文档库 最新最全的文档下载
当前位置:文档库 › 日本Sinfonia研制出快速充电器

日本Sinfonia研制出快速充电器

日本Sinfonia研制出快速充电器

高通平台充电方案

Qualcomm平台充电总结 1.锂离子电池充放电特性 1.1. 锂离子电池充电电压的上限必须受控制,一般不超过4.2V。(视具体情况,一般控制在4.10V-4.35V不等) 1.2.单体电池充电电流通常限制在1C以下。 1.3.单体电池放电电流通常控制在3C以下。 1.4.单体电池放电电压通常不能低于 2.2V。 电池电量与电压对照曲线 2.充电通路晶体管的控制和功率限制 外部通路晶体管的控制驱动器包含在了PM IC中;这个驱动的输出可以内部晶体管应用,也可以通过CHG-CTL-N脚供外部应用。如果需要的话,一般操作时PM IC使用通路晶体管的闭环控制来校准VDD电压,快速充电(恒流充电)时的检测电流(IDET),或者充电最后状态的电池电压。通路晶体管的阻抗也被增加以用来过流保护。 控制通路晶体管同样允许用来过热保护:PM IC通过电压和电流的测量来监控通路晶体管中消耗

的功率。如果计算出的功率超过设计限制,CHG-CTL-N控制信号就会减小通路晶体管的通路电流。 2.1.通路晶体管的功率消耗限制是可编程的: 1)晶体管的消耗功率是使用VCHG(或USB-VBUS)和ISNS-P脚上的电压测量以及基于敏感电阻两端(ISNS-P和ISNS-M脚)电压的电流测量来计算的。 2)可编程的管耗限制(单位为瓦特)为0.4,0.5,0.6,0.75,1.0,1.5,2.0和“无限制”。 这些可编程限制采取一个0.100ohm的敏感电阻。 2.2设计者需要考虑以下几点来帮助减少通路晶体管的功率消耗: 1)使用一个只比锂电池最高电压高一点的外部供应电压来使越过通路晶体管的电压最小化。 2)设计充电器电压,使它的输出电压在快速充电期间崩溃,从而减少越过通路晶体管的电压。 恒流充电期间要控制充电电流和通路晶体管管耗,因为这个阶段的充电电流较大,而充电三极管超过一定功率就容易发热甚至烧毁。所以通常情况下,恒流充电期间,我们都要求充电三极管处于饱和态,Vce很小以降低管耗,只有在usb充电或有特殊要求的wall充电中,才会让充电三极管工作在放大区,这个在5中会有讨论。 2.3.平台限流的影响。 1)如果平台限流大于wall charger额定电流,充电通路三极管状态由pm控制在饱和区(表现为恒流充电期间Vbus电压会被拉低,充电三极管处于饱和态,Vce很小,管耗很小); 2)如果平台限流小于wall charger额定电流,充电通路三极管状态由pm控制在放大区,以提高充电三极管CE极间阻抗,来降低通过的电流(表现为充电Vbus电压不会被拉低,三极管无法进入饱和态,Vce很大——管耗大,发热大)。 3.充电过程解析 PM IC提供了支持锂电池充电的线路,它利用了MSM使能的四种技术:涓流充电,恒流充电,恒压充电,脉冲充电。电池电压,外部供应电压和最大检测电流度量都可以通过一个模拟多路器供MSM使用。这就使得MSM设备可以监控充电参数,做决策和控制充电过程。

电动自行车充电安全管理规定范本

工作行为规范系列 电动自行车充电安全规定(标准、完整、实用、可修改)

编号:FS-QG-51412电动自行车充电安全规定 Electric bicycle charging safety regulations 说明:为规范化、制度化和统一化作业行为,使人员管理工作有章可循,提高工作效率和责任感、归属感,特此编写。 为规范电动自行车(含电动三轮车)的管理,给广大员工电动自行车的充电提供方便,确保电动车的充电安全,特制定本规定。 一、综合办公室负责电动自行车充电处的管理,门卫负责日常监管。 二、本充电处只限本公司上下班路途在十公里以外和在公司住宿的内部员工使用。特殊情况须报告当班领导,由当班领导同意方可使用。充电人员对充电器双相插头至连接车体线路、车体本身,和充电过程负全责。 三、本充电处只限电动自行车充电。未经允许不得私自更改线路、插座、和开关,严禁一座多充现象。 四、电动自行车按秩序停放充电,充电时长不得超过4小时。不充电或充电完毕的自行车不得停于此处,应退回到

指定的停车场地,以方便下一辆自行车充电。 五、充电处的供电时间为正常工作日的早08:00分至当日下午17:00分,共9小时,因充电时间过长,充电器、电瓶、线路陈旧老化、电动车倾倒等原因而引起的火灾及其他伤害,造成公司及他人人身伤害及经济损失的由车辆所属员工负责。 六、充电方法:充电时应先将充电器三项插头与车体插孔连接,然后再将充电器另一端双向插头连接于充电处的插座上。如果反方向操作,接口处可能打火,绝缘体烧焦后可能造成短路,引发火灾及人身伤害事故。 七、员工每天对充电电动车进行安全状态确认,对充电器、插座、插头、线路进行检查,坚持做到多闻、多看、防止线路过热引发事故。门卫负责充电处合闸、拉闸、充电员工登记和日常安全检查,发现异常情况当即处理,处理不好的及时向领导汇报。 八、严禁雨雪、大雾、潮湿天气充电,充电器应放置在远离火源处,禁止将衣物、护膝等可燃物放置在电车上。 九、充电处配备的专用消防器材未经允许不得随意挪动。

