文档库 最新最全的文档下载
当前位置:文档库 › 光学教程第二章

光学教程第二章

光学教程第二章
光学教程第二章

第二章理想光学系统

2-1 作图:

(1)作轴上实物点A的像A'

(2)作轴上虚物点A的像A'

A'

(3)作垂轴实物AB的像B

A'(4)作垂轴虚物AB的像B

(5)画出焦点F、F'的位置

(6)画出焦点F、F'的位置

2-2 单透镜成像时,若其共轭距(物与像之间距离)为250mm ,求下列情况透镜焦距:

(1) 实物,4-=β;(2)实物,4

1-=β;(3)虚物,4-=β。 解:(1)实物成像时,由题意:250=-'l l 又∵4-='

=l

l β

∴50-=l mm 200='l mm

由单透镜高斯公式:

f l l '

=-'1

11 得单透镜的焦距为:40='f mm

(2)实物成像时,由题意:250=-'l l 又∵4

1

-='=l l β ∴200-=l mm 50='l mm 由单透镜高斯公式:

f

l l '=-'1

11 得单透镜的焦距为:40='f mm

(3)虚物成像时,由题意:250='-l l 又∵4-='

=l

l β ∴50=l mm 200-='l mm 由单透镜高斯公式:

f l l '

=-'111 得单透镜的焦距为:40-='f mm

2-3 有一薄正透镜对某一实物成一倒立实像,像高为物高的一半,今将物向透镜移近100mm ,则所得的像与物同样大小,求该薄正透镜的焦距。

解:物体未移动时,由题意:x

f '=-=21β 移动后:100

1+'=

-=x f β

解之得:100='f mm 200-=x mm

2-4 一个薄透镜对某一物体成实像,放大率为-1,今以另一透镜紧贴在第一透镜上,则见像向透镜方向移动20mm ,放大率为原先的3/4倍,求两块透镜的焦距。 解:单透镜成像时:1-='

=

l

l β 组合透镜成像时,由题意:4

3

20-=-'=

l l β 解之得:80-=l mm 80='l mm

对于单透镜成像,设其焦距为'

1f ,则有高斯公式:11

11f l l '

=

-' 求得第一块透镜的焦距为:401='f mm

对于组合透镜成像,设组合焦距为'f ,则有高斯公式:f l l '

=--'1

1201

求得组合透镜的焦距为:7

240

=

'f mm ∵两透镜紧贴,设第二块透镜的焦距为'

2f ,则:

'+'''='2

12

1f f f f f ∴

'-'=

'

1

2111f f f

∴第二块透镜的焦距为:2402='f mm

2-5 一透镜对无限远处和物方焦点前5m 处的物体成像时,二像的轴向间距为3mm ,求透镜的焦距。

解:透镜对无穷远处物体成像,像点位于像方焦点处。

由牛顿公式:2

f x x '-='得: 5.1223)5000(=?--='-='x x f mm

2-6 有一理想光学系统位于空气中,其光焦度为D 50=?,当焦物距x =-180mm ,物高y =60mm 时,试分别用牛顿公式和高斯公式求像的位置和大小,以及轴向放大率和角放大

率。

解:由题意,系统的焦距为:mm m f 2002.01

===

'?

则物距为:mm f x l 20020180-=--=+= 由牛顿公式得焦像距和垂轴放大率分别为: mm x f f x 22.2180

2020=-?-='=

' 111.020

22

.2-=-=''-

=f x β 由高斯公式得像距、垂轴放大率分别为: mm f l f l l 22.222020020

200=+-?-='+'=

' 111.0200

2.22-=-='=

l l β ∴像高为:66.660111.0=?-=='y y β mm 轴向放大率为:123.02==βα 角放大率为:9==α

β

γ

2-7 已知物象之间共轭距离为625mm ,4/1-=β,现欲使4-=β,而共轭距离不变,试求透镜的焦距及透镜向物体移动的距离。(透镜位于空气中)

解:由题意: 625=-'l l 4

1-='=l l β 解得:500-=l mm 125='l mm

设透镜向物体移动的距离为d ,则:

4-=++'d

l d

l ∴375=d mm

焦距为:

100125

500125)500(=--?-='-'='l l l l f mm

2-8 已知一透镜mm r 5.201=,mm r 8.152=,mm d 8.10=,61.1=n ,求其焦距、光焦度、基点位置。 解:mm n nr f 1.541

61.15

.2061.1111=-?=-=

'

mm n nr f 7.41161.18.1561.1122=-?=-=

mm n r f 9.251

61.18.15122-=--=--='

mm f f d 6.17.411.548.1021-=+-=+'

-=?

∴透镜的焦距为:mm f f f 7.8756

.1)

9.25(1.5421-=--?-=?''-='

光焦度:142.18757

.01

1-=-='=

f ? D 焦点位置:mm f d f l F 88.700)1.548.101(7.875)1(1

-=-?-='-

'='

mm f d f l F 5.1102)7

.418.101(7.875)1(2=+?=+

'-= 主平面位置:mm f d f l H 82.1741.548.107.8751

=?=''

-='

mm f d f l H 8.2267

.418.107.8752=?='-=

2-9 一薄透镜mm f 2001='

和另一薄透镜mm f 502='

组合,组合焦距为100mm ,求两透镜的相对位置和组合的主点位置。

解:∵d

f f f f f -'+''

'='2121 ∴d -?=25050

200100

∴两透镜间的距离为:mm d 150= 组合后的主点位置:mm f d f l H 75200150

1001-=?-=''

-='

mm f d f l H 30050

150

1002

=-?

-='-'

-=

2-10 一薄透镜由5D 和-10D 的两个薄透镜组成,两者间距为50mm ,求组合系统的光焦度和主点位置,若把两透镜顺序颠倒,再求其光焦度和主点位置。 解:当光焦度为5D 的薄透镜放在前面时,组合系统的光焦度为:

5.2)10(505.01052121-=-??--=-+=?????d D

主点位置:mm d f d f l H 1005

.25

501

1=-?

-=-

=''

-='

?

? mm d f d

f l H 2005

.210

502

2

=--?

==

'

-'

-=?

? 当光焦度为-10D 的薄透镜放在前面时,组合系统的光焦度仍为-2.5D

主点位置:mm d l H 2005

.210

501

-=--?

-=-

='

?

? mm d l H 1005.25

502

-=-?

==

?

?

2-11 有三个透镜,mm f 1001=',mm f 502='

,mm f 503-='

,其间隔mm d 101=,

mm d 102=,设该系统处于空气中,求组合系统的像方焦距。

解:设mm h 1001=,01=u ,则:

21

11tan 1100100tan u f h

u ==='='

mm u d h h 90110100tan 1112=?-='

-=

32222tan 8.250901tan tan u f h u u ==+='+='

mm u d h h 628.21090tan 2223=?-='

-=

56.150628.2tan tan 3

333=-+='+='

f h u u

∴组合系统的像方焦距为:mm u h f 1.6456

.1100

tan 31==

'

=

' 2-12一个三片型望远镜系统,已知mm f 1001='

,mm f 2502-='

,mm f 8003='

,入射平行光在三个透镜上的高度分别为:mm h 5.11=,mm h 12=,mm h 9.03=,试求合成焦距和1d 、2d 的值。 解:∵mm

h h h h 10080833.08005.19.0)250(5.1110013132121=?+-?+=++

=????

