文档库 最新最全的文档下载
当前位置:文档库 › 主要薄膜光伏电池技术及制备工艺介绍

主要薄膜光伏电池技术及制备工艺介绍

主要薄膜光伏电池技术及制备工艺介绍
主要薄膜光伏电池技术及制备工艺介绍

主要薄膜光伏电池(非/微晶硅、CIGS)

技术及制备工艺介绍

第一章薄膜光伏电池技术及发展概况简述一、全球主要薄膜光伏电池技术简介

图:薄膜光伏电池结构

二、薄膜光伏电池发展概况

(一)非晶硅薄膜电池的大规模应用堪忧

中国有超过20 家非晶硅薄膜电池厂商,共约1.1GW 产能,其中800MW的转换效率为6%-7%,300MW 的转换效率高于8.5%,最高的转换效率可以达到9%-10%,生产成本为约0.8 美元/W。如果非晶硅薄膜电池的转换效率为10%,组件的价格低于晶体硅电池的75%,才有竞争力。

随着今年晶硅电池成本的下降和转换效率的稳步提升,2010 年7月,美国应用材料公司(Applied Materials)宣布,停止向新客户销售其SunFab 系列整套非晶硅薄膜技术。8 月,无锡尚德叫停旗下的非晶硅薄膜太阳能组件生产线的业务。非晶硅薄膜电池要继续扩张市场份额,还需要突破其转换率低和衰减性等问题,建立市场信心。

另外,非晶硅薄膜电池在半透明BIPV 玻璃幕领域具有相对优势,但目前BIPV 仍面临透光度和转换效率的两难困境,大规模应用尚未推行,非晶硅薄膜电池前景堪忧。

(二)CdTe薄膜电池难以成为国内企业的发展重点

CdTd 薄膜电池方面,美国First Solar 一枝独秀。First Solar 组件效率已达11%,成本降低到0.76 美元/W,在所有太阳电池中成本最低。First Solar 今年产能约1.4GW,预计2011、2012 年分别达到2.1GW 、2.7GW。在电池制造技术和装备制造,市场份额和规模效应方面,FirstSolar 已经占据了绝对优势,国内企业难以有较大发展,目前国内介入CdTe 电池的企业仅三家,且均未实现大规模量产。

另一方面,碲属于稀有元素,在地壳里仅占1x10-6 。已探明储量14.9 万吨,该技术的未来发展空间受限。预计CdTe 技术不会成为我国企业发展薄膜电池的主要方向。

(三)CIGS技术前景诱人,成为投资亮点

虽然目前全球有上百家企业从事CIGS 技术的研发,但突破技术和设备瓶颈,能够生产大面积组件的企业不多。技术相对成熟,单机年产量超过10MW 的生产线更少,目前仅有如Johanna Solar(德国)、WurthSolar(德国)、Global Solar(美国)、Showa Shell(日本)、Honda Soltec(日本)等公司。

CIGS 的工艺和设备要求复杂,目前国际上尚未形成标准生产工艺和技术垄断企业。中国企业有望通过自主创新,引进设备或与国外设备企业合作开发等形式加快CIGS 薄膜电池的产业化。例如,孚日引进Johanna 的60MW 生产线,哈高科与美国普尼合作研发CIGS 的生产工艺。

表:各种技术特性对比

表:各技术的发展现状和前景

第二章非/微晶硅电池技术及制备工艺介绍

硅基薄膜太阳电池除了具有薄膜太阳电池共有的省材、低能耗、便于大面积连续生产等优势外, 还具有原材料丰富、无毒、无污染、能耗低等优点, 是当前薄膜太阳电池的重要研发方向。

(一)非晶硅电池的结构与工作原理

非晶硅太阳电池是以玻璃、不锈钢及特种塑料为衬底的薄膜太阳电池,结构如下图所示。第一层为普通玻璃,是电池的载体。第二层为绒面的TCO,即透明导电膜,一方面光穿过它被电池吸收,它的透过率要求要高;另一方面作为电池的一个电极,要求它能导电。TCO 制备成绒面能起到减少反射光的作用。太阳能电池就是以这两层为衬

底生产的。电池的第一层为P层,即窗口层。下面是i层,即太阳能电池的本征层,光生载流子主要在这一层产生。再下面为n层,起到连接i和背电极的作用。最后是背电极和Al/Ag电极。目前制备背电极通常采用掺铝ZnO(A1),或简称AZO。

图:非晶硅太阳能电池结构图

为减少串联电阻,通常用激光器将TCO膜、非晶硅(a-si)膜和铝(Al)电极膜分别切割成条状,如下图所示。国际上采用的标准条宽约1cm,称为一个子电池,用内部连接的方式将各子电池串连起来,因此集成型电池的输出电流为每个子电池的电流,总输出电压为各个子电池的串联电压。在实际应用中,可根据电流、电压的需要选择电池的结构和面积,制成非晶硅太阳电池。

图:非晶硅太阳电池组件

非晶硅太阳电池的工作原理是基于半导体的光伏效应。当太阳光照射到电池上时,电池吸收光能产生光生电子—空穴对,在电池内建电场Vb的作用下,光生电子和空穴被分离,空穴漂移到P边,电子漂移到N边,形成光生电动势VL, VL 与内建电势Vb相反,当VL = Vb时,达到平衡; IL = 0, VL达到最大值,称之为开路电压Voc ; 当外电路接通时,则形成最大光电流,称之为短路电流Isc,此时VL= 0;当外电路加入负载时,则维持某一光电压VL和光电流IL。

图:I--V特性曲线

(二)非/微晶硅太阳电池的原理及结构

非晶硅尽管是一种很好的太阳能电池材料,但由于它的光学带隙为1.7eV, 使得材料本身对太阳辐射光谱的长波区域不敏感,这样就在某种程序上限制了非晶硅太阳能电池的转换效率。光电效率也会随着光照时间的延续而衰减,即所谓的光致衰退S一W效应,导致电

池性能不稳定。解决的途径就是生产叠层太阳能电池。另外,非晶硅层仅对可见光有吸收作用,而微晶硅层对波长较长的远红外部分有很好的吸收作用,而且几乎不发生衰减,因此这种叠层技术可以实现很好的转换效率并明显降低衰减率,世界光伏学家把这种技术誉为“最有希望的薄膜技术”。如下图所示。

图:非晶硅与微晶硅叠层电池提高转换效率原理

叠层太阳能电池是由在制备的p、i、n层单结太阳能电池上再沉积一个或多个P-i-n子电池制得的。叠层太阳能电池能提高电池的转换效率、解决单结电池不稳定性的关键问题在于:①它把不同禁带宽度的材科组合在一起,提高了光谱的响应范围;②顶层电池的i层较薄,光照产生的电场强度变化不大,保证i层中的光生载流子抽出;

③底层电池产生的载流子约为单电池的一半,光致衰退效应减小;④叠层太阳能电池各子电池是串联在一起的。

图:非/微晶硅薄膜太阳能电池的层叠结构

从技术发展的路线来看,目前硅基薄膜太阳能电池已经发展到第四代——非晶硅/微晶硅双结叠层电池。这种非晶硅与微晶硅叠层的基本结构将成为未来硅薄膜太阳能电池的主流发展趋势。

非/微晶硅叠层电池有以下优点:

a、生产所需的原材料丰富;

b、其生产、操作、处理对环境无污染;

c、要求的温度低,所以可用的材料便宜,如悬浮玻璃等;

d、生产过程中耗能低,回报率高;

e、大面积自动化生产;

f、高温性能好,弱光响应好,使得充电效率高;

g、短波响应优于晶体硅太阳能电池等优点。

(三)非/微晶硅太阳电池的工艺方案

在制造方法方面有电子回旋共振法、光化学气相沉积法、直流辉光放电法、射频辉光放电法、溅谢法和热丝法等。特别是射频辉光放

电法,由于其低温过程(~200℃),易于实现大面积和大批量连续生产,现已成为国际公认的成熟技术。

非/微晶硅a-SiC和μc-SiC材料比p型a-Si具有更宽的光学带隙,因此减少了对光的吸收,使到达i层的光增加;加之梯度界面层的采用,改善了a-SiC/a-Si异质结界面光电子的输运特性。在增加长波响应方面,采用了绒面TCO膜、绒面多层背反射电极(ZnO/Ag/Al)和多带隙叠层结构,即glass/TCO/p1i1n1/p2i2n2/p3i3n3/ZnO/Ag/Al结构,绒面TCO 膜和多层背反射电极减少了光的反射和透射损失,并增加了光在i层的传播路程,从而增加了光在i层的吸收。多带隙结构中,i层的带隙宽度从光入射方向开始依次减小,以便分段吸收太阳光,达到拓宽光谱响应、提高转换效率之目的。在提高叠层电池效率方面还采用了渐变带隙设计、隧道结中的微晶化掺杂层等,以改善载流子收集。

