文档库 最新最全的文档下载
当前位置:文档库 › 常见插值法

常见插值法

常见插值法
常见插值法



数值计算方法比较

有限差分方法(FDM:Finite Difference Method)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。有限差分法主要集中在依赖于时间的问题(双曲型和抛物型方程)。有限差分法方面的经典文献有Richtmeyer & Morton的《Difference Methods for Initial-Value Problems》;R. LeVeque《Finite Difference Method for Differential Equations》;《Numerical Methods for C onservation Laws》。 注:差分格式: (1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。 (2)从差分的空间形式来考虑,可分为中心格式和逆风格式。 (3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。 目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法: 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限差分法的不足:由于采用的是直交网格,因此较难适应区域形状的任意性,而且区分不出场函数在区域中的轻重缓急之差异,缺乏统一有效的处理自然边值条件和内边值条件的方法,难以构造高精度(指收敛阶)差分格式,除非允许差分方程联系更多的节点(这又进一步增加处理边值条件韵困难)。另外它还有编制不出通用程序的困难。 有限差分法的优点:该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念 直观,表达简单,精度可选而且在一个时间步内,对于一个给定点来说其相关的空间点只是 与该相邻的几点,而不是全部的空间点。是发展较早且比较成熟的数值方法 广义差分法(有限体积法)(GDM:Generalized Difference Method):1953年,Mac—Neal 利用积分插值法(也称积分均衡法)建立了三角网格上的差分格 式,这就是以后通称的不规划网格上的差分法.这种方法的几何误差小,特别是给出了处理自然边值条件(及内边值条件)的有效方法,堪称差分法的一大进步。1978年,李荣华利用有限元空间和对偶单元上特征函数的推广——局部Taylor展式的公项,将积分插值法改写成广义Galerkin法形式,从而将不规则网格差分法推广为广义差分法.其基本思路是,将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有

常见的插值方法及其原理

常见的插值方法及其原理 这一节无可避免要接触一些数学知识,为了让本文通俗易懂,我们尽量绕开讨厌的公式等。为了进一步的简化难度,我们把讨论从二维图像降到一维上。 首先来看看最简单的‘最临近像素插值’。 A,B是原图上已经有的点,现在我们要知道其中间X位置处的像素值。我们找出X位置和A,B位置之间的距离d1,d2,如图,d2要小于d1,所以我们就认为X处像素值的大小就等于B处像素值的大小。 显然,这种方法是非常苯的,同时会带来明显的失真。在A,B中点处的像素值会突然出现一个跳跃,这就是为什么会出现马赛克和锯齿等明显走样的原因。最临近插值法唯一的优点就是速度快。 图10,最临近法插值原理 接下来是稍微复杂点的‘线性插值’(Linear) 线性插值也很好理解,AB两点的像素值之间,我们认为是直线变化的,要求X点处的值,只需要找到对应位置直线上的一点即可。换句话说,A,B间任意一点的值只跟A,B有关。由于插值的结果是连续的,所以视觉上会比最小临近法要好一些。线性插值速度稍微要慢一点,但是效果要好不少。如果讲究速度,这是个不错的折衷。 图11,线性插值原理

其他插值方法 立方插值,样条插值等等,他们的目的是试图让插值的曲线显得更平滑,为了达到这个目的,他们不得不利用到周围若干范围内的点,这里的数学原理就不再详述了。 图12,高级的插值原理 如图,要求B,C之间X的值,需要利用B,C周围A,B,C,D四个点的像素值,通过某种计算,得到光滑的曲线,从而算出X的值来。计算量显然要比前两种大许多。 好了,以上就是基本知识。所谓两次线性和两次立方实际上就是把刚才的分析拓展到二维空间上,在宽和高方向上作两次插值的意思。在以上的基础上,有的软件还发展了更复杂的改进的插值方式譬如S-SPline, Turbo Photo等。他们的目的是使边缘的表现更完美。

几种常用的插值方法

几种常用的插值方法 数学系 信息与计算科学1班 李平 指导老师:唐振先 摘要:插值在诸如机械加工等工程技术和数据处理等科学研究中有许多直接的应用,在很多领域都要用插值的办法找出表格和中间值,插值还是数值积分微分方程数值解等数值计算的基础。本文归纳了几种常用的插值方法,并简单分析了其各自的优缺点。 关键词:任意阶多项式插值,分段多项式插值。 引言:所谓插值,通俗地说就是在若干以知的函数值之间插入一些未知函数值,而插值函数的类型最简单的选取是代数多项式。用多项式建立插值函数的方法主要用两种:一种是任意阶的插值多项式,它主要有三种基本的插值公式:单项式,拉格朗日和牛顿插值;另一种是分段多项式插值,它有Hermite 和spine 插值和分段线性插值。 一.任意阶多项式插值: 1.用单项式基本插值公式进行多项式插值: 多项式插值是求通过几个已知数据点的那个n-1阶多项式,即P n-1(X)=A 1+A 2X+…A n X n-1,它是一个单项式基本函数X 0,X 1…X n-1的集合来定义多项式,由已知n 个点(X,Y )构成的集合,可以使多项式通过没数据点,并为n 个未知系数Ai 写出n 个方程,这n 个方程组成的方程组的系数矩阵为Vandermonde 矩阵。 虽然这个过程直观易懂,但它都不是建立插值多项式最好的办法,因为Vandermonde 方程组有可能是病态的,这样会导致单项式系数不确定。另外,单项式中的各项可能在大小上有很大的差异,这就导致了多项式计算中的舍入误差。 2.拉格朗日基本插值公式进行插值: 先构造一组插值函数L i (x ) =011011()()()() ()()()() i i n i i i i i i n x x x x x x x x x x x x x x x x -+-+--------L L L L ,其中i=0,… n.容易看出n 次多项式L i (x )满足L i (x )=1,(i=j );L i (x )=0,(i ≠j ),其中