∴合成焦距为:mm f 71.1231

==

'?

21

11t a n 015.01005.1tan u f h u ==='=

'

∴mm u h h d 33.33015.01

5.1tan 1

211=-='-=

011.02501

015.0tan tan 2

222=-+='+

='

f h u u ∴mm u h h d 091.9011.09.01tan 2

322=-='-=

2-13 一球形透镜,直径为40mm ,折射率为1.5,求其焦距和主点位置。 解:对于直径为40mm 的球形透镜,两个折射面的半径分别为20mm 和-20mm ,厚度d 为40mm ,则: m m n nr f 601

5.120

5.1111=-?=-=

'

mm n nr f 6015.1)20(5.1122-=--?=-=

mm n r f 401

5.120122=---=--='

mm f f d 8060604021-=--=+'

-=?

∴透镜的焦距为:mm f f f 3080

40

6021=-?-=?''-='

主平面位置:mm f d f l H 2060

40

301

-=?

-=''

-='

mm f d f l H 2060

40302=-?-='-=

2-14 有一双薄镜系统,mm f 1001='

,mm f 502-='

,要求总长度(第一透镜至系统像方焦点的距离)为系统焦距的0.7倍,求两透镜的间隔和系统的焦距。 解:第一透镜至系统像方焦点的距离为:F l d + 则由题意:f l d F '='

+7.0

∴f f d f d '='

-

'+7.0)1(1 ∴)3.0(

1-'

'=f d f d

∵'-'-''-='2

12

1f f d f f f

上两式联立求解得:mm d 62.81=,mm f 1.158='

或mm d 375.18=,mm f 1.158-='

由题意,f '应为正值,故两透镜的间隔和系统的焦距为:mm d 62.81=,mm f 1.158='

2-15 由两个同心的反射球面(两球面的球心重合)构成的光学系统,按照光线的反射顺序第一个反射球面是凹面,第二个反射球面是凸面,要求系统的像方焦点恰好位于第一个反射球面的顶点,若两球面间隔为d ,求两球面的半径和组合焦距。

解:由题意,两个同心的反射球面如图所示,且:d l F -='

,d r r =-21

对于反射球面:2111r f f =

'

= 2

222r f f ='= ∵)1()1(1

21211'-+'-''-='-'='

f d

f f d f f f d f l F

∴d r d

r r d r r -=-+--

)21()2(21

2121

将d r r =-21代入上式可求得:d r 31= ∴d d r r 212=-= 组合焦距为:

d d

d d d

d f f d f f f 32

3232121-=+-?-=+'-'

'-='

2-16 已知物点A 离透镜的距离1l -为30mm ,透镜的通光口径1D 为30mm ,在透镜后10mm 处有一光孔,其直径2D 为22mm ,像点A '离透镜的距离mm l 601='

,试求这个系统的孔径光阑、入瞳和出瞳。

解:由高斯公式,得透镜焦距为:mm l l l l f 2060

30)

30(601111=---?='-'=

'

光孔2D 对前面透镜成像,即已知mm l 102='

,则物距为: mm l f l f l 2010

202010222=-?='-'''=

则光孔2D 对前面透镜成像'

2D 为: mm l l D D 441020

222

222=?='=

'

∴1D 和2D 对轴上物点A 的夹角分别为: ?=?=-=565.2630

230

arctan )(2arctan

111l D u

?=?=+-'=749.2350

244

arctan )(2arctan 2122l l D u

∵12u u <

∴2D 是入瞳,相应光孔'

2D 为孔径光阑,它被后面透镜成像为出瞳,因为其后没有透镜,所以出瞳与光孔2D 重合。

2-17 有一物镜焦距mm f 100=',其框直径mm D 402=,在它前面50mm 处有一光孔,直径1D 为35mm ,问物点在-500mm 和-300mm 时,是否都是由同一光孔起孔径光阑作用?相应的入瞳和出瞳的位置和大小如何?

解:光孔和透镜前都不再有透镜,因此它们在物方空间的像与各自本身重合。

当500-=l mm 时,光孔1和物镜2对物点的张角分别为:

?=+-?=+=227.2)50500(235

arctan )(2arctan

11d l D u

?=?==29.2500

240

arctan 2arctan

22l D u ∵12u u > ∴光孔1是孔径光阑也是入瞳,光孔对后面的透镜成像得其出瞳位置: mm l f l f l 10050

100)50(100111-=--?=+''=

'

相应的出瞳直径为:m m l l D D 7050

)

100(351111=--?='='

当300-=l mm 时,光孔1和物镜2对物点的张角分别为:

?=+-?=+=004.4)50300(235arctan )(2arctan

11d l D u

?=?==814.3300

240

arctan 2arctan

22l D u ∵12u u < ∴透镜内孔为孔径光阑,而且也是入瞳和出瞳。

2-18 将一个40='f mm ,直径301=D mm 的薄透镜做成放大镜,眼瞳2放在透镜像方焦点上,眼瞳直径42=D mm ,物面放在透镜物方焦点上,试问: (1) 哪一个是孔径光阑,哪一个是视场光阑?

(2) 入瞳在哪里?物方半视场角等于多少? (3) 入射窗在哪里?视场边缘是否有渐

晕?视场线等于多少? 解:(1)如图,由于眼瞳2放在透镜像方焦点上,物面放在透镜物方焦点上,则透镜1和眼瞳2对物点的张角分别为:

?=?='=56.2040230

arctan 2arctan

11f D u ?=?='=86.240

24

arctan 2arctan

22f D u ∵12u u < ∴眼瞳是孔径光阑。由于系统只有两个光孔,所以其中之一为孔径光阑,则另一必为视场光阑,据此可知透镜框为视场光阑。

(2)∵孔径光阑在透镜的像方焦平面上

∴入瞳在物空间无限远处,物方半视场角:?==86.22u ω (3)∵视场光阑是透镜,在其前面没有成像透镜,所以透镜既是入射窗。 且由于入射窗与物面不重合,所以视场边缘有渐晕,线视场直径为: 2643021=-=-=D D D mm

2-19 现有一照相机,其物镜40='f mm ,现以常摄距离3=p m 进行拍摄,相对孔径f D '

分别采用5.3/1和22/1,试分别求其景深。 解:

f D

'

=5.3/1时 43.2135.112='==f D a mm 则景深为:98.24300029

.0300043.2100029

.0300043.212442

2222222=?-???=-=?εεp a ap mm f D '

