文档库 最新最全的文档下载
当前位置:文档库 › 算术_几何平均值不等式的证明

算术_几何平均值不等式的证明

算术_几何平均值不等式的证明
算术_几何平均值不等式的证明

平均值不等式是数学分析中解决许多极限问题以及其他应用问题的一个重要依据,特别是算术平均值-几何平均值不等式(以下简称算几不等式)的应用更是尤为广泛,许多极限问题的证明都要应用到这一不等式,而关于这一不等式的证明方法,常见的有利用数学归纳法及詹生不等式的证明,下面介绍几种另外的证明方法。

1利用二项式定理

证明:首先,对于a,b>0由二项式定理,得

(a+b)n>an+nan-1b

由数学归纳法,若n-1时为真,对于n,假设an≥an-1≥…≥a2≥a1≥0.又设a=1n-1

n-1

i=1"xi,b=1n(xn-a),故有a,b≥0及1

nn-1i=1"xi#$n

(a+b)n>an+nan-1b=xn1n-1n-1i=1"xi%&n-1≥xn(x1x2…xn-1)即x1+x2+…+xnn≥x1x2…xnn’(xi≥0,i=1,2,…,n).

2利用不等式ex≥1+x(x≥-1)

证明:设An=x1+x2+…+xnn

,Gn=x1x2…xnn’(xi>0,i=1,2,…,n)由不等式ex≥1+x(x≥-1)可知,

对于每一i,有expxiAn-%&

1≥xiAn求乘积,得

1=ni=1(exp

xiAn-%$1=expni=1"xiAn-%$1%$≥ni=1(xiAn

=Gn

An%$n算术-几何平均值不等式的证明

故An≥Gn,即x1+x2+…+xnn

≥x1x2…xnn"(xi>0,i=1,2,…,n).3利用泰勒公式

证明:设f(x)=logax(0<a<1,x>0),则f″(x)=1x21na>0,将f(x)在点x0处展开,有f(x)=f(x0)+f′(x0)(x-x0)+f″(x)2

(x-x0)2,!=x0+"(x-x0)(0<"<1)

因此有f(x)≥f(x0)+f′(x0)(x-x0),

取x0=1nn

i=1

#xi(xi

∈(a,b),(i=1,2,…,n),则有f(xi)≥f1

ni=1%xi&’+f′1nni=1%xi&(xi-ni=1%xi&((i=1,2,…,n)故

i=1%f(xi)≥nf1nni=1%xi&(+f′1nni=1%xi&(+ni=1%xi-ni=1%xi&(=nf1nni=1%xi&(即f1nni=1%xi&(≤1nni=1

%f(xi)

.因此有loga1n(x1+x2+…+xn)≤1n

(logax1+logax2+…logaxn)即1nloga(x1x2…xn)≥loga1n

(x1+x2+…+xn)亦即loga(x1x2…xn)1

n≥1n

loga(x1+x2+…+xn)(0<a<1)故有x1+x2+…+xnn

≥x1x2…xnn"(xi>0,i=1,2,…,n).4利用函数凹凸性

证明:设f(x)=logax(a>1,x>0),则f″(x)=-1x21na<0,故f(x)是上凸函数,因此有ni=1%a

if(xi)≤fni=1%aixi

&(,取ak=1n

(k=1,2,…,n),有1n(logax1+logax2+…logaxn)≤loga1n

(x1+x2+…+xn)即1nloga(x1x2…xn)≤loga1n

(x1+x2+…+xn)亦即loga(x1x2…xn)1

n≤loga1n

(x1+x2+…+xn)故有x1+x2+…+xnn≥x1x2…xnn"(xi>0,i=1,2,…,n).

河南省:必修(5):算术平均数与几何平均数(焦作市第十一中学-郭振东)

《算术平均数与几何平均数》 焦作市第十一中学 郭振东 【教学目标】 (1) 知识目标 使学生能准确表达两个重要不等式;理解它们成立的条件和意义;能正确运用算术平均数与几何平均数定理求最值. (2) 能力目标 通过对实例的分析和提炼培养学生的观察、分析和抽象、概括能力;通过师生间的合作交流提高学生的数学表达和逻辑思维能力. (3) 情感目标 让学生经历知识的发生、发展、应用的全过程,鼓励学生在学习中勤于思考,积极探索;通过去伪存真的学习过程培养学生批判质疑的理性思维和锲而不舍追求真理的精神. 【教学重点】两个正数的算术平均数与几何平均数定理及应用定理求最值. 【教学难点】在求最值时如何正确运用定理. 【教学过程】 Ⅰ.引言: 某人中秋节到超市买两斤糖果,不巧超市的电子秤坏了,但超市还有一个不等臂但刻度准确的坏天平,于是售货员先把糖果放在天平的左侧称出“一斤”,再拿出一些糖果放在天平的右侧称出“一斤”,然后把两次称出的糖果合在一起给了他,并且解释:“一边多一边少,加在一起就正好.”这种称法准确么?如果不准确,那么是称多了还是称少了? 【分析】设天平左右两侧力臂长分别为1l 、2l ,两次称得的糖果实际重量为x 、y 则:12xl l =,12l yl =,