插值法综述《计算方法》学习报告

插值法综述 一、插值法及其国内外研究进展 1.插值法简介 插值法是一种古老的数学方法,它来自生产实践,早在一千多年前,我国科学家在研究历法上就应用了线性插值与二次插值,但它的基本理论却是在微积分产生之后才逐渐完善的,其应用也日益增多,特别是在计算机广泛使用之后,由于航空、机械加工、自动控制等实际问题的需要,使插值法在实践和理论上都显得更为重要,并得到了空前的发展。 2.国内外研究进展 ●插值法在预测地基沉降的应用 ●插值法在不排水不可压缩条件下两相介质的两重网格算法的应用 ●拉格朗日插值法在地震动的模拟研究中的应用 ●插值法在结构抗震可靠性分析中的应用 ●插值法在应力集中应变分布规律实验分析中的应用 3.代表性文献 ●不等时距GM(1%2c1)模型预测地基沉降研究秦亚琼武汉理工大学学报 (交通科学与工程版) 2008.2 ●不排水不可压缩条件下两相介质的两重网格算法牛志伟岩土力学2008.3 ●基于拉格朗日插值法的地震动的模拟白可山西建筑2010.10 ●响应表面法用于结构抗震可靠性分析张文元世界地震工程1997 ●小议应力集中应变分布规律的实验方法查珑珑淮海工学院学报(自

然科学版)2004.6 二、插值法的原理 【原理】 设有n+1个互不相同的节点(i x ,i y ) (i=0,1,2,...n )则存在唯一的多项式: 2012()...(1)n n n L x a a x a x a x =++++ 使得()(0,1,2,...)(2) n j j L x y j n == 证明:构造方程组 201020002011211120 12......(3)...n n n n n n n n n n a a x a x a x y a a x a x a x y a a x a x a x y ?++++=?++++=?? ??++++=? 令:0011111 n n n n n x x x x A x x ?????? =?? ?????? 01n a a X a ??????=?????? 01n y y Y y ?? ????=?????? 方程组的矩阵形式如下:(4)AX Y = 由于1 1 ()0n n i j i j A x x -===-≠∏∏所以方程组(4)有唯一解。 从而2012()...n n n L x a a x a x a x =++++唯一存在。 三、常用插值法 3.1 Lagrange 插值法 3.1.1 Lagrange 插值法的一般提法 给定))(,(i i x f x ),,1,0(n i =,多项式

数值分析插值算法源程序

#include #include float f(float x) //计算ex的值 { return (exp(x)); } float g(float x) //计算根号x的值 { return (pow(x,0.5)); } void linerity () //线性插值 { float px,x; float x0,x1; printf("请输入x0,x1的值\n"); scanf("%f,%f",&x0,&x1); printf("请输入x的值: "); scanf("%f",&x); px=(x-x1)/(x0-x1)*f(x0)+(x-x0)/(x1-x0)*f(x1); printf("f(%f)=%f \n",x,px); } void second () //二次插值 { float x0,x1,x2,x,px; x0=0; x1=0.5; x2=2; printf("请输入x的值:"); scanf("%f",&x); px=((x-x1)*(x-x2))/((x0-x1)*(x0-x2))*f(x0)+((x-x0)*(x-x2))/((x1-x0)*(x1-x2))*f(x1)+((x-x0)* (x-x1))/((x2-x0)*(x2-x1))*f(x2);

printf("f(%f)=%f\n",x,px); } void Hermite () //Hermite插值 { int i,k,n=2; int flag1=0; printf("Hermite插值多项式H5(x)="); for(i=0;i<=n;i++) { int flag=0; flag1++; if(flag1==1) { printf("y%d[1-2(x-x%d)*(",i,i); } else { printf("+y%d[1-2(x-x%d)*(",i,i); } for(k=0;k<=n;k++) { if(k!=i) { flag++; if(flag==1) { printf("(1/x%d-x%d)",i,k); } else { printf("+(1/x%d-x%d)",i,k);