=22/1时 41.3221

2='==f D a mm

则景深为:37.163700029

.0300041.300029

.0300041.32442

2222222=?-???=-=?εεp a ap mm

工程光学基础

工程光学基础学习报告 ——典型光学系统之显微镜系统

由于成像理论的逐步完善,构成了许多在科学技术和国民经济中得到广泛应用的光学系统。为了观察近距离的微小物体,要求光学系统有较高的视觉放大率,必须采用复杂的组合光学系统,如显微镜系统。 ●显微镜的介绍 显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。光学显微镜是在1590年由荷兰的詹森父子所首创。现在的光学显微镜可把物体放大1600倍,分辨的最小极限达0.1微米,国内显微镜机械筒长度一般是160mm。列文虎克,荷兰显微镜学家、微生物学的开拓者。 显微镜是人类这个时期最伟大的发明物之一。在它发明出来之前,人类关于周围世界的观念局限在用肉眼,或者靠手持透镜帮助肉眼所看到的东西。 显微镜把一个全新的世界展现在人类的视野里。人们第一次看到了数以百计的“新的”微小动物和植物,以及从人体到植物纤维等各种东西的内部构造。显微镜还有助于科学家发现新物种,有助于医生治疗疾病。 ●显微镜的分类 显微镜以显微原理进行分类可分为光学显微镜与电子显微镜,而我们课堂上讲的是光学显微镜。 ●显微镜的结构 普通光学显微镜的构造主要分为三部分:机械部分、照明部分和光学部分。 ◆机械部分 (1)镜座:是显微镜的底座,用以支持整个镜体。 (2)镜柱:是镜座上面直立的部分,用以连接镜座和镜臂。 (3)镜臂:一端连于镜柱,一端连于镜筒,是取放显微镜时手握部位。 (4)镜筒:连在镜臂的前上方,镜筒上端装有目镜,下端装有物镜转换器。 (5)物镜转换器(旋转器)简称“旋转器”:接于棱镜壳的下方,可自由转动,盘上有3-4 个圆孔,是安装物镜部位,转动转换器,可以调换不同倍数的物镜,当听到碰叩声时,方可进行观察,此时物镜光轴恰好对准通光孔中心,光路接通。转换物镜后,不允许使用粗调节器,只能用细调节器,使像清晰。 (6)镜台(载物台):在镜筒下方,形状有方、圆两种,用以放置玻片标本,中央有一通光孔,我们所用的显微镜其镜台上装有玻片标本推进器(推片器),推进器左侧有弹簧夹,用以夹持玻片标本,镜台下有推进器调节轮,可使玻片标本作左右、前后方向的移动。 (7)调节器:是装在镜柱上的大小两种螺旋,调节时使镜台作上下方向的移动。 ①粗调节器(粗准焦螺旋):大螺旋称粗调节器,移动时可使镜台作快速和较大幅度的升降,所以能迅速调节物镜和标本之间的距离使物象呈现于视野中,通常在使用低倍镜时,先用粗调节器迅速找到物象。 ②细调节器(细准焦螺旋):小螺旋称细调节器,移动时可使镜台缓慢地升降,多在运用高倍

天津大学2020硕士研究生初试考试自命题科目大纲807工程光学与光电子学基础

一、考试模块划分方式: 考试内容分为A、B 两个模块,考生可任选其中一个模块。A 模块为工程光学,B 模块为光电子学基础。 二、各模块初试大纲: A模块:工程光学 (一)考试的总体要求 本门课程的考试旨在考核学生有关应用光学和物理光学方面的基本概念、基本理论和实际解决光学问题的能力。 考生应独立完成考试内容,在回答试卷问题时,要求概念准确,逻辑清楚,必要的解题步骤不能省略,光路图应清晰正确。 (二)考试的内容及比例 考试内容包括应用光学和物理光学两部分。 “应用光学”应掌握的重点知识包括:几何光学的基本理论和成像概念、理想光学系统理论、光学系统中的光束限制、平面和平面系统对成像的影响、像差的基本概念和典型光学系统的性质、成像关系及光束限制等。具体知识点如下: 1、掌握几何光学基本定律与成像基本概念,包括:四大基本定律及全反射的内容与现象解释;完善成像条件的概念和相关表述;几何光学符号规则以及单个折射球面、反射球面的成像公式、放大率公式等。 2、掌握理想光学系统的基本理论和典型应用,包括:基点、基面的主要类型及其特点;图解法求像的方法;解析法求像方法(牛顿公式、高斯公式);理想光学系统三个放大率的定义、计算公式及物理意义;理想光学系统两焦距之间的关系;正切计算法以及几种典型组合光组的结构特点、成像关系等。 3、掌握平面系统的主要种类及应用,包括:平面镜的成像特点及光学杠杆原理和应用;反射棱镜的种类、基本用途及成像方向判别;光楔的偏向角公式及其应用等。 4、掌握典型光学系统的光束限制分析,包括:孔径光阑、入瞳、出瞳、孔径角的定义及它们的关系;视场光阑、入窗、出窗、视场角的定义及它们的关系;渐晕、渐晕光阑、渐晕系数的定义;物方远心光路的工作原理;光瞳衔接原则及其作用;场镜的定义、作用和成像关系等。 5、了解像差基本概念,包括:像差的定义、种类和消像差的基本原则;7 种几何像差的定义、影响因素、性质和消像差方法等。 6、掌握几种典型光学系统的基本原理和特点,包括:正常眼、近视眼和远视眼的定义和特征,校正非正常眼的方法;视觉放大率的概念、表达式及其意义;显微镜系统的结构特点、成像特点、光束限制特点及主要参数的计算公式;临界照明和坷拉照明系统的组成、优缺点;望远系统的结构特点、成像特点、光束限制特点及主要参数的计算公式;摄影系统的结构特点、成像特点、光束限制特点及主要参数的计算公式;投影系统的概念、计算公式以及其照明系统的衔接条件等。 “物理光学”应掌握的重点知识包括:光的电磁理论基础、光的干涉和干涉系统、光的衍射、光的偏振和晶体光学基础等。具体知识点如下:

光学教程答案(第五章)

1. 试确定下面两列光波 E 1=A 0[e x cos (wt-kz )+e y cos (wt-kz-π/2)] E 2=A 0[e x sin (wt-kz )+e y sin (wt-kz-π/2)] 的偏振态。 解 :E 1 =A 0[e x cos(wt-kz)+e y cos(wt-kz-π/2)] =A 0[e x cos(wt-kz)+e y sin(wt-kz)] 为左旋圆偏振光 E 2 =A 0[e x sin(wt-kz)+e y sin(wt-kz-π/2)] =A 0[e x sin(wt-kz)+e y cos(wt-kz)] 为右旋圆偏振光 2. 为了比较两个被自然光照射的表面的亮度,对其中一个表面直接进行观察,另一个表面 通过两块偏振片来观察。两偏振片透振方向的夹角为60°。若观察到两表面的亮度相同,则两表面的亮度比是多少已知光通过每一块偏振片后损失入射光能量的10%。 { 解∶∵亮度比 = 光强比 设直接观察的光的光强为I 0, 入射到偏振片上的光强为I ,则通过偏振片系统的光强为I': I'=(1/2)I (1-10%)cos 2600?(1-10%) 因此: { ∴ I 0/ I = ×(1-10%)cos 2600?(1-10%) = %. 3. 两个尼科耳N 1和N 2的夹角为60°,在他们之间放置另一个尼科耳N 3,让平行的自然光通过这个系统。假设各尼科耳对非常光均无吸收,试问N 3和N 1 的偏振方向的夹角为何值时,通过系统的光强最大设入射光强为I 0,求此时所能通过的最大光强。 解: 20 1 I I

