文档库 最新最全的文档下载
当前位置:文档库 › 镧系元素部分习题

镧系元素部分习题

镧系元素部分习题
镧系元素部分习题

镧系元素部分习题

1. 写出下列元素原子的基态电子构型:

24Cr : 3d54s159Pr : 4f36s2

2. 请写出Eu 、Yb的价层电子构型,为什么Eu、Yb的原子半径比左右相邻元素大,而它们的熔点比相邻元素低?

Eu:4f76s2Yb: 4f146s2因为E u,Yb的价层电子构型可知其为稳定的结构,所以对核产生较大的屏蔽作用,而使Eu,Yu,的原子半径比左右相邻的都要大。(影响半径大小的为d,等价电子层对原子核的屏蔽作用,屏蔽作用强,原子受到原子核的屏蔽作用增强,而对于镧系金属,随原子序数的增加,4f电子对核的屏蔽作用降低,进而使最外层电子受到强的核吸引力,所以半径由左至右依次降低,其次因为f层电子的电子分散相对较散,再填充4f轨道式,由于4f电子相互之间的屏蔽作用也不完全,所以使4f电子所收到的有效核电荷数也在逐渐增加,结果使得4f核层也逐渐缩小。)

4.与过渡金属的配合物相比较,镧系离子形成电子光谱的特点是什么?

答:光谱特点 1.大多数Ln3+离子在可见光区内有吸收。2.具有相同未成对f电子的稀土离子具有相近的颜色。3.Ln3+离子是由f-f跃迁产生的。f-f 跃迁属于禁阻跃迁,其吸收光谱的摩尔消光系数很小(约为0.51·mol-1·cm-3)。4.其吸收光谱为类原子的线状光谱5.也可以发生Ln3+配体间的电荷迁移光谱,这时摩尔消光系数较大(约50~1000l·mol-1·cm-3)

5. 什么是镧系收缩?镧系收缩造成的结果是什么?

答:镧系收缩指:镧系元素的原子半径和离子半径随原子序数的增大总的趋势呈现逐渐见效的现象。

答:1是由于4f 电子对原子核的屏蔽作用比较弱,随着原子序数的递增,外层电子所经受的有效核电荷缓慢增加,外电子壳层依次有所缩小。

2. 由于f 轨道的形状太分散,4f 电子互相之间的屏蔽也非常不完全,在填充f 电子的同时,每个4f 电子所经受的有效核电荷也在逐渐增加,结果使得4f 壳层也逐渐缩小。

整个电子壳层依次收缩的积累造成总的镧系收缩

结果:(1)Y3+半径88pm落在Er3+88.1pm附近,Y进入稀土元素。Sc半径接近Lu3+,常与Y3+共生,Sc也成为稀土元素。--即使得Y 与Sc元素落到镧系元素中来。

(2)Zr与Hf、Nb与Ta、Mo与W三对元素半径十分接近、化学性质十分相近,常伴生在一起,难以分离。

1 为什么在镧系中离子半径会出现单向变化呢?为什么在Gd处出现一种不连续性呢?

答:由于镧系元素三价离子的外围电子很有规律,由La 至Lu 其离子结构为f 0 至f 14 ,因此离子半径会出现“单向变化”.

镧系元素三价离子半径的变化中,在Gd 处出现了微小的可以察觉的不连续性,原因是Gd3+ 离子具有半充满的4 f 7电子结构,屏蔽能力略有增加,有效核电荷略有减小,所以Gd3+ 离子半径的减小要略微小些,这叫“钆断效应”. 正是由于镧系离子的电子结构,凡是与Ln3+离子密切联系的性质,也常呈现单向变化的规律. 而且,在镧系元素化合物的有些性质中,也常常会出现“钆断效应”,即所谓的“两

2 为什么原子半径图中Eu 和Yb 出现峰值?

镧系原子4f 电子受核束缚,只有5d 和6s 电子才能成为自由电子,RE (g) 有3 个电子(5d1 6s2) 参与形成金属键,而Eu(g) 和Yb (g) 只有2个电子(6s2) 参与,自然金属键弱些, 显得半径大些. 有人也把这叫做“双峰效应”.

3 离子半径大的镧系离子对配合物键型有何影响?

镧系元素配合物主要表现为离子键型,而过渡元素配合物主要表现为共价键型.

5稀土矿的分离提纯中,如何将稀土与非稀土元素分离?常用的方法有:

1.利用稀土硫酸复盐的难溶性使之与铁、磷等杂质元素分离;

X Ln2(SO4)3 + y M2SO4 + z H2O==== X Ln2(SO4)3 ?y M2SO4? z H2O

2.利用稀土草酸盐的难溶性使之与可溶性的非稀土元素分离;

2 RECl

3 + 3 H2C2O

4 + n H2O =====RE2(C2O4)3 ?n H2O + 6 HCl

3. 利用萃取法,把稀土从杂质元素中分离出来.