快充方案分析

https://www.wendangku.net/doc/871309376.html,B 2.0充电接口电流要求 挂起 2.5mA 未挂起,未配置 100mA 未挂起,已配置 500mA 2.充电识别的几个状态 插入:插入USB电缆的物理过程。 连接:设备将1.5kΩ上拉电阻连接至D+或D-数据线时(刚插入)。 枚举:设备和主机之间交换初始数据,识别设备类型。 配置:设置设备参数。 3.充电电源 - SDP (Standard Downstream Port) - DCP (Dedicated Charging Port) - CDP (Charging Downstream Port) - ACA (Accessory Charger Adapters) 辅助充电适配器(Accessory Charger Adapter) 随着便携式设备变得越来越小,多数的PD只有一个USB接口用于连接外设或者充电, 但连接外设和充电不能同时进行。例如,当一部手机通过USB接口连接了外置耳麦的时候,就不能通过USB接口进行充电了。ACA的用途就是让PD可以同时连接USB外设和通过USB 端口充电。 ACA具有三个端口:OTG Port用于连接便携式设备(OTG Device);Accessory Port 用于连接USB外设;Charger Port用于连接USB充电端口,可以是一个USB专用充电器也可以是一个Charging Downstream Port(图4)。

1. 下行端口(SDP)这与USB 2.0规范定义的端口相同,也是台式机和笔记本电脑常见的典型端口。挂起时,最大负载电流为2.5mA;连接且非挂起状态下为1 00mA,可以配置电流为 500mA (最大)。设备可利用硬件识别SDP,USB数据线D +和D-分别通过15kΩ接地,但仍然需要枚举,以符合USB规范。尽管现在许多硬件不经枚举即消耗功率,但在USB 2.0规范中,从严格意义上并不合法,违反规范要求。 当PD插入到USB接口以后,它向D+上加载一个0.6V左右的电压(VDP_SRC),随后,PD开始检测D-线上的电压,查看是否收到0.6V的电压回应(VDM_SRC)。因为Standard Downstrea m Port不会对D+上的0.6V信号作出任何回应,所以如果PD插入的是Standard Downstrea m Port,那么D-将保持为低电平(图1)。 1.充电下行端口(CDP)BC1.1为PC、笔记本电脑及其它硬件规定了这种较大 电流的新型USB口。现在,CDP可提供高达1.5A电流,由于可在枚举之 前提供电流,所以有别于USB 2.0。插入CDP的装置可通过操纵和监测D+、D-线,从而利用硬件握手识别CDP (参见USB电池充电规范第3.2.3部分)。 在将数据线转为USB收发之前进行硬件测试,这样就能够在枚举之前检测到CDP (以及开始充电)。 在Charging Downstream Port中,采用了与PD类似并且与之互补的检测电路,当它检测到D+上有0.6V时,它将随即向D-加载0.6V电压,以回应PD;而在USB Charger中,由于D+和D-是短接的,所以当D+上被加载0.6V电压时,D-也变成了0.6V。 所以,PD插入到Charging Downstream Port 或是USB charger, 则D-线上会被回应一个0.6v电压。此后,PD先将D+(PD为高速或全速设备)或D-(PD为低速设备)拉高至逻辑高电平,然后通过检测另外一根数据线的电压来区分是Charging Downstream Port 还是U SB charger。

基于AT89S52的智能快速充电器控制系统的设计与实现

基于AT89S52的智能快速充电器控制系统的设计与实现 2007年07月23日星期一 11:14 1.引言 本控制系统是为120w智能快速稳压电源设计的。 该快速充电器是为部队在野战条件下工作而研制的,因此要求其具有体积小、重量轻、智能化程度高、操作简便等优点,同时对电源的可靠性和抗干扰性提出了很高的要求。有稳压供电和充电两种工作方式。稳压供电时输出恒定的24V;处于充电状态时有四种充电方式:常规充电、快速充电、电池浮冲、电池训练,可以为镉镍、氢镍蓄电池充电。 2.控制系统总体设计求 根据实际情况,本控制系统要完成以下功能: (1)能自动识别电池的类型(镍镉电池、镍氢电池、锂电池)。 (2)有稳压供电和充电两种工作模式。 (3)采用最高电压Vmax、最高温度Tmax、最长充电时间tmax、电压负增长-△V、温度变化率△T/△t等快速充电中止法。 (4)具有输入交流过压保护、输出直流过流保护、过充电保护等 (5)通电后能自动检测整个电源系统,有故障报警。 (6)设有电池开路、短路、反接保护。 (7)具有硬件和软件相结合的双重保护功能。 (8)良好的抗干扰能力。 3.统硬件电路的设计 3.1 AT89S52单片机简介 AT89S52是ATMEL公司研制的通用单片机。它在AT89S51单片机的基础上为P1口定义了第二功能,有六个外部中断、三个定时/计数器,以及四个全双工的串行通信口,同时在指令上与AT89S51兼容,对监控系统较为适用。 3.2 基于AT89S52的监控系统硬件电路设计 按照上述系统设计要求,设计了如图1所示的监控系统。