∴2112 l l x y l l +=+ 这个数比2大还是小呢?有没有好的解决方法?请同学们阅读课本第9,10页算术平均数与几何平均数一节的正文及例1,看看能否在课本中找到答案。同时思考以下问题: 问题1.糖果给多了还是少了?你用什么知识解决了这个问题?如何解决的? 问题 2.除定理外还有一个重要不等式,内容是什么?它与定理有哪些相同点和不同点? 问题3.认真分析例1及其证明过程,你能得到什么启示? Ⅱ. 阅读课文,找寻答案 学生阅读课本后回答问题1和问题2,引出本节知识 一.两重要不等式 如果,a b R ∈那么222a b ab +≥ (当且仅当a b =时取“=”号). 定理 如果,a b 是正数,那么2 a b +(当且仅当a b =时取“=”号). 想一想:“当且仅当”的含义是什么? 介绍2 a b +叫做a 、b a 、 b 的几何平均数. 数列解释:两个正数的等差中项不小于它们的正项等比中项. Ⅲ.例题精析,去伪存真 二.定理应用 例1. 已知,x y 都是正数,求证: (1)如果积xy 是定值P ,那么当x y =时,和x y + 有最小值 (2)如果和x y +是定值S ,那么当x y =时,积xy 有最大值214 S . 回答问题3,得出:

(完整版)均值不等式及其证明

1平均值不等式及其证明 平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明中占有重要的位置。平均值不等式的证明有许多种方法,这里,我们选了部分具有代表意义的证明方法,其中用来证明平均值不等式的许多结论,其本身又具有重要的意义,特别是,在许多竞赛的书籍中,都有专门的章节介绍和讨论,如数学归纳法、变量替换、恒等变形和分析综合方法等,这些也是证明不等式的常用方法和技巧。 1.1 平均值不等式 一般地,假设12,,...,n a a a 为n 个非负实数,它们的算术平均值记为 12...,n n a a a A n +++= 几何平均值记为 112(...)n n n G a a a == 算术平均值与几何平均值之间有如下的关系。 12...n a a a n +++≥ 即 n n A G ≥, 当且仅当12...n a a a ===时,等号成立。 上述不等式称为平均值不等式,或简称为均值不等式。 平均值不等式的表达形式简单,容易记住,但它的证明和应用非常灵活、广泛,有多种不同的方法。为使大家理解和掌握,这里我们选择了其中的几种典型的证明方法。供大家参考学习。 1.2 平均值不等式的证明 证法一(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 1 1212...(...)k k n a a a a a a k +++≥。 那么,当1n k =+时,由于

121 1 (1) k k a a a A k +++++= +,1k G +=, 关于121,,...,k a a a +是对称的,任意对调i a 与j a ()i j ≠,1k A +和1k G +的值不改变,因此不妨设{}1121min ,,...,k a a a a +=,{}1121max ,,...,k k a a a a ++= 显然111k k a A a ++≤≤,以及1111()()0k k k a A a A +++--<可得 111111()k k k k A a a A a a +++++-≥. 所以 1111211 1(1)...k k k k k k kA k A A a a a A A k k k +++++++-+++-= == 2111...()k k k a a a a A k ++++++-=≥即12111...()k k k k k A a a a a A +++≥+- 两边乘以1k A +,得 111211112111...()...()k k k k k k k k k k A a a A a a A a a a a G ++++++++≥+-≥=。 从而,有11k k A G ++≥ 证法二(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 12...k a a a +++≥ 那么,当1n k =+时,由于

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

算术-几何平均值不等式

算术-几何平均值不等式 信息来源:维基百科 在数学中,算术-几何平均值不等式是一个常见而基本的不等式,表现了两类平均数:算术平均数和几何平均数之间恒定的不等关系。设为个正实 数,它们的算术平均数是,它们的几何平均数是。算术-几何平均值不等式表明,对任意的正实数,总有: 等号成立当且仅当。 算术-几何平均值不等式仅适用于正实数,是对数函数之凹性的体现,在数学、自然科学、工程科学以及经济学等其它学科都有应用。 算术-几何平均值不等式经常被简称为平均值不等式(或均值不等式),尽管后者是一组包括它的不等式的合称。 例子 在的情况,设: ,那么 .可见。 历史上的证明

