文档库 最新最全的文档下载
当前位置:文档库 › Hu et al 2012 Psychophysiology

Hu et al 2012 Psychophysiology

Hu et al 2012 Psychophysiology
Hu et al 2012 Psychophysiology

Dissociation of tone and vowel processing in Mandarin idioms

JIEHUI HU,a,b SHAN GAO,a,b WEIYI MA,a,b and DEZHONG YAO a

a

Key Laboratory for NeuroInformation of Ministry of Education,School of Life Science and Technology,University of Electronic Science and Technology of China,Chengdu,China b

School of Foreign Languages,University of Electronic Science &Technology of China,Chengdu,China

Abstract

Using event-related potentials,this study measured the access of suprasegmental (tone)and segmental (vowel)infor-mation in spoken word recognition with Mandarin idioms.Participants performed a delayed-response acceptability task,in which they judged the correctness of the last word of each idiom,which might deviate from the correct word in either tone or vowel.Results showed that,compared with the correct idioms,a larger early negativity appeared only for vowel violation.Additionally,a larger N400effect was observed for vowel mismatch than tone mismatch.A control experiment revealed that these differences were not due to low-level physical differences across conditions;instead,they represented the greater constraining power of vowels than tones in the lexical selection and semantic integration of the spoken words.Furthermore,tone violation elicited a more robust late positive component than vowel violation,suggesting different reanalyses of the two types of information.In summary,the current results support a functional dissociation of tone and vowel processing in spoken word recognition.

Descriptors:Spoken word recognition ,Tones ,V owels ,ERPs ,Mandarin idioms Speech signals enter the ear as sound waves from which the brain extracts speech sounds and sequences to activate the meaning of the word (Hickok &Poeppel,2007).In this process,it is crucial to distinguish segmental (consonants,vowels)and suprasegmental (e.g.,stress,tone)information.For example,the speech segments /f//o//r//b//e//r/produced in such an order form the word “forebear,”while the position of stress differentiates its part of speech (Cutler,1986).Therefore,it is important to examine the relative function of the two types of information in constraining spoken word recognition.Studies on Indo-European language (e.g.,English)processing suggested that segments constrain the activation of entries in the mental lexicon more ef?ciently than suprasegmental information (Friedrich,Kotz,Friederici,&Alter,2004)and that the latter’s role is limited to speech segmentation,for example,identi?cation of individual words in continuous speech (Norris,1994).However,for tonal languages like Chinese,a set of suprasegmental features (tones)plays a major role in determining word identity.For example,in Mandarin,ma1with a

high-level tone means mother;ma2with a rising tone means hemp;ma3with a dipping tone means horse;and ma4with a falling tone means to curse.Importantly,these contrasts are realized through tone variations,while segmental features (consonants and vowels)remain unchanged (Chao,1968).Given the importance of tones,one might reckon a comparable role of tones and vowels in con-straining auditory word recognition in Chinese.

Research is currently divided on the functional signi?cance of the two types of information.Behavioral studies showed that when words were presented in isolation,vowels constrained word acti-vation more ef?ciently than tones.For example,in a sound classi-?cation task with nonsense syllables,Mandarin listeners were found to categorize vowels faster than tones (Repp &Lin,1990).When asked to judge whether pairs of written Mandarin characters were homophones,subjects responded faster to vowel mismatch than tone mismatch (Taft &Chen,1992).In a Garner interference task,Mandarin tone contrasts were found to be more vulnerable to interference effects than vowel contrasts (Tong,Francis,&Gandour,2008).Slower and less accurate tone discrimination than vowel discrimination was also observed in tasks such as lexical decision with Mandarin words (Cutler &Chen,1997;Mattys,White,&Melhorn,2005),and auditory priming with Cantonese words (Yip,2001).

However,the primacy of vowel processing seems to be chal-lenged.In an eye-tracking study using a word/picture matching task,growth curve analysis of the trajectory of looks to target and competitor pictures showed that Mandarin tones and vowels were accessed concurrently (Malins &Joanisse,2010).In an event-related potentials (ERPs)study of Cantonese spoken word recog-nition the two types of information were shown to constrain lexical integration similarly (Schirmer,Tang,Penney,Gunter,&Chen,

We thank the Associate Editor and three anonymous reviewers for their insightful comments and suggestions.Thanks to Anne Cutler for helpful comments on earlier versions of this manuscript.This study is supported by the 973Project (2011CB707803),the 111Project (B12027),the PCSIRT (0910),the Social Science Funding of the Chinese Ministry of Education (11YJC880079),Sichuan Applied Psychological Research Center (CXSL-01002014),and the Fundamental Research Funding for the Central Univer-sities (ZYGX2011YB031,ZYGX2010J137,ZYGX2010J143).J.H.and S.G.are joint ?rst authors.

Address correspondence to:Dezhong Yao,Key Laboratory for Neu-roInformation of Ministry of Education,School of Life Science and Tech-nology,University of Electronic Science and Technology of China,No.4,Section 2,North Jianshe Road,Chengdu,610054,China.E-mail:dyao@https://www.wendangku.net/doc/8b1634944.html,

Psychophysiology,49(2012),1179–1190.Wiley Periodicals,Inc.Printed in the USA.Copyright ?2012Society for Psychophysiological Research DOI:10.1111/j.1469-8986.2012.01406.x

1179

2005).These results suggest that tones and vowels could have an equivalent role in spoken word recognition.

To reconcile the two different views,Liu and Samuel(2007) found that participants responded less accurately to tone mismatch than vowel mismatch when target words were presented in isola-tion.However,when target words were presented in sentences or idioms,they responded with similar accuracy.A similar pattern of results was also observed by Ye and Connine(1999).They argued that tones and vowels might constrain spoken word recognition differently under different contextual conditions,that is,vowel primacy for isolated word access,but a comparable role for access-ing words embedded in strong semantic context.

Spoken word recognition is a dynamic process that consists of a series of substages from acoustic and phonetic analysis to seman-tic integration(Salmelin,2007).Thus,the access of tone and vowel information might differ across different stages of lexical access. As ERPs can offer temporally sensitive brain indices in distinguish-ing different cognitive processes and their time courses(Kutas& Federmeier,2011),it allows us to measure the online word recog-nition with high temporal resolution.Mandarin idioms are?xed four-character structures,carrying meaning integrity that is beyond the sum of the literal meaning of their constituents(each Chinese character corresponds to a spoken syllable with a distinct meaning).For example,the idiom,yi3-luan3-ji1-shi2,which liter-ally means to use(yi3)an egg(luan3)to hit(ji1)a rock(shi2), actually means to?ght a hopeless battle.Furthermore,the words and the order of their presentation are?xed.Therefore,compared with sentential contexts,idioms may facilitate the correctness judg-ment of both tones and vowels by offering an unambiguous expec-tation for an upcoming word.Thus,Chinese idioms provide us with a strong platform to examine the functional weight of tones and vowels in spoken word recognition.By using ERPs to track Man-darin speakers’online word access in an idiom context,the present study should shed new light on the functional role of tones and vowels in Chinese spoken word recognition.

Experiment1

Experiment1used a violation paradigm,in which the last word of each idiom was changed in either tone,vowel,or both.For example,in yi3-luan3-ji1-shi2,shi2could be changed to(a)shi1,a tone violation;(b)shu2,a vowel violation;and(c)shu1,a com-bined violation.As each manipulation creates a deviation from the expected word,this violation paradigm has been widely used in ERP studies on language processing.For example,in a reading task using the violation paradigm,Liu,Li,Shu,Zhang,and Chen(2010) created semantic violations by changing the last words of the Chinese idioms and observed typical N400s and late positive com-ponents(LPC).Similarly,by embedding spoken word violations in the middle of Cantonese sentences,Schirmer et al.(2005)found robust N400and LPC effects for all types of violations.The N400 is a negatively going brain waveform that peaks around400ms in the centroparietal region after stimulus https://www.wendangku.net/doc/8b1634944.html,pared to con-gruous words,words incongruous with the preceding context could evoke larger N400amplitudes,and this effect could be earlier in auditory than in visual modality(Hagoort&Brown,2000;Hahne &Friederici,2002;Van Petten,Coulson,Rubin,Plante,&Parks, 1999).The N400effect is typically sensitive to semantic integra-tion dif?culty(Kutas&Federmeier,2000;Kutas&Hillyard, 1980).The LPC(or P600)is a centroparietally distributed positiv-ity that occurs in the time window of500–900ms after stimulus onset.As a late component typically elicited by syntactic incon-gruity,the LPC is thought to indicate syntactic integration,that is, a process initiated after encountering dif?culty,such as a subse-quent attempt to revise one’s initial parse of a sentence(Friederici, Hahne,&Mecklinger,1996;Friederici,Hahne,&Saddy,2002; Hagoort,Brown,&Osterhout,1999;O’Rourke&Van Petten, 2011;Osterhout&Holcomb,1992).Recent studies found that the LPC can be evoked when participants overtly revisited a semantic error after its detection in highly constraining structures(Bornkes-sel&Schlesewsky,2006;Kolk,Chwilla,Van Herten,&Oor,2003; Kuperberg,2007;Van Herten,Kolk,&Chwilla,2005;Van Petten &Luka,2006).As with the sentence,“After an air crash,where should the survivors be buried?”(where the syntax is intact but a semantic violation occurred due to its lack of?tness with the general event knowledge),an LPC would be elicited when partici-pants detected and presumably revisited the semantic problem (Sanford,Leuthold,Bohan,&Sanford,2011).This semantic LPC has been consistently observed in Chinese idioms(Liu et al.,2010; Nan,Friederici,Shu,&Luo,2009;Zhou,Zhou,&Chen,2004).

Therefore,we predict that both the N400and LPC effects would be observed for all types of violations when they were embedded in idioms.If the primacy of vowel processing holds,a larger or earlier N400effect should appear for vowel violation than for tone viola-tion.Otherwise,similar N400effects would be observed.Further-more,the pattern of LPCs will help us determine whether tones and vowels constrain the semantic reanalysis of the incorrect words similarly.

Methods

Participants

Fifteen native male speakers of Mandarin Chinese(M=25.6years) consented to participate in this study.Three additional participants were excluded due to high rejection rates of artifact electroen-cephalogram(EEG)trials.All participants were right-handed (mean score>73%)as measured by the Edinburgh Handedness Inventory(Old?eld,1971).They exhibited normal hearing sensi-tivity(better than15dB HL in both ears)at octave frequencies from500to4,000Hz.In addition,participants all reported having no previous history of neurological or psychiatric illnesses and normal or corrected-to-normal vision.

Stimuli

This study used240commonly used four-character idioms,divided into four conditions based on the manipulation of the target(last) words:(1)correct(e.g.,shi2in yi3-luan3-ji1-shi2);(2)tone viola-tion(e.g.,shi1);(3)vowel violation(e.g.,shu2);and(4)combined violation(e.g.,shu1).The words that begin with certain nasal, lateral,and approximant consonants(i.e.,/j/,/l/,/m/,/n/)were excluded,since pitch contours(tones)may be modulated on these sounds(Clark,Yallop,&Fletcher,2007).By ensuring that both tone and vowel violations occurred at the rhyme of the target word, this study allowed a legitimate comparison of their access in Chinese spoken word recognition(See Appendix for sample idioms used in this study).

We selected all idioms with similar syntactic structures in which the third word is a transitive verb and the fourth(target)word is a concrete noun that serves as the direct object of the third word.To avoid the pseudoword effect,we also ensured that all the mismatch words were real Chinese words.Since there were no available data for the usage frequency of Chinese idioms,we asked30native Mandarin speakers who didn’t participate in the ERP study to rate

1180J.Hu et al.

the familiarity of each idiom on a5-point Likert scale(1=unfa-miliar;5=very familiar).The idioms with a familiarity rating lower than three were excluded.The averaged familiarity score for the used idioms was4.25(SD=0.43).This ensured that the par-ticipants were highly familiar with all idioms,which guaranteed a strong contextual constraint that allowed no ambiguity for the upcoming target word.

Another group of40Chinese adults completed an acceptability rating task,in which they listened to recordings of all tested idioms and rated the?t of the?nal word on a scale from1(poor)to5 (excellent).The correct condition received an averaged cloze prob-ability rating of 4.93(SD=.09),whereas mismatched words received scores of1.23(SD=.22),1.21(SD=.21),1.17(SD=.16) for tone,vowel,and combined violation,respectively.One-way analysis of variance(ANOV A)showed no difference in the ratings across conditions,F(2,78)=1.49,p>.05.The word frequencies of the target stimuli were compared across the four conditions(Da, 2005).Results showed no effect of word type,F(3,956)=1.23, p>.05,suggesting comparable word frequencies across the four conditions.In addition,as there were no available phonological neighborhood data in Mandarin,we derived the phonological neighborhood density based on the number of real words that are associated with a syllable regardless of the tone.Results showed no main effect of condition,F(3,956)=1.87,p>.05,suggesting a comparable phonological neighborhood density across conditions.

Each participant listened to240different idioms,60for each condition.Their assignment was counterbalanced across and within each condition so each idiom was used only once for each subject(e.g.,subject1listened to the correct one,subject2to the tone violation,subject3to the vowel violation,and subject4to the combined violation).To balance the ratio of correct and incorrect judgment(1:1),another120correct idioms(familiarity rating: 4.28,SD=0.41)were selected based on the same criteria to serve as?llers.They were not used in the ERP analysis.Therefore,360 idioms in total were presented in four blocks,each containing90 idioms(45correct ones including30?llers,45incorrect ones with 15for each type of violation).The presentation order within and across each block was randomized across participants.