图1 AT89S52监控系统框图 (1)微处理器:AT89S52非常适用于控制,他的主要结构和特点在前面已经介绍过了,为了满足外围接口电路的需要,一般都要在输出口处接锁存驱动电路,这里我们采用的是SN74HC573。 (2)压频变换装置:将模拟的电压量转化成频率值,这是一种A/D转化方式,将输出电压U0采样通过压频变换装置传给单片机,压频转化装置我们用的是National Semiconductor的LM331。 (3)输出控制电路:单片机的输出控制信号通过电阻解码网络转化成模拟电压值,控制电压和电流比较器的基准值,实现对外围功率电路的控制。 (4)上电复位电路:为了防止单片机的程序飞跑,出现死锁,我们采用MAXIM公司的MAX813L系统监控集成芯片来实现对单片机的监控,该芯片具有看门狗电路、门限值检测器、手动复位等功能。 (5)输入控制和数码显示电路:包括按键和显示部分。通过简单的按键选择,实现运行方式选择、复位及故障的显示。显示部分采用SN74HC573驱动两个8位七段LED显示;同时通过发光二极管和蜂鸣器提示运行状态。 (6)护告警电路:通过硬件电路实现保护,给单片机中断管脚发出脉冲信号,引发中断程序实现保护,并引发蜂鸣器告警。 下面介绍本系统中的一些关键性电路 3.2.1 恒压恒流模块 恒压恒流电路是整个智能充电器的关键部分,电路结构见图2。恒流恒压电路由SR12单片机片内模拟电路模块和片外的MOSFET开关管、肖特基二极管、滤波电感、滤波电容等器件组成。模拟电路模块是SR12的特有部件,图3为它的结构框图。它由输入多路开关、两组温度传感器Rsense0.01Ω可程控放大器、片内温度传感器、电流检测电路等组成。可程控放大器总放大倍数为1~256。放大器的输入可选择为两路模拟输入脚(ATD0、ATD1)、片内温度传感器、模拟地输入(VSSAM)。ATD0和VSSAM间可接一个电流检测电阻,用于测量外部电流,

基于51单片机的智能快速充电器设计

基于51单片机的智能快速充电器设计 1.引言 本控制系统是为120w智能快速稳压电源设计的。 该快速充电器是为部队在野战条件下工作而研制的,因此要求其具有体积小、重量轻、智能化程度高、操作简便等优点,同时对电源的可靠性和抗干扰性提出了很高的要求。有稳压供电和充电两种工作方式。稳压供电时输出恒定的24V;处于充电状态时有四种充电方式:常规充电、快速充电、电池浮冲、电池训练,可以为镉镍、氢镍蓄电池充电。 2.控制系统总体设计要求 根据实际情况,本控制系统要完成以下功能: (1)能自动识别电池的类型(镍镉电池、镍氢电池、锂电池)。 (2)有稳压供电和充电两种工作模式。 (3)采用最高电压Vmax、最高温度Tmax、最长充电时间tmax、电压负增长-△V、温度变化率△T/△t等快速充电中止法。 (4)具有输入交流过压保护、输出直流过流保护、过充电保护等 (5)通电后能自动检测整个电源系统,有故障报警。 (6)设有电池开路、短路、反接保护。 (7)具有硬件和软件相结合的双重保护功能。 (8)良好的抗干扰能力。 3.统硬件电路的设计 3.1 AT89S52单片机简介 AT89S52是ATMEL公司研制的通用单片机。它在AT89S51单片机的基础上为P1口定义了第二功能,有六个外部中断、三个定时/计数器,以及四个全双工的串行通信口,同时在指令上与AT89S51兼容,对监控系统较为适用。 3.2 基于AT89S52的监控系统硬件电路设计 按照上述系统设计要求,设计了如图1所示的监控系统。 图1 AT89S52监控系统框图 (1)微处理器:AT89S52非常适用于控制,他的主要结构和特点在前面已经介绍过了,为了满足外围接口电路的需要,一般都要在输出口处接锁存驱动电路,这里我们采用的是SN74HC573。 (2)压频变换装置:将模拟的电压量转化成频率值,这是一种A/D转化方式,将输出电压U0采样通过压频变换装置传给单片机,压频转化装置我们用的

(完整版)地热水、矿泉水资源开发利用方案编制提纲

地热水(矿泉水)资源开发利用方案 编制要求 一、地热水、矿泉水资源开发利用方案编制要求 1.矿区概述 1.1矿区位置及交通 矿区行政区划,距(区)县城方位及距离,矿区中央地理坐标,矿区范围拐点坐标表,矿区面积,开采标高,矿区交通情况(附矿区交通位置图〕。 1.2自然地理 矿区地形地貌、气象、水文、经济概况。 1.3矿业权单位概况 矿业权单位性质,简述矿业权单位的基本情况。 1.4开发利用现状及存在的问题 已利用的地热井,简述地热井开发利用情况(开采井、泉位置、成井时间、批准取水量、现状开采量、取水用途等),地热尾水处理及排放情况,水质、水温及水位变化情况。开发利用中存在的问题及产生的地质环境问题。 1.5编制依据及设计原则 1.5.1编制依据 (1)开发利用方案编制所依据的有关法律、法规、政府部门规章及行业规范、规程、技术标准; (2)《矿区地热水或矿泉水资源评价报告》及其评审意见书、备案证明; (3)开发利用方案编制所依据的基础性资料。 1.5.2设计原则

(1)遵循合理开发、有效保护、综合利用的原则; (2)发挥资源优势、设备优势、人力优势的原则; (3)利用先进技术和设备,达到高效、节约的原则; (4)坚持依法幵采、安全环保的原则; (5)坚持社会效益和经济效益相统一的原则。 2.产品需求现状和预测 2.1市场需求 简述市场供需概况,适当预测近期市场需求态势。 2.2产品价格 简述产品价格及市场前景。 3.地热水或矿泉水资源概况 3.1地层 地层岩性特征、厚度、分布及岩浆活动情况。 3.2地质构造 介绍工作区所处的大地构造单元位置、附近及区内的断裂、褶皱发育情况、断裂的水文地质特征及其对地热田形成的影响等。区内新构造运动、地震活动及区域地壳稳定性;分析其对地热田形成的影响。 3.3区域水文地质 包括区域地下水类型、水文地质单元划分、地下水的补径排条件等分析以及地下水的化学特征、动态变化等内容。 3.4地热水或矿泉水形成条件 3.4.1地热水 (1)地热田(带)基本特征