历史上,算术-几何平均值不等式拥有众多证明。的情况很早就为人所知,但对于一般的,不等式并不容易证明。1729年,英国数学家麦克劳林最早给出了一般情况的证明,用的是调整法,然而这个证明并不严谨,是错误的。 柯西的证明 1821年,法国数学家柯西在他的著作《分析教程》中给出了一个使用逆向归纳法的证明[1]: 命题:对任意的个正实数, 当时,显然成立。假设成立,那么成立。证明:对于个正实数, 假设成立,那么成立。证明:对于个正实数,设,,那么由于成立,。 但是,,因此上式正好变成 也就是说

综上可以得到结论:对任意的自然数,命题都成立。这是因为由前两条可以得到:对任意的自然数,命题都成立。因此对任意的,可以先找使得,再结合第三条就可以得到命题成立了。 归纳法的证明 使用常规数学归纳法的证明则有乔治·克里斯托(George Chrystal)在其著作《代数论》(algebra)的第二卷中给出的[2]: 由对称性不妨设是中最大的,由于,设,则,并且 有。 根据二项式定理, 于是完成了从到的证明。 此外还有更简洁的归纳法证明[3]: 在的情况下有不等式和成立,于是:

常见的几何体计算公式

常见几何体的面积、体积求法与应用 要计算某材料的密度、重量,研究某物体性能及其物质结构等,特别对于机械专业的学生,必须要求工件的面积、体积等,若按课本上公式来计算,而课本上公式不统一,不好记住,并且很繁杂,应用时要找公式,对号入座很麻烦。笔者在教学与实践中总结出一种计算常见几何体的面积、体积方法。其公式统一,容易记住,且计算简单。对技校学生来说,排除大部分繁琐的概念、定理,以及公式的推导应用等。 由统计学中的用加权平均数对估计未来很准确。比如,估计某商品下个月销售量,若去年平均销售量为y ,设本月权为4,上月权数为1,下月权数为1,各月权数分别乘销售量相加后除以6等于y 。这样能准确地确定下个月销售量。能不能以这种思想方法用到求几何体的面积、体积呢?通过推导与实践,对于常见的几何体确实可用这种方法来求得其面积、体积。下面分别说明求常见几何体的面积、体积统一公式的正确性与可用性。 常见几何体的面积、体积统一公式: ) 4(6 )4(621002100S S S h V C C C h A ++= ++= (其中A 为几何体侧面积,C 0为上底面周长,C 1为中间横截面周长,C 2 为下底面周长,V 为几何体体积,S 0为上底面面积,S 1为中间横截面面积,S 2为下底面面积,h 为高,h 0为斜高或母线长。注:中间横截面为上、下底等距离的截面。) 一、棱柱、棱锥、棱台、圆柱、圆锥、圆台的面积 、体积用统一公式的正确性 1、棱柱: ⑴据棱柱上底周长、下底周长、中间横截面周长相等,即2 1 C C C ==, 可得: 2020210066 )4(6 C h C h C C C h =?= ++,这与课本中的棱柱侧面积公式等同。 以下每个几何体都能推得与课本中相应公式等同,说明这统一公式的正确性。 ⑵据棱柱上底面、下底面、中间横截面相等,可知:2 1 S S S ==,即: h S S S S h S S S h V 2222210)4(6 )4(6 =++= ++= 。 2、棱锥 ⑴设底边长为a 2,边数为n ,斜高为h 0,侧面三角形中位线为a 1,则

高考数学百大经典例题 算术平均数与几何平均数

典型例题一 例1 已知R c b a ∈,,,求证.2 2 2 ca bc ab c b a ++≥++ 证明:∵ ab b a 22 2 ≥+, bc c b 222 ≥+, ca a c 22 2 ≥+, 三式相加,得 )(2)(2222ca bc ab c b a ++≥++,即.222ca bc ab c b a ++≥++ 说明:这是一个重要的不等式,要熟练掌握. 典型例题二 例2 已知c b a 、、是互不相等的正数, 求证:abc b a c c a b c b a 6)()()(2 2 2 2 2 2 >+++++ 证明:∵022 2>>+a bc c b ,, ∴abc c b a 2)(22 >+ 同理可得:abc b a c abc c a b 2)(2)(2 2 2 2 >+>+,. 三个同向不等式相加,得 abc b a c c a b c b a 6)()()(222222>+++++ ① 说明:此题中c b a 、、互不相等,故应用基本不等式时,等号不成立.特别地,b a =,c b ≠时,所得不等式①仍不取等号. 典型例题三 例3 求证)(2222222c b a a c c b b a ++≥+++++. 分析:此问题的关键是“灵活运用重要基本不等式ab b a 22 2≥+,并能由) (2c b a ++这一特征,思索如何将ab b a 22 2≥+进行变形,进行创造”. 证明:∵ab b a 22 2≥+, 两边同加2 2b a +得2 2 2 )()(2b a b a +≥+. 即2 )(2 2 2 b a b a +≥+.