稀有气体的应用:

1)磁性材料:例如永久性磁铁—可以在某一特定空间产生一恒定的磁场,而且维持此磁场不需要任何的外部能源。

2)发光,激光材料:f-f,f-d跃迁可以产生较大的能量,例如彩色电视中的荧光粉(Y等)计算机,电视机的各种显示器。

3)玻璃陶瓷材料:生成有色玻。

4)催化中的应用:例如石油裂解,汽车尾气净化,合成橡胶与石油化工。

5)医药中的应用:可以作为抗凝剂,抗肿瘤,降血糖。

镧系元素原子的电子构形:(n-2)f0-14(n-1)d0-1n62

磁性:u=g√J(J+1 J=L+S 或者L-S g=( )

镧系元素原子的电子结构: (n-2)f0~14(n-1)d0~1n s2

镧系元素的原子(离子)半径随着原子序数增大而缩小的现象为镧系收缩: 1. 是由于4f 电子

对原子核的屏蔽作用比较弱,随着原子序数的递增,外层电子所经受的有效核电荷缓慢增加,外电子壳层依次有所缩小。2. 由于f 轨道的形状太分散,4f 电子互相之间的屏蔽也非常不完全,在填充f 电子的同时,每个4f 电子所经受的有效核电荷也在逐渐增加,结果使得4f 壳层也逐渐缩小。

整个电子壳层依次收缩的积累造成总的镧系收缩.

后果(1)Y3+半径88pm落在Er3+88.1pm附近,Y进入稀土元素。Sc半径接近Lu3+,常与Y3+共生,Sc也成为稀土元素。

镧系金属是强还原剂,其还原能力仅次于Mg,其反应性可与铝比。而且随着原子序数的增加,还原能力呈逐渐减弱的趋势.

Yb(OH)3和Lu(OH)3是两性氢氧化物,能溶于过量的强碱溶液,而其余Ln(OH)3不溶。

Ln(OH)3的溶解度随温度的升高而降低。

Ln(OH)3分解温度从La(OH)3到Lu(OH)3逐渐降低,稳定性也降低。

LnCl3?x H2O易溶?易潮解(x = 6或7 的结晶较为常见)。

不能加热水合氯化物来制备无水氯化物:

因其发生水解而生成氯氧化物LnOCl

LnCl3· nH2O ====LnOCl↓+2HCl + (n-1) H2O

Q:当分别用H+浓度相同的HCl或HNO3溶解镧系元素的难溶盐时,往往是在HCl中更易溶解,为什么?

形成LnCl4-及LnCl63-配离子

Ln(NO)3易溶于水,也能溶于有机溶剂,如醇?酮?醚中。镧系元素的草酸盐不溶于稀强酸,但在酸中的溶解度又比在水中大

在+4价的镧系元素中,只有+4价铈既能存在于

水溶液中,又能存在于固体中;

CeO2:不溶于酸或碱;强氧化剂(被H2O2还原)

51镧系元素的强酸盐大多可溶, 弱酸盐难溶,如:氯化物、硫酸盐、硝酸盐易溶于水;草酸盐、碳酸盐、氟化物、磷酸盐难溶于水。

LnOCl+HCl↑+5H2OLn2O3+C+Cl2 → LnCl3+CO

Ln2O3+NH4Cl → LnCl3+NH3↑+H2O

Ln2O3+SOCl2 △→ LnCl3

LnCl3·6H2O ==Ln2(C2O4)3Ln2O3 +CO↑+CO2 ↑

17种稀土元素名称及用途

17种稀土元素名称及用途 镧(La) "镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。 铈(Ce)"铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。 铈的广泛应用: (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨. (2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中。美国在这方面的消费量占稀土总消费量的三分之一强。 (3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。 (4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。 镨(Pr) 大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为"镨钕"。"镨钕"希腊语为"双生子"之意。大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从"镨钕"中分离出了两个元素,一个取名为"钕",另一个则命名为"镨"。这种"双生子"被分隔开了,镨元素也有了自己施展才华的广阔天地。镨是用量较大的稀土元素,其用于玻璃、陶瓷和磁性材料中。 镨的广泛应用: (1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。