关于加强电动自行车停放及充电安全管理的通知

关于加强电动车停放及充电安全管理的通知 现在电动车的数量越来越多,不管是电动汽车还是电动自行车等,都有许多人驾驶。其中电动自行车充电的安全隐患最大,总是可以看到电动车充电引起火灾的新闻。电动车如何合理摆放、保证充电安全,需做到以下几点: 一、保证安全的充电环境 1.电动车不能在室内充电,一但发生火灾,会造成逃生通道堵塞,造成更大的灾害。如有发生安全事故,租客自行负全责,与房东无关。 2.在充电的时候,电动车容易引发火灾等安全隐患,需要选择良好的环境进行充电,充电的时候会散发出热量,如果温度过高,极易引发火灾,所以需要充电环境通风且环境温度不能过高。 3.电动车在充电时绝大多数是在室外,因此要做好防雨,避免充电器、插线板等进水造成危险。 4.电动车不能在夜间充电。 5.电动车要尽量选择专区统一存放。 二、保证充电器质量 电动车引起火灾等安全隐患中,充电器的质量问题引起的不在少数,所以一定要保证充电器的质量。充电器的质量不好,主要是元器件散热不好、元器件品质低劣、缺少保护部件、材质易燃等问题,切不可图便宜,购买品质差的充电器。 三、充电时间

在充电的时候,一定要按照规定的时间进行充电,如果充电时间太长,电池就容易发生危险,引起火灾等危害。一定要记住充电时间,充电完成后立即切断电源。 四、加强巡视 电动车在充电的时候,要保证有专人巡视,不是说整个充电过程需要一直值守,但是附近要有人,或定时巡视。 五、正确的充电方法 在充电的时候,充电的方法也要正确,切记电动车在启动的时候充电,也要按要求连接充电器等,不然容易引发危险,主要就是火灾。 六、充电线路 保证充电线路的安全,要使用达标的线路,如果线路太细或者虚接,容易造成线路发热或者烧断,甚至起火。还需要确保电线的质量,而且线路要选择安全的路由,不要以危险的方式将线路拉到电动车充电,线路和插线板以及充电器不要放在地上,容易压坏或者进水。 七、线路要有保护装置 在给电动车充电的线路上需要有断路保护装置,发生短路等危险的时候,可以自动切断电源。 八、定期对电动车进行检修 需要定期检查电动车,尤其是电瓶和线路要重点去检查,确保安全,不发生火灾的危险。

锂离子电池智能充电器硬件方案

锂离子电池智能充电器硬件方案

锂离子电池智能充电器硬件的设计 锂离子电池具有较高的能量重量和能量体积比,无记忆效应,可重复充电次数多,使用寿命长,价格也越来越低。一个良好的充电器可使电池具有较长的寿命。利用C8051F310单片机设计的智能充电器,具有较高的测量精度,可很好的控制充电电流的大小,适时的调整,并可根据充电的状态判断充电的时间,及时终止充电,以避免电池的过充。 本文讨论使用C8051F310器件设计锂离子电池充电器的。利用PWM脉宽调制产生可用软件控制的充电电源,以适应不同阶段的充电电流的要求。温度传感器对电池温度进行监测,并经过AD转换和相关计算检测电池充电电压和电流,以判断电池到达哪个阶段。使电池具有更长的使用寿命,更有效的充电方法。 设计过程 1 充电原理 电池的特性唯一地决定其安全性能和充电的效率。电池的最佳充电方法是由电池的化学成分决定的<锂离子、镍氢、镍镉还是SLA电池等)。尽管如此,大多数充电方案都包含下面的三个阶

段: ● 低电流调节阶段 ● 恒流阶段 ● 恒压阶段/充电终止 所有电池都是经过向自身传输电能的方法进行充电的,一节电池的最大充电电流取决于电池的额定容量也能够用1/50C(20mA>或更低的电流给电池充电。尽管如此,这只是一个普通的低电流充电方式,不适用于要求短充电时间的快速充电方案。 现在使用的大多数充电器在给电池充电时都是既使用低电流充电方式又使用额定充电电流的方法,即容积充电,低充电电流一般使用在充电的初始阶段。在这一阶段,需要将会导致充电过程终止的芯片初期的自热效应减小到最低程度,容积充电一般见在充电的中级阶段,电池的大部分能量都是在这一阶段存储的。在电池充电的最后阶段,一般充电时间的绝大部分都是消耗在这一阶段,能够经过监测电流、电压或两者的值来决定何时结束充电。同样,结束方案依赖于电池的化学特性,例如:大多数锂离子电池充电器都是将电池电压保持在恒定值,同时检测最低电

电动车快速充电器电路图

电动车快速充电器电路图 笔者经反复试验,制作了一款可靠的电动自行车充电器,电路如附图所示。 电动车快速充电器电路 一、电路特点: 1.输出电压设定好后(例如36V),若被充电瓶极板脱落断开,造成某组电池不通,或出现短路,则电瓶端电压即降低或为零,这时充电器将无输出电流。 2.若被充电瓶电压偏离设定电压,如设定电压为36V,误接24V、12V、6V电瓶等,充电器也无输出电流,若设定为24V误接为36V电瓶,由于充电器输出电压低于电瓶电压,因而也不能向电瓶充电。 3.充电器两输出端若短路时,由于充电器中可控硅SCR的触发电路不能工作,因而可控硅不导通,输出电流为零。 4.若使用时误将电瓶正负极接反,则可控硅触发电路反向截止,无触发信号,可控硅不导通,输出电流为零。 5.采用脉冲充电,有利于延长电瓶寿命。由于低压交流电经全波整流后是脉动直流,只有当其波峰电压大于电瓶电压时,可控硅才会导通,而当脉动直流电压处于波谷区时,可控硅反偏截止,停止向电瓶充电,因而流过电瓶的是脉动直流电。 6.快速充电,充满自停。由于刚开始充电时电瓶两端电压较低,因而充电电流较大。当电瓶即将充足时(36V电瓶端电压可达44V),由于充电电压越来越接近脉动直流输出电压的