证明n元均值不等式

学习好资料 欢迎下载 证明n 元均值不等式 1212n n n a a a n a a a +++≥证明: 首先证明,23n 2,222当,,,,时,不等式成立。 显然,12122a a a a +≥, 又因为412341234123412342+2222=4a a a a a a a a a a a a a a a a +++≥≥?, 同理可以证明得到n 2也成立。 再证明,当k k+1n 22∈(,) 也成立。 k k n=2+i 1i 2-1≤≤不妨设 ,其中,则有k k k k 21212 222a a a a a a ++ +≥, k+1k+1k+1k+121212 222a a a a a a ++ +≥ 则k k k 121222+12+i =++ +n a a a a a a a a +++++ +(), k k k k k k k k k k k k k k k k+1212 22k 2+i 1212 22+12+i 1222+1k 2+i 12 22+1 2++1 2+i i 2+2-i =++++2-i 2i i n a a a a a a a a a a a a a a a a a a a a a a a +++++++ ?+≥? (则()()) k k k k k k k k k 2+i 12 22+1 2+i k 2+i 12 22+1 2+i 2-2i i -a a a a a a a a a a 其中可以看成是()个相()加所得。 k k k k k k k k k k k k 2+i 12 22+12+i k 2+i 1212 22+12+i 22+1 2+i 2-i ++ +2+i a a a a a a a a a a a a a a a ?++ +≥()最后,在式两边同时减去就得到了()() 1212 n n n a a a n a a a ++ +≥即:得证。

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

算术—几何平均不等式

江苏省郑梁梅高级中学高二数学教学案(理) 主备人:冯龙云 做题人:顾华章 审核人:曾庆亚 课题:算术—几何平均不等式 一、教学目标: 1.掌握平均不等式的基本形式和特点,体会特殊化到一般化的思考方法; 2.利用平均不等式证明相关结论; 二、教学重点、难点 重点:掌握平均不等式的基本形式和特点; 难点:利用平均不等式证明相关结论。 三、教学过程 1、问题情境 复习回顾:基本不等式 2、建构数学 算术—几何平均不等式: 3、数学运用 例1、设,,a b c 为正数,证明:2 (1)()16ab a b ab ac bc c abc ++++++≥。

例2、设12,,,n a a a L 为正数,求证:1212111n n a a a n n a a a +++≥+++L L 。 例3、证明:对于任意正整数n ,有111(1)(1)1n n n n ++<+ +。 4、课堂练习 (1)已知x 、y 都是正数,且 141x y +=,求x y +的最小值。 (2)已知x 、y 都是正数,且x y >,求证:22 12232x y x xy y + ≥+-+。 5、课堂小结 四、板书设计 五、教学后记

江苏省郑梁梅高级中学高二数学作业(理) 班级__________ 姓名________ 学号_________ 1、设,,a b c 为正实数,求证:333111abc a b c +++≥ 2、已知a 、b 为正数,求证:22 (1)(1)9a b a b ab ++++≥。 3、已知a 、b 、c 为正数,且()1abc a b c ++=,求()()a b a c ++的最小值。

均值不等式的证明(精选多篇)

均值不等式的证明(精选多篇) 第一篇:常用均值不等式及证明证明 常用均值不等式及证明证明 这四种平均数满足hn?gn? an?qn ?、ana1、a2、 ?r?,当且仅当a1?a2?? ?an时取“=”号 仅是上述不等式的特殊情形,即d(-1)≤d(0)≤d(1)≤d(2)由以上简化,有一个简单结论,中学常用 均值不等式的变形: (1)对实数a,b,有a 2 22 ?b2?2ab (当且仅当a=b时取“=”号),a,b?0?2ab (4)对实数a,b,有 a?a-b??b?a-b? a2?b2? 2ab?0 (5)对非负实数a,b,有 (8)对实数a,b,c,有

a2? b2?c2?ab?bc?ac a?b?c?abc(10)对实数a,b,c,有 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序 不等式法、柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设a≥0,b≥0,则?a?b??an?na?n-1?b n 注:引理的正确性较明显,条件a≥0,b≥0可以弱化为a≥0 ,a+b≥0 (用数学归纳法)。 当n=2时易证; 假设当n=k时命题成立,即 那么当n=k+1时,不妨设ak?1是则设 a1,a2,?,ak?1中最大者, kak?1?a1?a2???ak?1 s?a1?a2???ak 用归纳假设 下面介绍个好理解的方法琴生不等式法 琴生不等式:上凸函数f?x?,x1,x2,?,xn是函数f?x?在区间(a,b)内的任意n个点, 设f?x??lnx,f