图:工艺流程

(四)非/微晶硅薄膜电池生产线规划与主要设备

图:非/微晶硅叠层电池生产线示意图

非/微晶硅薄膜太阳能电池的生产线主要包括如下设备:导电玻璃磨边设备,导电玻璃清洗设备,大型PECVD生产设备(包括辅助设备),红外激光、绿激光刻线设备,大型磁控溅射生产设备,组件测试设备。

1. 导电玻璃磨边设备

2. 导电玻璃清洗设备

为了初步清洗基板,这里使用一种为光伏应用量身定做的清洗系统。这一系统主要由PP板焊接而成,其中包括刷拭单元、粗洗、精洗、超精洗和甩干单元。本系统使用去离子水(15Mohm)水由客户提供,最后气体出排扇过滤器被抽出。有3个直冲清洗系统:粗洗、精洗、超精洗。

3. 大型PECVD生产设备

生产线将会配备3条,同时也能够配备4条PECVD系统,PECVD 系统的主要作用是:给非/微晶硅叠层薄膜太阳能沉积镀膜的一个系统方法,采用PECVD法制备氮化硅薄膜时,沉积条件对薄膜性质的

影响如下:

(1)当衬底温度升高时,沉积速率增大,氮化硅薄膜的含H量和SI/N比下降,折射率上升,腐蚀速率下降,衬底温度的变化对氮化硅薄膜的腐蚀速率影响显着。

(2)当射频功率增大时,生成的氮化硅薄膜结构致密,钝化性能提高,折射率上升,腐蚀速率下降,但射频功率不能过大,否则沉积速率过快,膜的均匀性下降,结构疏松,针孔密度增大,钝化性退化。当射频频率增大时,沉积速率随之增大,生成薄膜的均匀性好,但膜的密度降低,沉积速率主要取决于射频功率。

(3)当SIH4/NH3流量比增加时,氮化硅薄膜折射率上升,SI/N 比上升,腐蚀速度和介电强度下降,涨SIH4/NH3=1£10时,沉积的氮化硅薄膜特性最好,SIH4/NH3流量比对沉积速率基本无影响,但在很大程度上决定了氮化硅薄膜的折射率。

(4)当反应压强增大时,沉积速率增大,片间均匀性变差,氮化硅薄膜的折射率上升,钝化性能增强。

(5)当SI/N比增大,氮化硅薄膜折射率上升,电阴率和动态介电常数下降,电绝缘性能变差,当薄膜中的SI/N比接近化学计量比0.75时,氮化硅薄膜的电学特性和钝化性能大大改善。背电极磁射7度垂直内线溅射系统A1500V-7是用来在玻璃板上镀氧化锌层的。A1500V-7是一个连续的流动系统,可以源源不断地接收基板。可导电的氧化锌铝(大约1000纳米的厚度)通过DC磁场

在氩氧环境下沉淀。

4. 红外激光、绿激光刻线设备

激光刻划由于对各种材料有适应性好、刻划速度快、成本低、对环境污染小等优点而成为实现薄膜太阳能电池串联集成的有效手段。目前国外有First Solar,ANTEC BmTH,BP等公司激光刻划制备了碲化铺路薄膜太阳能电池。目前进行了CxtTc薄膜材料的激光刻划研究,并在此基础上制备了集成碲化镉薄膜太阳能电池。

5. 大型磁控溅射生产设备

为了TCO镀膜表面的绒度,这里使用一套带有0.5%浓度盐酸的自动喷射器的蚀刻系统,这套蚀刻系统需要洁净的去离子水。

本套蚀刻系统由以下部分组成:

内置电源的传动轴带有3X3喷雾器和旋转尼龙刷的刷拭单元蚀刻单元。在室温下用尝试为0.5%的稀盐酸溶液进行蚀刻。低压强和大流量的排气系统(由客户提供)维持气体从工作台的外侧进入处理室,当装卸玻璃基板的滑窗打开时,此操作暂停。此蚀刻单元配有一个泄漏传感器,由拍窗过滤器排出,外置电源的传动轴。

以定能量的粒子(离子或中性原子、分子)轰击固体表面,使固体近表面的原子或分子获得足够大的能量而逸出固体表面的。溅射在一定的真空状态下进行。

溅射用的轰击粒子通常是带理电荷的惰性气体离子,用得最多的是氩离子。氩电离后,氩离子在电场加速下获得动能轰击靶极。当氩离子能量低于5电子伏时,仅对靶极最外表怪产生作用,主要使靶极表面原来吸附的杂质脱附。当氩离子能量达到靶极原子的结合能(约为靶极材料的升华热)时,引起靶极表面的原子迁移,产生表面损伤。轰击粒子的能量超过靶极材料升华热的四倍时,原子被推出晶格位置成为汽相逸出而产生溅射。对于大多数金属,溅射阈能约为10-25电子伏。

溅射工艺主要用于溅射刻蚀和薄膜淀积两个方面。溅射刻蚀时,被刻蚀的材料置于薹极位置,受氩离子的轰击进行刻蚀。刻蚀速率与薹极材料的溅射产额、离子流密度和溅射室的真空度等因素有关。溅射刻蚀时,应尽可能从溅射室除去溅出的靶极原子。常用

的方法是引入反应气体,使之与溅出的靶极原子反应生成挥发性气体,通过真空系统从溅射室中排出。

淀积薄膜时,溅射源置于靶极,受氩离子轻击后发生溅射。如果靶材是单质的,则在衬底上生成靶极物质的单质薄膜,若在溅射室内有意识地引入反应气体,使之与溅出的靶材原子发生化学反应而淀积于衬底,便可形成靶极材料的化合物薄膜。通常,制取化合物或合金薄膜是用化合物或合金靶直接进行溅射而得。在溅射中,溅出的原子是与具有数千电子伏的高能离子交换能量飞溅出来的,其能量较高,往往比蒸发原子高出1-2个数量级,因而用溅射法形成的薄膜与衬底的粘附性较蒸发为佳。若在溅射时衬底加适当的偏压,可以兼顾衬底的清洁处理,这对生成薄膜的台阶覆盖又有好处。另外,用溅射法可以制备不能用政法工艺制备的高熔点、低蒸气压物质膜,便于制备化合物或合金的薄膜。建设主要有离子束溅射和等离子体溅射两种方法。离子束溅射装置中,由离子枪提供一定能量的定向离子束轰击靶极产生溅射(如下图)。离子枪可以兼作衬底的清洁处理(位置1)和对靶极的溅射(位置2)。为避免在绝缘的固体表面产生电荷堆积,可采用荷能中性束的溅射。中性束是荷能正离子在脱离离子枪之前由电子中和所致。离子束溅射广泛应用于表面分析仪器中,对样品进行清洁处理或剥层处理。由于束斑大小有限,用于大面积衬底的快速薄膜淀积尚有困难。

图:离子束源溅射装置

等离子体溅射也称辉光放电溅射。产生溅射所需的正离子来源于辉光放电中的等离子区。靶及表面必须是一个高的负电位,正离子被此电场加速后获得动能轰击靶极产生溅射,同时不可避免地发生电子对衬底的轰击。

二极溅射是最简单的等离子溅射装置。两个平行板电极间加上一个直流高电压,阴极为靶极,阳极为衬底。为使这种自持辉光放电保持稳定,除两极板极间须保持一定电压外,极板间距和气体压强的大小也很重要。在两板间距为数厘米的正常溅射间距下,放电气压一般高达10帕。在这样的气压下,粒子的平均自由程度很短,对溅射不利。为保持更低气压下的溅射,可采用非自持放电,常用的是热电子激发法。直流四级溅射就是在原有的二极溅射设备上附加一对热灯丝和阳极组成的。从灯丝发出的强大电子流在流向阳极的途中,使处于低气压的氩气分子大量电离,从而提供足够的离子。这可使溅射在10-1-10-2帕的低气压下进行。外加磁场可使电子电离气体的效率增加。

