原理及四种调度方法的工作原理,并且在当中

发现了自己的不足,对以前所学过的知识理解得不够深刻,掌握得不够牢固,看到了自己的实践经验还是比较缺乏,理论联系实际的能力还急需提高。 附录: #include #include #include #include #define maxsize 1000 /*********************判断输入数据是否有效**************************/ int decide(char str[]) //判断输入数据是否有效 { int i=0; while(str[i]!='\0') { if(str[i]<'0'||str[i]>'9') { return 0; break; } i++; } return i; } /******************将字符串转换成数字***********************/ int trans(char str[],int a) //将字符串转换成数字 { int i; int sum=0; for(i=0;icidao[j]) { temp=cidao[i]; cidao[i]=cidao[j]; cidao[j]=temp; } } cout<<" 排序后的磁盘序列为:"; for( i=0;i

操作系统实验报告

实验报告 实验课程名称:操作系统 实验地点:南主楼七楼机房 2018—2019学年(一)学期 2018年 9月至 2019 年 1 月 专业: 班级: 学号: 姓名: 指导老师:刘一男

实验一 实验项目:分时系统模拟 实验学时:2实验日期: 2018-10-25 成绩: 实验目的利用程序设计语言模拟分时系统中多个进程按时间片轮转调度算法进行进程调度的过程; 假设有五个进程A,B,C,D,E,它们的到达时间及要求服务的时间分别为:进程名 A B C D E 到达时间0 1 2 3 4 服务时间 4 3 4 2 4 时间片大小为1,利用程序模拟A,B,C,D,E五个进程按时间片轮转的调度及执行过程并计算各进程的周转时间及带权周转时间。 执行过程并计算各进程的周转时间及带权周转时间。 轮转调度:BDACE

(1)修改时间片大小为2,利用程序模拟A,B,C,D,E五个进程按时间片轮转的调度及执行过程并计算各进程的周转时间及带权周转时间。 轮转调度:ADBCE (2)修改时间片大小为4,利用程序模拟A,B,C,D,E五个进程按时间片轮转的调度及执行过程并计算各进程的周转时间及带权周转时间.

顺序:ABCDE 1、思考 时间片的大小对调度算法产生什么影响?对计算机的性能产生什么影响?答:通过对时间片轮转调度算法中进程最后一次执行时间片分配的优化,提出了一种改进的时间片轮转调度算法,该算法具有更好的实时性,同时减少了任务调度次数和进程切换次数,降低了系统开销,提升了CPU的运行效率,使操作系统的性能得到了一定的提高。 A B C D E 时间片为1 周转时间12 9 14 8 13 3 3 3.5 4 3.25 带权周转 时间 时间片为2 周转时间8 12 13 7 13 2 4 3.25 3.5 3.25 带权周转 时间 时间片为4 周转时间 4 6 9 10 13 1 2 2.25 5 3.25 带权周转 时间

操作系统实验 磁盘调度算法

操作系统 实验报告 哈尔滨工程大学 计算机科学与技术学院

第六讲磁盘调度算法 一、实验概述 1. 实验名称 磁盘调度算法 2. 实验目的 (1)通过学习EOS 实现磁盘调度算法的机制,掌握磁盘调度算法执行的条件和时机; (2)观察 EOS 实现的FCFS、SSTF和 SCAN磁盘调度算法,了解常用的磁盘调度算法; (3)编写 CSCAN和 N-Step-SCAN磁盘调度算法,加深对各种扫描算法的理解。 3. 实验类型 验证性+设计性实验 4. 实验内容 (1)验证先来先服务(FCFS)磁盘调度算法; (2)验证最短寻道时间优先(SSTF)磁盘调度算法; (3)验证SSTF算法造成的线程“饥饿”现象; (4)验证扫描(SCAN)磁盘调度算法; (5)改写SCAN算法。 二、实验环境 在OS Lab实验环境的基础上,利用EOS操作系统,由汇编语言及C语言编写代码,对需要的项目进行生成、调试、查看和修改,并通过EOS应用程序使内核从源代码变为可以在虚拟机上使用。 三、实验过程 1. 设计思路和流程图 (1)改写SCAN算法 在已有 SCAN 算法源代码的基础上进行改写,要求不再使用双重循环,而是只遍历一次请求队列中的请求,就可以选中下一个要处理的请求。算法流程图如下图所示。 图 3.1.1 SCAN算法IopDiskSchedule函数流程图(2)编写循环扫描(CSCAN)磁盘调度算法 在已经完成的SCAN算法源代码的基础上进行改写,不再使用全局变量ScanInside 确定磁头移动的方向,而是规定磁头只能从外向内移动。当磁头移动到最内的被访问磁道时,磁头立即移动到最外的被访问磁道,即将最大磁道号紧接着最小磁道号构成循环,进行扫描。算法流程图如下图所示。