线性插值法计算公式解析

线性插值法计算公式解析 2011年招标师考试实务真题第16题:某机电产品国际招标项目采用综合评价法评标。评标办法规定,产能指标评标总分值为10分,产能在100吨/日以上的为10分,80吨/日的为5分,60吨/日以下的为0分,中间产能按插值法计算分值。某投标人产能为95吨/日,应得()分。A.8.65 B.8.75 C.8.85 D.8.95 分析:该题的考点属线性插值法又称为直线内插法,是评标办法的一种,很多学员无法理解公式含义,只能靠死记硬背,造成的结果是很快会遗忘,无法应对考试和工作中遇到的问题,对此本人从理论上进行推导,希望对学员有所帮助。 一、线性插值法两种图形及适用情形 F F F2

图一:适用于某项指标越低得分越高的项目评 分计算,如投标报价得分的计算 图二:适用于某项投标因素指标越高,得分越高的情 形,如生产效率等 二、公式推导 对于这个插值法,如何计算和运用呢,我个人认为考生在考试时先试着画一下上面的图,只有图出来了,根据三角函数定义,tana=角的对边比上邻边,从图上可以看出,∠A是始终保持不变的,因此,根据三角函数tana,我们可以得出这样的公式 图一:tana=(F1-F2)/(D2-D1)=(F-F2)/(D2-D)=(F1-F)/(D-D1),

通过这个公式,我们可以进行多种推算,得出最终公式如下F=F2+(F1-F2)*(D2-D)/ (D2-D1) 或者F= F1-(F1-F2)*(D-D1)/(D2-D1) 图二:tana=(F1-F2)/(D2-D1)=(F-F2)/ (D-D1)=(F1-F)/(D2-D)通过这个公式我们不难得出公式: F= F2+(F1-F2)*(D-D1)/(D2-D1) 或者F=F1-(F1-F2)*(D2-D)/(D2-D1) 三:例题解析 例题一:某招标文件规定有效投标报价最高的得30分,有效投标报价最低的得60分,投标人的报价得分用线性插值法计算,在评审中,评委发现有效的最高报价为300万元,有效最低的报价为240万元,某A企业的有效投标报价为280万元,问他的价格得分为多少 分析,该题属于图一的适用情形,套用公式 计算步骤:F=60+(30-60)/(300-240)*(280-240)=40 例题二:某招标文件规定,水泵工作效率85%的3分,95%的8分,某投标人的水泵工作效率为92%,问工作效率指标得多少分? 分析:此题属于图二的适用情形,套用公式 F=3+(92%-85%)*(8-3)/(95%-85%)=3+7/2=6.5 (此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容, 供参考,感谢您的配合和支持)

插值法在管理决策中的应用及其Matlab实现

插值法在管理决策中的应用及其Matlab实现 张英俊,孙大宁*,张亚娟 (北方工业大学理学院,北京100144) 摘 要:利用插值曲线,即三次样条插值和立方插值法来比较分析随机网络评审法中两个随机变量之间的相关 性.经分析表明,立方插值不仅是分析相关性的实用曲线工具,而且利用Matlab所构造的函数有足够的光滑性、平顺性,且图像在考察变量的相关性时具有直观性的优点,因此对它的应用研究非常有价值. 关键词:插值 Matlab程序相关性 中图分类号:O29;TB115文献标识码:A文章编号:1674-0874(2008)03-0040-03 收稿日期:2008-01-15 作者简介:张英俊(1982-),女,山西平遥人,在读硕士,研究方向:风险决策;*孙大宁,男,教授,通讯作者. 随机网络评审法是基于随机网络和计算机仿真的一种随机型的定量评估方法,它是以风险评审技术(简称VERT)为基础的,VERT是一种计算机仿真技术,它把网络理论,仿真原理和概率论综合起来,其特点之一就是在各种信息不完全,不充分和不肯定的情况下,对各种工程系统和工程项目的发展计划有关的时间T(周期或工作量),费用C(耗费、成本或投入),功能P(性能、效益或输出等)三种指标来描述,从而描述决策分析对象应达到的目标.一般情况下,在进行风险决策分析时为了有利于模型的建立和使分析计算工作更快更有效,我们需要对网络中各个节点上相应随机参数的频数直方图以及3个参数中任意两者之间的相关性进行分析.在处理我国飞机预研计划这一课题发展起来的 SNSS系统是采用Fortran77语言编写的[1],以卡片形式进行输入输出的,在输出直方图以及进行时间、 费用、效益三者中任两者之间相互关系的计算上不是很直观、很简洁.其实两个随机参数之间的这种函数关系,在数值分析中有许多的方法可以求得,但是哪种方法能更直观、更合乎实际地给出反映这种相关性的平滑曲线呢?本文所选的插值方法能够较好地满足这一要求. 1插值方法的选择及其数学原理 插值是已知某函数在若干离散点上的函数值或者导数信息,通过求解该函数中待定形式的插值函数以及待定系数,使得该函数在给定离散点上满足约束.也即要求通过平面上已知n个点(xi,yi),i= 1,2,…,n作一条光滑的曲线,完成这项工作的方 法有多种,如拉格朗日插值、埃尔米特插值和分段 插值等.实际表明,拉格朗日插值和埃尔米特插值函数对于数据较多且具有随机性的变量相关性分析,做一个高次插值多项式是不理想的,因为它带有近似性,且计算也相当复杂.而分段插值是克服高次插值的Runge现象而提出的,只能保证曲线的连续性,却不能保证曲线的光滑性.但是在生产和科学实验中,对所做的插值曲线既要简单,又要在曲线的连接处比较光滑,即所作的分段插值函数在分段上要求多项式次数低,而在节点上不仅连续,还存在连续的低阶导数,我们把满足这样条件的插值函数,称为样条插值函数,它所对应的曲线称为样条曲线,其节点称为样点,这种插值方法称为样条插值[2]. 2 应用举例 2.1 资料说明 某企业的领导和管理者,得知与其竞争的另一 企业正在研制一种新产品,一旦这种新产品研制成功,将给另一企业带来销售市场上的绝对优势,如 第24卷第3期山西大同大学学报(自然科学版) Vol.24.No.32008年6月 JournalofShanxiDatongUniversity(NaturalScience) Jun.2008