对于绝缘体靶的溅射,必须采用高频溅射方法。在靶极上施加高频电压,气体击穿后等离子体中的电子和离子将在靶极高频电场

的作用下交替地向靶极迁移。电子的迁移率比离子高的多。频率很高时,离子向靶极的迁移就会跟不上高频信号的频率变化。因为靶是绝缘的,靶极回路净电流必须保持为零。为此必须在靶极表面维持一个负电势用以抑制电子向靶极的迁移,同时加速正离子的迁移,使流向靶极的电子数与离子数相等。正是这一负电势加速氩离子迁移,使绝缘靶的溅射得到维持。为使这一负电势保持足够的数值,靶上的高频电压的频率必须足够高。频率过高,高频损耗增大且难于匹配,常用的频率约为13.56兆赫。

等离子体溅射突出的问题是溅射速率低、衬底温度升高。从靶极发出的溅射原子流为E=SJ。式中S为溅射产额,J为轰击靶极离子密流度。在S确定以后,提高溅射速率必须增加离子密流度。另外,降低衬底温升,必须防止高能二次电子对衬底的轰击。磁控溅射能解决这两个问题。磁控溅射利用高频磁控的原理,在溅射室中引入一个与电场方向正交的磁场。

在此磁场的控制下,电子局限于靶极附近并沿螺旋轨道运动,大大提高电子对氩原子的电离效率,增加轰击靶极的离子流密度J,实现快速的大电流溅射。同时,又能避免电子直接向衬底加速,降低衬底的温升。磁控溅射有直流和高频两类。按结构又有同轴型、平面型和S枪等多种类型。图为一平面型磁控溅射装置,图中虚线表示磁场方向。靶极上出现不均匀侵蚀,会使磁控溅射靶材利用率降低。

图:平面型磁控溅射装置

离子镀膜法将真空蒸发和溅射工艺相结合,利用溅射对衬底作清洁处理,用蒸发的方法镀膜,衬底置于阴极,它与蒸发源之间加数百伏以至数千伏的高压电,放电气压为10-10-2帕。蒸发源通过热丝加热进行蒸发,部分蒸发分子与放电气体分子成一定比例,在强电场作用下激发电离并加速向衬底轰击,而大部分中性蒸发分子不经加速而到达衬底。用此法制造薄膜,淀积速率比溅射法为高,与衬底的粘附力又比蒸发法为强。

6. 芯片制绒——酸腐蚀法制备绒面的基本原理

目前广泛使用的酸腐蚀溶液是以HF-HN03为基础的水溶液体系,为了控制化学反应的剧烈程度,有时还加入一些其它的化学品。但是,基本的化学反应是不变的,大致的蚀刻机是采用HNO3(一种氧化剂)腐蚀,在硅片表面形成了一层SIO2在HF酸的作用下去除。酸对硅的腐蚀速度与晶粒取向无关,因此酸腐蚀又称为各向

薄膜太阳能电池分类

薄膜太阳能电池分类 21世纪初之前,太阳能电池主要以硅系太阳能电池为主,超过89%的光伏市场由硅系列太阳能电池所占领,但自2003年以来,晶体硅太阳能电池的主要原料多晶硅价格快速上涨,因此,业内人士自热而然将目光转向了成本较低的薄膜电池。薄膜太阳电池可以使用在价格低廉的玻璃、塑料、陶瓷、石墨,金属片等不同材料当基板来制造,形成可产生电压的薄膜厚度仅需数μm,目前转换效率最高可达13%以上。薄膜电池太阳电池除了平面之外,也因为具有可挠性可以制作成非平面构造其使用范围大,可和建筑物结合或是变成建筑体的一部份,使用非常广泛。 1.硅基薄膜电池 硅基薄膜电池包括非晶硅薄膜电池、微晶硅薄膜电池、多晶硅薄膜电池,而目前市场主要是非晶硅薄膜电池产品。非晶硅的禁带宽度为1.7eV,通过掺硼或磷可得到p型或n型a-Si。为了提高效率和改善稳定性,还发展了p-i-n/p-i-n双层或多层结构式的叠层电池。 2.碲化镉(CdTe)薄膜电池 碲化镉薄膜电池是最早发展的太阳电池之一,由于其工艺过程简单,制造成本低,实验室转换效率已超过16%,大规模效率超过12%,远高于非晶硅电池。不过由于镉元素可能对环境造成污染,使用受到限制。近年来美国FirstSolar公司采取了独特的蒸气输运法沉积等特殊措施,解决了污染问题,开始大规模生产,并为德国建造世界最大的光伏电站提供40MW 碲化镉太阳电池组件。 3.铜铟镓硒(CIGS)薄膜电池 铜铟镓硒薄膜电池是近年来发展起来的新型太阳电池,通过磁控溅射、真空蒸发等方法,在基底上沉积铜铟镓硒薄膜,薄膜制作方法主要有多元分布蒸发法和金属预置层后硒化法等。基底一般用玻璃,也可用不锈钢作为柔性衬底。实验室最高效率已接近20%,成品组件效率已达到13%,是目前薄膜电池中效率最高的电池之一。 4.砷化镓(GaAs)薄膜电池 砷化镓薄膜电池是在单晶硅基板上以化学气相沉积法生长GaAs薄膜所制成的薄膜太阳电池,其直接带隙1.424eV,具有30%以上的高转换效率,很早就被使用于人造卫星的太阳电池板。然而砷化镓电池价格昂贵,且砷是有毒元素,所以极少在地面使用。 5.染料敏化薄膜电池 染料敏化太阳电池是太阳电池中相当新颖的技术产品,由透明导电基板、二氧化钛(TiO2)纳米微粒薄膜、染料(光敏化剂)、电解质和ITO电极所组成。目前仍停留在实验室阶段,实验室最高效率在11%左右。 非晶硅薄膜电池 简介 非晶硅(amorphous silicon α-Si)又称无定形硅。单质硅的一种形态。棕黑色或灰黑色的微晶体。硅不具有完整的金刚石晶胞,纯度不高。熔点、密度和硬度也明显低于晶体硅。非晶硅的化学性质比晶体硅活泼。可由活泼金属(如钠、钾等) 在加热下还原四卤化硅,或用碳等还原剂还原二氧化硅制得。结构特征为短程有序而长程无序的α-硅。纯α-硅因缺陷密度高而无法使用。采用辉光放电气相沉积法就得含氢的非晶硅薄膜,氢在其中补偿悬挂链,并进行掺杂和制作pn结。非晶硅在太阳辐射峰附近的光吸收系数比晶体硅大一个数量级。禁带宽度1.7~1.8eV,而迁移率和少子寿命远比晶体硅低。现已工业使用,主要用于提炼纯硅,制造太阳电池、薄膜晶体管、复印鼓、光电传感器等。 非晶硅薄膜电池的起源 非晶硅薄膜太阳能电池由Carlson和Wronski在20世纪70年代中期开发成功,80年代其生产曾达到高潮,约占全球太阳能电池总量的20%左右,但由于非晶硅太阳能电池转化效率

光伏发电系统中太阳电池和蓄电池组的安装

INDUSTRY FORUM| 技术应用| 光伏发电系统中 太阳电池和蓄电池组的安装 1 太阳电池方阵的安装 太阳电池方阵有3种安装形式:(1)安装在柱上;(2)安装在地面上;(3)安装在屋顶上。采用哪一种安装形式取决于诸多因素,包括方阵尺寸、可利用的空间、采光条件、防止破坏和盗窃、风负载、视觉效果及安装难度等。除“屋顶集成”的光伏模块外,所有太阳电池方阵都要求使用金属支架,支架除要有一定强度外,还要有利于固定和支撑。方阵的框架应该十分坚固,要有足够的硬度,重量要轻。方阵支架必须能经受大风和冰雪堆积物的附加重,不会因为人为的和一些大动物破坏造成方阵坍塌。 方阵支架需要地脚支柱,目的有2个:(1)离地面有一定高度,便于通风;(2)北方冬季堆积在太阳电池板下面的雪可能会腐蚀电池板,地脚支柱可防止融化的雪落到电池板上。 一年之内,至少在夏天和冬天改变2次电池板倾角,以此方式固定的太阳电池方阵有利于增加发电量。而且,手动改变倾角的太阳电池板对风压的耐受能力较好。 决定在屋顶安装电池板之前,工作人员中最好有一个建筑工程师,先检查一下屋顶。要确定屋顶能否承受附加的太阳电池板的重量、要安装的设备重量、堆积的冰雪重量以及安装期间站在屋顶上人的重量等。 太阳电池板应该面向中午的太阳,而不需要对着指 南针的方向,这一点在地志图和太阳能参考书中都有说