?x?为上凸增函数所以, 在圆中用射影定理证明(半径不小于半弦) 第二篇:均值不等式证明 均值不等式证明一、 已知x,y为正实数,且x+y=1求证 xy+1/xy≥17/4 1=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥2 当且仅当xy=1/xy时取等 也就是xy=1时 画出xy+1/xy图像得 01时,单调增 而xy≤1/4 ∴xy+1/xy≥(1/4)+1/(1/4)=4+1/4=17/4 得证 继续追问: 拜托,用单调性谁不会,让你用均值定理来证 补充回答: 我真不明白我上面的方法为什么不是用均值不等式证的法二: 证xy+1/xy≥17/4

高中数学基本不等式证明

不等式证明基本方法 例1 :求证:221a b a b ab ++≥+- 分析:比较法证明不等式是不等式证明的最基本的方法,常用作差法和作商法,此题用作差法较为简便。 证明:221()a b a b ab ++-+- 2221[()(1)(1)]02 a b a b =-+-+-≥ 评注:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论 2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选 用。 例2:设c b a >>,求证:b a a c c b ab ca bc 2 22222++<++ 分析:从不等式两边形式看,作差后可进行因式分解。 证明:)(222222b a a c c b ab ca bc ++-++ =)()()(a b ab c a ca b c bc -+-+- =)()]()[()(a b ab c b b a ca b c bc -+-+-+- =))()((a c c b b a --- c b a >>Θ,则,0,0,0<->->-a c c b b a ∴0))()((<---a c c b b a 故原不等式成立 评注:三元因式分解因式,可以排列成一个元的降幂形式: =++-++)(222222b a a c c b ab ca bc )())(()(2a b ab b a b a c a b c -++-+-,这样容易发现规律。 例3 :已知,,a b R +∈求证:11()()2()n n n n a b a b a b ++++≤+ 证明:11()()2()n n n n a b a b a b ++++-+ 11n n n n a b ab a b ++=+-- ()()n n a b a b a b =-+- ()()n n a b b a =--

均值不等式的证明方法

柯西证明均值不等式的方法 by zhangyuong (数学之家) 本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。 一般的均值不等式我们通常考虑的是n n G A ≥: 一些大家都知道的条件我就不写了 n n n x x x n x x x ......2121≥ +++ 我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出: 8444844)()(: 4422)()(abcdefgh efgh abcd h g f e d c b a abcd abcd cd ab d c b a d c b a ≥+≥+++++++=≥+≥+++=+++八维时二维已证,四维时: 这样的步骤重复n 次之后将会得到 n n n x x x x x x n 2 221221 (2) ...≥ +++ 令A n x x x x x x x x x x n n n n n n =+++= =====++......;,...,2122111 由这个不等式有 n n n n n n n n n n A x x x A x x x A n nA A 2 121 212 221)..(..2 )2(- -=≥ -+= 即得到 n n n x x x n x x x ......2121≥ +++ 这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子: 例1: 1 1 12101(1,2,...,)11(...)n i i i n n n a i n a a a a =<<=≥ --∑ 若证明 例2:

1 1 1211(1,2,...,)1 1(...)n i i i n n n r i n r r r r =≥=≥ ++∑ 若证明 这2个例子是在量在不同范围时候得到的结果,方法正是运用柯西的归纳法: 给出例1的证明: 12121 2 212 2 123 4 211(1)2(1)(1) 11,(1)(2)2(1) 22(1)2(1)2211111111n a a a a a a p a q a q p p q p q pq q p q q q p q a a a a =+ ≥ ?- --≥----=+= ?--≥-+?-+≥?+≥+?≥+ + + ≥+ ----≥ 当时设,而这是元均值不等式因此此过程进行下去 因2 1 1 2 1221 1212221 12 2 1 1 2 11(...)...(...)112 2 (2) 1111() 111n n n n n n n n i i n n n n n n n n n i i n n i i a a a a a a a a a a G n a G G G G n a G =++-==≥ --=====+-≥ = ----≥ --∑ ∑ ∑ 此令有即 例3: 1 115,,,,1(1),,111,,11( )( ) 1 1 n n i i i i i i i i i n n n i i i i i i n n i i i i i i i i i i i n r s t u v i n R r S s n n T t U u V v n n n r s t u v R ST U V r s t u v R ST U V =>≤≤== = = = ++≥--∑∑∑∑∑∏ 已知个实数都记,求证下述不等式成立: 要证明这题,其实看样子很像上面柯西的归纳使用的形式