五种插值法的对比研究开题报告

五种插值法的对比研究 1. 选题依据 1.1 选题背景 插值法是一种古老的数学方法,插值法历史悠久。据考证,在公元六世纪时, 我国焯(zhuo) 已经把等距二次插值法应用于天文计算。十七世纪时,Newton 和 Gregory(格雷格里) 建立了等距节点上的一般插值公式,十八世纪时,Lagrange(拉格朗日) 给出了更一般的非等距节点插值公式。 而它的基本理论是在微积分产生以后逐渐完善的,它的实际应用也日益增多,特别是在计算机工程中。许多库函数的计算实际上归结于对逼近函数的计算。 1.2 研究的目的和意义 插值法是数值分析中最基本的方法之一。 在实际问题中碰到的函数是各种各样的,有的甚至给不出表达式,只提供了一些离散数据,例如,在查对数表时, 要查的数据在表中找不到,就先找出它相邻的数,再从旁边找出它的修正值, 按一定关系把相邻的数加以修正,从而找出要找的数,这种修正关系实际上就是一种插值。 在实际应用中选用不同类型的插值函数,逼近的效果也不同。在数值计算方法中,我们学习过五种基本的插值方法,即Lagrange 插值、Newton 插值、分段线性插值、分段三次Hermite 插值、样条插值函数。所以通过从这五种插值法的基本思想、特征、性质和具体实例入手,探讨五种插值法的优缺点和适用围,让学习者能够迅速而准确的解决实际问题,掌握插值法的应用。 2. 研究的方法 从具体实例入手并结合Matlab 在科学计算中的优势,通过实验对它们的精度和效率进行比较分析。 3. 论文结构 3.1 论文的总体结构 第一部分 导言 主要介绍选题的背景、目的及意义、研究现状、文献综述等。 第二部分 五种插值法的基本思想、性质及特点 在数值计算方法中,插值法是计算方法的基础,数值微分、数值积分和微分方程数值解都建立在此基础上。 插值问题的提法是:已知f(x)(可能未知或非常复杂函数)在彼此不同的n+1 个实点0x ,1x ,…n x 处的函数值是f(0x ),f(1x ),…,f(n x ),这时我们简单的说f(x)有n+1 个 离散数据对0n i i )}y ,{(x i .要估算f(x)在其它点x 处的函数值,最常见的一种办法就是插 值,即寻找一个相对简单的函数y(x),使其满足下列插值条件:y(i x )=f(i x ),i=0,1,…,n.,并以y(x)作为f(x)的近似值.其中y(x)称为插值函数,f(x)称为被插函数。

《财务管理》教学中插值法的快速理解和掌握

摘要在时间价值及内部报酬率计算时常用到插入法,但初学者对该方法并 不是很容易理解和掌握。本文根据不同情况分门别类。利用相似三角形原理推 导出插入法计算用公式。并将其归纳为两类:加法公式和减法公式,简单易懂、理解准确、便于记忆、推导快捷。 关键词插入法;近似直边三角形;相似三角形 时间价值原理正确地揭示了不同时点上资金之间的换算。是财务决策的基 本依据。为此,财务人员必须了解时间价值的概念和计算方法。但在教学过程中。笔者发现大多数教材插值法(也叫插入法)是用下述方法来进行的。如高等 教育出版社2000年出版的《财务管理学》P62对贴现期的。 事实上,这样计算的结果是错误的。最直观的判断是:系数与期数成正向 关系。而4.000更接近于3.791。那么最后的期数n应该更接近于5,而不是6。正确结果是:n=6-0.6=5.4(年)。由此可见,这种插入法比较麻烦,不小心时还容易出现上述错误。 笔者在教学实践中用公式法来进行插值法演算,效果很好,现分以下几种 情况介绍其原理。 一、已知系数F和计息期n。求利息率i 这里的系数F不外乎是现值系数(如:复利现值系数PVIF年金现值系数PVIFA)和终值系数(如:复利终值系数FVIF、年金终值系数FVIFA)。 (一)已知的是现值系数 那么系数与利息率(也即贴现率)之间是反向关系:贴现率越大系数反而越小,可用图1表示。 图1中。F表示根据题意计算出来的年金现值系数(复利现值系数的图示略 有不同,在于i可以等于0,此时纵轴上的系数F等于1),F为在相应系数表 中查到的略大于F的那个系数,F对应的利息率即为i。查表所得的另一个比F 略小的系数记作F,其对应的利息率为i。