()() () ()有最大值 时,亦可得令注:此时透过的最大光强为 ,须使欲使I I d d d dI I I I I I I I I I I I I 2 0cos cos 232 9434323060cos 30cos 2 30 2 60 2cos cos 2 cos cos 2 cos 2 2 2 2 m ax 2 2 2 3 2 2 1 3 θ ααθαααθααθααθα α= =?? ? ???-==??=-=====∴-=-=== 4. 在两个理想的偏振片之间有一个偏振片以匀角速度ω绕光的传播方向旋转(见题图), 若入射的自然光强为I 0,试证明透射光强为 I =16π I 0(1-cos4ωt ). 解: I = 12I 0 cos 2ωt cos 2(2π-ωt ) = 12 I 0cos 2ωtsin 2 ωt = 18 I 0 1-cos4t 2ω = I 0(1-cos4ωt ) 【 ` 】 题

2019河北工业大学考研大纲-822 工程光学基础

河北工业大学2019年硕士研究生招生考试 自命题科目考试大纲 科目代码:822 科目名称:工程光学基础 适用专业:仪器科学与技术、仪器仪表工程(专业学位) 一、考试要求 工程光学基础适用于河北工业大学机械工程学院仪器科学与技术专业、仪器仪表工程(专业学位)专业硕士研究生招生专业课考试。主要考察对于工程光学基础的基本概念、方法及运用所学知识分析问题和解决问题的能力。 二、考试形式 试卷采用客观题型和主观题型相结合的形式,主要包括选择题、填空题、判断题、简答题、计算题、分析论述题、设计题等。考试时间为3小时,总分为150分。 三、考试内容 (一)几何光学基本定律与成像概念 1、几何光学的基本定律:折射定律、反射定律、全反射定律、马吕斯定律、费马原理等。 2、几何光学的基本概念:光波、折射率等。 (二)光线光路计算及近轴区成像 1、单个折射球面光线计算 能够利用公式进行实际光路中的光线轨迹运算。 2、近轴区单个折射球面及球面系统的成像物象位置关系计算 能够利用光线追迹计算结果初步判断光学系统的像差;能够利用近轴区的各种公式计算像的位置,像的大小并判断像的虚实。 (三)理想光学系统

1、理想光学系统的基本理论 能够利用共线成像理论求解基点和基面,并完成图解法求像。 2、理想光学系统的解析法求像 能够利用工作理想光学系统的各种计算公式计算理想光学系统的物象位置关系、计算像的大小、位置并判断像的虚实;能够利用节点的性质进行实际问题的分析。 3、光学系统的组合 利用两个理想光学组合等效系统的基点和基面的几何求解方法求解任何所需要的透镜。利用正切法将三个及以上系统的组合等效系统求解。 4、透镜 能够利用透镜的相关公式求解透镜的焦距和基点位置。 (四)平面与平面元件 1、平面元件简介 能够利用平面镜的成像特性解释各种有关平面镜的光学现象及成像特点。能够利用平面镜的旋转性、平移性、双面镜的成像特性进行系统设计。 2、平行平板 能够平行平板成像公式及成像特性解释有关光学现象并应用到实际之中。 3、反射棱镜及像方坐标系求解 能够利用反射棱镜像方坐标系及透镜在不同情况下的像方坐标系的求解方法求解系统的像方坐标系;能够利用棱镜的光学系统的成像方法进行光学系统分析。 4、折射棱镜及光楔 利用折射棱镜最小偏向角的原理解决实际光学问题;学生能够利用光楔的作用分析其在光学系统中的作用。

《工程光学基础》考试大纲

《工程光学基础》考试大纲 主要参考书目 1.工程光学基础教程,郁道银,谈恒英,机械工业出版社,2008 2.工程光学(第4版),郁道银,谈恒英,机械工业出版社,2016 考试内容和考试要求 一、几何光学基本定律与成像概念 考试内容: 1、几何光学基本定律 2、成像基本概念与完善成像 3、近轴光学系统 考试要求: 1、掌握光学基本定律及几何光学基本概念 2、掌握成像概念与完善成像条件 3、掌握近轴光线及成像特点、掌握光轴光线成像计算 二、理想光学系统 考试内容 1、理想光学系统的基点与基面 2、理想光学系统的物像关系 3、理想光绪系统的放大率 4、理想光学系统的组合 考试要求: 1、掌握理想光学系统的基点与基面概念 2、掌握理想光学系统的求物像关系(作图法与计算法) 3、掌握理想光绪系统的放大率概念与相关计算 4、理解理想光学系统的组合方法及计算 三、平面系统 考试内容 1、平面镜成像

2、平行平板 3、反射棱镜 4、折射棱镜与光楔 考试要求: 1、掌握平面镜成像规律 2、掌握平行平板成像规律 3、掌握反射棱镜成像与成像方向判断 4、了解折射棱镜与光楔传光特性 四、光学系统中的光阑和光束限制 考试内容 1、光阑 2、照相系统中的光阑 3、望远镜系统中成像光束的选择 4、显微镜系统中的光束限制与分析 考试要求: 1、掌握光阑的分类及作用 2、掌握照相系统中光束限制分析 3、掌握望远镜系统中成像光束分析方法 4、掌握显微镜系统中的光束限制与分析 五、光度学 考试内容 1、辐射量与光学量及其单位 2、光传播过程中光学量的变化规律 3、成像系统像面的光照度 考试要求: 1、掌握光学量及其单位 2、理解光传播过程中光学量的变化规律 3、理解成像系统像面的光照度的计算 六、典型光学系统 考试内容 1、眼睛及其光学系统

物理光学第二章答案

第二章光的干涉作业 1、在杨氏干涉实验中,两个小孔的距离为1mm,观察屏离小孔的垂直距离为1m,若所用光源发出波长为550nm和600nm的两种光波,试求: (1)两光波分别形成的条纹间距; (2)两组条纹的第8个亮条纹之间的距离。 2、在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为100cm,当用一片折射率为1.61的透明玻璃贴住其中一小孔时,发现屏上的条纹系移动了0.5cm,试决定该薄片的厚度。 3、在菲涅耳双棱镜干涉实验中,若双棱镜材料的折射率为1.52,采用垂直的激光束(632.8nm)垂直照射双棱镜,问选用顶角多大的双棱镜可得到间距为0.05mm 的条纹。 4、在洛埃镜干涉实验中,光源S1到观察屏的垂直距离为1.5m,光源到洛埃镜的垂直距离为2mm。洛埃镜长为40cm,置于光源和屏的中央。(1)确定屏上看见条纹的区域大小;(2)若波长为500nm,条纹间距是多少?在屏上可以看见几条条纹? 5、在杨氏干涉实验中,准单色光的波长宽度为0.05nm,