4 基本不等式的证明(1)

4、基本不等式的证明(1) 目标: (,0)2 a b a b +≥的证明过程,并能应用基本不等式证明其他不等式。 过程: 一、问题情境 把一个物体放在天平的一个盘子上,在另一个盘子上放砝码使天平平衡,称得物体的质量为 a 。如果天平制造得不精确,天平的两臂长略有不同(其他因素不计) ,那么a 并非物体的实际质量。不过,我们可作第二次测量:把物体调换到天平的另一个盘上,此时称得物体的质量为b 。那么如何合理的表示物体的质量呢? 把两次称得的物体的质量“平均”一下,以2 a b A +=表示物体的质量。这样的做法合理吗? 设天平的两臂长分别为12,l l ,物体实际质量为M ,据力学原理有1221,l M l a l M l b == ,有2,M ab M == ,0a b >时,2 a b +叫,a b ,a b 的几何平均数 2 a b + 二、建构 一般,判断两数的大小可采用“比较法”: 02a b +-=≥ 2 a b +≤(当且仅当a b =时取等号) 说明:当0a =或0b =时,以上不等式仍成立。 从而有 2 a b +≤(0,0)a b ≥≥(称之“基本不等式” )当且仅当a b =时取等号。 2 a b +≤的几何解释: 如图,,2 a b OC CD OC CD +≥== 三、运用 例1 设,a b 为正数,证明:1(1)2(2)2b a a a b a +≥+≥ 注意:基本不等式的变形应用 2,2a b a b ab +??≤+≤ ???

例2 证明: 22(1)2a b ab +≥ 此不等式以后可直接使用 1(2)1(1)1 x x x + ≥>-+ 4(3)4(0)a a a +≤-< 2 2≥ 2 2> 例3 已知,0,1a b a b >+=,求证:123a b +≥+ 四、小结 五、作业 反馈32 书P91 习题1,2,3

三个正数的算术-几何平均不等式优秀教学设计

三个正数的算术-几何平均不等式 【教学目标】 1.能利用三个正数的算术-几何平均不等式证明一些简单的不等式,解决最值问题; 2.了解基本不等式的推广形式。 【教学重难点】 1.三个正数的算术-几何平均不等式 2.利用三个正数的算术-几何平均不等式证明一些简单的不等式,解决最值问题 【教学过程】 一、知识学习: 定理3:如果+∈R c b a ,,,那么 33abc c b a ≥++。当且仅当c b a ==时,等号成立。 推广: n a a a n +++ 21≥n n a a a 21 。当且仅当n a a a === 21时,等号成立。 语言表述:n 个正数的算术平均数不小于它们的几何平均数。 思考:类比基本不等式,是否存在:如果+∈R c b a ,,,那么abc c b a 3333≥++(当且仅当c b a ==时,等号成立)呢?试证明。 二、例题分析: 例1:求函数)0(322>+=x x x y 的最小值。 解一: 3322243212311232=??≥++=+=x x x x x x x x y ∴3min 43=y 解二:x x x x x y 623223222 =?≥+=当x x 322=即2123=x 时 ∴633min 324212322 1262==?=y 上述两种做法哪种是错的?错误的原因是什么? 变式训练1 b b a a b a R b a )(1,,-+>∈+求且若的最小值。

由此题,你觉得在利用不等式解决这类题目时关键是要_____________________ 例2 :如下图,把一块边长是a 的正方形铁片的各角切去大小相同的小正方形,再把它的边沿名着虚线折转成一个无盖方底的盒子,问切去的正方形边长是多少时,才能使盒子的容积最大? 变式训练2 已知:长方体的全面积为定值S,试问这个长方体的长、宽、高各是多少时,它的体积最大,求出这个最大值。 由例题,我们应该更牢记 一 ____ 二 _____ 三 ________,三者缺一不可。另外,由不等号的方向也可以知道:积定____________,和定______________。 三、巩固练习 1.函数)0(1232>+=x x x y 的最小值是 ( ) A .6 B .66 C .9 D .12 2.函数2 22)1(164++=x x y 的最小值是____________ 3.函数)20)(2(24<<-=x x x y 的最大值是( ) A .0 B .1 C .2716 D . 2732 4.(2009浙江自选)已知正数z y x ,,满足1=++z y x ,求2 444z y x ++的最小值。 5.(2008,江苏,21)设c b a ,,为正实数,求证:32111333≥+++abc c b a 四、课堂小结: 通过本节学习,要求大家掌握三个正数的算术平均数不小于它们的几何平均数的定理,并会应用它证明一些不等式及求函数的最值,,但是在应用时,应注意定理的适用条件。