磁盘调度实验报告

操作系统实验报告 磁 盘 调 度

实验六:磁盘调度算法 一.实验目的 复习模拟实现一种磁盘调度算法,进一步加深对磁盘调度效率的理解。 二.实验属性 该实验为设计性实验。 三.实验仪器设备及器材 普通PC386以上微机 四.实验要求 本实验要求2学时完成。 本实验要求完成如下任务: (1)建立相关的数据结构,作业控制块、已分配分区及未分配分区 (2)实现一个分区分配算法,如最先适应分配算法、最优或最坏适应分配算法(3)实现一个分区回收算法 (4)给定一批作业/进程,选择一个分配或回收算法,实现分区存储的模拟管理

实验前应复习实验中所涉及的理论知识和算法,针对实验要求完成基本代码编写并完成预习报告、实验中认真调试所编代码并进行必要的测试、记录并分析实验结果。实验后认真书写符合规范格式的实验报告(参见附录A),并要求用正规的实验报告纸和封面装订整齐,按时上交。 五 .主要算法分析 各个算法分析 1.先来先服务算法(FCFS) 先来先服务(FCFS)调度:按先来后到次序服务,未作优化。 最简单的移臂调度算法是“先来先服务”调度算法,这个算法实际上不考虑访问者要求访问的物理位置,而只是考虑访问者提出访问请求的先后次序。例如,如果现在读写磁头正在50号柱面上执行输出操作,而等待访问者依次要访问的柱面为130、199、32、159、15、148、61、99,那么,当50号柱面上的操作结束后,移动臂将按请求的先后次序先移到130号柱面,最后到达99号柱面。 采用先来先服务算法决定等待访问者执行输入输出操作的次序时,移动臂来回地移动。先来先服务算法花费的寻找时间较长,所以执行输入输出操作的总时间也很长。 2.最短寻道时间优先算法(SSTF) 最短寻找时间优先调度算法总是从等待访问者中挑选寻找时间最短的那个请求先执行的,而不管访问者到来的先后次序。现在仍利用同一个例子来讨论,现在当50号柱面的操作结束后,应该先处理61号柱面的请求,然后到达32号柱面执行操作,随后处理15号柱面请求,后继操作的次序应该是99、130、148、159、199。 采用最短寻找时间优先算法决定等待访问者执行操作的次序时,读写磁头总共移动了200多个柱面的距离,与先来先服务、算法比较,大幅度地减少了寻找时间,因而缩短了为各访问者请求服务的平均时间,也就提高了系统效率。 但最短查找时间优先(SSTF)调度,FCFS会引起读写头在盘面上的大范围移动,SSTF查找距离磁头最短(也就是查找时间最短)的请求作为下一次服务的对象。SSTF查找模式有

实时操作系统实验报告2

实时操作系统实验报告 专业:11通信工程 学号:20110306136 姓名: 王帅 指导老师:申屠浩

实验二 任务管理实验 实验目的: 1、理解任务管理的基本原理,了解任务的各个基本状态及其变迁过程; 2、掌握μC/OS -II 中任务管理的基本方法(挂起、解挂); 3、熟练使用μC/OS -II 任务管理的基本系统调用。 实验要求与思路: 为了体现任务的各个基本状态及其变迁过程,本实验设计了T0、T1和T3三个任务,它们交替运行,如图2-2所示。 T0 T1 T2 T3 T4 T5 T6 T7 T8 图2-2 注意: 图中的栅格并不代表严格的时间刻度,而仅仅表现各任务启动和执行的相对先后关系。 说明: 在系统完成初始化后,可以先创建并启动优先级最低的TaskStart ,由它创建其他3个应用任务T0、T1和T2,之后整个系 T0 T2 T1 T0 T1 T2 T1 T0

统的运行流程如下: 1)优先级最高的T0开始执行,之后T0挂起自己; 2)然后系统调度选中T1开始执行,之后T1挂起自己; 3)接着系统调度选中T2,之后唤醒T0; 4)如此循环 实现提示: 在启动任务中创建三个任务后,应挂起任务1和任务2。 在每个任务恢复其它任务并挂起自己之前,显示当前三个任务的状态,并延时1秒。 函数说明: void PC_GetDateTime (char *s); 获取"YYYY-MM-DD HH:MM:SS"格式的时间字串存放在字符串s中,s的长度最少为21字节。 void PC_DispStr (INT8U x, INT8U y, INT8U *s, INT8U color); 在y行x列以color颜色值显示字串s,注意color由背景色和前景色两种颜色构成。 INT8U OSTimeDlyHMSM (INT8U hours, INT8U minutes, INT8U seconds, INT16U milli); 按时、分、秒、毫秒设置进行延时。 void OSTimeDly (INT16U ticks) 按ticks值进行延时,1 ticks一般为10ms。 INT32U OSTimeGet (void)