平均波长为500nm ,问在小孔S 1处贴上多厚的玻璃片可使P ’点附近的条纹消失?设玻璃的折射率为1.5。 6、在菲涅耳双面镜的夹角为1’,双面镜交线到光源和屏的距离分别为10cm 和1m 。设光源发出的光波波长为550nm ,试决定光源的临界宽度和许可宽度。 7、太阳对地球表面的张角约为0.0093rad ,太阳光的平均波长为550nm ,试计算地球表面的相干面积。 8、在平行平板干涉装置中,平板置于空气中,其折射率为1.5,观察望远镜的轴与平板垂直。试计算从反射光方向和透射光方向观察到的条纹的可见度。 9、在平行平板干涉装置中,若照明光波的波长为600nm ,平板的厚度为 2mm ,折射率为 1.5,其下表面涂上高折射率(1.5)材料。试问:(1)在反射光方向观察到的干涉圆环条纹的中心是亮斑还是暗斑?(2)由中心向外计算,第10个亮环的半径是多少?(f=20cm )(3)第10个亮环处的条纹间距是多少? P P ’

光学教程答案(第五章)之欧阳数创编

1. 试确定下面两列光波 E1=A0[e x cos(wt-kz)+e y cos(wt-kz-π/2)] E2=A0[e x sin(wt-kz)+e y sin(wt-kz-π/2)] 的偏振态。 解:E1 =A0[e x cos(wt-kz)+e y cos(wt-kz-π/2)] =A0[e x cos(wt-kz)+e y sin(wt-kz)] 为左旋圆偏振光 E2 =A0[e x sin(wt-kz)+e y sin(wt-kz-π/2)] =A0[e x sin(wt-kz)+e y cos(wt-kz)] 为右旋圆偏振光 2. 为了比较两个被自然光照射的表面的亮度,对其中一个表面直接进行观察,另一个表面通过两块偏振片来观察。两偏振片透振方向的夹角为60°。若观察到两表面的亮度相同,则两表面的亮度比是多少?已知光通过每一块偏振片后损失入射光能量的10%。 解∶∵亮度比 = 光强比 设直接观察的光的光强为I0, 入射到偏振片上的光强为I,则通过偏振片系统的光强为I': I'=(1/2)I (1-10%)cos2600?(1-10%)

因此: ∴ I 0/ I = 0.5×(1-10%)cos 2600 ?(1-10%) = 10.125%. 3. 两个尼科耳N 1和N 2的夹角为60° ,在他们之间放置另一个尼科耳N 3,让平行的自然光通过这个系统。假设各尼科耳对非常光均无吸收,试问N 3和N 1的偏振方向的夹角为何值时,通过系统的光强最大?设入射光强为I 0,求此时所能通过的最大光强。 解:20 1 I I = 4. 在两个理想的偏振片之间有一个偏振片以匀角速度ω绕光的传播方向旋转(见题 5.4图),若入射的自然光强为I 0,试证明透射光强为 I =16π I 0(1-cos4ωt). 解: I = 1 2I 0 cos 2ωt cos 2(2π-ωt ) = 1 2 I 0cos 2ωtsin 2 ωt = 18 I 0 1-cos4t 2ω = I 0(1-cos4ωt) ` 射的光强占入射光强的百分比。 题

工程光学基础教程-习题答案(完整)

第一章 几何光学基本定律 1. 已知真空中的光速c =38 10?m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。 解: 则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s , 当光在金刚石中,n=2.417时,v=1.24 m/s 。 2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出: ,所以x=300mm 即屏到针孔的初始距离为300mm 。 3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少? 2211sin sin I n I n = 66666.01 sin 2 2== n I 745356.066666.01cos 22=-=I 1mm I 1=90? n 1 n 2 200mm L I 2 x

88.178745356 .066666 .0* 200*2002===tgI x mm x L 77.35812=+= 4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有: (2) 由(1)式和(2)式联立得到n 0 . 5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。 解:该题可以应用单个折射面的高斯公式来解决, 设凸面为第一面,凹面为第二面。 (1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式: 会聚点位于第二面后15mm 处。 (2) 将第一面镀膜,就相当于凸面镜

天津大学2018年《807工程光学》考研大纲

天津大学2018年《807工程光学》考研大纲 一、考试的总体要求 本门课程的考试旨在考核学生有关应用光学和物理光学方面的基本概念、基本理论和实际解决光学问题的能力。 考生应独立完成考试内容,在回答试卷问题时,要求概念准确,逻辑清楚,必要的解题步骤不能省略,光路图应清晰正确。 二、考试的内容及比例: 考试内容包括应用光学和物理光学两部分。 “应用光学”应掌握的重点知识包括:几何光学的基本理论和成像概念、理想光学系统理论、光学系统中的光束限制、平面和平面系统对成像的影响、像差的基本概念和典型光学系统的性质、成像关系及光束限制等。具体知识点如下: 1、掌握几何光学基本定律与成像基本概念,包括:四大基本定律及全反射的内容与现象解释;完善成像条件的概念和相关表述;几何光学符号规则以及单个折射球面、反射球面的成像公式、放大率公式等。 2、掌握理想光学系统的基本理论和典型应用,包括:基点、基面的主要类型及其特点;图解法求像的方法;解析法求像方法(牛顿公式、高斯公式);理想光学系统三个放大率的定义、计算公式及物理意义;理想光学系统两焦距之间的关系;正切计算法以及几种典型组合光组的结构特点、成像关系等。 3、掌握平面系统的主要种类及应用,包括:平面镜的成像特点及光学杠杆原理和应用;反射棱镜的种类、基本用途及成像方向判别;光楔的偏向角公式及其应用等。 4、掌握典型光学系统的光束限制分析,包括:孔径光阑、入瞳、出瞳、孔径角的定义及它们的关系;视场光阑、入窗、出窗、视场角的定义及它们的关系;渐晕、渐晕光阑、渐晕系数的定义;物方远心光路的工作原理;光瞳衔接原则及其作用;场镜的定义、作用和成像关系等。 5、了解像差基本概念,包括:像差的定义、种类和消像差的基本原则;7种几何像差的定义、影响因素、性质和消像差方法等。 6、掌握几种典型光学系统的基本原理和特点,包括:正常眼、近视眼和远视眼的定义和特征,校正非正常眼的方法;视觉放大率的概念、表达式及其意义;显微镜系统的结构特点、成像特点、光束限制特点及主要参数的计算公式;临界照明和坷拉照明系统的组成、优缺点;望远系统的结构特点、成像特点、光束限制特点及主要参数的计算公式;摄影系统的结构特点、成像特点、光束限制特点及主要参数的计算公式;投影系统的概念、计算公式以及其照明系统的衔接条件等。 “物理光学”应掌握的重点知识包括:光的电磁理论基础、光的干涉和干涉系统、光的衍射、光的偏振和晶体光学基础等。其中傅立叶光学一章可作为部分专业(如:光科等)的选作内容。具体知识点如下: 1、掌握电磁波的平面波解,包括:平面波、简谐波解的形式和意义,物理量的关系,电磁波的性质等;掌握波的叠加原理、计算方法和4种情况下两列波的叠加结果、性质分析。 2、掌握干涉现象的定义和形成干涉的条件;掌握杨氏双缝干涉性质、装置、公式、条纹特 点及其现象的应用;了解条纹可见度的定义、影响因素及其相关概念(包括临界宽度和允许宽度、空