数值分析常用的插值方法

数值分析报告 班级: 专业: 流水号: 学号: 姓名:

常用的插值方法 序言 在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。 早在6世纪,中国的刘焯已将等距二次插值用于天文计算。17世纪之后,牛顿、拉格朗日分别讨论了等距和非等距的一般插值公式。在近代,插值法仍然是数据处理和编制函数表的常用工具,又是数值积分、数值微分、非线性方程求根和微分方程数值解法的重要基础,许多求解计算公式都是以插值为基础导出的。 插值问题的提法是:假定区间[a,b〕上的实值函数f(x)在该区间上n+1个互不相同点x0,x1……x n处的值是f(x0),……f(x n),要求估算f(x)在[a,b〕中某点的值。其做法是:在事先选定的一个由简单函数构成的有n+1个参数C0, C1,……C n的函数类Φ(C0,C1,……C n)中求出满足条件P(x i)=f(x i)(i=0,1,……n)的函数P(x),并以P(x)作为f(x)的估值。此处f(x)称为被插值函数,x0,x1,……xn 称为插值结(节)点,Φ(C0,C1,……C n)称为插值函数类,上面等式称为插值条件,Φ(C0,……C n)中满足上式的函数称为插值函数,R(x)=f(x)-P(x)称为插值余项。

求解这类问题,它有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermit 插值,分段插值和样条插值。 一.拉格朗日插值 1.问题提出: 已知函数()y f x =在n+1个点01,,,n x x x L 上的函数值01,,,n y y y L ,求任意一点 x '的函数值()f x '。 说明:函数()y f x =可能是未知的;也可能是已知的,但它比较复杂,很难计算其函数值()f x '。 2.解决方法: 构造一个n 次代数多项式函数()n P x 来替代未知(或复杂)函数()y f x =,则 用()n P x '作为函数值()f x '的近似值。 设()2012n n n P x a a x a x a x =++++L ,构造()n P x 即是确定n+1个多项式的系数 012,,,,n a a a a L 。 3.构造()n P x 的依据: 当多项式函数()n P x 也同时过已知的n+1个点时,我们可以认为多项式函数 ()n P x 逼近于原来的函数()f x 。根据这个条件,可以写出非齐次线性方程组: 20102000 20112111 2012n n n n n n n n n n a a x a x a x y a a x a x a x y a a x a x a x y ?++++=?++++=?? ? ?++++=?L L L L L 其系数矩阵的行列式D 为范德萌行列式: ()20 0021110 2111n n i j n i j n n n n x x x x x x D x x x x x ≥>≥= = -∏L L M M M M L

内插法计算公式

内插法计算公式 内插法计算公式 1、X1、Y1为《建设工程监理与相关服务收费标准》附表二中计费额的区段值;Y1、Y2为对应于X1、X2的收费基价;X为某区段间的插入值道;Y为对应于X由插入法计算而得的收费基价。 2、计费额小于500万元的,以计费额乘以3.3%的收费专率计算收费基价; 3、计费额大于1,000,000万元的,以计费额乘以1.039%的收费率计算收费基价。 【例】若计算得计费额为600万元,计算其收费基价属。 根据《建设工程监理与相关服务收费标准》附表二:施工监理服务收费基价表,计费额处于区段值500万元(收费基价为16.5万元)与1000万元(收费基价为30.1万元)之间,则对应于600万元计费额的收费基价: 内插法(Interpolation Method) 什么是内插法 在通过找到满足租赁交易各个期间所支付的最低租金支付额及租赁期满时租赁资产估计残值的折现值等于租赁资产的公平价值的

折现率,即租赁利率的方法中,内插法是在逐步法的基础上,找到两个接近准确答案的利率值,利用函数的连续性原理,通过假设关于租赁利率的租赁交易各个期间所支付的最低租金支付额及租赁期满时租赁资产估计残值的折现值与租赁资产的公平价值之差的函数为线性函数,求得在函数值为零时的折现率,就是租赁利率。 内插法原理 数学内插法即“直线插入法”。其原理是,若A(i1,b1),B(i2,b2)为两点,则点P(i,b)在上述两点确定的直线上。而工程上常用的为i在i1,i2之间,从而P在点A、B之间,故称“直线内插法”。 数学内插法说明点P反映的变量遵循直线AB反映的线性关系。 上述公式易得。A、B、P三点共线,则 (b-b1)/(i-i1)=(b2-b1)/(i2-i1)=直线斜率,变换即得所求。 内插法的具体方法 求得满足以下函数的两个点,假设函数为线性函数,通过简单的比例式求出租赁利率。 以每期租金先付为例,函数如下: A表示租赁开始日租赁资产的公平价值; R表示每期租金数额; S表示租赁资产估计残值; n表示租期; r表示折现率。 通过简单的试错,找出二个满足上函数的点(a1,b1)(a2,b2),