波峰值,则充电电流也会越来越小,自动变为涓流充电。当电瓶两端电压被充到整流输出的波峰最大值时,充电过程停止。经试验,三节电动车蓄电池36V(12V/12Ah三节串联),用该充电器只需几个小时即可充满。 7.电路简单、易于制作,几乎不用维护及维修。 二、电路原理: AC220V市电经变压器T1降压,经D1-D4全波整流后,供给充电电路工作。当输出端按正确极性接入设定的被充电瓶后,若整流输出脉动电压的每个半波峰值超过电瓶的输出电压,则可控硅SCR经Q的集电极电流触发导通,电流经可控硅给电瓶充电。脉动电压接近电瓶电压时,可控硅关断,停止充电。调节R4,可调节晶体管Q的导通电压,一般可将 R4由大到小调整到Q导通能触发可控硅(导通)即可。图中发光管D5用作电源指示,而D6用作充电指示。 三、元件选择: 电源变压器可用BK200型控制变压器,输出电压用36V挡,亦可用4090型200V环形变压器,选次级电压为22Vx2或20V×2挡串联使用。笔者使用的4090型环变,其次级电压为24Vx2、12Vx2、0-6-23V三组,若将其24Vx2挡串联(48V),则输出电压太高,充电电流过大(给36V电动车蓄电池充电时,串上电流表测量平均充电电流约为1.5-1.8A,此为平均值,这时的峰值电流可达5-7A以上),为降低变压器输出电压,将其余的12V×2和O-6V两组线圈顺向串接于初级线圈中,使次级输出电压降低为空载40V,满载(平均充电电流为1.2A时)为36V,可满足使用。由于4090型环形变压器市售价格仅为23元左右.可以降低制作成本。爱好者也可自行绕制变压器。 另外,电路中整流全桥D1-D4可选用8-10A方形全桥,中间有一圆形安装孔,可安装在铝板上以便散热。可控硅可用1OA/100V金封单向可控硅,将其同整流桥用螺母固定在同一散热铝板上。触发三极管Q的参数为Vceo≥60V,IM=1A,可选用2SB536、B564、B1008、B1015或2SA*、A720等管子。R6用作限流保护作用,若变压器次级输出电压合适,充电电流(平均值)不超过1.5A,该电阻亦可省去不用。 该充电器若用于其他电压的蓄电池充电(如24V、12V等),则可选取变压器的次级输出

水资源高效开发利用

“水资源高效开发利用”重点专项 2018年度项目申报指南建议 (征求意见稿) 为贯彻落实《关于加快推进生态文明建设的意见》、《关于实行最严格水资源管理制度的意见》和《水污染防治行动计划》等相关部署,科技部、环境保护部、水利部、住房城乡建设部和海洋局共同制定了《国家水安全创新工程实施方案(2015-2020年)》,统筹部署水安全科技创新工作。根据国家水安全创新工程总体安排,科技部会同有关部门及有关省(自治区、直辖市)科技主管部门制定了国家重点研发计划“水资源高效开发利用”重点专项实施方案。本专项紧密围绕水资源安全供给的科技需求,重点开展综合节水、非常规水资源开发利用、水资源优化配置、重大水利工程建设与安全运行、江河治理与水沙调控、水资源精细化管理等方面科学技术研究,促进科技成果应用,培育和发展水安全产业,形成重点区域水资源安全供给系统性技术解决方案及配套技术装备,形成50亿立方米的水资源当量效益,远景支撑正常年份缺水率降至3%以下。 根据重点专项总体安排,基于“水资源高效开发利用”重点专项实施方案,本专项2018年度指南主要支持实施方案提出但在2016年和2017年指南未覆盖的任务,持续围绕综

合节水、非常规水资源开发利用、水资源优化配置、重大水利工程建设与安全运行、江河治理与水沙调控、水资源精细化管理等方面开展科研部署。 本专项以项目为单元组织申报,项目执行期3年。2018年拟支持不超过20个项目,国拨经费约3.2亿元。鼓励产学研用联合申报,项目承担单位有义务推动研究成果的转化应用。对于企业牵头的应用示范类任务,其他经费(包括地方财政经费、单位出资及社会渠道资金等)与中央财政经费比例不低于1:1。如指南未明确支持项目数,对于同一指南方向下采取不同技术路线的项目,可以择优同时支持1-2项。所有项目均应整体申报,须覆盖全部考核指标。每个项目下设任务(课题)数不超过6个,项目参与单位不超过10个。 本专项2018年项目申报指南如下: 1.综合节水理论与关键技术设备 1.1 公共建筑节水精细化控制技术及应用 研究内容:研究不同供用水模式下的公共建筑供水系统效能评价方法及基准指标体系;甄别公共建筑节水关键环节与用水动态变化特征,研究综合节水集成技术与系统供水设计技术方法;研发公共建筑节水精细化控制技术设备产品,并开展示范推广。 考核指标:建立公共建筑水系统节水效能评价方法及指标体系,形成公共建筑节水集成技术和节水系统设计方法,开发公共建筑节水精细化控制技术设备产品5台(套)以上,