All the auditory stimuli were spoken by a male native Mandarin speaker,recorded through a microphone interfaced to a Pentium III 450computer in a soundproof chamber,and edited using Cool Edit Professional(version2.0).All the idioms were?rst read word by word naturally and slowly.Then,each idiom was edited to have a duration of2,800ms,consisting of four equal-length(700ms including the silent word boundary)word stimuli.The violation words were read individually and then cross-spliced to the idiom by replacing the last(correct)word to create the three violation con-ditions.Thus,the four conditions differed only in the last word. One-way ANOV A showed no difference in the target word length across conditions,F(3,177)=2.076,p>.05(correct condition: 407ms,tone violation:403ms,vowel violation:402ms,and com-bined violation:399ms).The speech stimuli were recorded at a rate of44kHz and digitized at16-bit A/D and then presented to the participants through high quality stereo headphones,with loudness and centering of the sound source individually adjusted(See Figure1for the sample spectrograms of the target words in four conditions).

Procedure

Participants were tested individually in a sound-attenuated experi-mental chamber.Stimuli presentation and data collection were completed through E-Prime2.0software.Each trial started with a visual central?xation cross,followed by a word-by-word presen-tation of each idiom through a headphone.The visual?xation cross would disappear1,000ms after the onset of the last word.This was followed by the presentation of a question mark.Then,the partici-pants were to judge the correctness of the last word by pressing the prede?ned button on the keyboard.Such a delayed response task could prevent the possible contamination of the ERP waveforms in the critical period(1,000ms after onset of the last word)by muscle movements.Once the participants made the judgment,the experi-ment proceeded to the next trial.Each trial had a duration of4s with a jittered intertrial interval of1s to2s.Prior to the experi-ment,20practice items were administered to familiarize the par-ticipants with the task.There was a2-min break after each block. The whole experiment lasted about2hours.

EEG Recording

The EEG data were collected with a64Ag-AgCl electrode cap connected according to the extended10–20system,using a Brain-Amp MR ampli?er and Brain Vision Recorder(version1.01b,BP GmbH).The impedance was kept below5k W,and the sampling rate was500Hz.All channels were referenced to FCz online.To control eye movement artifacts,horizontal and vertical

electroocu-Figure1.The sample spectrograms of the four types of target words from a Chinese idiom以卵击石(yi3-luan3-ji1-shi2).\shi2\(correct)was pronounced as\sh1\for tone violation(TV),\shu2\for vowel violation (VV),and\shu1\for combined violation(CV).The transition from consonants to vowels and tones was at a time window of about120–160ms (marked with the dashed line).

Tone and vowel processing in Mandarin1181

lograms(EOG)were recorded from electrodes above the right eye and at the outer canthus of the left eye,respectively.In of?ine processing,EEG data were?rst band-pass?ltered at0.3–30Hz and corrected for horizontal and vertical ocular artifacts.Then,epochs registered200ms before the onset of the critical stimuli(the last word)served as the baseline.Finally,recordings were rereferenced to“in?nity”reference provided by the reference electrode stand-ardization technique(Yao,2001).

Data Analysis

Averages of EEG recordings and behavioral response(accuracy and reaction time)were computed separately for each participant and condition.Each ERP epoch comprised of200ms prestimulus baseline and1,000ms after target onset.Trials with incorrect responses or with potentials greater than65m V were rejected as artifacts.The mean trial rejection rates over all participants for each experimental condition were less than1%with an average valid trial number of58out of the60(ranging from56to60).

To compare the time courses across experimental conditions, mean potential values were calculated every50ms from stimulus onset through1,000ms afterwards.For each time window,the results were?rst analyzed in an omnibus ANOV A across factors: tone(correct,incorrect),vowel(correct,incorrect),hemisphere (left,right,medial),and distribution(frontal,parietal,central). Further comparisons were planned for each region of interest(ROI) if interactions reached signi?cance.Nine groups of electrodes were selected as representative of nine different regions over the brain: left frontal(AF3,F7,F5,F3,FC5),right frontal(AF4,F8,F6,F4, FC6),medial frontal(Fz),left central(T7,C5,C3,FC1,CP1),right central(T8,C6,C4,FC2,CP2),medial central(Cz),left parietal (CP5,P3,P5,P7,O1),right parietal(CP6,P4,P6,P8,O2),and medial parietal(Pz).The multiple electrodes were then averaged and represented by one amplitude for each condition and latency range in statistical analyses.Because of the increased likelihood of Type I errors associated with the large number of analyses,only effects that reached signi?cance in two or more consecutive time windows were considered signi?cant(Schirmer et al.,2005).The Greenhouse-Geisser correction was applied when there was more than one degree of freedom(Greenhouse&Geisser,1959).

Results

Behavioral Data

The participants gave an average accuracy rating of0.98 (SD=0.14)across all conditions:0.97(SD=0.17)for the correct condition,0.97(SD=0.19)for tone violation,0.98(SD=0.15)for vowel violation,and0.99(SD=0.11)for combined violation.This showed that subjects successfully detected all the violation types. The average reaction times(RTs)were343ms(SD=73)for the correct condition,311ms(SD=48)for tone violation,312ms (SD=65)for vowel violation,and302ms(SD=72)for combined violation.A2(Correct/Incorrect)¥2(Tone vs.V owel Violation) repeated measures ANOV A revealed no signi?cant main effect for either tones,F(1,14)=2.88,p>.05,or vowels,F(1,14)=4.14, p=.06,or their interaction,F(1,14)=2.16,p>.05.

The behavioral results suggested that participants could easily judge the correctness of the target words across all conditions. However,as the detection of a semantic violation had to be held in memory until the response probe appeared,both RTs and accuracy may re?ect working memory or other related processes in this task.Thus,they may not be sensitive enough to reveal the online processing differences across conditions.Therefore,we turn to ERP measurements.

ERP Results

The overall average ERP traces,time-locked to the onset of the target words in each condition,are illustrated in Figure2.Three ERP components emerged:an earlier negativity between100and 200ms for all conditions,a later negativity in the200–400ms time window for all violations,and a LPC after500ms for all violations (Figure3).

For each of the twenty time windows,separate2(Tone:correct/ incorrect)¥2(V owel:correct/incorrect)¥3(Hemisphere:left/ right/medial)¥3(Distribution:frontal/parietal/central)repeated measures ANOV As were conducted based on the averaged ampli-tudes of the50-ms time window(Table1).

For the earlier negativity,results showed an interaction of the tone and vowel effect with distribution(see Table1for the F values).Thus,separate analyses for the simple effect of tone vio-lation(when vowels are correct)and vowel violation(when tones are correct)were performed for each ROI.Results showed that vowel violation evoked a signi?cantly larger negativity than the correct condition in frontocentral electrode sites,100–150ms: F(1,14)=4.79,p<.05;150–200ms:F(1,14)=6.12,p<.05. However,no such effect was found for tone violation at each ROI, p s>.05.As the peak amplitude and latency of this early negativity is important in characterizing its identity,as well as using the epoch averaging approach,we further analyzed its actual peak amplitude and latency.Results showed no difference in peak latency for each type of word,F(1,14)=0.053,p>.05(142ms for correct targets, 141ms for tone violation,144ms for vowel violation,140ms for combined violation).For the peak amplitude of this early negativ-ity,a signi?cant main effect of vowel violation was detected, F(1,14)=10.83,p<.01.However,no peak amplitude difference was found for tone violation,F(1,14)=0.39,p>.05.

For the later negative component,results showed that tone and vowel violation interacted with distribution and hemisphere in three consecutive time windows from200ms to350ms(see Table1for the F values).Simple effect analyses based on the averaged amplitudes of this time window showed no interaction among vowel violation,hemisphere,and distribution when tones were correct,p s>.05.However,the tone effect interacted with hemisphere,F(2,14)=3.90,p<.05,and distribution, F(2,28)=3.63,p<.05,when vowels were correct.Further tests showed that tone violation evoked negativity at the right frontal region,200–250ms:F(1,14)=6.19,p<.05;250–300ms: F(1,14)=6.64,p<.05;300–350ms:F(1,14)=8.06,p<.05.A one-way ANOV A for the N400effects evoked by the three types of violation,tone(tone violation–correct),vowel(vowel violation–correct),and combined(combined violation–correct)at each ROI, showed a main effect of violation type in two N400time windows, 250–300ms:F(2,28)=6.16,p<.01;300–350ms:F(2,28)=8.73, p<.01.Post hoc comparisons showed that vowel violation evoked a larger N400than tones at the central electrode sites,250–300ms: F(1,14)=22.75,p<.01;300–350ms:F(1,14)=14.66,p<.01.

For precise onset analysis of this negativity,we conducted ANOV As in the continuous time window of10ms starting from 200ms.Results showed that vowel violation evoked a continuous negativity starting from210ms,210–220ms:F(1,14)=5.03, p<.05;220–230ms:F(1,14)=5.35,p<.05;230–240ms: F(1,14)=7.06,p<.05;240–250ms:F(1,14)=10.44,p<.01;

1182J.Hu et al.

250–260ms:F (1,14)=12.10,p <.01.Similarly,such effect for tone violation started from 220ms,220–230ms:F (1,14)=4.85,p <.05;230–240ms:F (1,14)=6.69,p <.05;240–250ms:F (1,14)=8.73,p <.01;250–260ms:F (1,14)=6.52,p <.05;260–270ms:F (1,14)=5.65,p <.05.

To evaluate whether the earlier and later negativities re?ected modulation of two distinct ERP components,we compared the normalized amplitudes of the two components evoked by vowel violation with a 2(Latency Range:early/late;i.e.,100–200ms vs.200–400ms)¥3(Hemisphere:right/left/midline)¥3(Distribu-tion:frontal/central/parietal)ANOV A.Results showed a signi-?cant interaction between latency range and distribution,F (2,28)=11.23,p <.01.Simple effect analyses showed that the later negativity was much stronger than the early one in the central,F (1,14)=11.17,p <.01,and parietal regions F (1,14)=12.94,p <.01.

For the LPC,ANOV A results showed that the tone effect inter-acted with the vowel effect and distribution starting from 550ms.Simple effect tests showed that the effect of tone violation on the level of correct vowels had a broad distribution in the frontal,F (1,14)=6.15,p <.05,central,F (1,14)=18.70,p <.01,and pari-etal,F (1,14)=6.22,p <.05,regions,while this tonal effect on the level of incorrect vowels reached signi?cance at the right central area,F (1,14)=9.87,p <.01.For the LPC effect of vowel violation on the level of correct tones,results showed a signi?cant positivity only at the right central electrode sites,F (1,14)=14.04,p <.01,while this vowel effect on the level of incorrect tones was signi?cant at frontal,F (1,14)=19.04,p <.01,and central,F (1,14)=14.68,p <.01,regions.Caution must be taken in inter-preting the data,as the averaged waveform amplitude evoked by the vowel mismatch on the level of incorrect tones in the frontal (-2.32)and central (0.15)areas was more negative than on the level of correct tones (-1.98and 0.44,respectively).So,these effects on the frontal and central areas were not real LPC effects.Thus,

the

Figure 2.ERPs evoked by the target stimuli presented in idioms across the four conditions.The ?gures show the “average electrodes”formed by combining multiple electrodes in the region (L =left hemisphere;R =right hemisphere;F =frontal;C =central;P =

parietal).

Figure 3.Topographical scalp distributions of the three ERP components evoked by different violations (C =correct;TV =tone violation;VV =vowel violation;CV =combined violation).

Tone and vowel processing in Mandarin 1183

LPC evoked by vowel violation was limited only to the right parietal region.

Discussion

Experiment1investigated the processing of vowels and tones in the spoken word recognition of Mandarin idioms.Three ERP compo-nents were observed:an earlier negativity,a later negativity,and a late positive component.

The early frontal-central negativity observed for all types of words might represent an N1-like effect of recognizing the acous-tic features of a syllable(Friederici,Pfeifer,&Hahne,1993;Naa-tanen&Picton,1987).Despite the similar peak latency across all conditions,a larger amplitude was evoked by vowel mismatch than the correct condition.However,no such effect was observed for tone mismatch.This result might suggest a temporal differ-ence between the processing of vowel and tone information in the stream of auditory input.Consonants or consonant clusters could be informative about the nature of the upcoming vowels due to speci?c consonant-vowel transitions(Clark et al.,2007).The con-sonants of the target words could entail information about the vowels.Pitch contours,however,are modulated in vowels. Acoustic analyses of the target word stimuli showed that vowel deviations could occur at the start of the consonant-vowel tran-sitions(about120ms in the present study),whereas tone devia-tions occurred after the transitions were completed at about 160ms(Figure1).Thus,the early negativity observed in this study replicated previous studies by showing that vowel violation might be detected earlier before tone violation(Cutler&Chen, 1997).However,there might be an alternative lower level expla-nation to this N1-like negativity.As N1is sensitive to the acoustic properties(e.g.,intensity)(Naatanen&Picton,1987),it is pos-sible that the larger N1elicited by vowel mismatch might result from the physical differences across conditions.This question will be addressed in Experiment2.

The current later negativity observed for all violations repre-sented a semantic N400effect(Kutas&Federmeier,2011;Kutas& Hillyard,1980).However,the latency of this effect might appear to be a little early for an N400.This might be related to the fact that this study used auditory semantic violations with a strong idiomatic context.Several studies had reported that auditory N400s,in con-trast to visual N400s,had an earlier latency range(Brown-Schmidt &Canseco-Gonzalez,2004;Holcomb&Neville,1990,1991;Li, Yang,&Hagoort,2008).The onset and peak latency of an auditory N400effect could occur even before the acoustic offset of a target word(McCallum,Farmer,&Pocock,1984;Van Den Brink, Brown,&Hagoort,2006).Additionally,highly constraining lin-guistic structures(e.g.,Chinese idioms)could elicit an early onset of the N400effect(Liu et al.,2010;Nan et al.,2009).Thus,the early latency of the N400effect observed in this study agreed with previous?ndings by showing that auditory word processing can begin prior to the arrival of all the acoustic information of a spoken word(Van Petten et al.,1999)and that the time course of this processing can be in?uenced by the semantic properties of the context(Marslen-Wilson,1987).