(完整版)常用均值不等式及证明证明

2 常用均值不等式及证明证明 Hn n 概念: 1、调和平均数: 1 1 1 a 1 a 2 a n 2、几何平均数: Gn a 1 a 2 1 a n n 3 、算术平均数: An a 〔 a ? a n n 4 、平方平均数: Qn 2 2 a 1 a 2 2 a n n 这四种平均数满足 Hn Gn An Qn 1 r 0 时); D x a i a ; a n n (当 r 0 时)(即 i D 0 a i a ; a n n 则有:当 r=-1、1、0、2 注意到 Hn w Gn< An w Qn 仅是上述不等式的特殊情 形,即 D(-1) w D(0) w D(1) w D(2) 由以上简化,有一个简单结论,中学常用 2 、ab 1 1 a b 均值不等式的变形: (1)对实数a,b ,有a 2 b 2 2ab (当且仅当a=b 时取“=”号),a 2,b 2 0 2ab 对非负实数a,b ,有a a 1> a 2、 、a n R ,当且仅当 a 1 a 2 a n 时取“=”号 均值不等式的一般形式:设函数 D x a i r a ; a n a b a 2 b 2 2 \ 2

⑶ 对负实数a,b ,有 a b -^ ab 0 ⑷ 对实数a,b ,有 a a - b b a - b 2 2 ⑸ 对非负实数a,b ,有 a b 2ab 0 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳) 、拉格朗日乘数 法、琴生不等式 法、排序 不等式法、柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设 A >0, B >0,则 A B n A n nA n-i B 注:引理的正确性较明显,条件 A > 0, B > 0可以弱化为 A > 0, A+B> 0 (用数学归纳法)。 当n=2时易证; 假设当n=k 时命题成立,即 ⑹ 2 . 2 对实数a,b ,有a b a b 2 2 ⑺ 2 对实数a,b,c ,有a b 2 2 c (8) 2 对实数a,b,c ,有 a b 2 c 2 (9) 2 对非负数a,b ,有a ab b 2 a b c (i0) 对实数a,b,c ,有 3 2ab abc 2 ab bc ac 3a b 2 3 abc 原题等价于: n a n a i a 2 a n k a k a i a 2 a k 那么当n=k+i 时,不妨设 a k i 是a i , a 2, ,a k i 中最大者, 则 ka k i a k 1 设 s a i a 2 a k

《三个正数的算术—几何平均不等式》教案

《三个正数的算术—几何平均不等式》教案 教学目标 1.能利用三个正数的算术-几何平均不等式证明一些简单的不等式,解决最值问题; 2.了解基本不等式的推广形式. 教学重、难点 重点:三个正数的算术-几何平均不等式 难点:利用三个正数的算术-几何平均不等式证明一些简单的不等式,解决最值问题 教学过程 一、引入: 思考:类比基本不等式的形式,猜想对于3个正数a ,b ,c ,可能有怎样的不等式成立? 类比基本不等式的形式,猜想对于3个正数a ,b ,c ,可能有:若+∈R c b a ,,,那么33 abc c b a ≥++,当且仅当a =b =c 时,等号成立. 二、给出定理 .,,3,,,:333等号成立时当且仅当则若证明c b a abc c b a R c b a ==≥++∈+ 和的立方公式:3223333)(y xy y x x y x +++=+ 立方和公式:))((2233y xy x y x y x +-+=+ 定理3 如果+∈R c b a ,,,那么33 abc c b a ≥++当且仅当a =b =c 时,等号成立. (三个正数的算术平均不小于它们的几何平均) 说明:(1)若三个正数的积是一个常数,那么当且仅当这三个正数相等时,它们的和有最小值. (2)若三个正数的和是一个常数,那么当且仅当这三个正数相等时,它们的积有最大值. 定理推广:n 个正数的算术—几何平均不等式: . ,,,,,,,321322321131等号成立时当且仅当则若n n n n a a a a a a a a n a a a a R a a a a n ====≥++++∈+ 三、例题解析 例5 已知,,x y z R +∈,求证3 ()27.x y z xyz ++≥ 例6如图1.1-5(课本第9页),把一块边长是a 的正方形铁片的各角切去大小相同的小正方形,再把它的边沿着虚线折转成一个无盖方底的盒子,问切去的正方形边长是多少时,才能使盒子的容积最大?