电动自行车充电安全管理规定标准范本

管理制度编号:LX-FS-A43147 电动自行车充电安全管理规定标准 范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

电动自行车充电安全管理规定标准 范本 使用说明:本管理制度资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 为规范电动自行车(含电动三轮车)的管理,给广大员工电动自行车的充电提供方便,确保电动车的充电安全,特制定本规定。 一、综合办公室负责电动自行车充电处的管理,门卫负责日常监管。 二、本充电处只限本公司上下班路途在十公里以外和在公司住宿的内部员工使用。特殊情况须报告当班领导,由当班领导同意方可使用。充电人员对充电器双相插头至连接车体线路、车体本身,和充电过程负全责。

三、本充电处只限电动自行车充电。未经允许不得私自更改线路、插座、和开关,严禁一座多充现象。 四、电动自行车按秩序停放充电,充电时长不得超过4小时。不充电或充电完毕的自行车不得停于此处,应退回到指定的停车场地,以方便下一辆自行车充电。 五、充电处的供电时间为正常工作日的早08:00分至当日下午17:00分,共9小时,因充电时间过长,充电器、电瓶、线路陈旧老化、电动车倾倒等原因而引起的火灾及其他伤害,造成公司及他人人身伤害及经济损失的由车辆所属员工负责。 六、充电方法:充电时应先将充电器三项插头与车体插孔连接,然后再将充电器另一端双向插头连接于充电处的插座上。如果反方向操作,接口处可能

智能快速充电器的设计过程

智能快速充电器的设计过程 摘要:本文介绍了一种智能快速充电器的设计过程。该充电器基于Motorola 公司的 MC68HC908SR12 单片机为控制核心,将SR12 特有的模拟电路模块、高精度A/D 转换、I2C总线接口以及高速PWM 等功能运用到充电控制中,详细讲述了其硬件和软件的设计过程,并从元器件筛选、PCB 板绘制和软件设计等方面介绍了该充电器抑制和防电磁干扰的措施。 关键词:单片机 A/D 转换 I2C 总线传感器电磁干扰 1 、引言 随着便携式设备不断小型化、轻量化和高性能化,作为其电源的二次电池的使用率日益提高。我单位于1998 年在对充电器市场调研后,设计开发了“ZXG -99 型智能快速充电器”,1999 年设计定型,同年投入生产,截止到2001 年底,已经累计生产了5000 多部,取得了一定的社会效益和经济效益。今年又签定了几千部的生产合同,但是随着产量的逐年增加,以及二次电池市场的不断变化,该产品在设计中的不足越来越明显。主要有以下几点: a .“ZXG -99 型智能快速充电器”的中央微处理器选择的是OTP 型单片机,不具有片上FLASH 存储器,程序固化后不能更改,这在产品批量生产时十分不便,而且随着市场上二次电池的充电特性不断变化,设计人员要及时更改充电控制参数或开发新的充电算法,这样对已出厂的产品只能更换新的MCU ,增加了生产成本; b .“ZXG -99 型智能快速充电器”只能对镍镉电池(Nicd )和镍氢电池(NiMH )充电,没有涉及锂离子电池,主要原因是当时锂离子电池的普及率低,价格高。但是锂离子电池具有较高的能量重量比和能量体积比、无记忆效应、可多次重复充电、使用寿命长等优点,促进了便携式产品向更小更轻的方向发展,使得选用单节锂离子电池供电的产品越来越多,同时其价格也越来越低。今后二次电池的主流将是锂离子电池,作为一个完整的产品应该将其纳入到设计中; c .该OTP 型单片机的A/D 采样值只有8 位,在对电池进行-△V 检测中精度不够,不能对充电过程实行更精确的控制。 在开发新型智能充电器中,首要环节就是中央微处理器MCU 的选型。考虑到既要增加产品的智能化和实用性,又要降低生产成本,最终决定选用Motorola 公司新近推出的MC68HC908SR12 作为新型智能快速充电器的MCU ,这是因为SR12 具有模拟电路模块、高精度A/D (10 位)、I2C 总线接口以及

USB快速充电器快速充电协议测试规范书

圆款快速充电器快速充电协议测试规范书1.BC1.2快速充电协议。 (1)BC1.2协议测试规范。 电压DP DM 5V 2.7±0.05 2.7±0.05 注:电压误差范围±0.5V。 2.支持QC2.0和QC 3.0。 (1)QC2.0协议测试规范。 电压DP DM 5V0.6±0.050.01+0.05 9V 3.O±0.050.6±0.05 12V0.6±0.050.6±0.05 注:电压误差范围±0.5V。 (2)QC3.0协议测试规范。 电压DP DM Min=5V 0.6±0.05 2.8±0.05 Max=12V 注:电压以0.2V为最小单位,在5V到 12V区间变化,电压误差范围±0.5V。 3.支持MTK PE+1.1和MTK PE+2.0。 (1)MTK PE+1.1协议测试规范。 电压DP DM 5V 2.73±0.05 2.73±0.05 注:电压误差范围±0.5V。 (2)MTK PE+2.0协议测试规范。 电压DP DM 5V 2.73±0.05 2.73±0.05 注:电压误差范围±0.5V。 4.支援华为快充协定FCP和SCP。 (1)FCP协议测试规范。 电压DP DM 5V 2.73±0.05 2.73±0.05 9V0.6±0.050.01+0.05 注:电压误差范围±0.5V。 (2)SCP协议测试规范。 电压DP DM 4.3V0.6±0.050.01+0.05 注:电压误差范围±0.5V。