光学教程第2章_参考答案

2.1 单色平面光照射到一个圆孔上,将其波面分成半波带,求第k 各带的半径。若极点到观察点的距离r 0为1m ,单色光波长为450nm ,求此时第一半波带的半径。 解:由菲涅耳衍射,第k 个半波带满足关系式)1 1(02 R r R k hk +=λ, 当∞→R 时,0r k R hk λ=。 第一半波带半径067.011045001100=???==-r k R hk λcm 。 2.2平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像摄像机光圈那样改变大小.问:(1)小孔半径应满足什么条件时,才能使得此小孔右侧轴线上距小孔中心4 m 的P 点的光强分别得到极大值和极小值;(2)P 点最亮时,小孔直径应为多大?设此光的波长为500nm 。 解:(1)由菲涅耳衍射,第k 个半波带满足关系式)1 1(02 R r R k hk +=λ, 当∞→R 时,k k r k R hk 414.14105000100=???==-λmm 。 K 为奇数时,P 点光强为极大值; K 为偶数时,P 点光强为极小值。 (2)P 点最亮时,由p 点的振幅)(2 1 1k k a a a += ,所以当k=1时,k a 为最大 所以2828.021==h R d cm 。 2.3 波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为0.5 mm 和1 mm 的透光圆环,接收点P 离光阑1 m ,求P 点的光强I 与没有光阑时的光强度I 0之比。 解:由菲涅耳衍射,第k 个半波带满足关系式)1 1(02 R r R k hk +=λ, 圆环内径对应的半波带数1)1 1 11(105000)105.0()11(102302 1 1=+??=+=--R r R k h λ 圆环外径对应的半波带数4)1 1 11(105000)101()11(10 2302 1 2=+??=+=--R r R k h λ 由题意可知,实际仅露出3各半波带,即142)(2 1 a a a a k ≈+=, 而112 1 )(21a a a a ≈+=∞∞ 所以光强之比4 2 0==∞a a I I k 。 2.4波长为632.8 nm 的平行光射向直径为2.76 mm 的圆孔,与孔相距l m 处放一屏,试问:(1)屏上正对圆孔中心的P 点是亮点还是暗点?(2)要使P 点变成与(1)相反的情况,至少要把屏幕分别向前或向后移动多少? 解:(1)由菲涅耳衍射,第k 个半波带满足关系式)1 1(02 R r R k hk +=λ,

天津大学《工程光学》课程教学大纲

天津大学《工程光学》课程教学大纲 课程代码:2020015/2020016 课程名称:工程光学 学时:64 学分: 4 学时分配:授课:52 实验:12(内容及要求见实验教学大纲)授课学院:精仪学院更新时间:2011-6-14 适用专业:测控技术与仪器、电子科学与技术、信息工程(光电信息工程方向)、光电子技术科学、生物医学工程 先修课程:高等数学、大学物理 一.课程性质、教学目的与任务 本课程是一门专业基础课,主要讲授几何光学和物理光学方面的基本理论、基本方法和典型光学系统实例及应用。通过本课程的学习,学生应能对光学的基本概念、基本原理和典型系统有较为深刻的认识,为学习光学设计、光信息理论和从事光学研究打下坚实的基础。 二.教学基本要求 任课教师应以本课程大纲为依据,合理安排教学内容,认真备课;课堂教学中应尽可能充分利用多媒体课件、课程网站等现有教学资源,根据实际条件开展不同程度的双语教学实践;课堂教学后,要留一定数量的作业题,并坚持批改,以利掌握学生的学习情况;习题讲解和分析均不占课内学时;要及时与实验指导人员取得联系,安排相应课程实验,课程主讲教师必须全程参加实验指导1个班次。 学生应按要求参加全部的课堂教学活动,按要求完成作业;参加期中、期末考试,获得该课程学分。 通过本课程的学习,学生应掌握或了解以下基本内容: 1.系统掌握几何光学的基础理论,包括基本定律、球面和共轴球面系统理论、理想光学系统理论,平面镜与棱镜系统理论和光学系统中光阑的概 念。 2.掌握光学系统像差的基本概念、产生原因、危害和校正方法,了解像差的计算。 3.掌握三种典型的光学系统,即:显微系统、望远系统和摄影系统,并了解一些特殊的光学系统知识。 4.掌握光的电磁理论及光波叠加的相关知识。

工程光学习题解答第二章_理想光学系统

第二章 理想光学系统 1.针对位于空气中的正透镜组() 0'>f 及负透镜组() 0'f ()-∞=l a ()' 2f l b -= ()f f l c =-=

() /f l d -= ()0=l e ()/f l f = ')(f f l g -= = '22)(f f l h -==

+∞=l i )( 2.0'

0 e l (= ) f= l 2/ (f ) ( ) f g= l (= h) l l i)( +∞ =

2. 已知照相物镜的焦距f’=75mm,被摄景物位于(以F 点为坐标原点) =x ,2,4,6,8,10,m m m m m -----∝-处,试求照相底片应分别放在离物镜的像方焦面多远 的地方。 解: (1)x= -∝ ,xx ′=ff ′ 得到:x ′=0 (2)x ′=0.5625 (3)x ′=0.703 (4)x ′=0.937 (5)x ′=1.4 (6)x ′=2.81 3.设一系统位于空气中,垂轴放大率*-=10β,由物面到像面的距离(共轭距离)为7200mm , 物镜两焦点间距离为1140mm 。求该物镜焦距,并绘出基点位置图。 解: ∵ 系统位于空气中,f f -=' 10' '-=== l l y y β 由已知条件:1140)('=+-+x f f 7200)('=+-+x l l 解得:mm f 600'= mm x 60-= 4.已知一个透镜把物体放大*-3投影到屏幕上,当透镜向物体移近18mm 时,物体将被放大 *-4,试求透镜的焦距,并用图解法校核之。 解:方法一: 31 ' 11-==l l β ? ()183321'1--=-=l l l ①