In contrast to the two negativities,all violations reliably elicited the LPCs(P600s).The current effect agreed with previous studies by showing that the LPCs could also be evoked by semantic anomalies(Bornkessel&Schlesewsky,2006;Brouwer,Fitz,& Hoeks,2012;Kolk et al.,2003;Kuperberg,2007;Sanford et al., 2011;Van Herten et al.,2005;Van Petten&Luka,2006).As in “The cat that?ed from the mice ran across the room,”a typical parietal LPC was observed for the semantically incongruous word embedded in the syntactically correct sentence,which seemed to be amenable to“repair”because it contained related words arranged in an implausible way(Van Herten et al.,2005).These semantic LPCs have been attributed to the reanalysis,reattending,or pro-longed analysis processes similar to those thought to underlie syn-tactic P600s(Kolk et al.,2003;Kuperberg,2007;Van Herten, Chwilla,&Kolk,2006;Van Petten&Luka,2012).Thus,the LPC

Table1.ANOVA Results for the Effect of Tone vs.Vowel Violation and Their Interaction with Hemisphere and Distribution

Time window(ms)

T V T*D V*D V*H T*H*D T*V T*V*D T*V*H*D F(1,14)F(1,14)F(2,28)F(2,28)F(2,28)F(4,56)F(1,14)F(2,28)F(4,56)

0–50 1.677 2.018.009.137.356.771 2.267 2.030 1.189

50–100.108.114.232.181.069 1.998 2.510 2.234.254 100–150.162 4.726* 1.089 1.441.802.898 5.918*7.586** 1.379 150–200 1.40616.139**.664 1.292 1.016.281 2.756 3.091# 1.693 200–250 6.005*8.518* 1.119.065 1.016.603 1.886 1.284 3.460* 250–300 4.593*34.229**.685.728 1.845.410 4.667* 1.751 3.863** 300–350 5.530*36.332**.794 3.136# 3.903# 1.085.544.752 2.068# 350–400.139 4.909* 1.291.610 2.729 1.449.002 1.757.743 400–450 2.908.982.348.396 1.685 1.576 1.418 1.267 1.316 450–5008.476* 4.159.407 4.831* 4.441* 2.213 3.890 2.036 1.204 500–5509.795** 5.397*.251 5.469* 3.023 5.156** 5.083* 2.539 1.589 550–6008.079*9.737** 2.0227.379** 4.911* 3.747*8.549* 4.610*.760 600–650 4.737* 1.835 5.210* 5.465* 6.242** 6.036**11.223**10.356** 1.013 650–700 5.082* 6.154* 3.520* 5.029* 3.895 3.907*9.645** 5.714*.399 700–750 4.236 5.732* 6.289**.128.528 2.87311.548**7.871**.267 750–800 2.33910.240** 2.694 2.861.857 3.753*7.726*10.392**.082 800–850 1.58413.025** 4.027* 3.231.642 3.147* 6.716*10.694**.166 850–900.6847.621* 4.054* 3.613.321 3.068* 4.993*9.802**.311 900–950.8408.463* 1.612 3.718.583 2.802 4.642*8.977**.598 950–1,000.170 4.034.100 1.954.392 1.778 3.43010.144**.584 Notes.Only those categories with time windows containing signi?cant F values are given.There were no signi?cant interactive effects at any time window for T*H,V*H*D,or T*V*H.T=tone violation effect(correct,incorrect);V=vowel violation effect(congruous,anomalous);H=hemisphere(left,right, medial);D=distribution(frontal,central,parietal).

#p<0.1.*p<0.05.**p<0.01.

1184J.Hu et al.

effect in this study might suggest that the words with tone or vowel deviations were perceived as“almost right,”that is,somehow related to the expected word.Thus,participants devoted some effort to rechecking what they had heard in an attempt to?t the target word into the idiomatic context.

The current effect also replicated the?ndings of previous studies with Chinese idioms(Liu et al.,2010;Nan et al.,2009; Zhou et al.,2004),in which they consistently observed larger LPCs following the N400effects for the mismatched target words.As this positivity was found to occur after the N400component,it could also be labeled as a post-N400positivity(PNP)(Thornhill&Van Petten,2012;Van Petten&Luka,2012).

Studies have shown that congruent and incongruent sentence completions may yield different PNP scalp distributions.Frontally distributed PNPs were observed for unexpected or less predicted words in semantically congruent sentence completions(Feder-meier,Wlotko,De Ochoa-Dewald,&Kutas,2007;Thornhill& Van Petten,2012);whereas this late positivity was predominantly parietal for semantically incongruent completions created by word violations(Kuperberg,2007;Pijnacker,Geurts,van Lambalgen, Buitelaar,&Hagoort,2010;Van Petten&Luka,2012).The current PNPs for vowel mismatch showed typical parietal distribution, whereas this effect of tone mismatch appeared in both parietal and frontal regions.This suggested that although both violations led to semantic incongruence,vowel mismatch more typically created incongruent idiom completions than tone mismatch.Thus,the tone-mismatched words might somehow be perceived as more related to the expected word than the vowel-mismatched words. Consistent with this interpretation,the participants reported in the post-test interviews that they were more likely to devote effort to rechecking the target words with tone deviations than vowel devia-tions.This?nding supported the previous behavioral studies, which reported longer RTs and lower accuracy in acceptability judgment for tone than vowel violation(Repp&Lin,1990;Taft& Chen,1992;Tong et al.,2008)and suggested a more constraining weight of vowel than tone information.

Experiment1showed that vowel and tone violation modulate the two negativities and the LPC differently.However,with the violation paradigm,different words were used across conditions. Thus,match conditions always involved physical differences com-pared to mismatch conditions.These differences might modulate the ERP effects,in particular the earlier and later negativities observed in this study.Although the acoustic parameters of the target words across the four conditions were carefully matched,it is essential to examine whether these physical differences modu-lated the ERP responses differently across conditions.This effect was tested in Experiment2.

Experiment2

Serving as a control,Experiment2compared the ERP waveforms evoked by the four types of words used in Experiment1in a lexical decision task,in which these words were presented in isolation, together with the nonwords.By removing the semantic context of the target words,Experiment2could clarify whether the early and late negativities found in Experiment1were due to the physical differences among the four types of words.If the ERP components evoked by the four conditions did not differ,results would rule out the possibility that the ERP effects of Experiment1were in?uenced by lower-level unrelated physical differences across conditions.

Methods

Participants

To eliminate intersubject variation,Experiment2tested the same 15subjects who participated in Experiment1at3months prior. Stimuli

Each participant listened to240real words presented in isolation (60from each of the four conditions).These target words were extracted from the material that was presented in Experiment1.To balance the word–nonword ratio(1:1),we created another240 nonwords to serve as?llers.The nonword auditory stimuli were produced by the same native Mandarin speaker in Experiment1 with the same procedure and protocols.

Procedure

The experimental environment and procedure was similar to that of Experiment1.Each trial started with a visual?ip of the central ?xation cross,followed1,000ms later by the presentation of a target sound through the headphone.The participants were instructed to judge whether the stimulus was a real Mandarin word by pressing the prede?ned button on the keyboard.Once the par-ticipants made the judgment,the experiment proceeded to the next trial.Prior to the experiment,20practice items were administered to familiarize the participants with the task.There was a2-min break after each of the four blocks.The whole experiment lasted about1hour.

EEG Recording and Data Analysis

EEG recordings and data analyses were similar to that used in Experiment1.

Results

Behavioral Data

The participants gave an average accuracy rating of0.94 (SD=0.24)for the correct condition,0.95(SD=0.23)for tone violation,0.94(SD=0.23)for vowel violation,0.93(SD=0.26) for the combined violation,and0.89(SD=0.32)for the nonword condition.A one-way ANOV A showed no difference in judgment accuracy between each type of real word,F(3,56)=0.46,p>.05. The average RTs across all conditions were809ms(SD=219)for the correct condition,831ms(SD=228)for tone violation,839ms (SD=226)for vowel violation,and841ms(SD=233)for com-bined violation.A one-way ANOV A showed no difference in accu-racy in lexical judgment between each type of real word, F(3,56)=0.127,p>.05.Thus,behavioral results suggested that participants could easily recognize all the real words from the nonwords with high accuracy and similar speed.

ERP Results

As illustrated in Figure4,two negativities emerged for each type of target word,the earlier negativity in the time window of100and 200ms and the later negativity in the time window of400and 500ms.To compare the amplitude differences evoked by the target words in each negativity,4(Word Type:correct,tone violation, vowel violation,combined violation)¥3(Hemisphere:left,right, medial)¥3(Distribution:frontal,parietal,central)repeated meas-

Tone and vowel processing in Mandarin1185

ures ANOV As were conducted across each consecutive 50-ms time window.For the N1-like early negativity,results showed no sig-ni?cant effect for word type,100–150ms:F (3,42)=0.48,p >.05;150–200ms:F (3,42)=0.33,p >.05,or its interaction with hemi-sphere or distribution,p s >.05.Similar to the early negativity observed in Experiment 1,the N1effect for all types of words had a frontocentral distribution with a peak latency at about 140ms.As well as using the epoch window averaging approach,further analy-sis with the actual N1peak amplitude also revealed no signi?cant effect for word type,F (3,42)=0.19,p >.05.For the N400-like late negativity,results showed no signi?cant effect for word type at the N400time window,400–450ms:F (3,42)=0.06,p >.05;450–500ms:F (3,42)=0.07,p >.05,nor did the effect of word type interact with hemisphere or distribution,p s >.05.

Discussion

Experiment 2examined the ERP components evoked by the target words presented in isolation.Results showed that both the early negativities and the N400effects were comparable across condi-tions.Thus,Experiment 2ruled out the possibility that the violation effects observed in Experiment 1were only due to lower-level physical differences across the four types of target words.

The larger N1vowel effect for target words in idioms (Experi-ment 1)in comparison to no such effect for isolated words (Experi-ment 2)suggests that there were early top-down contextual expectations about the ?nal word in idioms.Experiment 1showed

that vowel mismatch was re?ected earlier (the N1effect)than tone mismatch,which only evoked an N400effect.Is it possible that the earlier and later negativities have similar functionalities;that is,the mismatch effect for tones might be an index of the same mismatch analysis as the earlier mismatch effect for vowels?This question will be addressed in General Discussion.

General Discussion

The present study investigated the access of tone and vowel infor-mation in Mandarin word recognition in Chinese idioms.We will ?rst address whether the earlier and later negativities were a monophasic shift or a biphasic effect consisting of an N1and an N400component.

A comparison of the two effects showed that they had very different scalp distributions,which could be interpreted as re?ect-ing the activities of at least partly distinct neuronal populations (Naatanen &Picton,1987).Thus,the present results supported the biphasic view that the earlier and later negativities showed modu-lations of two distinct ERP components.

The presence of an early negativity before a typical N400was consistent with the ?ndings of Hagoort and Brown (2000)and Van Den Brink,Brown,and Hagoort (2001).They also observed the early negativities preceding the N400effects for the semantically anomalous spoken words.Van Den Brink et al.(2001)proposed that the amplitude modulation of this early negative component re?ected a lexical selection process that occurs at the interface

of

Figure 4.ERPs evoked by the target stimuli presented in isolation across the four different conditions.The ?gures show the “average electrodes”formed by combining multiple electrodes in the region (L =left hemisphere;R =right hemisphere;F =frontal;C =central;P =parietal).

1186J.Hu et al.

lexical form and contextual meaning.A larger early negativity(the vowel mismatch condition in Experiment1)might indicate that the cohort does not contain semantic features that?t the sentence context.After this early assessment process,selection of one spe-ci?c candidate takes place with the aid of additional acoustic input and supporting context.The N400effect then re?ects semantic integration of the selected candidate into the higher-level context representation(Kutas&Federmeier,2011;Kutas&Hillyard, 1980).

Thus,the N400effect for tone mismatch and the N1effect for vowel mismatch might not indicate the same mismatch analysis. Instead,the early negativity might represent a functionality that is distinct from the N400,that is,a lexical selection process that precedes the integration of a selected word into the sentential context(Van Den Brink et al.,2001).In the process of spoken word recognition,word-initial sounds could activate a cohort(Marslen-Wilson,1987)or a shortlist(Norris,1994)of possible lexical candidates.Further incoming bottom-up sensory information and top-down contextual information may then interact and?nally reduce the cohort or shortlist of possible candidates to one.The presence of the early negativity preceding the N400effect might re?ect such an initial assessment process,as its latency(100–200ms)fell into the typical time window for language speci?c phonetic–phonological analysis(Salmelin,2007).Analogous to the functional interpretation of the N400,the amplitude of the N1-like negativity is indicative of whether the initial assessment of the activated lexical candidates reveals the presence of the lexical features that are required by the contextual speci?cations.

After the lexical selection in listeners’mental lexicon,the retrieved semantic information has to be integrated with the higher-order meaning of sentence context,as indexed by the N400effect. The present results showed a relatively similar N400onset latency across different violations but a larger N400amplitude for vowel mismatch than tone mismatch.The current N400latency pattern agreed with Schirmer et al.(2005)by showing that tones and vowels might constrain semantic integration concurrently.It also provided electrophysiological evidence for previous behavioral priming study,which revealed primacy of vowels in the early phase of lexical activation(larger N1)but comparable timing in accessing the two types of information later(Lee,2007).Similarly,Soto-Faraco,Sebastián-Gallés,and Cutler(2001)reported that when experimental tasks focused on the outcome of lexical processing, tones and vowels were accessed concurrently.However,when tasks focused on sublexical processing,vowels might weigh stronger than tones.