5.支援三星快充协定AFC。 (1)AFC协议测试规范。 电压DP DM 5V 0.6±0.050.01+0.05 9V 注:电压误差范围±0.5V。 6.支援SPPO展讯快充协定SFCP。 (1)SFCP协议测试规范。 电压DP DM 5V0.65±0.050.65±0.05 9V 1.54±0.05 1.54±0.05 12V 2.58±0.05 2.58±0.05注:电压误差范围±0.5V。 7.Type‐C口支持2种PD快速充电协议。(1)PD协议测试规范。 电压DP DM 5V 2.73±0.05 2.73±0.05注:电压误差范围±0.5V。

大中型水资源开发利用建设项目

大中型水资源开发利用建设项目 节水评价篇章编制指南 (试行) 一、总则 (一)为加快推进生态文明建设,贯彻落实节水优先方针,指导大中型水资源开发利用建设项目开展节水评价工作,明确节水评价篇章的编制内容和深度要求,制定本指南。 (二)本指南适用于具有水资源开发利用任务的大中型水利建设项目立项阶段节水评价篇章的编制。 (三)建设项目节水评价应遵循以下原则:贯彻“节水优先、空间均衡、系统治理、两手发力”的治水方针;符合国家相关法律法规和规程规范要求;坚持以水资源优化配置和高效利用为核心,统筹协调好节流与开源、不同用水对象的用水需求,以及水资源开发利用与经济社会发展、生态环境保护的关系;坚持严守红线、控制总量,落实最严格水资源管理制度和相关规划中的节水指标要求。 (四)节水评价范围主要是水资源开发利用建设项目的供水区域。必要时应结合工程的规划范围适当扩大节水评价范围。 (五)本指南引用的主要标准和文件包括: 《实行最严格水资源管理制度考核办法》(国办发﹝2013﹞2号) 《水资源规划规范》(GB/T51051) 《建设项目水资源论证导则》(GB/T35580)

《城市节水评价标准》(GB/T51083) 《节水灌溉工程技术规范》(GB/T50363) 《水资源供需预测分析技术规范》(SL429) 《调水工程设计导则》(SL430) (六)节水评价篇章的主要内容包括: 1.开展供水区现状供用水节水水平(用水效率)、现状节水潜力等分析评价。 2.结合项目所在区域的水资源开发利用特点和经济社会发展条件,提出切实可行的节水目标和指标。 3.从需水预测合理性、可供水量预测合理性、缺水状况分析、水资源配置方案合理性等方面,对建设项目立项阶段提出的水资源配置方案进行节水符合性分析。在此基础上,从节水角度对项目建设的必要性进行分析。 4.从水源方案、输水环节、工程总体布局等方面,分析建设项目工程节水的符合性,并从节水角度分析评价建设项目工程规模的合理性。 5.从建设项目节水措施三同时要求、监控计量设施方案设计、水价形成机制等方面提出建设项目的节水保障措施。 6.进行节水效果评价,提出主要评价结论与建议。

电动自行车充电安全管理规定实用版

YF-ED-J5360 可按资料类型定义编号 电动自行车充电安全管理 规定实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

电动自行车充电安全管理规定实 用版 提示:该管理制度文档适合使用于工作中为保证本部门的工作或生产能够有效、安全、稳定地运转而制定的,相关人员在办理业务或操作设备时必须遵循的程序或步骤。下载后可以对文件进行定制修改,请根据实际需要调整使用。 为规范电动自行车(含电动三轮车)的管 理,给广大员工电动自行车的充电提供方便, 确保电动车的充电安全,特制定本规定。 一、综合办公室负责电动自行车充电处的 管理,门卫负责日常监管。 二、本充电处只限本公司上下班路途在十 公里以外和在公司住宿的内部员工使用。特殊 情况须报告当班领导,由当班领导同意方可使 用。充电人员对充电器双相插头至连接车体线 路、车体本身,和充电过程负全责。

三、本充电处只限电动自行车充电。未经允许不得私自更改线路、插座、和开关,严禁一座多充现象。 四、电动自行车按秩序停放充电,充电时长不得超过4小时。不充电或充电完毕的自行车不得停于此处,应退回到指定的停车场地,以方便下一辆自行车充电。 五、充电处的供电时间为正常工作日的早08:00分至当日下午17:00分,共9小时,因充电时间过长,充电器、电瓶、线路陈旧老化、电动车倾倒等原因而引起的火灾及其他伤害,造成公司及他人人身伤害及经济损失的由车辆所属员工负责。 六、充电方法:充电时应先将充电器三项插头与车体插孔连接,然后再将充电器另一端

电动车充电安全管理规定

电动车充电安全管理制度 为规范电动车充电的管理,给部分员工在电动车缺电等应急情况下提供充电,确保员工安全回家,同时也为保障充电过程的安全,特制定电动车充电安全管理制度如下: 一、所有需要充电的电动车必须由本人提出充电申请,从当班主管处领取《电动车应急充电审批表》,如实填好后在门卫室做好登记并交由门卫统一存档管理。电动车充电一律停放在北一门固定充电处交由门卫监管以确保充电安全。 二、仅允许部分员工在电动车缺电等应急情况之下充电,同一部车月累计充电不超过3次,当班同时 不超过两部在充电,以免占用过多充电位,单位总充电次数月累计不超过30次。充电人员对充电器双相插头至连接车体线路、车体本身,和充电过程负全责。 三、不得私自更改线路、插座、和开关,严禁一座多充现象。 四、电动自行车按秩序停放充电,不充电或充电完毕的电动车尽量不放置在充电位置,以方便下一辆 电动自行车继续充电。 五、在充电处充电时,由于充电时间过长,充电器、电瓶、线路陈旧老化,电动车倾倒等个人原因引起的 火灾及其他伤害,从而造成的任何人身伤害及经济损失均由车主负责。 六、充电方法:充电时应先将充电器三项插头与车体插孔连接,然后再将充电器另一端双向插头连接 于充电处的插座上。如果反方向操作,接口处可能打火,绝缘体烧焦后可能造成短路,引发火灾及人身伤害事故。 七、充电员工在充电前需对充电电动车进行安全状态确认,对充电器、插座、插头、线路进行检查, 坚持做到多闻、多看、防止线路过热引发事故。发现异常情况当即处理,无法处理的及时向领导汇报。 八、严禁雨雪、潮湿天气充电,充电器应放置在远离火源处,禁止将衣物、护膝等可燃物放置在电车上。 九、充电处配备的专用消防器材未经允许不得随意挪动。 十、本规定从公布之日起实施。 武汉爱普工业服务有限公司 审批人: SGMW安全工程师: 审批日期:

镍氢电池快速充电器方案

镍氢电池快速充电器V1.1 一、充电器的特点 1、本充电器由一个充电器和一个低压直流电源组成,低压直流电源可以使 用普通变压器、开关电源或汽车12V电源。当使用开关电源时,也可以和充电器做在同一块PCB上从而使快速充电器的组成更加简洁。 2、适用于1到4节AA/AAA电流的充电。 3、安全可靠的防过充和防过热保护。 4、高速PWM技术、全贴片元件,从而成本更低、体积更小。 5、特有的补电模式,保护放电过度的电池。 6、四组完全独立的充电控制: 智能选择合适充电电流,适应不同容量电池的充电。 可适应不同厂家的镍氢电池 四组电池可以任意组合 采用负电压斜率(-ΔV)检测 过热检测和计时两种方式的防过充双重保护 二、参数说明 1、最大快充电流1.8A 2、各种模式下充电电流 充电方式充电电流 涓流模式 60mA 补电模式 450mA 快充模式 450-1800mA 3、支持1-4节电池的任意组合 4、支持不同容量的电池任意组合快充 5、支持电池在任意时间加入或离开充电队列。 6、理论充电时间 种类型号容量(mAh) 理论时间 Ni-MH AA 1300 43min Ni-MH AA 1600 53min Ni-MH AA 2100 70min 说明: (1)、对1600mAh以下容量的电池,如果只支持1C充电,则充电时间为60 分钟左右,本充电器可以自动选择合适的充电电流。 (2)、充电时间还受电池的放电深度影响,如果电池放电程度过深,充电时间 也会变长。

三、测试数据 1、不同容量电池混合充电测试数据 种类型号容量(mAh) 实际时间 Ni-MH AA 1300 52min Ni-MH AA 1600 55min Ni-MH AA 2100 77min 说明: (1)、由于市场上购买的1300mAh电池只支持1C充电,充电器自动调整充电 电流,因此充电时间在一小时左右。 2、容量电池(1600mAh、2100mAh)充电测试数据 型号标称容量 (mAh) 快充时间 (min) 电池温度 (℃) 放电容量 (mAh) 充饱程度 AA 1300 49 60 1108 85.23% AA 1800 71 60 1470 81.67% AA 2000 74 60 1616 80.8% 说明: (1)、放电容量测试方法:以1.0A恒流放电,放电到电池端电压为1.0V 时停止放电所测量出的放电容量。 (2)、上面的数据只是比较快充的效果,因此没有做快充后的涓流充电。 四、附录 a) 原理图 b) PCB零件布置

智能充电器的设计(毕业设计方案)

毕业设计附件题目:智能充电器的设计 姓名:王研 学号:2007080303316 学院:信息学院 专业:电子信息工程 指导教师:杨萍 协助指导教师:

2011年5月23日 目录 开题报告 (1) 翻译外文资料及译文 (2) 程序清单和图纸 (3)

北京联合大学毕业设计(论文)开题报告 题目:智能充电器的设计 专业:电子信息工程指导教师:杨萍 学院:信息学院学号:2007080303316 班级:0708030303 姓名:王研 一、课题任务与目的 任务: 针对电动车常用的动力电池的特点,以单片机作为控制芯片,结合国内外现行的各种充电技术和充电器设计方案,设计一款基于单片机控制的智能充电器,以达到最佳的充电效果,使智能充电器具有良好的性能指标,电路简单可靠。 研究目的: 随着能源的日益紧缺和大气污染的加剧,作为新型交通工具的电动车的研究日益受到重视,从我国国情和人们的消费水平出发,电动车具有广阔的发展前景。作为电动车核心部件的电池及其充电器,其性能的优劣,直接影响电动车的质量状况。针对电动车充电技术的要求,为了使电动车充电器获得良好的性能指标,必须寻找最佳的充电模式,我要设计一款基于单片机控制的智能充电器,涓流充电、大电流充电、过充电和浮充电组合起来的充电方式,这种充电方式经理论和实践表明,可达到最佳的效果,使得蓄电池具有较高的使用容量和较长的循环寿命,可满足不同电动车动力电池的复杂充电要求,为提高蓄电池的性能和可靠性提供有效的途径,对环保、节能型电动车和充电器的设计和开发具有重要的意义,同时,研制性能良好的智能充电器,会带来显著的经济效益和良好的社会效益。 二、调研资料情况 1 电动车用电池的现状和发展趋势 电池作为电动车动力来源,目前应用于电动车的可充式二次电池主要有:铅酸(Lead Acid)电池、镍福(Nickel Cadmium)电池、镍氢(Nickel Metal Hydride)电池和锂(Lithium)电池[1]。 (1)镍一氢电池(Ni-MH ) 此类蓄电池的比能量高,寿命长,有较高的比功率,污染轻等优点,被认为

相关文档