工程光学,郁道银,第二章习题及答案

第二章习题及答案 1、已知照相物镜的焦距f’=75mm,被摄景物位于(以F点为坐标原点)x=、-10m、-8m、-6m、-4m、-2m 处,试求照相底片应分别放在离物镜的像方焦面多远的地方。 解:(1)xx′=ff′,x= -∝得到:x′=0 (2)x= -10 ,x′= (3)x= -8 ,x′= (4)x= -6 ,x′= (5)x= -4 ,x′= (6)x= -2 ,x′= 2、已知一个透镜把物体放大-3x 投影在屏幕上,当透镜向物体移近18mm 时,物体将被放大-4x 试求透镜的焦距,并用图解法校核之。 解: 3.一个薄透镜对某一物体成实像,放大率为-1x,今以另一个薄透镜紧贴在第一个透镜上,则见像向透镜方向移动20mm,放大率为原先的3/4 倍,求两块透镜的焦距为多少 解:

4.有一正薄透镜对某一物成倒立的实像,像高为物高的一半,今将物面向透镜 移近 100mm ,则所得像与物同大小,求该正透镜组的焦距。 解: 5.希望得到一个对无限远成像的长焦距物镜,焦距 =1200mm ,由物镜顶点到 像面的距离 L =700 mm ,由系统最后一面到像平面的距离(工作距)为 ,按最简单结构的薄透镜系统考虑,求系统结构,并画出光路图。 解: 6.一短焦距物镜,已知其焦距为 35 mm ,筒长 L =65 mm ,工作距,按最简单结 构的薄透镜系统考虑,求系统结构。

解: 7.已知一透镜求其焦距、光焦度。 解: 8.一薄透镜组焦距为100 mm,和另一焦距为50 mm 的薄透镜组合,其组合焦距仍为100 mm,问两薄透镜的相对位置。 解: 9.长60 mm,折射率为的玻璃棒,在其两端磨成曲率半径为10 mm 的凸球面,试求其焦距。 解:

工程光学基础教程课后重点习题答案

第一章习题 1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。 解: 则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n=1.65时,v=1.82 m/s, 当光在加拿大树胶中,n=1.526时,v=1.97 m/s, 当光在金刚石中,n=2.417时,v=1.24 m/s。 2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出: 所以x=300mm 即屏到针孔的初始距离为300mm。 3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x, 则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。而全反射临界角求取方法为: (1) 其中n2=1, n1=1.5, 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为: (2) 联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。 4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n0sinI1=n2sinI2 (1)

物理光学-第二章(仅)习题

物理光学习题库——光的干涉部分 一、选择题 1. 下列哪一个干涉现象不属于分振幅干涉? A. 薄膜干涉 B.迈克尔逊干涉 C.杨氏双缝干涉 D.马赫-曾德干涉 2. 平行平板的等倾干涉图样定域在 A. 无穷远 B.平板上界面 C.平板下界面 D.自由空间 3. 在双缝干涉试验中,两条缝的宽度原来是相等的,若其中一缝的宽度略变窄,则 A.干涉条纹间距变宽 B. 干涉条纹间距变窄 C.不再发生干涉现象 D. 干涉条纹间距不变,但原来极小处强度不再为0 4. 在杨氏双缝干涉实验中,相邻亮条纹和相邻暗条纹的间隔与下列的哪一种因素无关? A.光波波长 B.屏幕到双缝的距离 C. 干涉级次 D. 双缝间隔 5. 一束波长为λ的单色光从空气中垂直入射到折射率为n的透明薄膜上,要使反射光得到干涉加强,薄膜厚度应为 A.λ/4 B.λ/4n C. λ/2 D. λ/2n 6. 在白炽灯入射的牛顿环中,同级圆环中相应于颜色蓝到红的空间位置是 A.由里向外 B.由外向里 C. 不变 D. 随机变化 7. 一个光学平板玻璃A与待测工件B之间形成空气劈尖,用波长为500nm的单色光垂直照明,看到的反射光干涉条纹弯曲部分的顶点恰好与其右边条纹的直线部分的切线相切,则工 件的上表面缺陷是 A.不平处为凸起,最大高度为250nm B.不平处为凸起,最大高度为500nm C.不平处为凹槽,最大高度为250nm D. 不平处为凹槽,最大高度为500nm 8. 在单色光照明下,轴线对称的杨氏干涉双孔装置中,单孔屏与双孔屏的间距为1m,双孔屏与观察屏的间距为2m,装置满足远场、傍轴近似条件,屏上出现对比度K=0.1的等间隔干涉条纹,现将双孔屏沿横向向上平移1mm,则 A. 干涉条纹向下平移2mm B. 干涉条纹向上平移2mm C. 干涉条纹向上平移3mm D. 干涉条纹不移动 9. F-P腔内间距h增加时,其自由光谱范围Δλ A. 恒定不变 B. 增加 C. 下降 D. =0 10. 把一平凸透镜放在平玻璃板上,构成牛顿环装置,当平凸透镜慢慢向上平移时,由反射光形成的牛顿环 A. 向中心收缩,条纹间隔不变 B. 向中心收缩,环心呈明暗交替变化 C. 向外扩张,环心呈明暗交替变化 D. 向外扩张,条纹间隔变大 11. 在迈克尔逊干涉仪的一条光路中,垂直光线方向放入折射率为n、厚度为h的透明介质片,放入后,两路光束光程差的改变量为 A. 2(n-1)h B. 2nh C. nh D. (n-1)h 12. 在楔形平板的双光束干涉实验中,下列说法正确的是 A. 楔角越小,条纹间隔越宽; B. 楔角一定时,照射波长越长,条纹间隔越宽 C. 局部高度变化越大,条纹变形越严重 D. 形成的干涉属于分波前干涉 13. 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹会 A. 不变 B. 变密集 C.变稀疏 D.不确定 14. 若想观察到非定域干涉条纹,则应选择

(工程光学基础)考试试题库1教学教材

(工程光学基础)考试 试题库1

1.在单缝衍射中,设缝宽为a ,光源波长为λ,透镜焦距为f ′,则其衍射暗条纹间距e 暗 =f a λ ' ,条纹间距同时可称为线宽度。 2.当保持入射光线的方向不变,而使平面镜转15°角,则反射光线将转动 30° 角。 3.光线通过平行平板折射后出射光线方向__不变_ ___ ,但会产生轴向位移量,当平面板厚 度为d ,折射率为n ,则在近轴入射时,轴向位移量为1 (1)d n - 。 4.在光的衍射装置中,一般有光源、衍射屏、观察屏,则衍射按照它们距离不同可分为两 类,一类为 菲涅耳衍射,另一类为 夫琅禾费衍射 。 5.光轴是晶体中存在的特殊方向,当光在晶体中沿此方向传播时不产生双折射。n e