磁盘调度算法实验报告 (2)

磁盘调度算法 学生姓名: 学生学号: 专业班级: 指导老师: 2013年6月20日

1、实验目的: 通过这次实验,加深对磁盘调度算法的理解,进一步掌握先来先服务FCFS、最短寻道时间优先SSTF、SCAN和循环SCAN算法的实现方法。 2、问题描述: 设计程序模拟先来先服务FCFS、最短寻道时间优先SSTF、SCAN 和循环SCAN算法的工作过程。假设有n个磁道号所组成的磁道访问序列,给定开始磁道号m和磁头移动的方向(正向或者反向),分别利用不同的磁盘调度算法访问磁道序列,给出每一次访问的磁头移动距离,计算每种算法的平均寻道长度。 3、需求分析 通过这次实验,加深对磁盘调度算法的理解,进一步掌握先来先服务FCFS、最短寻道时间优先SSTF、SCAN和循环SCAN算法的实现方法。 通过已知开始磁道数、访问磁道总数、磁道号访问序列、访问方向及访问方式得到访问序列及移动距离和平均移动距离! (1)输入的形式; int TrackOrder[MaxNumber];//被访问的磁道号序列 int direction;//寻道方向 int Num;//访问的磁道号数目

int start;// (2)输出的形式; int MoveDistance[MaxNumber]={0};//移动距离 double AverageDistance=0;//平均寻道长度 移动的序列! (3)程序所能达到的功能; 模拟先来先服务FCFS、最短寻道时间优先SSTF、SCAN和循环SCAN算法的工作过程。假设有n个磁道号所组成的磁道访问序列,给定开始磁道号m和磁头移动的方向(正向或者反向),分别利用不同的磁盘调度算法访问磁道序列,给出每一次访问的磁头移动距离,计算每种算法的平均寻道长度。 (4)测试数据,包括正确的输入及其输出结果和含有错误的输入及其输出结果。 开始磁道号:100 磁道号方向:内(0)和外(1) 磁道号数目:9 页面序列:55 58 39 18 90 160 150 38 184 4、概要设计 说明本程序中用到的所有抽象数据类型的定义、主程序的流程以及各程序模块之间的层次(调用)关系。

计算机操作系统进程调度实验报告材料

操作系统实验题:设计一若干并发进程的进程调度程序 一、实验目的 无论是批处理系统、分时系统还是实时系统,用户进程数一般都大于处理机数,这将导致用户进程互相争夺处理机。这就要求进程调度程序按一定的策略,动态地把处理及分配给处于就绪队列中的某一进程,以使之执行。进程调度是处理机管理的核心内容。本实验要求采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法编写和调试一个简单的进程调度程序。通过本实验可以加深理解有关进程控制块、进程队列的概念。并体会了优先数和先来先服务调度算法的具体实施办法。 二、实验要求 用高级语言编写和调试一个进程调度程序,以加深对进程的概念及进程调度算法的理解. 三、实验内容 进程调度算法:采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法(将用户作业和就绪进程按提交顺序或变为就绪状态的先后排成队列,并按照先来先服务的方式进行调度处理)。 每个进程有一个进程控制块(PCB)表示。进程控制块可以包含如下信息:进程名、优先数、到达时间、需要运行时间、已用CPU时间、进程状态等等。 进程的优先数及需要的运行时间可以事先人为地指定(也可以由随机数产生)。进程的到达时间为进程输入的时间。 进程的运行时间以时间片为单位进行计算。

每个进程的状态可以是就绪W(Wait)、运行R(Run)、或完成F(Finish)三种状态之一。 就绪进程获得CPU后都只能运行一个时间片。用已占用CPU时间加1来表示。 如果运行一个时间片后,进程的已占用CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减1(即降低一级),然后把它插入就绪队列等待CPU。 每进行一次调度程序都打印一次运行进程、就绪队列、以及各个进程的PCB,以便进行检查。重复以上过程,直到所要进程都完成为止。 四、实验算法流程 调度算法的流程图如下:

操作系统磁盘调度算法

操作系统课程设计任务书 题目: 磁盘调度算法 院系: 专业: 班级: 姓名: 学号: 指导教师: 设计时间:2018.1.1-2018.1.5 指导教师评语

目录 1、需求分析?4 1.1课题描述 (4) 1.2课题目的 (4) 1.3理论依据?7 2、概要设计?8 2.1设计方法 ............................................................................................... 82.2技术?8 2.3运行环境?8 3、详细设计?9 3.1流程图 (11) 3.2程序主要代码? 13 14 4、运行结果及分析? 4.1运行结果? 15 4.2结果详细分析?6 1 16 5、总结和心得? 7 1 6、参考文献? 2 7、附录:程序源代码? 3

1、需求分析 1.1课题描述 这次课程设计我研究的题目是:磁盘调度算法。具体包括三种算法分别是:先来先服务算法(FCFS)、最短寻道时间优先算法(SSTF)、扫描算法(电梯调度算法)(SCAN)。 1.2课题目的 通过这次实验,加深对磁盘调度算法的理解,进一步掌握先来先服务FCFS,最短寻道时间优先SSTF,扫描SCAN算法的实现方法。 1.3理论依据 设备的动态分配算法与进程调度相似,也是基于一定的分配策略的。常用的分配策略有先请求先分配、优先级高者先分配等策略。在多道程序系统中,低效率通常是由于磁盘类旋转设备使用不当造成的。操作系统中,对磁盘的访问要求来自多方面,常常需要排队。这时,对众多的访问要求按一定的次序响应,会直接影响磁盘的工作效率,进而影响系统的性能。访问磁盘的时间因子由3部分构成,它们是查找(查找磁道)时间、等待(旋转等待扇区)时间和数据传输时间,其中查找时间是决定因素。因此,磁盘调度算法先考虑优化查找策略,需要时再优化旋转等待策略。 平均寻道长度(L)为所有磁道所需移动距离之和除以总的所需访问的磁道数(N),即:L=(M1+M2+……+Mi+……+MN)/N

操作系统实验报告

操作系统实验报告 学生学院计算机学院 专业班级计算机科学与技术3班学号3213005910 学生姓名林虹 指导教师丁国芳 2015 年12月15 日

目录 1 实验一进程调度 (1) 2 实验二银行家算法 (16) 3 实验三动态分区分配方式的模拟 (20) 4 实验四仿真各种磁盘调度算法 (26)

实验一进程调度 1. 实验目的 编写并调试一个模拟的进程调度程序,分别采用“短进程优先”、“时间片轮转”、“高响应比优先”调度算法对随机产生的五个进程进行调度,并比较算法的平均周转时间。以加深对进程的概念及进程调度算法的理解。 2. 实验要求 1.每个进程由一个进程控制块(PCB)表示,进程控制块可以包含如下信息:进程 名、优先数(响应比)、到达时间、需要运行时间(进程的长度)、已运行时间、进 程状态等等(可以根据需要自己设定)。 2.由程序自动生成进程(包括需要的数据,要注意数据的合理范围),第一个进程到 达时间从0开始,其余进程到达时间随机产生。 3.采用时间片轮转调度算法时,进程的运行时间以时间片为单位进行计算。 4.每个进程的状态可以是就绪W(Wait)、运行R(Run)、或完成F(Finish)三种 状态之一。 5.每进行一次调度,程序都要输出一次运行结果:正在运行的进程、就绪队列中的进 程、完成的进程以及各个进程的PCB,以便进行检查。 6.最后计算各调度算法的平均周转时间,并进行比较、分析。 3. 实验内容 a.算法原理 (1)短进程优先调度算法 “短进程优先”调度算法的基本思想是把CPU分配给就绪队列中需要时间最短的进程。 (2)时间片轮转算法 将系统中所有的就绪进程按照FCFS原则,排成一个队列。每次调度时将CPU 分派给队首进程,让其执行一个时间片。时间片的长度从几个ms到几百ms。在一个时间片结束时,发生时钟中断。调度程序据此暂停当前进程的执行,将其送到就绪队列的末尾,并通过上下文切换执行当前的队首进程。进程可以未使用完一个时间片,就出让CPU。 (3)高响应比优先算法 HRRN调度策略同时考虑每个作业的等待时间长短和估计需要的执行时间长短,从中选出响应比最高的作业投入执行。 每个作业完成后要打印该作业的开始运行时刻、完成时刻、周转时间和带权周转时间,这一组作业完成后要计算并打印这组作业的平均周转时间、带权平均周转时间。

相关文档
相关文档 最新文档