The literature has shown that N400amplitude is sensitive to semantic integration dif?culty(Kutas&Federmeier,2000).Thus, the larger vowel N400amplitude than the tone effect observed in this study showed that although tones and vowels constrained semantic integration concurrently,more effort was allocated to integrating vowel mismatch than tone mismatch into the idiomatic context.

The three ERP components observed in this study allowed us to compare the online access of tone and vowel information in a dynamic manner.Different modulations of the ERP components by tone versus vowel mismatch suggested that the two types of infor-mation might function differently across substages of Mandarin spoken word recognition.The larger N1evoked by the vowel mismatch showed a perceptual advantage for vowels than tones in the lexical selection process.The larger N400effect for vowel than tone mismatch suggested that vowels might constrain the semantic integration more than tones.Finally,during the later stage of semantic reanalysis,a stronger LPC for the tone than vowel viola-tion suggested that vowel mismatch represented a stronger seman-tic deviation from the correct words than tone mismatch.In summary,the?ndings suggested that vowels exerted a more con-straining weight than tones in characterizing a word’s identity in Mandarin spoken word recognition.

This study embedded target words in Chinese idioms.Unlike sentence contexts that have a certain degree of ambiguity for the upcoming word,idioms have no ambiguity for the expected target syllable;that is,we created an equally strong expectation for tones and vowels.Thus,the present?ndings suggested that even under semantically highly constraining contexts(i.e.,idioms)in a tonal language(i.e.,Chinese),primacy of vowels still held.

The different functional weight of vowels and tones at different stages of Mandarin word recognition might also be related to their information values,which was de?ned by the probability that a given linguistic signal appears in a communication system(Garner, 1988).The higher the probability,the lower the information value. The probability of a Chinese syllable being used in language com-munication could be measured by calculating its equivalence class size(ECS).Tong et al.(2008)reported that the average ECS for Chinese vowels and tones are36.8(SD=23.0)and310 (SD=37.6),respectively.Thus,vowels are much more informative than tones in Mandarin.Therefore,when the two types of infor-mation compete for attentional resources,priority is given to the more informative dimensions as shaped by listening strategies developed from long-term language experience(Lavie&De Fockert,2005).

Furthermore,the information theory provides an explanation for the relative weakness of tones in constraining word recognition. Tong et al.(2008)argued that due to the small tonal inventory,each tone is associated with more words than vowels.Consequently, tones exert fewer constraints on word recognition than vowels,as supported by an implicit priming task in Mandarin(Chen,Chen,& Dell,2002).The perceptual disadvantage of tones might not merely be due to their later availability in the auditory stream.The lower priority of tones relative to vowels might also be related to their differences in information values in Chinese.

In summary,the observed differences in the three distinct ERP components evoked by the different types of violations supported a functional dissociation of tone and vowel processing in Mandarin spoken word recognition.

References

Bornkessel,I.,&Schlesewsky,M.(2006).The extended argument depend-ency model:A neurocognitive approach to sentence comprehension across languages.Psychological Review,113,787–821.doi:10.1037/ 0033-295X.113.4.787

Brouwer,H.,Fitz,H.,&Hoeks,J.(2012).Getting real about semantic illusions:Rethinking the functional role of the P600in language comprehension.Brain Research,1446,127–143.doi:10.1016/ j.brainres.2012.01.055Brown-Schmidt,S.,&Canseco-Gonzalez,E.(2004).Who do you love, your mother or your horse?An event-related brain potential analysis of tone processing in Mandarin Chinese.Journal of Psycholinguistic Research,33,103–135.doi:10.1023/B:JOPR.0000017223.98667.10 Chao,Y.(1968).A grammar of spoken Chinese.Berkeley,CA:University of California Press.

Chen,J.Y.,Chen,T.M.,&Dell,G.S.(2002).Word-form encoding in Mandarin Chinese as assessed by the implicit priming task.Journal

Tone and vowel processing in Mandarin1187

of Memory and Language,46,751–781.doi:10.1006/jmla.2001.

2825

Clark,J.E.,Yallop,C.,&Fletcher,J.(2007).An introduction to phonetics and phonology(V ol.9).Oxford,UK:Wiley-Blackwell.

Cutler,A.(1986).Forbear is a homophone:Lexical prosody does not constrain lexical https://www.wendangku.net/doc/8b1634944.html,nguage and Speech,29,201–220.doi:

10.1177/002383098602900302

Cutler,A.,&Chen,H.(1997).Lexical tone in Cantonese spoken-word processing.Perception&Psychophysics,59,165–179.doi:10.3758/ BF03211886

Da,J.(2005).Combined character frequency list of classical and modern Chinese.Available at https://www.wendangku.net/doc/8b1634944.html,/chinese-computing/ statistics/char/list.php?Which=TO

Federmeier,K.,Wlotko,E.W.,De Ochoa-Dewald,E.,&Kutas,M.(2007).

Multiple effects of sentential constraint on word processing.Brain Research,1146,75–84.doi:10.1016/j.brainres.2006.06.101 Friederici,A.D.,Hahne,A.,&Mecklinger,A.(1996).Temporal structure of syntactic parsing:Early and late event-related brain potential effects.

Journal of Experimental Psychology:Learning,Memory,and Cogni-tion,22,1219–1248.doi:10.1037//0278-7393.22.5.1219 Friederici,A.D.,Hahne,A.,&Saddy,D.(2002).Distinct neurophysiologi-cal patterns re?ecting aspects of syntactic complexity and syntactic repair.Journal of Psycholinguistic Research,31,45–63.doi:10.1023/ A:1014376204525

Friederici,A.D.,Pfeifer,E.,&Hahne,A.(1993).Event-related brain potentials during natural speech processing:Effects of semantic,mor-phological and syntactic violations.Cognitive Brain Research,1,183–192.doi:10.1016/0926-6410(93)90026-2

Friedrich,C.,Kotz,S.,Friederici,A.,&Alter,K.(2004).Pitch modulates lexical identi?cation in spoken word recognition:ERP and behavioral evidence.Cognitive Brain Research,20,300–308.doi:10.1016/ j.cogbrainres.2004.03.007

Garner,W.R.(1988).The contribution of information theory to psychol-ogy.In W.E.Hirst(Ed.),The making of cognitive science:Essays in honor of George https://www.wendangku.net/doc/8b1634944.html,ler(pp.19–35).Cambridge,UK:Cambridge University Press.

Greenhouse,S.W.,&Geisser,S.(1959).On methods in the analysis of pro?le data.Psychometrika,24,95–112.doi:10.1007/BF02289823 Hagoort,P.,&Brown,C.M.(2000).ERP effects of listening to speech: Semantic ERP effects.Neuropsychologia,38,1518–1530.doi:10.1016/ S0028-3932(00)00052-X

Hagoort,P.,Brown,C.M.,&Osterhout,L.(1999).The neurocognition of syntactic processing.In P.Hagoort&C.M.Brown(Eds.),The neuro-cognition of language(pp.273–317).Oxford,UK:Oxford University Press.

Hahne,A.,&Friederici,A.D.(2002).Differential task effects on semantic and syntactic processes as revealed by ERPs.Cognitive Brain Research, 13,339–356.doi:10.1016/S0926-6410(01)00127-6

Hickok,G.,&Poeppel,D.(2007).The cortical organization of speech processing.Nature Reviews Neuroscience,8,393–402.doi:10.1038/ nrn2113

Holcomb,P.J.,&Neville,H.J.(1990).Auditory and visual semantic priming in lexical decision:A comparison using event-related brain https://www.wendangku.net/doc/8b1634944.html,nguage and Cognitive Processes,5,281–312.doi:

10.1080/01690969008407065

Holcomb,P.J.,&Neville,H.J.(1991).Natural speech processing:An analysis using event-related brain potentials.Psychobiology,19,286–300.

Kolk,H.H.J.,Chwilla,D.J.,Van Herten,M.,&Oor,P.J.W.(2003).

Structure and limited capacity in verbal working memory:A study with event-related potentials.Brain and Language,85,1–36.doi:10.1016/ S0093-934X(02)00548-5

Kuperberg,G.(2007).Neural mechanisms of language comprehension: Challenges to syntax.Brain Research,1146,23–49.doi:10.1016/ j.brainres.2006.12.063

Kutas,M.,&Federmeier,K.(2000).Electrophysiology reveals semantic memory use in language comprehension.Trends in Cognitive Sciences, 4,463–470.doi:10.1016/S1364-6613(00)01560-6

Kutas,M.,&Federmeier,K.(2011).Thirty years and counting:Finding meaning in the N400component of the event-related brain potential (ERP).Annual Review of Psychology,62,621–674.doi:10.1146/ annurev.psych.093008.131123

Kutas,M.,&Hillyard,S.(1980).Reading senseless sentences:Brain poten-tials re?ect semantic incongruity.Science,207,203–205.doi:10.1126/ science.7350657Lavie,N.,&De Fockert,J.(2005).The role of working memory in atten-tional capture.Psychonomic Bulletin&Review,12,669–674.doi:

10.3758/BF03196756

Lee,C.(2007).Does horse activate mother?Processing lexical tone in form https://www.wendangku.net/doc/8b1634944.html,nguage and Speech,50,101–123.doi:10.1177/ 00238309070500010501

Li,X.,Yang,Y.,&Hagoort,P.(2008).Pitch accent and lexical tone processing in Chinese discourse comprehension:An ERP study.

Brain Research,1222,192–200.doi:10.1016/j.brainres.2008.

05.031

Liu,S.,&Samuel,A.(2007).The role of Mandarin lexical tones in lexical access under different contextual https://www.wendangku.net/doc/8b1634944.html,nguage and Cognitive Processes,22,566–594.doi:10.1080/01690960600989600

Liu,Y.,Li,P.,Shu,H.,Zhang,Q.,&Chen,L.(2010).Structure and meaning in Chinese:An ERP study of idioms.Journal of Neurolinguis-tics,23,615–630.doi:10.1016/j.jneuroling.2010.06.001

Malins,J.,&Joanisse,M.(2010).The roles of tonal and segmental infor-mation in Mandarin spoken word recognition:An eyetracking study.

Journal of Memory and Language,62,407–420.doi:10.1016/ j.jml.2010.02.004

Marslen-Wilson,W.(1987).Functional parallelism in spoken word-recognition.Cognition,25,71–102.doi:10.1016/0010-0277(87) 90005-9

Mattys,S.L.,White,L.,&Melhorn,J.F.(2005).Integration of multiple speech segmentation cues:A hierarchical framework.Journal of Experi-mental Psychology:General,134,477–500.doi:10.1037/0096-3445.134.4.477

McCallum,W.,Farmer,S.,&Pocock,P.(1984).The effects of physical and semantic incongruites on auditory event-related potentials.Electroen-cephalography and Clinical Neurophysiology/Evoked Potentials Section,59,477–488.doi:10.1016/0168-5597(84)90006-6 Naatanen,R.,&Picton,T.(1987).The N1wave of the human electric and magnetic response to sound:A review and an analysis of the component structure.Psychophysiology,24,375–425.doi:10.1111/j.1469-8986.1987.tb00311.x

Nan,Y.,Friederici,A.,Shu,H.,&Luo,Y.(2009).Dissociable pitch processing mechanisms in lexical and melodic contexts revealed by ERPs.Brain Research,1263,104–113.doi:10.1016/j.brainres.

2009.01.030

Norris,D.(1994).Shortlist:A connectionist model of continuous speech recognition.Cognition,52,189–234.doi:10.1016/0010-0277(94) 90043-4

Old?eld,R.C.(1971).The assessment and analysis of handedness:The Edinburgh inventory.Neuropsychologia,9,97–113.doi:10.1016/0028-3932(71)90067-4

O’Rourke,P.L.,&Van Petten,C.(2011).Morphological agreement at a distance:Dissociation between early and late components of the event-related brain potential.Brain Research,1392,62–79.doi:10.1016/ j.brainres.2011.03.071

Osterhout,L.,&Holcomb,P.J.(1992).Event-related brain potentials elicited by syntactic anomaly.Journal of Memory and Language,31, 785–806.doi:10.1016/0749-596X(92)90039-Z

Pijnacker,J.,Geurts,B.,van Lambalgen,M.,Buitelaar,J.,&Hagoort,P.

(2010).Exceptions and anomalies:An ERP study on context sensitivity in autism.Neuropsychologia,48,2940–2951.doi:10.1016/ j.neuropsychologia.2010.06.003

Repp,B.,&Lin,H.(1990).Integration of segmental and tonal information in speech perception:A cross-linguistic study.Journal of Phonetics,18, 481–495.doi:10.1121/1.2028239

Salmelin,R.(2007).Clinical neurophysiology of language:The MEG approach.Clinical Neurophysiology,118,237–254.doi:10.1016/ j.clinph.2006.07.316

Sanford,A.J.,Leuthold,H.,Bohan,J.,&Sanford,A.J.S.(2011).Anoma-lies at the borderline of awareness:An ERP study.Journal of Cognitive Neuroscience,23,514–523.doi:10.1162/jocn.2009.21370 Schirmer,A.,Tang,S.,Penney,T.,Gunter,T.,&Chen,H.(2005).Brain responses to segmentally and tonally induced semantic violations in Cantonese.Journal of Cognitive Neuroscience,17,1–12.doi:10.1162/ 0898929052880057

Soto-Faraco,S.,Sebastián-Gallés,N.,&Cutler,A.(2001).Segmental and suprasegmental mismatch in lexical access.Journal of Memory and Language,45,412–432.doi:10.1006/jmla.2000.2783

Taft,M.,&Chen,H.(1992).Judging homophony in Chinese:The in?uence of tones.In H.Chen&O.J.L.Tzeng(Eds.),Language processing in Chinese(pp.151–172).Oxford,England:North-Holland.