INDUSTRY FORUM| 技术应用| 明。太阳电池板与水平面的最小倾角是10°,这样可使落在太阳电池板上的雨水很快地滑落到地面上,从而保持了电池板表面的清洁。 在这3种安装形式中,在地面上安装是最简单的。在柱上安装太阳电池板的难度依电池板离地的高度而定。而在屋顶上安装电池板的难度由屋顶是否陡峭而定。在比较陡的屋顶上工作不仅非常危险,而且也更加耗时费力。绳子、铲车、脚手架可以提高安装速度。在安装过程中,太阳电池板的表面应该用东西覆盖,从而减小对电池板电气性能的损伤。在光伏电站四周修建围墙是一种常规做法,可以保证系统安全,使牲畜无法靠近设备。 2 蓄电池组的安装 蓄电池的安装须注重以下要点:安全、布线、温度、腐蚀、通风和灰尘等。 构成蓄电池的原材料(铅和硫酸)、蓄电池的重量以及能量释放方式,都使蓄电池的使用具有不安全因素。蓄电池内部经常含有腐蚀性的酸,这种酸不仅可以烧伤皮肤、眼睛,也可以损坏衣服。在对蓄电池进行操作时要佩戴保护装置,如护目镜、手套和围裙等。中和剂(碳酸氢钠是其中很有效的一种)和清洗水应该放在四周,以便在皮肤和眼睛沾上酸后进行清洗。所有设备的把手都应该是绝缘的。在抬放蓄电池时必须小心,以防止设备损坏,较大的深循环电池在移动时需要使用铲车。 蓄电池是电化学设备,对温度很敏感。此外,蓄电池电解液含有水,假如水结冰,则蓄电池可能会永久性损坏。大多数蓄电池都有最佳的温度范围,可将电池置于绝热容器里或采取措施防止太阳光直射。大多数昂贵的蓄电池装有有源温度控制系统,例如,液体冷却系统、防冻系统或者包裹在蓄电池外面的电“毯”。因此,蓄电池室和容器必须保持清洁。多数类型的蓄电池都会释放出气体,这些气体可能具有腐蚀性,也可能会爆炸,因此必须提供足够的通风,以防止这些气体积聚。 蓄电池组既可以放在单独的容器里,也可以放在室内。装有相当小的蓄电池组的器皿,应该用抗腐蚀性材料制成,例如塑料。大的蓄电池组可以装在便于运输的大容器里,也可放在建筑房屋内。任何情况下,都应把蓄电池和系统的其他部分隔离开来。 蓄电池的正确布线,对系统的安全和效率都十分重要。大多数蓄电池组由许多单个蓄电池组成,对这些单个蓄电池进行串、并联,以获得需要的电压和电流特性。任何引起电流和电压不稳定的因素都可能使蓄电池组里的某些单个电池过充电,也可能使某些单个电池充电不足,假如这种情况持续一段时间,可能会使蓄电池永久性损坏。导致蓄电池出现上述问题的原因有:连接点接触不良、连接处受腐蚀、连接线过长、过多的并联支路或没有采用防反电路等。最后,还应注重将标有正、负极的电缆正确地连接到蓄电池组的对应端。此外,应尽量使多支路蓄电池组的每条支路的参数、连接都完全一致。例如,一条支路的蓄电池引线比另一条支路的蓄电池引线长,这可能会增加较长蓄电池引线支路的内部阻抗,使该支路阻抗变大,这样会造成另一条支路的蓄电池过度使用。

三种主要的薄膜太阳能电池详解

三种主要的薄膜太阳能电池详解 摘要:上述电池中,尽管硫化镉薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。 关键字:薄膜太阳能电池, 砷化镓, 单晶硅电池 单晶硅是制造太阳能电池的理想材料,但是由于其制取工艺相对复杂,耗能大,仍然需要其他更加廉价的材料来取代。为了寻找单晶硅电池的替代品,人们除开发了多晶硅,非晶硅薄膜太阳能电池外,又不断研制其它材料的太阳能电池。其中主要包括砷化镓III-V族化合物,硫化镉,碲化镉及铜锢硒薄膜电池等。来源:大比特半导体器件网 上述电池中,尽管硫化镉薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。来源:大比特半导体器件网 砷化镓太阳能电池 GaAs属于III-V族化合物半导体材料,其能隙为 1.4eV,正好为高吸收率太阳光的值,与太阳光谱的匹配较适合,且能耐高温,在250℃的条件下,光电转换性能仍很良好,其最高光电转换效率约30%,特别适合做高温聚光太阳电池。砷化镓生产方式和传统的硅晶圆生产方式大不相同,砷化镓需要采用磊晶技术制造,这种磊晶圆的直径通常为4—6英寸,比硅晶圆的12英寸要小得多。磊晶圆需要特殊的机台,同时砷化镓原材料成本高出硅很多,最终导致砷化镓成品IC成本比较高。磊晶目前有两种,一种是化学的MOCVD,一种是物理的MBE。GaAs等III-V化合物薄膜电池的制备主要采用MOVPE和LP E技术,其中MOVPE方法制备GaAs薄膜电池受衬底位错,反应压力,III-V比率,总流量等诸多参数的影响。GaAs(砷化镓)光电池大多采用液相外延法或MOCVD技术制备。用GaAs作衬底的光电池效率高达29.5%(一般在19.5%左右) ,产品耐高温和辐射,但生产成本高,产量受限,目前主要作空间电源用。以硅片作衬底,MOCVD技术

光伏发电系统中蓄电池研究报告

光伏发电系统中蓄电池的研究.txt48微笑,是春天里的一丝新绿,是骄阳下的饿一抹浓荫,是初秋的一缕清风,是严冬的一堆篝火。微笑着去面对吧,你会感到人生是那样温馨。本文由yungfily贡献 doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。毕业设计<论文)开题报告 1.文献综述:结合毕业设计<论文)课题情况,根据所查阅的文献资料,每人撰写2500 字以上的文献综述,文后应列出所查阅的文献资料。 文献综述 引言 当阳光照射到太阳能电池时,可在没有机械转动或污染性副产物的情况下,将入射能量直接转换为电能。太阳能电池早已不再是实验室仅有的珍品,它已有几十年的使用历史,从最初的航天用电池,到现在的地面电力系统。在不久的将来,这类电池的制造技术很可能得到显著改进。这样,太阳能电池将可以在核实的价格下生产,从而对世界能源需求做出重要贡献。 太阳能发电发展史 太阳光发电的历史可以追溯到 1800 年,伯克莱氏发现对某种半导体材料照光后,会引起其福安特性的改变。最终,发现了光伏效应,并以此半导体制成太阳能电池。其后,对硒、氧化铜等半导体材料研究,同样发现此种光伏显影,也制成类似的太阳能电池。1954 年,美国贝尔实验室的皮尔松、佛朗等三名科学家利用硅晶体材料开发出性能良好的太阳能电池,其变换效率达到6%,经过不断改良后成为现在的硅太阳能电池的原型。在应用方面,硅太阳能电池最早用于人造卫星<美国先驱者 1 号)的电源,继后用于孤岛的灯塔、远离城市的山顶无线电中继站等特殊场合。1976 年,美国CA 公司的卡尔松发明了非晶硅太阳能电池。该电池的变换效率虽低于单晶硅,但制造时可以任意选配电压电流比,故大量用于计算机、手机和各种家用电子产品作为电源。由于太阳能电池较其他能源价格高,目前,它在与常规能源<火力、水力发电)的竞争XX处于劣势地位,需要政府在政策与法律方面给予资助才能促进其发展和普及。例如,德国在 1991 年发布了鼓励“再生能源发展法”,从法律上规定,电力公司有义务以一定合理价格,收购太阳能发电的多余电力。日本从 1992 年开始规定电力公司收购太阳光发电和水力发电等分散型能源的多余电力的具体办法<例如,安装逆潮 流电度表及如何计价)。2003 年,日本又颁布 RPS 法<新能源利用的特别措施),其内容包含设立清洁能源电力发展基金和市民安装小型太阳能发电装置的资金补助<一般补助金额可达全部设备购置费的50%)。以上举措均对太阳能发电等新能源的发展起了促进作用。日本从 1994 年开始制定住宅用太阳能发电系统的规划,预计到 2018 年实施的总发电量目标为 5000MW。 蓄电池性能要求 在目前价格下,光伏系统的竞争优势在于其高可靠性和低维维修费用。为了实现这些特性,所涉及的系统通常配备较大的辅助蓄电池储能装置,使它能顺利地渡过可能的最差日照期。一般而言,独立光伏系统的维修主要是蓄电池的维修。对于如此大容量的蓄电池来说,蓄电池上的充放电循环是一种季节性的循环,夏天对蓄电池充电,而冬天让蓄电池放电。在这种季节性循环之上又加上小得多的日循环,白天给蓄电池充电,而晚上消耗掉其荷电的很小部分。由于这种随季节更换而变化的储能特性,采用低自放电率的蓄电池是十分重要的。另外,还希望有高的充电效率<能够从蓄电池输出的电荷量与向蓄电池充电的电荷量之比)。 铅-酸蓄电池组