常见插值方法及其介绍

常见插值方法及其介绍 Inverse Distance to a Power(反距离加权 插值法)”、 “Kriging(克里金插值法)”、 “Minimum Curvature(最小曲率)”、 “Modified Shepard's Method(改进谢别德法)”、 “Natural Neighbor(自然邻点插值法)”、 “Nearest Neighbor(最近邻点插值法)”、 “Polynomial Regression(多元回归法)”、 “Radial Basis Function(径向基函数法)”、 “Triangulation with Linear Interpolation(线性插值三角网法)”、 “Moving Average(移动平均法)”、 “Local Polynomial(局部多项式法)” 1、距离倒数乘方法 距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。方次参数 控制着权系数如何随着离开一个格网结点距离的增加而下降。对于一个较大的方次,较近的数据点被 给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。 计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距 离倒数成比例。当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。当一个 观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点

被给予一 个几乎为0.0 的权重。换言之,该结点被赋给与观测点一致的值。这就是一个准确插值。 距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。用距离倒数格网化时可 以指定一个圆滑参数。大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的 权值,即使观测点与该结点重合也是如此。圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。 2、克里金法 克里金法是一种在许多领域都很有用的地质统计格网化方法。克里金法试图那样表示隐含在你的数 据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。 克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。 3、最小曲率法 最小曲率法广泛用于地球科学。用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最 小弯曲量的长条形薄弹性片。最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的 曲面。 使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛 标准。 4、多元回归法 多元回归被用来确定你的数据的大规模的趋势和图案。你可以用几个选项来确定你需要的趋势面类 型。多元回归实际上不是插值器,因为它并不试图预测未知的Z 值。它实际上是一个趋势面分析作

几种常用的插值方法

数学系 信息与计算科学1班 李平 指导老师:唐振先 摘要:插值在诸如机械加工等工程技术和数据处理等科学研究中有许多直接的应用,在很多领域都要用插值的办法找出表格和中间值,插值还是数值积分微分方程数值解等数值计算的基础。本文归纳了几种常用的插值方法,并简单分析了其各自的优缺点。 关键词:任意阶多项式插值,分段多项式插值。 引言:所谓插值,通俗地说就是在若干以知的函数值之间插入一些未知函数值,而插值函数的类型最简单的选取是代数多项式。用多项式建立插值函数的方法主要用两种:一种是任意阶的插值多项式,它主要有三种基本的插值公式:单项式,拉格朗日和牛顿插值;另一种是分段多项式插值,它有Hermite 和spine 插值和分段线性插值。 一.任意阶多项式插值: 1.用单项式基本插值公式进行多项式插值: 多项式插值是求通过几个已知数据点的那个n-1阶多项式,即P n-1(X)=A 1+A 2X+…A n X n-1,它是一个单项式基本函数X 0,X 1…X n-1的集合来定义多项式,由已知n 个点(X,Y )构成的集合,可以使多项式通过没数据点,并为n 个未知系数Ai 写出n 个方程,这n 个方程组成的方程组的系数矩阵为Vandermonde 矩阵。 虽然这个过程直观易懂,但它都不是建立插值多项式最好的办法,因为Vandermonde 方程组有可能是病态的,这样会导致单项式系数不确定。另外,单项式中的各项可能在大小上有很大的差异,这就导致了多项式计算中的舍入误差。 2.拉格朗日基本插值公式进行插值: 先构造一组插值函数L i (x ) =011011()()()() ()()()() i i n i i i i i i n x x x x x x x x x x x x x x x x -+-+--------,其中i=0,… n.容易看出n 次多项式L i (x )满足L i (x )=1,(i=j );L i (x )=0,(i ≠j ),其中i=0,1…n ,令L i (x )=0()n i i i y l x =∑这就是拉格朗日插值多项式。与单项式基本 函数插值多项式相比,拉格朗日插值有2个重要优点:首先,建立插值多项式不需要求解方程组;其次,它的估计值受舍入误差要小得多。拉格朗日插值公式结构