1188J.Hu et al.

Thornhill,D.E.,&Van Petten,C.(2012).Lexical versus conceptual antici-pation during sentence processing:Frontal positivity and N400ERP components.International Journal of Psychophysiology,83,382–392. Tong,Y.,Francis,A.L.,&Gandour,J.T.(2008).Processing dependencies between segmental and suprasegmental features in Mandarin Chinese.

Language and Cognitive Processes,23,689–708.doi:10.1016/ j.ijpsycho.2011.12.007

Van Den Brink,D.,Brown,C.M.,&Hagoort,P.(2001).Electrophysiologi-cal evidence for early contextual in?uences during spoken-word recog-nition:N200versus N400effects.Journal of Cognitive Neuroscience, 13,967–985.doi:10.1162/089892901753165872

Van Den Brink,D.,Brown,C.M.,&Hagoort,P.(2006).The cascaded nature of lexical selection and integration in auditory sentence process-ing.Journal of Experimental Psychology:Learning,Memory,and Cog-nition,32,364–372.doi:10.1037/0278-7393.32.3.364

Van Herten,M.,Chwilla,D.J.,&Kolk,H.H.J.(2006).When heuristics clash with parsing routines:ERP evidence for con?ict monitoring in sentence perception.Journal of Cognitive Neuroscience,18,1181–1197.doi:10.1162/jocn.2006.18.7.1181

Van Herten,M.,Kolk,H.H.J.,&Chwilla,D.J.(2005).An ERP study of P600effects elicited by semantic anomalies.Cognitive Brain Research, 22,241–255.doi:10.1016/j.cogbrainres.2004.09.002

Van Petten,C.,Coulson,S.,Rubin,S.,Plante,E.,&Parks,M.(1999).Time course of word identi?cation and semantic integration in spoken lan-

guage.Journal of Experimental Psychology:Learning,Memory,and Cognition,25,394–417.doi:10.1037//0278-7393.25.2.394

Van Petten,C.,&Luka,B.J.(2006).Neural localization of semantic context effects in electromagnetic and hemodynamic studies.Brain and Language,97,279–293.doi:10.1016/j.bandl.2005.11.003

Van Petten,C.,&Luka,B.J.(2012).Prediction during language compre-hension:Bene?ts,costs,and ERP components.International Journal of Psychophysiology,83,176–190.doi:10.1016/j.ijpsycho.2011.09.015 Yao,D.(2001).A method to standardize a reference of scalp EEG record-ings to a point at in?nity.Physiological Measurement,22,693–711.doi:

10.1088/0967-3334/22/4/305

Ye,Y.,&Connine,C.(1999).Processing spoken Chinese:The role of tone https://www.wendangku.net/doc/8b1634944.html,nguage and Cognitive Processes,14,609–630.doi:

10.1080/016909699386202

Yip,M.(2001).Phonological priming in Cantonese spoken-word process-ing.Psychologia,44,223–229.doi:10.2117/psysoc.2001.223 Zhou,S.,Zhou,W.,&Chen,X.(2004).Spatiotemporal analysis of ERP during Chinese idiom comprehension.Brain Topography,17,27–37.

doi:10.1023/B:BRAT.0000047334.48256.9f

(R eceived October18,2011;A ccepted May23,2012)

Tone and vowel processing in Mandarin1189

1190J.Hu et al.

Appendix

Sample idioms tested in the present study and their manipulations

No.Idiom Chinese pronunciation Correct Tone violation V owel violation Combined violation 1大义灭亲dàyìmièq?ˉn qin1qin2qu1qu2

2 goˇu qieˇtoˉu sheˉng sheng1sheng2shu1shu2

3热火朝天rèhuoˇcháo tiaˉn tian1tian2tong1tong2

4胆大包天daˇn dàbaˉo tiaˉn tian1tian2tou1tou2

5声东击西sheˉng doˉng j?ˉx?ˉxi1xi2xu1xu2

6快马加鞭kuài maˇjiaˉbiaˉn bian1bian3bei1bei3

7乐极生悲lèjísheˉng beˉi bei1bei3bing1bing3

8调虎离山diào huˇlíshaˉn shan1shan3shu1shu3

9异口同声yìkoˇu tóng sheˉng sheng1sheng3shou1shou3

10大海捞针dàhaˇi laˉo zheˉn zhen1zhen3zhou1zhou3

11闭门造车bìmén zào cheˉche1che4chu1chu4

12锦上添花j?ˇn shàng tiaˉn huaˉhua1hua4han1han4

13力不从心lìbùcóng x?ˉn xin1xin4xuan1xuan4

14铁证如山tieˇzhèng rúshaˉn shan1shan4she1she4

15刻骨铭心kèguˇmíng x?ˉn xin1xin4xue1xue4

16丧权辱国sàng quán ruˇguóguo2guo1ge2ge1

17对牛弹琴duìniútán qín qin2qin1que2que1

18聚精会神jùj?ˉng huìshén shen2shen1shao2shao1

19大难临头dànàn lín tóu tou2tou1ting2ting1

20以卵击石y?ˇluaˇn j?ˉshíshi2shi1shu2shu1

21卖国求荣mài guóqiúróng rong2rong3ren2ren3

22目中无人mùzhoˉng wúrén ren2ren3rao2rao3

23丰衣足食feˉng y?ˉzúshíshi2shi3she2she3

24马不停蹄maˇbùtíng títi2ti3tu2tu3

25画蛇添足huàshétiaˉn zúzu2zu3za2za3

26疾恶如仇jíèrúchóu chou2chou4chan2chan4

27劳民伤财láo mín shaˉng cái cai2cai4cun2cun4

28杀鸡骇猴shaˉj?ˉhài hóu hou2hou4hui2hui4

29饥不择食j?ˉbùzéshíshi2shi4she2she4

30春色满园chuˉn sèmaˇn yuán yuan2yuan4ying2ying4

31不足挂齿bùzúguàch?ˇchi3chi1chu3chu1

32流连忘返liúlián wàng faˇn fan3fan1fei3fei1

33流离失所liúlísh?ˉsuoˇsuo3suo1sa3sa1

34痛心疾首tòng x?ˉn jíshoˇu shou3shou1shen3shen1

35摩肩接踵mójiaˉn jieˉzhoˇng zhong3zhong1zhang3zhang1

36粉墨登场feˇn mòdeˉng chaˇng chang3chang2chou3chou1

37飞蛾扑火feˉiépuˉhuoˇhuo3huo2hai3hai2

38瞒天过海mán tiaˉn guòhaˇi hai3hai2huo3huo2

39得寸进尺décùn jìn ch?ˇchi3chi2chu3chu2

40呼风唤雨huˉfeˉng huàn yuˇyu3yu2ya3ya2

41厚此薄彼hòu c?ˇbób?ˇbi3bi4ba3ba4

42八仙过海baˉxiaˉn guòhaˇi hai3hai4hen3hen4

43流光溢彩liúguaˉng yìcaˇi cai3cai4cun1cun4

44落花流水luòhuaˉliúshu?ˇshui3shui4shen3shen4

45好高骛远hào gaˉo wùyuaˇn yuan3yuan4yeng3yeng4

46调兵遣将diào b?ˉng qiaˇn jiàng jiang4jiang1jun4jun1

47垂头丧气chuítóu sàng qìqi4qi1que4que1

48背信弃义bèi xìn qìyìyi4yi1ya4ya1

49海底捞月haˇi d?ˇlaˉo yuèyue4yue1yao4yao1

50各自为政gèzìwéi zhèng zheng4zheng1zhou4zhou1

51空前绝后koˉng qián juéhòu hou4hou2hun4hun2

52低声下气d?ˉsheˉng xiàqìqi4qi2que4que2

53出奇制胜chuˉqízhìshèng sheng4sheng2shui4shui2

54怜香惜玉lián xiaˉng x?ˉyùyu4yu2ya4ya2

55吉祥如意jíxiáng rúyìyi4yi2yu4yu2

56顶天立地d?ˇng tiaˉn lìdìdi4di3du4du3

57铺天盖地puˉtiaˉn gài dìdi4di3du4du3

58安家落户aˉn jiaˉluòhùhu4hu3hai4hai3

59待人接物dài rén jieˉwùwu4wu3wa4wa3

60踌躇满志chóu chúmaˇn zhìzhi4zhi3zhe4zhe3

万和热水器e4解决方法

热水器在我们生活中起到了非常大的作用,给我们的生活带来了很大的优越感。特别是到了冬季北方天气寒冷,平时生活时刻离不开热水器,不管是洗脸刷牙洗菜做饭还是洗澡都要用热水。所以我们最怕的就是冬季家里的热水器出现故障,。因为热水器使用久了出现一些小的故障是避免不了的。为了让万和用户能更好的了解热水器一些常见故障,今天就给大家讲讲万和热水器显示E4故障代码怎么解决? 万和恒温热水器出现故障的时候,在显示屏上面都会出现一个故障代码,一个故障代码代表一种含义。万和E4故障在冬季发生的很多,E4代码的意思是风机霍尔传感器故障,当我们开启热水器龙头后,热水器风机开始运转,可以风机霍尔传感器出现故障后,检测不到风机运转的型号,当电脑板接收不到风机工作的信号时就会报警显示E4故障代码。

这时我们可以把风机拆卸下来,去热水器配件市场购买一个风机霍尔传感器更换上就可以了,万和热水器售后每年维修大量的万和E4故障,可以说百分九十九都是风机霍尔故障,但是也有主板出现故障的,但是这种几率非常小。 1.E4是因为热水器水箱内部管温出现故障。 2.故障代码意义 接口故障(E0):温度传感器开路或短路;点火系统故障(E1):点火结束后,还未检测到火焰;燃气不足或意外熄火(E2):正常燃烧后,检测不到火焰。出水温度过高(E3):出水温度超过80℃或干烧。应更换电池(E4):电池电压低于2V。 3.原因分析及解决方法: A、热水器的水温过高造成的。可以适当调低水温。 B、热水器风压力开关发生故障,需要进行更换。 C、热水器的感温探头损坏,需要进行更换。 D、水流出现异常,应该是堵塞造成的,需要把异物清除。 E、热水器主板故障,需要找专业人员进行检测或者更换热水器主板。 F、热水器主要元件故障,需要进行检测,这种故障只能进行元件的更换。 以上就是一些主要的解决方法,希望能够帮到大家!

板式楼梯计算实例

板式楼梯计算实例 "OU 1OT 用U ----------------------------------------- ------------------------------------- r

58C 11X300=3500 1800 - 240 1------------ :——:——:------------- 7 5800 B2J有承就戕碱板式儀粕桝f 【例题2.1《楼梯、阳台和雨篷设计》37页,PDF版47页】图 2.1为某实验楼楼梯的平面图和剖面图。采用现浇板式楼梯,混凝土强度等级为 C25, f c -11.9N/mm2, f t -1.27N/mm2钢筋直径d> 12mm9寸采用HRB40(级钢筋,f y =360N/mm2; d< 10mrtJ寸采用HPB300级钢筋,f y =270N / mm2,楼梯活荷载为 3.5KN/m2。 楼梯的结构布置如图 2.8所示。斜板两端与平台梁和楼梯梁整 结,平台板一端与平台梁整结,平台板一端与平台梁整结,另一端则与窗过梁整结,平台梁两端都搁置在楼梯间的侧墙上。

580 11X3003300 1800 120 d 1——11 ---------------------------------------------------------- p *--------------------------------- 屮 5800 02.8 试对此现浇板式楼梯进行结构设计。 解: 1)斜板TB1设计 除底层第一跑楼梯的斜板外,其余斜板均相同,而第一跑楼梯斜板的下端为混凝土基础,可按净跨计算。这里只对标准段斜板TB1进行设计。 对斜板TB1取1m宽作为其计算单元。 (1) 确定斜板厚度t 斜板的水平投影净长为I in=3300mm 斜板的斜向净长为 -= ------------ = 3691mm cosa 300 / J150+002

万和燃气热水器打不着火不打火点不着火的原因分析

万和燃气热水器打不着火不打火点不着火的原因分析 导读:万和热水器打不着火的原因一:燃气通路故障;燃气热水器不打火的原因二:水路故障;燃气热水器打不着火的原因三:电路系统故障;万和热水器打不着火的原因四:热水器机械故障。 万和燃气热水器打不着火的原因:燃气通路故障 燃气通路是首先要检查的第一步:万和热水器中电磁阀在不通电时是将燃气通路关闭的,它是靠热水器脉冲控制器将阀门打开通气后才能使热水器点着火,这个位置的故障率极高,但通常不是电磁阀本身故障造成的,多数是由于它未能得到供电而导致开不了阀,燃气不能到达燃烧器导致万和热水器打不着火; 万和燃气热水器打不着火的原因:水路故障 万和燃气热水器水路故障主要有进水口过滤网堵塞、水阀结垢、水箱铜管变形堵塞、水压低等。它们造成燃气热水器打不着火的共同点是热水器出水量很小(燃气热水器的正常启动水压是0.02MPa,如果水压过低热水器就无法启动)。老式强排热水器这个现象很明显,所以排除是否因为水路故障造成燃气热水器点不着火只需要观察出水量或水压是否过低。 万和燃气热水器打不着火的原因:电路系统故障 热水器电路部分涉及的配件较多,是燃气热水器打不着火故障原因查找的核心部分,包括漏电保插头、热水器电源控制盒、脉冲点火器、电磁阀、风机启动电容、风机、风压检测开关、微动开关或水流传感器开关、点火针、感应针、冷热水开关。 燃气热水器脉冲点火器发出工作信号传送至热水器电源控制盒,通过一条连接到风压检测开关的负压管,使风压检测开关工作,此返回到脉冲点火器开始连续放电和延时2秒吸开电磁阀通气即可点着火,感应针感应到火焰正常后即通过脉冲给出电磁阀持续的维持电压,使电磁阀保持在开启状态,燃烧器便可持续正常工作。任何一个环节出现故障都会导致燃气热水器点不着火。 万和燃气热水器打不着火的原因:热水器机械故障 水气联动装置主要由水阀内部水压提供动力,推动联动杆,同时打开电路部分和其中一级燃气密封通道,若水气联动装置出现故障整个电路部分都没办法工作,导致燃气热水器打不着火;风机部分若因风叶卡死或电机转速慢达不到风压检测开关的启动压力,脉冲点火器无法得风压检测开关的信号,也会导致燃气热水器点不着火。 检查总结:燃气热水器打不着火可以分为无点火声不点火和有点火声打不着火,常见原因就是电源问题、电磁阀故障、电点火器故障、点火针或感应瓷针故障等这几个方面。