蓄电池基础知识介绍

蓄电池及铅酸蓄电池 蓄电池 理论上任何两种具差异性的导电体与电解质均可以组成简单的电池 铅酸蓄电池 以二氧化铅为活性材料组成的正极与以海绵状铅为活性组成的负极插入稀硫酸电解液中,形成的标称电压为2V的蓄电池 铅酸蓄电池作用 发动机起动时,向发动机、点火系统、电子燃油喷射和其他电子设备供电 当发动机没有运转或处于低速或怠速时,蓄电池可向整车用电设备供电 当电气设备用电量进过整车充电系统的输出时,蓄电池可以在有限的时间内供电 蓄电池可以稳定整车电气系统的电压 铅酸蓄电池工作原理 汽车起动及电器一般要求12V的工作电压 汽车用蓄电池由6单格串联形成称电压为12V的电池 24V电压可以串联2只12V蓄电池获得

铅酸蓄电池工作化学原理 放电 当蓄电池向汽车用电器供电时,它处于放电过程 化学能转化为电能 充电 当汽车发电机向蓄电池供电时,蓄电池处于充电过程电能转化为化学能 铅酸蓄电池基本结构 1端柱套6顶盖 2汇流排 7防爆片 3电池极板(正/负极) 8中间盖 4外壳 9极群组 5密度计/电眼(选装) 汽车用铅酸蓄电池的主要技术衡量指标 低温起动性能

寿命 汽车用铅顶到蓄电池的主要技术衡量指标容量

C5=0.8*C20近似对应关系 RC=0.83*C201.17其它指标 汽车用铅酸蓄电池的技术演变 传统加水蓄电池 结构特点 铸造铅锑合金板栅,有加水口 优劣势 自放电快,易失水 有酸液喷可能 更多熔化的铅与空气接触制造了超过 必要水平的铅排放

一般免维护蓄电池 结构特点 铸造或铸造铅钙合金板栅,无加水口 优劣势 拉网或铸造设计无论金属拉得多么均匀,最终产品总是存在,而导致板栅的不一致,从而影响了产品性能的稳定性 PowerFrame 结构特点 高速冲压锻造 优劣势 保留了铅自身的结构完整性——通过滚筒四次压制——增强了板栅优良的面朝久性 全程电脑化的工艺降低了可变性,提高了产品的一惯性 板栅少使用20%的能源,使流程更环保 汽车用铅酸蓄电池产品命名规则 铅酸蓄电池产品命名标准 由于产地的不同,铅酸蓄电池的产品命名遵循着不同的标准。通常而言包含如下的一些工业标准。 ICE:Intemational Electrotechnical Commission 国际电工委员会 BCI:Battery Council Intemational 国际蓄电池协会

薄膜硅太阳能电池陷光结构

薄膜硅太阳能电池的研究状况 摘要:薄膜硅太阳能电池具有广阔的前景,但是当前大规模产业化的非晶硅薄膜电池效率偏低,为了实现光伏发电平价上网,必须对薄膜硅太阳能电池进行持续的研究。本文主要总结了提高薄膜硅太阳能电池效率的主要技术与进展,如TCO技术、窗口层技术、叠层电池技术和中间层技术等,这些技术用在产业化中将会进一步提高薄膜硅太阳能电池的转换效率,进而降低薄膜硅电池的生产成本。 一引言 在全球气候变暖、人类生态环境恶化、常规能源短缺并造成环境污染的形势下,可持续发展战略普遍被世界各国接受。光伏能源以其具有充分的清洁性、绝对的安全性、资源的相对广泛性和充足性、长寿命以及免维护性等其它常规能源所不具备的优点,被认为是二十一世纪最重要的新能源。 当前基于单晶硅或者多晶硅硅片的晶体硅电池组件市场占有率高达90%,但是,晶体硅电池本身生产成本较高,组件价格居高不下,这为薄膜硅太阳能电池的发展创造了机遇。薄膜硅太阳能电池的厚度一般在几个微米,相对于厚度为200微米左右的晶体硅电池来说大大节省了原材料,而且薄膜硅太阳能电池的制程相对简单,成本较为低廉,因此在过去的几年里薄膜硅太阳能电池产业发展迅猛。 但是当前大规模产业化的薄膜硅太阳能电池转换效率只有5%-7%,是晶体硅太阳能电池组件的一半左右,这在一定程度上限制了它的应用范围,也增加了光伏系统的成本。为了最终实现光伏发电的平价上网,必须进一步降低薄膜硅太阳能电池的生产成本,因此必须对薄膜硅太阳能电池开展持续的研究,利用新的技术与工艺降低薄膜硅太阳能电池的成本。本文着重从提高薄膜硅太阳能电池的转换效率方面介绍当前薄膜硅太阳能电池的研究现状。 二、提高薄膜硅太阳能电池效率的措施 提高薄膜硅太阳能电池效率的途径包括:提高进入电池的入射光量;拓宽电池对太阳光谱的响应范围;提高电池的开压尤其是微晶硅薄膜太阳能电池(?c-Si)的开压;抑制非晶硅薄膜太阳能电池(a-Si)的光致衰退效应等。我们将从这几个方面介绍提高薄膜硅电池效率的方法。 (一)提高薄膜硅太阳能电池对光的吸收 对于单结薄膜硅太阳能电池,提高其对光的吸收将提高电池的电流密度,对电池效率将产生直接的影响。Berginski等人通过实验结合模拟给出了提高电池对光的吸收途径,如图1所示:可以看出薄膜硅电池的前电极对光的吸收、折射率的错误匹配、窗口层对光的吸收、背反电极吸收损失以及玻璃反射都会减少电池对光的吸收,因此提高电池的光吸收可从这几个方面着手。

独立光伏系统蓄电池的选择

独立光伏系统蓄电池的选择 关键字:光伏系统蓄电池 1 引言 伴随社会经济的飞速发展,能源消耗持续增加,环境问题日益突出,开发、利用太阳能作为新能源成为大势所趋。太阳能发电无需燃料,具有无污染、安全、无噪声、运行简单可靠、资源的相对广泛性和充足性、长寿命等其他常规能源所不具备的优点。光伏能源被认为是二十一世纪最重要的新能源、可再生的绿色能源。太阳能光伏发电系统应用非常广泛,依据应用的形式不同一般可分为两大类:独立光伏系统和并网光伏系统。其中独立光伏系统应用相对广泛,日常生活中可见太阳能手电筒、太阳能路灯、太阳能充电器等均属于此类系统。 独立光伏系统一般由四个基础部分组成:光伏电池阵列、储能系统(蓄电池)、直流控制系统、负载,如图1所示。 图1 独立光伏系统组成 在独立的光伏系统中,蓄电池的作用主要是储存能量,在晚上或多云等气候情况下,光伏阵列不能提供足够的能量时,蓄电池供给负载,保证系统的正常运行。它是仅次于太阳能光伏阵列的重要组成部分,也是对系统性能可靠性、系统成本影响最大的部分之一。本文探讨如何在保证系统正常工作、最大使用寿命、最大限度降低成本的情况下,为独立光伏系统选择并确定参数合理、数量合适的蓄电池。 2 蓄电池的选择 (1)方法 独立光伏系统蓄电池的选择过程主要包括三个方面:蓄电池种类、蓄电池的容量和蓄电池组串并联的确定。 蓄电池种类很多,主要有铅酸蓄电池、锂离子蓄电池、镍氢电池等。目前,由于产品技术的成熟性和成本等因素,一些小型简单的独立光伏系统中使用镍氢电池,但应用较少;多数的独立光伏系统