插值法的分类与应用

插值法的方法与应用 武汉科技大学城市建设学院 琚婷婷 结构工程 201108710014 【摘要】文章讨论插值法在数值分析中的中心地位和重要作用,比较插值法间的优缺点,应用以及各种方法之间的相互联系。 【关键词】插值法;应用。 1.插值问题的提出 在许多实际问题及科学研究中,因素之间往往存在着函数关系,但是这些关系的显示表达式不一定都知道,通常只是由观察或测试得到一些离散数值,所以只能从这些数据构造函数的近似表达式,有时虽然给出了解析表达式,但由于解析表达式过于复杂,使用或计算起来十分麻烦。这就需要建立函数的某种近似表达,而插值法就是构造函数的近似表达式的方法。 2.插值法的数学表达 由于代数多项式是最简单而又便于计算的函数,所以经常采用多项式作为插值函数,称为多项式插值。多项式插值法有拉格朗日插值法,牛顿插值法、埃尔米特插值法,分段插值法和样条插值法等。其基本思想都是用高次代数多项式或分段的低次多项式作为被插值函数f (x)的近似解析表达式。 3.常用多项式插值公式构造 (I)拉格朗日插值 n 次拉格朗日插值多项式p n (x)对可表示为 p n (x)= y i l i (x)n i=0= y i ( x ?x j x i ?x j n j ≠0i ≠j n i=0) 其中l i x ,i =0,1,2???,n 称为插值基函数,插值余项为: R n (x)= f (x)- p n (x)=f n +1 (ξ) n+1 ! (x ?x i )n i=0 拉格朗日插值多项式在理论分析中非常方便,因为它的结构紧凑,利用基函

数很容易推导和形象的描述算法,但是也有一些缺点,当插值节点增加、减少或其位置变化时,整个插值多项式的结构都会改变,这就不利于实际计算,增加了算法复杂度,此时我们通常采用牛顿插值多项式算法。 (2)牛顿插值多项式 牛顿插值多项式为 N(x)=f(x0)+f x0,x1(x?x0)++???+f[x0,x1,???,x n](x?x0)(x?x1)???(x?x n?1)用它插值时,首先要计算各阶差商,而各高阶差商可归结为一阶差商的逐次计算。一般情况讨论的插值多项式的节点都是任意分布的,但是在实际应用中,出现了很多等距节点的情形,这时的插值公式可以进一步简化,在牛顿均差插值多项式中各阶均差用相应的差分代替,就得到了各种形式的等距节点插值公式,常用的是牛顿前插与后插公式。 (3)分段插值 在整个插值区间上,随着插值节点的增多,插值多项式的次数必然增高,而高次插值会产生Runge现象,不能有效的逼近被插函数,人们提出用分段的低次多项式分段近似被插函数,这就是分段插值法。构造分段插值多项式的方法仍然是基函数法,即先在每个插值节点上构造分段线性插值基函数,再对基函数作线性组合。它的优点在于只要节点间距充分小,总能获得所要求的精度,即收敛性总能得到保证,另一优点是它的局部性质,即如果修改某个数据,那么插值曲线仅仅在某个局部范围内受到影响。 (4)Hermite插值 分段线性插值的算法简单,计算量小,然而从整体上看,逼近函数不够光滑,在节点处,逼近函数的左右导数不相等,若要求逼近函数与被逼近函数不仅在插值节点上取相同的函数值,而且还要求逼近函数与被逼近函数在插值节点上取相同的若干阶导数值,这类问题称为Hermite插值。 (5)样条插值 通常我们用到的分段三次埃尔米特插值构造的是一个整体上具有一阶光滑性的插值多项式,但在实际中,对光滑性的要求更高。如飞机外形的理论模型,舶体放样等型值线等常要求有二阶的光滑度。工程上常用的是3次样条函数s(x)。其基本思想是将插值区间n等分后,在每一个小区间上,采用分段3次Hermite

数值计算方法复习题2

习题二 1. 已知 ,求的二次值多项式。 2. 令 解:; ,介于x和0,1决定的区 间内;,当时。 的数表,分别用线性插值与二次插值求 3. 给出函数 ,试利用拉格朗日余项定理写出以为节点的三次 4. 设 插值多项式。 ,求及的值。1,0 5. 已知 6. 根据如下函数值表求四次牛顿插值多项式,并用其计算 , 的如下函数值表,解答下列问题(1)试列出相应 7. 已知函数 的差分表;(2)分别写出牛顿向前插值公式和牛顿向后插值公式。 解:向前插值公式

向后插值公式 8. 下表为概率积分 的数据表,试问:1)时, 积分 在各点的数据(取五位有效数 9. 利用 字),求方程 在0.3和0.4之间的根的近似值。0.3376489 10. 依据表10中数据,求三次埃尔米特插值多项式。 11. 依据数表11 项式。 上给出的等距节点函数表,用分段线性插值求 12. 在 的近似值,要使截断误差不超过 取? 13. 将区间 分成n等分,求在上的分段三次埃尔米 特插值多项式,并估计截断误差。 14、给定的数值表

用线性插值与二次插值计算ln0.54的近似值并估计误差限 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计。线性插值时,用0.5及0.6两点,用Newton插值 误差限 ,因,故 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 误差限, 故 15、在-4≤x≤4上给出的等距节点函数表,若用二次插值法 求的近似值,要使误差不超过,函数表的步长h应取多少? 解:用误差估计式, 令因 得