板式楼梯设计典型例题

3.4.5 楼梯设计例题 设计资料 ?某公共建筑标准层层高为3.6m,采用现浇板式楼梯,其平面布置见图3.53。

?楼梯活荷载标准值为q =2.5KN/m2,踏 k 步面层采用30mm厚水磨石面层(自重为0.65 KN/m2),底面为20mm 厚混合砂浆(自重为17 KN/m3)抹灰。 ?采用C25混凝土,梁纵筋采用HRB335级钢筋,其余钢筋均采用HPB235级钢筋。 梯段板设计 估算斜板厚h=lo/30=3500/30=117(mm),取=120mm。 板倾斜角为tanα=150/300=0.5 (由踏步倾斜得来)

取1m 宽板带进行计算。 (1)荷载计算 恒荷载标准值 水磨石面层: (0.3+0.15)×0.65×3.01 =0.98(KN/m) 三角形踏步: 2 1×0.3×0.15×25×3.01 =1.88(KN/m) 混凝土斜板: 0.12×25×1/0.894=3.36(KN/m) 板底抹灰: 0.02×17×1/0.894=0.38(KN/m) 恒荷载标准值 g k =6.60 KN/m 恒荷载设计值g =1.2×6.60=7.92 KN/m 活荷载设计值q =1.4×2.5=3.5 KN/m 合计 p =g+q =11.42 KN/m (2)截面设计 水平投影计算跨度为 lo=ln+b =3.3+0.2=3.5m

弯矩设计值 2 0)(101l q g M +==25.342.1110 1?? =13.99(KN ·m) 斜板有效高度: ho=120-20=100(mm) 2 01bh f M c s αα= =26 10010009.110.110 99.13???? =0.188, 937.0=s γ 0h f M A s y s γ= =100937.02101099.136 ???=711(mm 2) 选配φ10@110,As=714mm 2 ,梯段板的配筋见图3.54。 配筋要求见P89。 ?受力钢筋:沿斜向布置。 ?构造负筋:在支座处板的上部设置一定数量,以承受实际存在的负弯矩和防止产生过宽的裂缝。一般取φ8@200,长度为l n /4。 本题取φ8@200,3300/4=825mm ,取850mm 。 ?分布钢筋:在垂直于受力钢筋方向按构造配置,每个踏步板内至少放置一根分布钢筋。放置在受力钢筋

板式和梁式楼梯手算及实例

1. 板式楼梯 例8-1 某公共建筑现浇板式楼梯,楼梯结构平面布置见图(8-6)。层高3.6m ,踏步尺寸150× 300mm 。采用混凝土强度等级C25,钢筋为HPB235 和 HRB335。楼梯上均布活荷载标准值=3.5kN /m 2,试设计此楼梯。 1. 楼梯板计算 板倾斜度 ,5.000150==αtg 894.0cos =α 设板厚h=120mm ;约为板斜长的1/30。 取lm 宽板带计算 (1) 荷载计算 图8-6 例8-1的楼梯结构平面 荷载分项系数 2.1=G γ 4.1=Q γ 基本组合的总荷载设计值 m kN p /82.124.15.32.16.6=?+?= 表8-1 梯段板的荷载 (2) 截面设计

板水平计算跨度m l n 3.3= 弯矩设计值 m kN pl M n ?=??== 96.133.382.1210110122 mm h 100201200=-= 117.010010009.111096.132 62 01=???== bh f M c s αα 614.0124.0117.0211211=<=?--=--=b s ξαξ 2 01703210124 .010010009.11mm f bh f A y c s =???= = ξ α %27.021027 .145.045.0%59.01201000703min 1===>=?== y t s f f bh A ρρ 选配?10@110mm, A s =714mm 2 分布筋?8,每级踏步下一根,梯段板配筋见图(8-7)。 表8-2 平台板的荷载 2. 平台板计算 设平台板厚h=70mm, 取lm 宽板带计算。 (1) 荷载计算 总荷载设计值 m kN p /19.85.34.174.22.1=?+?= (2) 截面设计 板的计算跨度 m l 76.12/12.02/2.08.10=+-= 弯矩设计值 mm h 5020700=-= m kN pl M ? = ? ? = = 54 . 2 76 . 1 19 . 8 10 1 10 1 2 2 0

万和热水器维修:不打火故障维修

万和热水器e3,一般是风压过大或者烟管堵塞,但是烟管一般不会堵塞,而是燃烧器的位置堵塞,造成风压过大,导致风压开关断开,从而引发e3代码故障。我刚好修好了家里热水器的e3故障,下面我就介绍一下方法吧。 第二个可能就是风压开关老化导致容易触发。于是我更换了风压开关,并把动作压力稍微调大一点,也就是风压开关上面的一个旋钮,往里面旋转就是增大压力。网上有些人说这个不能乱调,其实你自己可以把握,只要你调到不出现e3故障即可,然后往回调记录下出现e3故障的位置,然后再往顺时针调,直到不出现e3故障为止,不能太过,免得真正堵塞的时候也不能产生断开动作,调好后为了验证堵塞是否产生动作,关闭煤气,开水点火,然后马上堵住热水器的烟管排风口(先把烟管拆下来,然后直接用手捂住排风口也可以),如果马上显示e3,说明保护起作用。 至此,修好了e3故障。其实,一般热水器烟管是不会堵塞的,除非有老鼠爬进去在里面做窝了。一般都是燃烧器的换热片那里老化导致通风不畅,从而导

致风压增大。 如果你不知道风压开关是哪一个,建议你百度一下“风压开关”,有详细的原理和说明。至于你提到的距离远的出水温度高,说明你的热水器不是真正的恒温热水器,或者恒温不起作用了。我家的热水器刚好跟你相反,距离近的水温高,距离较远的另一个洗手间由于热水传输过程中降温了,所以水温感觉会比实际标示低一度左右。如果你的热水器出水量小反而温度高,而且是保持温度高,说明不是恒温热水器,这种现象只会发生在固定火力的热水器上面,因为火力是固定的,水量越小温度越高。 另外我还调节了下面图片中的蓝色电位器从电路板上标示的意思我估计是第二个电磁燃气比例阀的流量调节,适当调小一点,会降低一点风压。因为燃气空气比例是有程序控制的,把燃气轻微调小了,风压也有所改变。仅供参考,自

梁式和板式楼梯设计

《混凝土结构设计原理》实验报告 实验三楼梯设计 土木工程专业10 级 3 班 姓名 学号 指导老师 二零一三年一月 仲恺农业工程学院城市建设学院

目录 一、主体介绍 (4) 二、现浇板式楼梯设计 (5) 1. 梯段板TB2设计 (5) 1) 荷载计算 (5) 2) 截面设计 (6) 2. 平台板PTB2设计 (6) 1)荷载计算 (7) 2)截面设计 (7) 3. 平台梁TL4设计 (8) 1)荷载计算 (8) 2)截面设计 (9) 3)斜截面受剪承载力计算 (9) 4)配筋图 (10) 4. 平台梁TL5设计 (10) 1)荷载计算 (10) 2)截面设计 (10) 3)斜截面受剪承载力计算 (12) 4) 配筋图 (12) 5.构造柱GZ设计 (12) 三、现浇梁式楼梯设计 (13)

1.踏步板设计 (13) 1)荷载计算 (13) 2)截面设计 (14) 3) 配筋图 (14) 2.斜梁TL2设计 (15) 1)荷载计算 (15) 2)截面设计 (15) 3)斜截面受剪承载力计算 (16) 4)构造钢筋 (17) 3.平台板PTB1设计 (17) 1)荷载计算 (17) 2)截面设计 (18) 4.平台梁TL3设计 (18) 1)荷载计算 (19) 2)截面设计 (19) 3)斜截面受剪承载力计算 (21) 5.梯梁TL1设计 (21) 1)荷载计算 (21) 2)截面设计 (22) 3)斜截面受剪承载力计算 (23) 四. 总结 (24)

仲恺农业工程学院实验报告纸 城市建设学院(院、系) 土木工程 专业103 班 组 混凝土结构设计原理 课学号: 姓名: 实验日期:2012/12/23 教师评定: 实验三 楼梯设计 一、主体介绍 1. 广州市某商住楼楼梯结构设计,采用现浇整体式钢筋混凝土板式楼梯或梁式楼梯。混凝 土采用C25级,梁中的纵向受力钢筋采用HRB335,板及其他钢筋采用HPB300。楼梯间活荷载标准值为2 /5.2m KN q =。 2. 主体结构类型:框架结构 3. 建筑资料:楼面做法(自上而下) 10mm 厚耐磨地砖(3/22m KN =γ); 1:3水泥砂浆找平20mm 厚(3 /20m KN =γ) 现浇钢筋混凝土楼板(3 /25m KN =γ); 板底混合砂浆抹灰20mm 厚(3 /17m KN =γ); 混凝土采用25C (c f =11.9N/mm 2,t f =1.27N/mm 2),板的保护层厚度20mm ,梁的保护层厚度为25mm ;

万和L7零冷水智能燃气热水器,“三零主义”满足全民浴望

标题1: 万和L7零冷水智能燃气热水器,“三零主义”满足全民浴望 标题2: 万和L7零冷水智能燃气热水器,首推沐浴全痛点解决方案 标题3: 万和打造智能沐浴管家,零冷水智能燃气热水器L7实现全民浴望脱了衣服还要等一段时间的冷水过去才有热水?忽冷忽热的沐浴过程太虐心?热水器安全问题频发?我们在使用热水器洗澡的时候总是遇到一些令人懊恼的问题。随着人们生活水平的提高,消费者对安全、舒适、健康的“浴”望诉求呼声越来越高。万和洞悉消费者的需求,针对用户“痛点”推出“三零主义”产品----万和L7零冷水智能燃气热水器,以零冷水、零水温波动、零安全隐患为核心全方位解决沐浴痛点,为消费者提供高端舒适安全的沐浴体验。

等待热水之痛怎么破?“零冷水”实现即开即洗 每一次洗澡,热水器打火之后,总要等待热水管中前面一段冷水排尽之后才能出来热水,如果在冷冷的冬天,这个等待的过程简直就是一种煎熬,人们也最容易在这一段等待的时间中就受凉。直击用户痛点的万和,一直不断通过技术创新,尝试突破这个困扰行业的难题。万和L7零冷水智能燃气热水器就在消费者的呼声中应运而生。 即开即洗,温暖触手可及,万和L7零冷水智能燃气热水器真正实现零等待。消费者的需求,一向是产品升级变革的助推器。万和零冷水智能燃气热水器L7内多处安装有温度传感器,当微电脑控制系统检测到自来水管路中水温低于用户设置的温度时,将自动启动变频循环水泵回收冷水,并启动燃烧,将沐浴水加热至用户设置的温度,用户无需再为沐浴前要放一段冷水感到烦恼。

除了全天候监测回水管温度变化,一旦低于用户设定的温度值,即启动燃烧加热,随时随地享用舒适热水的“零冷水模式”。万和热水器L7还设置了“点动模式”以及“预设模式”,不同用户可以更加自身需求进行设置,以达到既可即享温暖,又不造成资源浪费。 忽冷忽热之痛怎么破?“零水温波动”让温暖恒定如一 说到热水器洗澡的最虐心之处,必定少不了“忽冷忽热”的痛苦,突然上升的水温把人烫得跳起,突然冰冷的水温又让人寒颤,特别是冬季在淋浴时,热水忽冷忽热甚至会引发感冒等症状。有数据显示,超过7成网友希望拥有一台恒温的燃气热水器。洞悉消费者的心声,告别忽冷忽热的沐浴尴尬,万和长期致力于热水器恒温技术的研究探索,万和L7零冷水智能燃气热水器的诞生,又是一个技术的突破。 L7零冷水智能燃气热水器内置恒温加速箱,不管水温如何波动,恒温加速箱对偏烫或偏凉的热水进行全封式调和,始终保证热水恒定如一。恒温加速箱对高温热水进行降温中和,突破性实现停水温水不高于2℃,有效解决夏天水太烫和关水再开热水过烫两大沐浴痛点,极大提高了沐浴舒适性。

板式楼梯计算实例

板式楼梯计算实例

【例题 2.1《楼梯、阳台和雨篷设计》37页,PDF 版47页】 图2.1为某实验楼楼梯的平面图和剖面图。采用现浇板式楼梯,混凝土强度等级为C25,2211.9/, 1.27/c t f N mm f N mm ==钢筋直径d ≥12mm 时采用HRB400级钢筋,2360/y f N mm =;d ≤10mm 时采用HPB300级钢筋, 2270/y f N mm =,楼梯活荷载为3.5KN/m 2。 楼梯的结构布置如图2.8所示。斜板两端与平台梁和楼梯梁整结,平台板一端与平台梁整结,平台板一端与平台梁整结,另一端则与窗过梁整结,平台梁两端都搁置在楼梯间的侧墙上。