12.当自然光以布儒斯特角入射至两各向同性介质界面上,其反射光为线偏振光,折射光为_部分 偏振光。 13.光线通过双平面镜后,其入射光线与出射光线的夹角为50°,则双平面镜的夹角为 25° 。 14.在迈克尔逊干涉仪中,用单色光源直接照明,若反射镜M 1、M 2严格垂直,则此时发生 等 倾(等倾或等厚)干涉,可观察到中央或明或暗的一系列同心圆环,圆环中央疏、边缘密_(描述条纹特点),若M 1与M 2’间的厚度每减少2 λ 的距离,在条纹中心就消失 一个条纹。 15.限制进入光学系统的成像光束口径的光阑称为孔径光阑 ,限制物体成像范围的光阑称为 视场光阑,能够在像平面上获得足够清晰像的空间深度称为景深 。 16.光的折射定律数学表达式为sin sin n I n I ''=,反射定律可看作是折射定律在n n '=-时的 一种特殊情况。 17.一般获得相干光的方法有两类:分波面法和 分振幅法 。 18.牛顿环是一种等厚(等倾或等厚)干涉条纹,反射式牛顿环中心 总是暗(亮或暗)的。 19.发生全反射的条件为(1) 光线从光密介质射入光疏介质(2)入射角大于临界角 。 20.迈克耳逊干涉仪的一个反射镜移动0.33mm 时,测得条纹变动192次,则 所用光源的波长为3437.5nm 。 21.光学系统的物方焦点F 的共轭点是 无限远处的像点。 22.从自然光获得线偏振光的方法有三种:(1)由反射和折射产生线偏振光 (2)由晶体的二向色性产生线偏振光 (3)由晶体双折射产生线偏振光 23.检验自然光、线偏振光和部分偏振光时,使被检验的光入射到偏振片上,然后旋转偏振 片,若从偏振片射出的光的强度不变化,则入射光为自然光。若射出的光的强度 有明

光学第2章习题及答案

第二章习题答案 2—1 铯的逸出功为,试求: (1)铯的光电效应阈频率及阈值波长; (2)如果要得到能 量为的光电子,必须使用多少波长的光照射 解:光电效应方程 2 12 m mv h =ν-Φ (1) 由题意知 0m v = 即 0h ν-Φ= 14 15 1.9 4.59104.13610ev Hz h ev s -Φν= ==??? 1.24652.61.9c hc nm Kev nm ev λ?====νΦ (2) ∵ 2 1 1.52 m mv ev = ∴ 1.5c ev h h λ =ν-Φ=-Φ 1.24364.71.5 1.5 1.9hc nm Kev nm ev ev ev λ?= ==+Φ+ 2-2 对于氢原子、一次电离的氢离子He + 和两次电离的锂离子Li ++ ,分别计算它们的: (1)第一、第二玻尔轨道半径及电子在这些轨道上的速度;(2)电子在基态的结合能; (3)由基态带第一激发态所需的激发能量及由第一激发态退激到基态所放光子的波长。 解:(1)由波尔理论及电子的轨道半径公式 r 1为氢原子第一波尔半径 222 01122204()(197.3)0.0530.511e e c r a nm nm m e m c e 6 πε====≈/4πε?10?1.44 h h 氢原子第二波尔半径 可知:He + (Z=2) Li + + (Z=3) 电子在波尔轨道上的速率为 2 1 n n r r z =221140.212r n r r nm ===112 210.0265220.1062a r nm r a nm ====112 210.0176320.07053 a r nm r a nm ====n z v c n =α

物理光学第二章答案

第二章光的干涉作业 1、在氏干涉实验中,两个小孔的距离为1mm,观察屏离小孔的垂直距离为1m,若所用光源发出波长为550nm 和600nm的两种光波,试求: (1)两光波分别形成的条纹间距; (2)两组条纹的第8个亮条纹之间的距离。 2、在氏实验中,两小孔距离为1mm,观察屏离小孔的距离为100cm,当用一片折射率为1.61的透明玻璃贴住其中一小孔时,发现屏上的条纹系移动了0.5cm,试决定该薄片的厚度。 3、在菲涅耳双棱镜干涉实验中,若双棱镜材料的折射率为1.52,采用垂直的激光束(632.8nm)垂直照射双棱镜,问选用顶角多大的双棱镜可得到间距为0.05mm 的条纹。 4、在洛埃镜干涉实验中,光源S1到观察屏的垂直距离为1.5m,光源到洛埃镜的垂直距离为2mm。洛埃镜长为40cm,置于光源和屏的中央。(1)确定屏上看见条纹的区域大小;(2)若波长为500nm,条纹间距是多少?在屏上可以看见几条条纹? 5、在氏干涉实验中,准单色光的波长宽度为0.05nm,

平均波长为500nm ,问在小孔S 1处贴上多厚的玻璃片可使P ’点附近的条纹消失?设玻璃的折射率为1.5。 6、在菲涅耳双面镜的夹角为1’,双面镜交线到光源和屏的距离分别为10cm 和1m 。设光源发出的光波波长为550nm ,试决定光源的临界宽度和许可宽度。 7、太阳对地球表面的角约为0.0093rad ,太的平均波长为550nm ,试计算地球表面的相干面积。 8、在平行平板干涉装置中,平板置于空气中,其折射率为1.5,观察望远镜的轴与平板垂直。试计算从反射光方向和透射光方向观察到的条纹的可见度。 9、在平行平板干涉装置中,若照明光波的波长为600nm ,平板的厚度为 2mm ,折射率为 1.5,其下表面涂上高折射率(1.5)材料。试问:(1)在反射光方向观察到的干涉圆环条纹的中心是亮斑还是暗斑?(2)由中心向外计算,第10个亮环的半径是多少?(f=20cm )(3)第10个亮环处的条纹间距是多少? P P ’

光学教程答案(第二章)

1. 单色平面光照射到一小圆孔上,将其波面分成半波带。求第к个带的半径。若极点到观察点的距离r 0为1m ,单色光波长为450nm ,求此时第一半波带的半径。 解: 20 22r r k k +=ρ 而 20λ k r r k += 20λ k r r k = - 20202λρk r r k = -+ 将上式两边平方,得 42 2020 20 2 λλρk kr r r k + +=+ 略去22λk 项,则 λ ρ0kr k = 将 cm 104500cm,100,1-80?===λr k 带入上式,得 cm 067.0=ρ 2. 平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样改变大小。问:(1)小孔半径满足什么条件时,才能使得此小孔右侧轴线上距小空孔中心4m 的P 点的光强分别得到极大值和极小值;(2)P 点最亮时,小孔直径应为多大?设此时的波长为500nm 。 解:(1)根据上题结论 ρ ρ0kr k = 将 cm 105cm,400-50?==λr 代入,得 cm 1414.01054005 k k k =??=-ρ 当k 为奇数时,P 点为极大值; k 为偶数时,P 点为极小值。 (2)P 点最亮时,小孔的直径为 cm 2828.02201==λρr 3.波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为0.5mm 和1mm 的透光圆环,接收点P 离光阑1m ,求P 点的光强I 与没有光阑时的光强度I 0之比。 解:根据题意 m 1=R 500nm mm 1R mm 5.0R m 121hk hk 0====λr 有光阑时,由公式 ???? ??+=+=R r R R r r R R k h h 11)(02 002λλ

相关文档
相关文档 最新文档