算术平均数与几何平均数——基本不等式

算术平均数与几何平均数——基本不等式 知识要点: 1.如果,a b ∈ ,那么2 2 a b + 2ab (当且仅当 时取“=”号);反之, ab 22 2 a b +也成立。 2.如果,a b ∈ ,那么 2 a b +≥ (当且仅当a b =时取“=”号);反之,ab ≤ 也成立。 3.把2 a b +称,a b 的 ;把,a b 的 ;不等式,)2a b a b R *+≥∈可叙述为 ; 疑误知识辨析: 例1. 若,a b R ∈,求证:222||a b ab +≥; 例2.x R * ∈,求证:1 2x x +≥; 经典名题: 例3.已知0a b >>,全集,{|}2 a b U R M x b x +==<< , {},{|N x x a P x b x =<<=<≤,则 A .U P M C N =?; B .U P N C M =?;C .P N M =?; D .P N M =?; 例4.已知,,{|0}a b c x x ∈>,证明:(1)1 1 ()()4a b c a b c +++≥+; (2 2 21()2 a b c ++。 同步训练: 一、选择题 1.“a 是正数,b 是正数”是“a b +≥ 的 A .充分不必要条件; B .必要不充分条件; C .充要条件; D .既不充分也不必要条件。 2.若a 、b 都是正实数,则在不等式2 2 2,a b ab a b +≥+≥22,2a b a b a b b a b a +≥++≥ 中不正确的个数是 A .0; B .1; C .2; D .3 3.,x y R * ∈,则下列不等式中等号不成立的是 A .11 21 x x x x + +≥+; B .11()()4x y x y ++≥; C .11 ()()4x y x y ++≥; D .222lg lg lg lg ()22x y x y ++≤ 二、填空题 4.已知2 211(3),()22 x P a a Q a -=+ >=-,则P 、Q 的大小关系是 ; 5.若a 、b 、c >0,则b c c a a b a b c +++++≥ ; 6.下列不等式的证明过程 ①若,a b R ∈、 则 2b a a b ≥=+;②若0x >, 则1cos 2cos x x +≥=;③若0x < ,则44x x + ≤;④若a b R ∈、且0ab <, 则 [()()]2a b a b b a b a +=--+-≤--。证明过程正确的是 。 三、解答题: 7.证明222a b ab +≥下面的几种变形:(1)222||2a b ab ab +≥≥±;(2)2 2 21 ()2 a b a b +≥ +;(3)2 ()4a b ab +≥;(4)(0)a b a b ab b a --≥>;(5)222 ()22 a b a b ++≥ 8.(1)已知a b c R ∈、、,求证:222 ac ab bc a b c ++≤++; (2)已知实数a b x y 、、、满足2 2 2 2 1,1a b x y +=+=,求证:1ax by +≤。 9.设a 、b 、c )a b c >++。 10.设a 、b 、c 为正数,证明:222 a b c a b c b c a ++≥++

均值不等式的证明

平均值不等式及其证明 平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明中占有重要的位置。平均值不等式的证明有许多方法,这里,我们选了部分具有代表意义的证明方法,其中用来证明平均值不等式的许多结论,其本身又具有重要的意义,特别是,在许多 竞赛的书籍中,都有专门的章节和讨论,如数学归纳法、变量替换、恒等变形和分析 综合方法等,这些也是证明不等式的常用方法和技巧。 1.1平均值不等式 一般地,假设,,,为n个非负实数,他们的算术平均值记为 几何平均值记为 算术平均值和几何平均值之间有如下的关系。 即, 当且仅当时,等号成立。 上述不等式成为平均值不等式,或简称为均值不等式。 平均值不等式的表达形式简单,容易记住,但它的证明和使用非常灵活、广泛,有多 重不同的方法。为使大家理解和掌握,这里我们选择了其中的几种典型的证明方法。 供大家参考学习。 1.2平均值不等式的证明 证法一(归纳法) (1)当n=2时,已知结论成立。 (2)假设对n=k(正整数k)时命题成立,即对 ,,,,有 。 那么,当n=k+1时,由于

, 关于,,,是对称的,任意对调和,和的值不改变,因此不妨设,,,,,,,显然,以及()()可得 () 所以 () () 即()两边乘以,得 从而,有 证法二(归纳法) (1)当n=2时,已知结论成立。 (2)假设对n=k(正整数k)时命题成立,即对,,,,有 。 那么,当n=k+1时,由于 从而,有 证法三(利用排序不等式)

设两个实数组,,,和,,,满足 ;, 则(同序乘积之和) (乱序乘积之和) (反序乘积之和) 其中,,,是,,的一个排列,并且等号同时成立的充分必要条件是或成立。 证明: 切比雪夫不等式(利用排序不等式证明) 杨森不等式(Young)设,,,则对 ,有等号成立的充分必要条件是。 琴生不等式(Jensen) 设,(,)为上凸(或下凸)函数,则对任意,(,,),我们都有 或 其中,, 习题一 1.设,求证:对一切正整数n,有 () 2.设,,,求证 ()()()( 3.设,,为正实数,证明:

相关文档