试对此现浇板式楼梯进行结构设计。 解: 1)斜板TB1设计 除底层第一跑楼梯的斜板外,其余斜板均相同,而第一跑楼梯斜板的下端为混凝土基础,可按净跨计算。这里只对标准段斜板TB1进行设计。 对斜板TB1取1m宽作为其计算单元。 (1)确定斜板厚度t 斜板的水平投影净长为l1n=3300mm

斜板的斜向净长为113691cos n n l l mm α= == 斜板厚度为t 1=(1/25~1/30)l 1n =(1/25~1/30)×3300=110~120mm,取t 1=120mm 。(根据“混凝土结构构造手册(第四版)”384页) (2)荷载计算,楼梯斜板荷载计算见表2.3。 表2.3楼梯斜板荷载计算 水磨石面层的容重为0.65KN/m 2(GB50009-2012,附录A-15,84页);纸筋灰容重16KN/m 3(GB50009-2012,附录A-6,75页,实际工程中已被水泥砂浆代替)以上计算的荷载设计值是由可变荷载控制的组合,计算由永久荷载控制的组合 1.357.160.98 3.513.10/p KN m =?+?=,综合取p=13.50KN/m (3)计算简图 如前所述,斜板的计算简图可用一根假想的跨度为l 1n 的水平梁

万和热水器维修:经验总结

万和燃气热水器大家每天都在用,但是使用维修不当的话可能会给它造成一定的损害,或者伤害到自己,今天我们就一起来看一下燃气热水器使用不当的五宗罪。 罪状一:气源选不对 很多燃气热水器所需的气源都是需要和自己脾气相投的,热水器的铭牌上有标定或者向销售人员咨询清楚,因为热水器所需的和它所用的一定要一致。无论是气源的种类还是燃气的类别,否则会损坏热水器,例如:造成异常燃烧,引起一些危险情况的发生,具体危险就不介绍了,可大可小。总之这点是一定要注意的。

罪状二:安装不到位 燃气热水器的安装很重要,它安装所需要的房间需要通风良好,所以与室外直接连通的窗户或通风孔是必须的。 另外,排烟管一定要装,避免有风天气导致废气倒灌在室内。 安装小建议: ?安装环境:可安装在通风的厨房、封闭阳台。 ?安装要求:不可安装在浴室、客厅、卧室、户外及开放阳台(只有平衡式热水器可安装在浴室),安装点一定要有通畅的排烟环境。 罪状三:维护不及时 不要总记得护肤,家里的一些电器也是需要维护的,像燃气热水器这种,平时可以检查一下管道外接胶管等,是否有漏水松动等情况。 ?检查方法:肥皂水涂抹各接头处,有冒泡的说明有漏气的地方。 如果有漏水、接头松脱等现象。要及时维修,该紧固的紧固,该更换的更换。

如果长期不用热水器的话,记得关闭电源,打开防冻装置放掉其中存水。正常使用的情况下,不需要反复拔插电源,定期清理一下周边的灰尘,内部的清洁平均2年左右一次,需要专业人员来完成。 对于家用热水器,安全最重要,选择美的燃气热水器JSQ27-G4,给你最安全的守护。 以家电、家居生活为主营业务方向,提供小家电、热水器、空调、燃气灶、油烟机、冰箱、洗衣机、电视、开锁换锁、管道疏通、化粪池清理、家具维修、房屋维修、水电维修、家电拆装等保养维修服务。

万和热水器常见故障及原因

不少人反馈,万和热水器使用一段时间后,会出现各种各种的故障,客户都认为是热水器买的不好,其实并不是。因为如果热水器没有正确安装或者使用不当时,是会出现故障的。本文主要针对万和热水器的常见故障原因及处理方法,给大家分析分析,以供参考。 原因1:燃气压力低:燃气管道堵塞、燃气管路压力低; 解决方法:自查燃气管道是否堵塞(可从燃气表具处接一根管道到热水器燃气进口处,直接与热水器相接,如热水器能正常工作即从表具到热水器进口处的管路有堵塞),请燃气公司检查燃气管路压力。 原因2:水流量过大:管道压力过大、管道口径太大; 解决方法:可关小进水管的阀门及提高热水器的设定温度。

原因3:设置不当,应调在高档或冬天,而现在调在中档或春秋档; 解决方法:按说明书上的使用方法正确设置。 现象二:水太烫 原因1:水压低、水流量小、水管堵塞; 解决方法:a.将水管调换到一定的口径;b.加装增压泵;c.清理热水器进水管过滤网;d.调整热水器上的水量调节到大;e.调换花洒,花洒眼应尽量大。 原因2:燃气压力过高主要体现在液化气(LPG)上; 解决方法:调换液化气的减压阀(必须是劳动牌),将燃气压力调至要求值。 原因3:设置不当,主要是将热水器设置在高温区造成。 解决方法:按说明书上的使用方法正确设置 现象三:热水器点燃后有一段冷水,重新开水后又有一段冷水; 原因:这主要是强排风热水器的特性,不是故障。强排风热水器是为了提高用户使用的安全性,在热水器点燃前设置了前清扫,在热水器熄火后进行后清扫,将热水器中原有的废气排出热水器内,所以造成重新开水后又有一段冷水出现,另外,由于用户的龙头到热水器出水管的距离长短,及热水器将冷水加热到热水需一定的时间,造成热水器点燃后有一段冷水的原因。用户可缩短该段时间,将热水器先设置在高温档,等水热后再将水温设置在需使用温度。 现象四:智能恒温系列热水器的常见故障代码 显示01不是故障代码,代表热水器已运行了30分钟,提醒用户注意使用安全。显示11、12、14、16、31、32、72、73、90等,以上数字显示都是热水器出现故障后的代码,都必须进行保修。 现象五:风机运转声音

板式楼梯设计及实例

板式楼梯设计及实例 ——摘自2013版《毕业设计指导书》 3. 4 楼梯设计 钢筋混凝土楼梯按楼梯段结构形式可分为板式、梁式、剪刀式、螺旋式和有中柱的盘旋式等。选择楼梯的结构形式,应根据楼梯的使用要求、材料供应、施工条件等因素,本着适用、经济、适当照顾美观的原则确定。板式楼梯具有楼梯下表面平整、施工方便、外观轻巧等优点。当梯段板水平方向跨度小于3.3m ,活荷载不大时,宜采用板式楼梯。 3. 4. 1 现浇板式楼梯 现浇板式楼梯由梯段板、平台板和平台梁组成。可分为斜板式和折线形板式两种。斜板式楼梯跨度较小,经济、构造简单,应优先采用;当建筑上有要求,不便于设置支承平台梁的小柱时,也可以做成折线形板式楼梯,其跨度为斜梯段及平梯段之和。 一、 梯段板 斜板式楼梯的梯段板是一块支承在上、下平台梁上并带有踏步的斜板,如图3-4a 所示。梯段板的厚度一般取L h )301~251(=,L 为支承梁中心投影的水平距离,当荷载较大时,h 应选用较大值。作用于梯段板上的活荷载是沿水平方向分布的,因此斜板的恒荷载一般也换算 成水平方向上的均布荷载,计算简图如图3-4c 所示。考虑到平台梁、平台板对斜板的弹性约束作用,可使斜板跨中弯矩减小,因而斜板跨中最大弯矩和支座最大剪力可取: 2max )(10 1o l q g M += (3-6) θcos )(2 1max n l q g V += (3-7) 图3-4 斜板式梯段板及计算简图

式中: q g 、——梯段板沿水平方向上的恒荷载 和活荷载设计值; n l l 、0——梯段板的计算跨度及净 跨度的水平投影长度;θ ——梯段板的倾角。 斜梯板一般采用分离式配筋,截面计算高度应取 垂直于斜板的最小高度。一般用HPB300级钢筋,也 可选用HRB400钢筋。考虑到斜板与平台梁、板的整 体性,斜板两端支座的负钢筋用量可取跨中截面配筋 的1/2,负筋长度应伸入跨内不少于1/4板净跨度。在 垂直于受力钢筋方向按构造设置分布钢筋,每个踏步 下放置1φ8。 折线形板式楼梯由带有踏步的斜梯段和平梯段组 成,如图3-5所示。斜梯段和平梯段的板厚相等,可 取L h )30 1~251(=,L 为斜梯段和平梯段的总投影长度。受力计算也是将斜梯段上的荷载化成沿水平方向 分布的荷载,和平梯段一起组成水平方向的简支板,然后用静力学的方法,求出跨中最大弯矩及支座剪力。 折线形板式楼梯在上、下端弯折处的配筋相同但构造不同。在上端弯折处,为避免受拉钢筋产生向外的合力使混凝土保护层剥落,或者钢筋被拉出,应将纵向钢筋断开并分别予以锚固,锚固长度不少于La ,此时梯板的负筋长度应从支座算起不少于1/3总跨度。在下端弯折处,则受拉钢筋不断开而连续配置。 楼梯扶手计算:可在扶手下的梯板内另加2φ12钢筋以专门承受扶手荷载,在梯段板计算中不再考虑扶手重。但在计算平台梁时,扶手荷载则应考虑。 楼梯的混凝土强度等级宜与各层楼盖的强度等级相同,以方便施工。 梯板的跨高比一般较大,不必作斜截面受剪承载力验算,且梯板不超过不需作挠度验算的最大跨高比时,也不必作变形和裂缝验算。 二、 楼梯梁 楼梯梁可按简支的倒L 形梁计算。作用于梁上的荷载除梁自重和梯段板、平台板传来的均布荷载外,还有梯扶手传来的集中力。梁截面高度应不小于跨度的1/12。 位于层间的楼梯梁,除在两端有框架柱或剪力墙支承的情况外,也可以在下层楼盖梁用梁上柱或在上层楼盖梁用吊柱的方法支承。 图3-5 折线形板式楼梯

现浇板式楼梯设计实例

板式楼梯设计 一、板式楼梯 板式楼梯是指梯段板为板式结构的楼梯。板式楼梯由梯段板、平台板和平台梁组成,如图 2.43所示。板式楼梯荷载传递路线为:梯段板T平台梁T墙(柱)。板式楼梯的梯段板为带有踏步的斜板,两端支承 在平台梁上。平台板一端支承在平台梁上,另一端支承在楼梯间的墙(或梁)上,平台梁两端支承在楼梯间的墙(或梁、柱)上。板式楼梯梯段板底面平整,外形轻巧、美观,施工方便,但当梯段跨度较大时,斜板较厚,材料用量较多,所以一般用于梯段跨度不太大的情况(一般在3m以内)。 图2.43 板式楼梯的组成 1■梯段板 h= (1/25?1/30 )|。(|。为梯段板的计算跨度),常用厚度为100?120m m。梯段板是一块带有踏步的斜板, 可近似认为简支于上、下平台梁上,梯段板的计算跨 度可取其净跨,其计算简图如图 2.44所示。 由结构力学可知,斜置简支构件的跨中弯矩可按平置构件计算,跨长取斜构件的水平投影长度,故梯段斜板可简化为两端简支的水平板计算。由于板的两端与平台梁为整体连接,考虑梁对板的约束作用,板 (1 )梯段板内力计算梯段板的厚度一般取 ffunn 图2.44 梯段板的计算简图 mTmnTrrnrn |o= g+q

的跨中弯矩相对于简支构件有所减少,故跨中最大弯矩一般可按 作用在梯段板上的沿水平方向单位长度上的恒荷载、活荷载设计值; l o =ln ,l n 为梯段板净跨的水平投影长度。 为了满足建筑使用要求,有时采用折线形梯段板,折线形梯段板的梯段荷载和平台荷载有所差别,但 差别不大。为了简化计算,可近似取梯段荷载和平台荷载中的较大值来计算跨中弯矩,从而计算出梯段配 筋。折线形梯段板的荷载及计算简图见图 2.45。 图2.45 折线形梯段板的荷载 (2 )梯段板钢筋配置 梯段斜板中的受力钢筋按跨中最大弯矩计算求得,并沿跨度方向布置。为考 虑支座连接处实际存在的负弯矩, 防止混凝土开裂,在支座处板面应配置适量负筋, 一般不小于 ①8@200, 其伸出支座长度为l n /4 ( l n 为梯段板水平方向净跨度)。在垂直受力钢筋的方向应设置分布钢筋,分布钢筋 应位于受力筋的内侧,并要求每踏步内至少 1①&梯段板钢筋布置见图 2.46。 折线形梯段板曲折处形成内折角,若钢筋沿内折角连续配置,则此处受拉钢筋将产生较大的向外的合 力,可能使该处混凝土保护层剥落,钢筋被拉出而失去作用。因此,在折线形梯段的内折角处,受力钢筋 1 2 M max (g q )l o 计算,其中g 、q 为 10 l