中使用铅酸蓄电池,应用广泛。国家还制定了GB/T22473-2008《储能用铅酸蓄电池》标准,用以规范该类铅酸蓄电池产品的要求。本文以下的内容均以铅酸蓄电池为基础。 蓄电池的容量选择与很多因素有关,主要有日负载需求、蓄电池最大放电深度、独立运行天数、安装地环境温度。 独立光伏系统的蓄电池容量,要保证系统在太阳光照连续低于平均值的情况下负载仍可以在一定时间内持续正常工作。在光照度低于平均值的情况下,太阳能电池组件产生的电能,不能完全补充每日负载需求从蓄电池中消耗能量而产生的空缺,这样蓄电池就会处于亏电状态。如果在一定时间内光照度始终低于平均值,蓄电池持续放电以供给负载的需要,蓄电池的荷电状态持续下降。但是为了避免蓄电池的损坏,这样的放电过程只能允许持续一定的时间,直到蓄电池的荷电状态到达安全的最低值,即蓄电池的最大放电深度。这里我们将持续放电时间称为:独立运行天数,即光伏系统在没有任何外来能源的情况下蓄电池供给负载正常工作的天数。 独立运行天数的确定主要与两个因素有关:光伏系统安装地点的气象条件(最大连续阴雨天数)、负载对应用场合的重要程度。通常我们将光伏系统安装地点的最大连续阴雨天数作为光伏系统的独立运行天数,同时还要综合考虑负载对应用场合的重要程度。对于应用场合重要的光伏应用系统,如通信、医院等重要部门,必须考虑系统的独立运行天数较长,一般考虑为(7~14)天,相对应的电池容量也需较大。对于其他应用场合的光伏应用系统,系统的独立运行天数、以及对应的电池容量大小可以根据实际情况确定。 同时,由于铅酸蓄电池的额定容量会随着温度的变化而变化(见图2),当蓄电池温度下降时,蓄电池的容量会下降,所以安装地气温对确定蓄电池的容量非常重要。如果安装地的气温较低,实际需要的蓄电池容量就要比常温条件下需要的蓄电池容量大,才能保证在不影响蓄电池使用寿命的情况下满足负载的用电需求。大多数铅酸蓄电池生产企业一般会提供相关的蓄电池温度-容量修正曲线。在该曲线上可以查到对应温度的蓄电池容量修正系数。

非晶硅薄膜太阳能电池及制造工艺

非晶硅薄膜太阳能电池及制造工艺 一、非晶硅薄膜太阳能电池结构、制造技术简介 1、电池结构 分为:单结、双结、三结 2、制造技术 ①单室,多片玻璃衬底制造技术。主要以美国Chronar、APS、EPV公司为代表 ②多室,双片(或多片)玻璃衬底制造技。主要以日本KANEKA公司为代表 ③卷绕柔性衬底制造技术(衬底:不锈钢、聚酰亚胺)。主要以美国Uni-Solar 公司为代表。 所谓“单室,多片玻璃衬底制造技术”就是指在一个真空室内,完成P、I、N 三层非晶硅的沉积方法。 作为工业生产的设备,重点考虑生产效率问题,因此,工业生产用的“单室,多片玻璃衬底制造技术”的非晶硅沉积,其配置可以由X个真空室组成(X为≥1的正整数),每个真空室可以放Y个沉积夹具(Y为≥1的正整数),例如:?1986年哈尔滨哈克公司、1988年深圳宇康公司从美国Chronar公司引进的内联式非晶硅太阳能电池生产线中非晶硅沉积用6个真空室,每个真空室装1个分立夹具,每1个分立夹具装4片基片,即生产线一批次沉积6×1×4=24片基片,每片基片面积305mm×915mm。 ?1990年美国APS公司生产线非晶硅沉积用1个真空室,该沉积室可装1个集成夹具,该集成夹具可装48片基片,即生产线一批次沉积1×48=48片基片,每片基片面积760mm×1520mm。 ?本世纪初我国天津津能公司、泰国曼谷太阳公司(BangKok Solar Corp)、泰国光伏公司(Thai Photovoltaic Ltd)、分别引进美国EPV技术生产线,非晶硅沉积也是1个真空室,真空室可装1个集成夹具,集成夹具可装48片基片,即生产线一批次沉积1×48=48片基片,每片基片面积635mm×1250mm。 ?国内有许多国产化设备的生产厂家,每条生产线非晶硅沉积有只用1个真空室,真空室可装2个沉积夹具,或3个沉积夹具,或4个沉积夹具;也有每条生产线非晶硅沉积有2个真空室或3个真空室,而每个真空室可装2个沉积夹具,或3个沉积夹具。总之目前国内主要非晶硅电池生产线不管是进口还是国产均主要是用单室,多片玻璃衬底制造技术,下面就该技术的生产制造工艺作简单介绍。 二、非晶硅太阳能电池制造工艺 1、内部结构及生产制造工艺流程 下图是美国Chronar公司技术为代表的内联式单结非晶硅电池内部结构示意图:图1、内联式单结非晶硅电池内部结构示意图

铅酸蓄电池产品介绍(品牌)

淄博火炬

PzS 系列牵引蓄电池 电池型号 ; 额定电压 (V ); 额定容量(Ah ) 最大外形尺寸 长L 宽W 2PZS110 2 110 47 198 3PZS165 2 165 65 198 4PZS220 2 : 220 83 198 5PZS275 2 : 275 101 198 6PZS330 2 : 330 119 198 7PZS385 2 : 385 137 198 8PZS440 2 - 440 155 198 2PZS140 2 140 47 198 3PZS210 2 : 210 65 198 4PZS280 2 : 280 8 3 198 5PZS350 2 : 350 101 198 6PZS420 2 - 420 119 198 7PZS490 2 - 490 137 198 8PZS560 2 560 155 198 9PZS630B 2 1 630 17 3 198 10PZS700 2 700 191 198 12PZS840 2 , 840 227 198 9PZS630 2 1 630 17 3 198 2PZS160 2 160 47 198 3PZS240 2 : 240 65 198 4PZS320 2 : 320 8 3 198 5PZS400 2 - 400 101 198 6PZS480 2 - 480 119 198 7PZS560 2 560 137 198 8PZS640 2 1 640 155 198 10PZS800 2 , 800 191 198 2PZS180 2 180 47 198 3PZS270 2 : 270 65 198 4PZS360 2 : 360 8 3 198 5PZS450 2 - 450 101 198 6PZS540 2 540 119 198 7PZS630 2 1 630 137 198 (mm) 螺栓 焊接 380 442 442 470 510 562 370 432 432 460 500 552 参考质量(土 5%) kg 无液 带液 6.5 9 9.1 12 11.7 15.5 14.3 18.5 16.9 22 19.5 26 22.1 29 8.1 10.5 11.3 14.5 14.5 19 17.8 23 21 27.5 24.2 31.5 27.9 36 31.2 40.5 34.4 44.5 40.9 54 31.3 42 9.2 12 13 17 16.7 22 20.4 26.5 24.2 31.5 28.4 36.5 32.1 42 39.6 51.5 10.3 13.5 14.4 18.5 18.5 24.5 22.6 30 26.7 35.5 31.5 41.5

光伏系统蓄电池容量计算复习课程

光伏系统蓄电池容量 计算

太阳能电源设计 硅太阳能阵列板容量是指平板式太阳能发电功率W P。太阳能发电功率量值取决于负载24小时所消耗的电力H(WH)。由负载额定电压与负载24小时消耗的电力,决定了负载消耗的容量P(AH),再考虑到平均每天日照时数及阴雨天影响,则可算出太阳能阵列板工作电流I P(A)。 由负载额定电压选取蓄电池标称电压,确定蓄电池的浮充电压V F(V),再考虑到太阳能阵列板因温度升高而引起的温升压降V T(V)及反充二极管P一N 结的压降V D(v)所造成的影响,则可计算出太阳能阵列板工作电压V P(V)。 故,太阳能阵列板容量W P 为: W P =I P V P (1) 由W P,V P确定阵列板的串联块数和并联组数。至此,太阳能阵列板设计完毕。 1 太阳能阵列板容量W P的计算,在设计单位和生产厂家均按上述的太阳能阵列板的设计步骤进行,但是,在应用单位均按下述方法来计算太阳能阵列的容量W P(即输出功率)。 1.1 针对负载消耗功率并根据当地太阳资源确定太阳能阵列板工作电压V P为: V P =1.2V L (2) (2)式中VL—负载电压。 1.2 确定太阳能阵列板工作电流I P : (1)连续无太阳时段内,所耗蓄电池容量Pl应为蓄电池总容量P的0.8倍。 P L =0.8P (3) (2)若每天日照时数T为4个峰值日光,则希望在两天内充满耗掉电能所需太阳能阵列板工作电流I P为: I P =(P L )/(2T) (4) 为了太阳能阵列板安全运行,至少将太阳能阵列板的能量减少10肠,考虑到纬度的影响,则取: I P =(2P L )/(2T) (5) 将(3)式代人(5)便得: I P=0.8×√2P 2T =0.56P T (6) 故,太阳能阵列板容量WP为: W P =I P V P =(0.67PV L )/T (7) 2蓄电池容最计算 蓄电池容量由下列因素决定 2.1蓄电池放电极限 蓄电池单独工作天数里,在特殊气候条件下,蓄电池允许放电达到蓄电池所剩容量占正常额定容量的20%。 2.2蓄电池每天可放电量 如果太阳能阵列板容量足够大,能满足负载一个汛期的需求,蓄电池的充电状态永远是 100%,这利于延长蓄电池的寿命。然而在某些环境下,为n天的需要增加太阳能阵列板容量是不经济的,所以在设计时常用蓄电池解决季节变化问题,季节周期放电深度应低于蓄电池容量的30%。但是,在一些少见的恶劣气候条件