16、若,求和 解:由均差与导数关系 于是 17、若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有 而当P=n+1时 于是得 18、求证 解:只要按差分定义直接展开得 19、已知的函数表

插值法及其应用【文献综述】

文献综述 信息与计算科学 插值法及其应用 插值问题是数值计算中基础而又核心的问题. 在许多实际问题及科学研究中, 因素之间往往存在着函数关系, 然而, 这种关系经常很难有明显的解析表达, 通常只是有观察与测试得到一些离散数值.有时即使给出了解析表达式, 却由于表达过于复杂, 不仅使用不便, 而且不易与进行计算与理论分析. 例如在工程实际问题中, 我们也经常会碰到诸如此类的函数计算问题, 被计算的函数有时不容易直接计算, 如表达式过于复杂或者只希望能用一个“简单函数”逼近被计算函数, 然后用该简单函数的函数值近似代替被计算函数的函数值. 这种方法就叫插值逼近或者插值法. 插值法要求给出函数的一个函数表, 然后选定一种简单)(x f 的函数形式, 比如多项式、分段线性函数及三角多项式等, 通过已知的函数表来确定一个简单的函数作为的近似, 概括地说, 就是用简单函数为离散数组建立连续模型. )(x )(x f 插值方法是一类古老的数学方法, 它来自生产实践. 早在数千多年前, 由于经典的牛顿力学尚未诞生, 因而人们无法用解析式描述日月五星的运行规律. 我们的祖先凭借插值方法, 利用对日月五星运行规律的有限个观测值获得了比较完整的日月五星的运行规律. 在一千多年前的隋唐时期, 中华先贤在制定历法的过程中就已经广泛地运用了插值技术. 公元6世纪, 隋朝刘焊已将等距结点的二次插值应用于天文计算. 但插值的基本理论和结果是在微积分产生以后才逐步完善的, 随后其应用也日益增多, 特别是在电子计算机广泛使用以后, 由于航空、造船、精密机械加工等实际问题的需要, 使插值法在实践上或理论上显得更为重要, 并得到进一步发展. 经典的插值方法以Taylor 插值和Lagrange 插值为代表. Taylor 插值利用函数在定义域内某点处的阶至n 阶导数信息给出复杂函数或未知函数的近似多项式表达式, Lagrange 插0值利用多个离散点的函数信息给出函数的近似多项式的表达式, 进一步根据插值结果对复杂函数或未知函数相关的理论和应用问题做出讨论.因此Taylor 插值和Lagrange 插值有着紧密的联系, Taylor 插值可以看作Lagrange 插值的极限形式;Lagrange 插值则是Taylor 插值的离散化形式.Lagrange 插值的优点是插值多项式特别容易建立, 缺点是增加节点时原有

常见插值法

常见插值法 【摘 要】插值方法在数值分析中起着非常重要的作用。在此介绍一些常见的插值方法及 其应用范例。 【关键字】数值分析;插值方法;应用; 1. 插值法定义 插值法又称“内插法”,是利用函数f (x)在某区间中 插入若干点的函数值,作出适当的特定函数,在这些 表(1) 插值点 点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。 2.常见的插值法及其构造 Lagrange 插值法 (a).公式推导: 表(1)的Lagrange 插值的插值多项式 ∑==n i i i x l x f x 0 n )()()(L ,(j=0,1,2....n)。 其中插值基函数是 ∏ ≠=--=n j i i j i j x x x x x l 0 n ) ()()(,(i,j=0,1 2...n) 。 其插值余项为 其中),b a (∈ ξ,∏≠=+--=n j i i j i j x x x x x 0 1n )() ()(ω (b).matlab 实现方法: Matlab 没有直接求解的相关函数,现编译如下: function yi = Lagarange_chazhi(x,y,xi) % 求拉格朗日插值,并返回一个输入为xi 时的函数值 % x 为插值点向量,至少有三项 % y 为插值点值的向量,项数与x 相同 m = length(x); %求插值个数 m1 = length(y); if m<=2 error('项数不足!'); end if m~=m1 error('!!!y 的项数应与x 相同!!!'); end %对参数的判断 lag_hanshu = 0; syms X ; for (l = 1:m) %构造插值基函数 la = y(l); for a = (1:l-1) la = la*(X-x(a))/(x(l)-x(a)); end for a = (l+1:m) la = la*(X-x(a))/(x(l)-x(a)); end format long lag_hanshu = lag_hanshu+la; %求解出插值函数 end yi = subs( lag_hanshu,'X',xi); %返回插值函数输入为xi 时的值 End (c).方法缺陷:当插值点个数7n ≥时,将产生 龙格现象: 经典例子,对) 251(1 )(2x x f += 进行拉格朗日插 0x 1x 2x ....... 1-n x n x 0y 1y 2y ....... 1-n y n y ), (!)1() ()()()(1)1(x n f x L x f x R n n n n +++=-=ωξ

相关文档