万和热水器说明书

万和热水器说明书 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

万和热水器怎么样 万和热水器怎么样现在市场上的热水器数不胜数,人们想要在众多热水器中选择自己心仪的一款,就必须的对热水器有所了解。万能热水器是许多人都会选择的一个大牌子,但许多人对万能热水器又不怎么了解,下面由我为大家解答万和热水器质量怎么样万和热水器品牌怎么样万和热水器的分类是怎样万和热水器价格怎么样等 一、万和热水器品牌怎么样 万和于93年,成立于广东顺德,经过十九年的发展耕耘,目前是国内生产规模最大的燃气具研发制作企业,也是国内首个提倡和推动中国五金制品协会燃气用具的分会理事长。公司在研发节能环保的技术上,曾受到国务院总理温家宝的肯定和赞扬。 万和以“燃气具专家”为品牌定位,生产万和燃气热水器、万和燃气灶具、万和燃气壁挂炉、万和燃气烧烤炉、万和燃气空调、万和燃气取暖器等燃气具产品并与之相配套的万和电热水器、万和消毒碗柜、万和吸油烟机等厨卫电器产品,以及太阳能、热泵热水器等新能源产品和空气能+燃气、太阳能+燃气、电能+燃气等能源集成热水系统。 二、万和热水器分类 1、万和燃气热水器 万和燃气热水器怎么样 万和燃气热水器为广东万和新电气股份有限公司亚丁旗下品牌,多年来专注燃气具的研究和专业打造。万和燃气热水器开创了全自动燃气热水器时代,获省科技进步三等奖,万和燃气热水器在2002年获得中国名牌产品称号,多年被评定为中国名牌,其产品技术处于国内领先水平。 万和燃气热水器的价格 万和燃气热水器的性价比。万和燃气热水器的价格在市场中应该算是知足的,从几百到几千都是为满足人们的不同需求而设计的,在质量上有保障,有良好的维修服务和售后服务,一直都是大众信赖的产品。 万和燃气热水器产品 万和户外式燃气热水器:w24a 、w16a 万和平衡式燃气热水器:g12v1凝炼冷凝恒温型、2c 超薄智能 万和强排式燃气热水器:q24bv107 万和烟道式燃气热水器:d8c 2、万和电热水器 万和电热水器怎么样 万和电热水器是万和集团主营业务的重要组成部分。万和96年开始进军电热水器领域,经过十余年稳健发展,万和在电热水器的研发、生产、质量管理、营销、服务等各方面均已十分成熟,产品安全技术、节能技术、内胆技术和智能控制技术已经达到了国际先进水平,是《家用贮水式电热水器节能产品认证技术要求》的起草单位之一。目前万和电热水器已经形

万和热水器说明书

万和热水器怎么样 万和热水器怎么样?现在市场上的热水器数不胜数,人们想要在众多热水器中选择自己心 仪的一款,就必须的对热水器有所了解。万能热水器是许多人都会选择的一个大牌子,但许 多人对万能热水器又不怎么了解,下面由我为大家解答万和热水器质量怎么样?万和热水器 品牌怎么样?万和热水器的分类是怎样?万和热水器价格怎么样等 一、万和热水器品牌怎么样 万和于93年,成立于广东顺德,经过十九年的发展耕耘,目前是国内生产规模最大的燃 气具研发制作企业,也是国内首个提倡和推动中国五金制品协会燃气用具的分会理事长。公 司在研发节能环保的技术上,曾受到国务院总理温家宝的肯定和赞扬。 万和以"燃气具专家"为品牌定位,生产万和燃气热水器、万和燃气灶具、万和燃气壁挂 炉、万和燃气烧烤炉、万和燃气空调、万和燃气取暖器等燃气具产品并与之相配套的万和电 热水器、万和消毒碗柜、万和吸油烟机等厨卫电器产品,以及太阳能、热泵热水器等新能源 产品和空气能+燃气、太阳能+燃气、电能+燃气等能源集成热水系统。 二、万和热水器分类 1、万和燃气热水器 ? 万和燃气热水器怎么样? 万和燃气热水器为广东万和新电气股份有限公司亚丁旗下品牌,多年来专注燃气具的研 究和专业打造。万和燃气热水器开创了全自动燃气热水器时代,获省科技进步三等奖,万和 燃气热水器在2002年获得中国名牌产品称号,多年被评定为中国名牌,其产品技术处于国内 领先水平。 ? 万和燃气热水器的价格 万和燃气热水器的性价比。万和燃气热水器的价格在市场中应该算是知足的,从几百到 几千都是为满足人们的不同需求而设计的,在质量上有保障,有良好的维修服务和售后服务, 一直都是大众信赖的产品。 ? 万和燃气热水器产品 万和户外式燃气热水器:w24a 、w16a 万和平衡式燃气热水器:g12v1凝炼冷凝恒温型、2c 超薄智能 万和强排式燃气热水器:q24bv107 万和烟道式燃气热水器:d8c 2、万和电热水器 ? 万和电热水器怎么样? 万和电热水器是万和集团主营业务的重要组成部分。万和96年开始进军电热水器领域, 经过十余年稳健发展,万和在电热水器的研发、生产、质量管理、营销、服务等各方面均已 十分成熟,产品安全技术、节能技术、内胆技术和智能控制技术已经达到了国际先进水平, 是《家用贮水式电热水器节能产品认证技术要求》的起草单位之一。目前万和电热水器已经 形成年产200多万台的规模,市场占有率从2001年开始跻身于电热水器的第一集团,销售规 模以50%以上速度逐年增长,在众多电热水器品牌中脱颖而出,成为电热水器行业仅有的几 个中国名牌之一。 ? 万和电热水器维修 :水不热 原因1:燃气压力低:燃气管道堵塞、燃气管路压力低。 解决方法:自查燃气管道是否堵塞(可从燃气表具处接一根管道到热水器燃气进口处,直 接与热水器相接,如热水器能正常工作即从表具到热水器进口处的管路有堵塞),请燃气公司 检查燃气管路压力。

万和热水器e3不打火解决办法

家里的万和热水器e3,一般是风压过大或者烟管堵塞,但是烟管一般不会堵塞,而是燃烧器的位置堵塞,造成风压过大,导致风压开关断开,从而引发e3代码故障。下面我们就一起来看看怎么解决。 第二个可能就是风压开关老化导致容易触发。于是我更换了风压开关,并把动作压力稍微调大一点,也就是风压开关上面的一个旋钮,往里面旋转就是增大压力。网上有些人说这个不能乱调,其实你自己可以把握,只要你调到不出现e3故障即可,然后往回调记录下出现e3故障的位置,然后再往顺时针调,直到不出现e3故障为止,不能太过,免得真正堵塞的时候也不能产生断开动作,调好后为了验证堵塞是否产生动作,关闭煤气,开水点火,然后马上堵住热水器的烟管排风口(先把烟管拆下来,然后直接用手捂住排风口也可以),如果马上显示e3,说明保护起作用。

至此,修好了e3故障。其实,一般热水器烟管是不会堵塞的,除非有老鼠爬进去在里面做窝了。一般都是燃烧器的换热片那里老化导致通风不畅,从而导致风压增大。 如果你不知道风压开关是哪一个,建议你百度一下“风压开关”,有详细的原理和说明。 至于你提到的距离远的出水温度高,说明你的热水器不是真正的恒温热水器,或者恒温不起作用了。我家的热水器刚好跟你相反,距离近的水温高,距离较远的另一个洗手间由于热水传输过程中降温了,所以水温感觉会比实际标示低一度左右。如果你的热水器出水量小反而温度高,而且是保持温度高,说明不是恒温热水器,这种现象只会发生在固定火力的热水器上面,因为火力是固定的,水量越小温度越高。 另外我还调节了下面图片中的蓝色电位器(min)从电路板

上标示的意思我估计是第二个电磁燃气比例阀的流量调节,适当调小一点,会降低一点风压。因为燃气空气比例是有程序控制的,把燃气轻微调小了,风压也有所改变。仅供参考,自己研究,个人理解,由于不清楚厂家具体设计原理,所以没有权威的科学根据,仅仅是推测。如果调节错误会导致e1意外熄火故障,请谨慎。 快益修以家电、家居生活为主营业务方向,提供小家电、热水器、空调、燃气灶、油烟机、冰箱、洗衣机、电视、开锁换锁、管道疏通、化粪池清理、家具维修、房屋维修、水电维修、家电拆装等保养维修服务。

钢筋混凝土板式楼梯设计楼梯板及平台板配筋图

钢筋混凝土板式楼梯设计 楼梯板及平台板配筋图 Revised by Liu Jing on January 12, 2021

六、钢筋混凝土板式楼梯设计 楼梯设计包括建筑设计和结构设计两部分。 一、设计资料 建筑设计 1、楼梯间建筑平面,开间:3300mm。进深:4800mm。 5楼梯形式尺寸:双跑楼梯,层高4600mm,踏步采用180mm×270mm,每层共需4600/180=25步。如图建筑图中所示。 二、结构设计采用板式楼梯 1、楼梯梯段板计算: 混凝土采用C20,单d≤10mm时,采用Ⅰ级钢筋;单d≥12mm时,采用Ⅱ级钢筋,fc=9.6kN/mm2,fy=210 kN/mm2 2假定板厚:h=l/30=2700/30=90mm,取h=100mm。 3荷载计算(取1米板宽计算) 楼梯斜板倾角: a=tg-1(180/270)=26.530 cosa=0.895 恒载计算: 踏步重(1.0/0.3)×0.5×0.15×0.3×25=1.875 kN/m 斜板重(1.0/0.895)×0.1×25=2.8kN/m 20mm厚面层粉刷层重: [(0.3+0.15)/0.3]×0.02×20×1.0=0.6kN/m 15mm厚板底抹灰: (1.0/0.895)×0.015×17=0.32kN/m

恒载标准值 gk=1.875+2.8+0.60+0.29=5.57 kN/m 恒载设计值 gd=1.2×5.57=6.68 kN/m 活载计算: 活载标准值 Pk=2.5×1.0=2.5 kN/m 活载设计值 Pd=1.4×2.5=3.5 kN/m 总荷载设计值 qd=gd+pd=6.68+3.5=10.18kN/m (3)内力计算 跨中弯矩:M=qdl2/10=10.18×2.72/10=7.42 kN.m (4)配筋计算(结构重要系数r =1.0) h0= h-20=100-20=80mm ɑs=r 0M/(fcbh 2)=1.0×7.42×106/(9.6×1000×802)=0.12 ξ=1-(1-2ɑs)0.5=0.1282 As= fcbh ξ/fy=9.6×1000×0.1282×80/210=468.85mm2 受力钢筋选用10@150(As=604 mm2) 分布钢筋选用6@300 2、平台板计算 (1)荷载计算(取1米板宽计算) 假定板厚80mm,平台梁TL-1截面尺寸200×300mm,TL-2截面尺寸为150×300mm。 楼梯板及平台板配筋图 恒载:平台板自重 0.08×1.0×25=2 kN/m 20mm厚抹面: 0.02×1.0×20=0.4kN/m

万和热水器说明书

万和热水器怎么样 万和热水器怎么样现在市场上的热水器数不胜数,人们想要在众多热水器中选择自己心仪的一款,就必须的对热水器有所了解。万能热水器是许多人都会选择的一个大牌子,但许多人对万能热水器又不怎么了解,下面由我为大家解答万和热水器质量怎么样万和热水器品牌怎么样万和热水器的分类是怎样万和热水器价格怎么样等 一、万和热水器品牌怎么样 万和于93年,成立于广东顺德,经过十九年的发展耕耘,目前是国内生产规模最大的燃气具研发制作企业,也是国内首个提倡和推动中国五金制品协会燃气用具的分会理事长。公司在研发节能环保的技术上,曾受到国务院总理温家宝的肯定和赞扬。 万和以“燃气具专家”为品牌定位,生产万和燃气热水器、万和燃气灶具、万和燃气壁挂炉、万和燃气烧烤炉、万和燃气空调、万和燃气取暖器等燃气具产品并与之相配套的万和电热水器、万和消毒碗柜、万和吸油烟机等厨卫电器产品,以及太阳能、热泵热水器等新能源产品和空气能+燃气、太阳能+燃气、电能+燃气等能源集成热水系统。 二、万和热水器分类 1、万和燃气热水器 万和燃气热水器怎么样 万和燃气热水器为广东万和新电气股份有限公司亚丁旗下品牌,多年来专注燃气具的研究和专业打造。万和燃气热水器开创了全自动燃气热水器时代,获省科技进步三等奖,万和燃气热水器在2002年获得中国名牌产品称号,多年被评定为中国名牌,其产品技术处于国内领先水平。 万和燃气热水器的价格 万和燃气热水器的性价比。万和燃气热水器的价格在市场中应该算是知足的,从几百到几千都是为满足人们的不同需求而设计的,在质量上有保障,有良好的维修服务和售后服务,一直都是大众信赖的产品。 万和燃气热水器产品 万和户外式燃气热水器:w24a 、w16a 万和平衡式燃气热水器:g12v1凝炼冷凝恒温型、2c 超薄智能 万和强排式燃气热水器:q24bv107 万和烟道式燃气热水器:d8c 2、万和电热水器 万和电热水器怎么样 万和电热水器是万和集团主营业务的重要组成部分。万和96年开始进军电热水器领域,经过十余年稳健发展,万和在电热水器的研发、生产、质量管理、营销、服务等各方面均已十分成熟,产品安全技术、节能技术、内胆技术和智能控制技术已经达到了国际先进水平,是《家用贮水式电热水器节能产品认证技术要求》的起草单位之一。目前万和电热水器已经形成年产200多万台的规模,市场占有率从2001年开始跻身于电热水器的第一集团,销售规模以50%以上速度逐年增长,在众多电热水器品牌中脱颖而出,成为电热水器行业仅有的几个中国名牌之一。 万和电热水器维修 :水不热 原因1:燃气压力低:燃气管道堵塞、燃气管路压力低。 解决方法:自查燃气管道是否堵塞(可从燃气表具处接一根管道到热水器燃气进口处,直接与热水器相接,如热水器能正常工作即从表具到热水器进口处的管路有堵塞),请燃气公司检查燃气管路压力。 原因2:水流量过大:管道压力过大、管道口径太大。 解决方法:可关小进水管的阀门及提高热水器的设定温度。 原因3:设置不当,应调在高档或冬天,而现在调在中档或春秋档。

相关文档
相关文档 最新文档