光伏电池制备工艺

光伏电池制备工艺 第一章 1. 太阳能电池基本工作原理? 答: 1) 能量转换,太阳光的能量转换为电能; 2) 吸收光产生电子空穴对、空穴对—电子分离或扩散、发电电流的传输。 2. 硅太阳能电池吸收光的特点? 答: 1) 低于带隙)(v e 12.1的不被吸收; 2) 波长越长(能量低),光吸收越慢; 3) 对电池材料厚度的要求: ① 晶体硅:m 500 以上才能最大化吸收; ② 砷化镉:只需要10几微米就可。 3. 太阳电池光吸收类型及对发电有贡献的类型? 答: 光吸收类型: 1) 本证吸收; 2) 杂质吸收; 3) 自由载流子吸收; 4) 激子吸收; 5) 晶格吸收。 对太阳电池转换效率有贡献的最主要的是本证吸收。 4. 太阳能电池中的复合类型? 答: 1) 辐射复合→发光; 2) 俄歇复合→发热; 3) 陷阱辅助复合。 5. 晶体硅太阳电池的基本结构组成? 答: 1) 前电极(主栅、细栅); 2) 减反射绒面; 3) 氮化硅减反射层; 4) N 型层; 5) P 型层; 6) 铝背场; 7) 后电极(主栅、铝膜)。 6. 晶体硅太阳电池的主要参数? 答: 1) 开路电压(oc U ); 2) 短路电流(sc I ); 3) 最大输出功率(mp P );

4) 工作电压(mp U ); 5) 工作电流(mp I ); 6) 转换效率(η); 7) 填充因子(FF ); 8) 串联电阻(s R ); 9) 并联电阻(sh R )。 10) mp mp I U P mp ?= 11) sc oc mp I U P FF ?= 7. 晶体硅太阳能电池生产工艺流程及作用? 答: 一清→扩散→二清→PECVD 镀膜→丝网印刷、烧结→检测 作用: 一清:制绒降低反射率、去损伤层、扩散前清洗; 扩散:在P 型硅片上扩散N 型磷,从而形成N P -结; 二清:去除磷硅玻璃、去边结。 PECVD 镀膜:镀氧化磷膜、减反射、钝化。 丝网印刷、烧结:制作金属电极、制作铝背场、形成金属与硅的良好接触。 第二章 1. 单晶、多晶绒面特点? 答: 单晶:正金字塔结构; 多晶:蜂窝结构。 2. 单晶制绒夜的主要成分? 答: OH N a 、异丙酸(IPA )、添加剂。 3. 多晶制绒液的主要成分? 答: HF 、3HNO 。 4. 单晶制绒质量要求? 答: 1) 反射率低(%15≤); 2) 绒面颗粒均匀(m 52μ→); 3) 覆盖率达%100; 4) 外观均匀,无白点、色差等; 5) 表面清洁无污染; 6) 腐蚀重量在规定范围内。 5. 多晶绒面质量要求? 答: 1) 反射率低(%20≤); 2) 绒面颗粒大小均匀; 3) 表面暗纹尽量少; 4) 表面清洁无污染;

硅基薄膜太阳能电池基础知识

非晶硅薄膜太阳能电池及制造工艺 内容提纲 一、非晶硅薄膜太阳能电池结构、制造技术简介 二、非晶硅太阳能电池制造工艺 三、非晶硅电池封装工艺 一、非晶硅薄膜太阳能电池结构、制造技术简介 1、电池结构 分为:单结、双结、三结 2、制造技术 三种类型: ①单室,多片玻璃衬底制造技术 该技术主要以美国Chronar、APS、EPV公司为代表 ②多室,双片(或多片)玻璃衬底制造技 该技术主要以日本KANEKA公司为代表 ③卷绕柔性衬底制造技术(衬底:不锈钢、聚酰亚胺) 该技术主要以美国Uni-Solar公司为代表 所谓“单室,多片玻璃衬底制造技术”就是指在一个真空室内,完成P、I、N三层非晶硅的沉积方法。作为工业生产的设备,重点考虑生产效率问题,因此,工业生产用的“单室,多片玻

璃衬底制造技术”的非晶硅沉积,其配置可以由X个真空室组成(X为≥1的正整数),每个真空室可以放Y个沉积夹具(Y为≥1的正整数),例如: ?1986年哈尔滨哈克公司、1988年深圳宇康公司从美国Chronar公司引进的内联式非晶硅太阳能电池生产线中非晶硅沉积用6个真空室,每个真空室装1个分立夹具,每1个分立夹具装4片基片,即生产线一批次沉积6×1×4=24片基片,每片基片面积305mm×915mm。 ?1990年美国APS公司生产线非晶硅沉积用1个真空室,该沉积室可装1个集成夹具,该集成夹具可装48片基片,即生产线一批次沉积1×48=48片基片,每片基片面积 760mm×1520mm。 ?本世纪初我国天津津能公司、泰国曼谷太阳公司(BangKok Solar Corp)、泰国光伏公司(Thai Photovoltaic Ltd)、分别引进美国EPV技术生产线,非晶硅沉积也是1个真空室,真空室可装1个集成夹具,集成夹具可装48片基片,即生产线一批次沉积1×48=48片基片,每片基片面积635mm×1250mm。 ?国内有许多国产化设备的生产厂家,每条生产线非晶硅沉积有只用1个真空室,真空室可装2个沉积夹具,或3个沉积夹具,或4个沉积夹具;也有每条生产线非晶硅沉积有2个真空室或3个真空室,而每个真空室可装2个沉积夹具,或3个沉积夹具。总之目前国内主要非晶硅电池生产线不管是进口还是国产均主要是用单室,多片玻璃衬底制造技术,下面就该技术的生产制造工艺作简单介绍。 二、非晶硅太阳能电池制造工艺 1、内部结构及生产制造工艺流程 下图是以美国Chronar公司技术为代表的内联式单结非晶硅电池内部结构示意图: 图1、内联式单结非晶硅电池内部结构示意图

CuInSe2薄膜太阳能电池及其性质

新能源2000.22(6)一36~38 CuInSe2薄膜太阳能电池及其性质。 张寅 (山东教育学院数理系,济南250013) 摘要简连了CulnSe2(CIS)薄膜太阳能电池发展历史和现状.描莲了这种太阳耗电池的制备过程,井时其性质散了讨论。 关键词CulnSe?太阳娆电池薄膜太阳能电池光伏 0引言 展望21世纪全球的能源结构,各种各样的新能源所占比重会变得越来越大,其中太阳能电池所占的比重将非常显著。 太阳能电池的利用当今仍主要在航天以及一些特殊的场合。造成这种状况的原因是其本身造价太高,而如何降低成本是一个复杂的问题。就材料的选择而言,考虑的因素有禁带宽度、吸收系数、少数载流子寿命和表面离子的复合速度等.利用光伏效应发电、以晶体硅为基体的太阳能电池一直占据统治地位.但为了降低成本.出现了非晶硅薄膜太阳能电池。近年来,以复合半导体为基体的薄膜太阳能电池引起人们的关注。目前发展最好的是CdTe、CuInSe!为基体的太阳能电池。薄膜太阳能电池的优越性体现在;耗材少,衬底便宜.生产能耗低.并可以镀在各种形状的大面积的衬底上,世主要的是有较高的效率。CuInSe。在实验室条件下的效率已经能够达到18孵“。 1CuInSe:薄膜太阳能电池的发展历史和现状 CulnSe。(CIS)做为薄膜太阳能电池材料,最初引起人们兴趣的是由于Wangner等人[23发现CIS单晶有12%的效率。尽管CIS的禁带宽度不高.但具有较高的光吸收系数,所以在当时被认为是极具潜力的新型薄膜太*山东省自然科学基金资助硬目(项目号Y98A15018) ?36? 阳能电池材料,吸引了许多人去从事这方面的研究。Kazmerski[33就曾经做出6+6%电池效率的CIS薄膜太阳能电池。 以后,c1S真正引起人们重视是因为在1982年Boeing[11公司用物理蒸发法将效率提高到10.6%。该公司首先在衬底上镀了一层Mo背接触。为了得到高质量的吸收层结构,在镀CIS膜的开始状态采取了Cu富有的方法,得到良好的效果。更为关键的是,为了改变带隙,引入能够形成异质结的材料(CdS),使电池的开路电压和光致电流都得到了不同程度的提高,从而达到提高电池效率的目的。Boeing公司为了进一步提高效率,提出了用Ga来替代In,研制出的Cu(In—Ga)Se2(CIGS)合金膜的效率是14.6%。这种多元化合物的带隙较宽,结构的可选择性较大。莸们有理由相信,随着对表面及内部结构及性质的不断研究,必将得到更高效率的CIGS薄膜太阳能电池。 2CIS薄膜太阳能电池的制备 目前,CIS膜(主要指吸收层)的制备可以采用许多方法,常见的有n]:①真空蒸发或溅射法;②化学气相热介喷涂法;③电镀或沉积Cu和In,然后用H。se处理,把它换成CuInSe。。位于德国斯图加特市的太阳能和氢能研究所(zsw),多年来一直致力于CIS膜的研制和技术推广。下面描述的是该研究所

蓄电池的选择

独立光伏系统蓄电池的选择 时间:2012-04-09 13:08:01 来源:电源在线网作者: 1 引言 伴随社会经济的飞速发展,能源消耗持续增加,环境问题日益突出,开发、利用太阳能作为新能源成为大势所趋。太阳能发电无需燃料,具有无污染、安全、无噪声、运行简单可靠、资源的相对广泛性和充足性、长寿命等其他常规能源所不具备的优点。光伏能源被认为是二十一世纪最重要的新能源、可再生的绿色能源。太阳能光伏发电系统应用非常广泛,依据应用的形式不同一般可分为两大类:独立光伏系统和并网光伏系统。其中独立光伏系统应用相对广泛,日常生活中可见太阳能手电筒、太阳能路灯、太阳能充电器等均属于此类系统。 独立光伏系统一般由四个基础部分组成:光伏电池阵列、储能系统(蓄电池)、直流控制系统、负载,如图1所示。 图1 独立光伏系统组成 在独立的光伏系统中,蓄电池的作用主要是储存能量,在晚上或多云等气候情况下,光伏阵列不能提供足够的能量时,蓄电池供给负载,保证系统的正常运行。它是仅次于太阳能光伏阵列的重要组成部分,也是对系统性能可靠性、系统成本影响最大的部分之一。本文探讨如何在保证系统正常工作、最大使用寿命、最大限度降低成本的情况下,为独立光伏系统选择并确定参数合理、数量合适的蓄电池。 2 蓄电池的选择 (1)方法 独立光伏系统蓄电池的选择过程主要包括三个方面:蓄电池种类、蓄电池的容量和蓄电池组串并联的确定。 蓄电池种类很多,主要有铅酸蓄电池、锂离子蓄电池、镍氢电池等。目前,由于产品技术的成熟性和成本等因素,一些小型简单的独立光伏系统中使用镍氢电池,但应用较少;多数的独立光伏系统中使用铅酸蓄电池,应用广泛。国家还制定了GB/T22473-2008《储能用铅酸蓄电池》标准,用以规范该类铅酸蓄电池产品的要求。本文以下的内容均以铅酸蓄电池为基础。 蓄电池的容量选择与很多因素有关,主要有日负载需求、蓄电池最大放电深度、独立运行天数、安装地环境温度。 独立光伏系统的蓄电池容量,要保证系统在太阳光照连续低于平均值的情况下负载仍可以在一定时间内持续正常工作。在光照度低于平均值的情况下,太阳能电池组件产生的电能,不能完全补充每日负载需求从蓄电池中消耗能量而产生的空缺,这样蓄电池就会处于亏电状

汽车蓄电池概述介绍资料

2 蓄电池 2.1 蓄电池的功用 2.2 蓄电池的结构 2.3 蓄电池的型号 2.4 蓄电池的工作原理 2.5蓄电池的工作特性 2.6 蓄电池的容量及其影响因素 2.7蓄电池的充电 2.8 蓄电池的使用与维护 2.9蓄电池技术状况的检查 2.10 蓄电池的常见故障及排除方法 2.1 蓄电池的功用 蓄电池是一种将化学能转变为电能的装置,属于可逆的直流电源。它的功用是: 1.起动发动机时,向起动机和点火系供电; 2.发电机不发电或电压较低时向用电设备供电; 3.发电机超载时,协助供电; 4.发电机端电压高于蓄电池电压时,将发电机的电能转变为化学能储存起来; 5.大电容器作用,能够吸收发电机和电路中形成的过电压。2.2 蓄电池的结构 汽车用蓄电池必须满足发动机起动的需要,即在短时间内向起动机提供大电流(汽油机为200~600A,柴油机可达1000A)。汽车上采用蓄电池通常称为起动型蓄电池。根据电解液的不同,起动型蓄电池分为酸性和碱性蓄电池。 铅酸蓄电池结构简单,价格低廉、内阻小、起动性能好,能在短时间内提供起动机所需的大电流,因此得到了广泛而长期的应用。

图1-1 蓄电池的基本结构 铅酸蓄电池是在盛有稀硫酸的容器内插入两组极板而构成的电能存储器,它由正极板、负极板、隔板、电池盖、电解液、加液孔盖和电池外壳组成。(图1-1) 容器分为3格或6格,每格装有电解液,正负极板浸入电解液中成为单格电池。每个单格电池的标称电压为2V,因此,3个串联起来成为6V蓄电池,6格串联起来成为12V蓄电池。 1.极板 1)构成 极板是电池的基本部件,它的作用是接受充入的电能和向外释放电能。 极板由栅架和活性物质组成。分为正极板和负极板,正极板上的活性物质是棕红色的二氧化铅(PbO2),负极板上的活性物质是青灰色的海绵状纯铅(Pb),如图1-2所示。

光伏系统知识第三章 储能设备(蓄电池)

光伏系统知识 第三章储能设备(蓄电池) 一、概述 光伏系统中蓄电池是用来储存电能的部件。在蓄电池中,电能被转化为化学能,这就是蓄电池充电的过程;当太阳能电池给蓄电池充电完毕,负载开始用电的时候,蓄电池中的化学能就开始转换为电能,这就是蓄电池的放电过程。 目前在光伏系统中常用的蓄电池基本上是密封铅酸蓄电池。为什么?因为这种电池非常便宜。但是,因为这种电池是密封免维护的,与以往的开口式铅酸蓄电池相比,不能人工加水、加酸并在线测试电池电解液的温度、比重、电压来切实维护,所以这种铅酸密封免维蓄电池对充电制度和放电制度要求极为精细严格,再也不能用过去那种粗放式的简单充放电方法来管理蓄电池了,所以现在蓄电池技术专家们已经研究出更加科学安全的充放电制度来,比如PWM(脉宽调制)充电技术,就非常好,而且充放电控制器也嵌入了单片计算机系统对受控蓄电池组进行严密监控。有关控制器的知识将在下一章中介绍。 蓄电池是光伏系统中的最最重要的组成部件。为什么?因为蓄电池这东西太娇气、太娇贵。稍微使用不当,它都要完蛋。如果储能部件坏掉了,光伏系统还能正常工作吗?显然不能。因为太阳能电池(目前)的光电转换效率太低了,根本不可能象火电厂的发电机组一样在线直供。什么时候光电转换效率能提高到85%了,什么时候才可以设想太阳能电池的在线直供。那么目前这个状况我们只能是好好设计、好好使用、好好保养蓄电池。不要让其过充电,也别让它过放电,也不要让它天天欠充电。过充电的危害是使蓄电池失水,因为过充态会使蓄电池过多释气,严重时会发生水的电解这种极端恶劣的情况。失水后电解液浓度变高、温度升高,电极电压进一步上升,从而加速电池的失水。进入恶性循环后,电池很快就会完蛋。 与过充危害相类似的还有蓄电池的“热失控”现象,这也是一大危害,“热失控”也是由于充电电压过高引起的。可见过充电是铅酸蓄电池的致命杀手。欠充或过放则会使蓄电池电解液中的纯硫酸盐化,负极板生成粗大难溶的硫酸盐,电解液中活性物质降低,电池容量自然变小。使用中会感觉电池充电时很快就满了,但是用电时很快就放空了,根本无法正常使用。 二、蓄电池的分类知识 1、蓄电池按放电时间的不同的分类,一般分为五大类: (1)放电时间T<10S钟的,一般是启动用蓄电池;

相关文档
相关文档 最新文档