稀土就是化学元素周期表中镧系元素

稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE或R)。 稀土的分类】 1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。 2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。 铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。 稀土金属(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。 【名称由来】 17种稀土元素名称的由来及用途 镧(La) "镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。 铈(Ce) "铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。 铈的广泛应用: (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅 能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻 璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨. (2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中 美国在这方面的消费量占稀土总消费量的三分之一强。 (3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色 ,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。 (4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用 于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领 域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电 陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢 及有色金属等。 镨(Pr) 大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为"镨钕"。"镨钕"希腊语为"双生子"之意。大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从"镨钕"中分离出了两个元素,一个取名为"钕",另一个则命名为"镨"。这种"双生子"被分隔开了,镨元素也有了自己施展才华的广阔天地。镨是用量较大的稀土元素,其用于玻璃、陶瓷和磁性材料中。 镨的广泛应用: (1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作 釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。 (2)用于制造永磁体。选用廉价的镨钕金属代替纯钕金属制造永磁材料,其抗氧性能 和机械性能明显提高,可加工成各种形状的磁体。广泛应用于各类电子器件和马 达上。 (3)用于石油催化裂化。以镨钕富集物的形式加入Y型沸石分子筛中制备石油裂化催 化剂,可提高催化剂的活性、选择性和稳定性。我国70年代开始投入工业使用, 用量不断增大。 (4)镨还可用于磨料抛光。另外,镨在光纤领域的用途也越来越广。

第21章镧系元素和锕系元素

第21章镧系元素和锕系元素 1.稀土元素与镧系元素是一个概念吗?它们各自的含义是什么? 答:稀土元素与镧系元素不是同一个概念。周期表中ⅢB族的第57号元素镧(La)到第71号元素镥(Lu)共15种元素统称为镧系元素。常把镧系元素与钇统称为“稀土元素”。 2.由电子构型阐明镧系元素化学性质的相似性。 答:镧系元素原子的最外层和次外层电子的构型基本相同,从Ce开始,新增加的电子填充在4f层上,随着原子序数增加,4f轨道中电子的填充出现两种类型即[Xe]4f n-15d16s2和[Xe]4f n6s2。当4f层填满以后,再填入5d层。由于镧系元素原子最外面两层电子结构相似,只是4f内层的电子结构不同,而4f层的电子结构对化学性质的影响不大,因此它们的化学性质非常相近。 3.什么叫“镧系收缩”?试述其产生的原因和由此产生的后果。 答:镧系收缩是无机化学的重要规律之一,它指的是,镧系元素的原子半径(离子半径)随着原子序数的增大逐渐减小的现象。镧系元素中,原子核每增加一个质子,相应的有一个电子进入4f层,而4f电子对核的屏蔽不如内层电子,因而随着原子序数增加,有效核电荷增加,核对最外层电子的引力增强,使原子半径、离子半径逐渐减小。它们的原子半径减小很慢,性质相似,难于分离。 镧系收缩的结果使镧系元素后面的过渡元素的原子半径都相应的缩小,使第三过渡系列元素的原子半径与第二过渡系列元素的原子半径相近,使得Zr和Hf,Nb和Ta,Mo和W的性质极为相似,很难分离。 4.为什么镧系元素具有+Ⅲ的特征氧化态? 答:因为镧系元素的气相原子失去最外层的2个s电子和次外层的1个d电子或失去最外层的2个s电子和1个倒数第3层的f电子(一般是在d0的情况下)所需要的电离能较低,所以镧系元素在具有+Ⅲ的特征氧化态。 5.为什么铈.镨.铽.镝的氧化态常呈现+Ⅳ,而钐、铕、铥、镱却能呈现+Ⅱ氧化态? 答:铈.镨.铽.镝原子的外层电子构型分别为:4f1 5d1 6s2,4f3 5d0 6s2,4f95d06s2和4f105d06s2,铈失去4个电子后原子的外层电子构型为:4f0 5d0 6s0是全空的稳定结构。铽失去4个电子后原子的外层电子构型为:4f7 5d0 6s0是4f半充满的稳定结构。镨和镝原子失去4个电子后原子的外层电子构型是接近全空或接近半充满的稳定结构,所以铈.镨.铽.镝的氧化态常呈现+Ⅳ。 钐、铕、铥、镱原子的外层电子构型分别为:4f65d06s2,4f75d06s2,4f135d06s2和4f145d06s2。

镧系和锕系元素习题

镧系元素和锕系元素 1.从Ln 3+的电子构型,离子电荷和离子半径来说明三价离子在性质上的类似性。 2.试说明镧系元素的特征氧化态是+3,而铈、镨、铽却常呈现+4,钐、铕、镱又可呈现+2。 3.何谓“镧系收缩”,讨论出现这种现象的原因和它对第五、六周期中副族元素性质所产生的影响。 4.稀土元素有哪些主要性质和用途? 5.试述镧系元素氢氧化物Ln(OH)3的溶解度和碱性变化的情况。 6.稀土元素的草酸盐沉淀有什么特性? 7.Ln 3+离子形成配合物的能力如何?举例说明它们形成鳌合物的情况与实际应用。 8.锕系元素的氧化态与镧系元素比较有何不同? 9.水合稀土氯化物为什么要在一定真空度下进行脱水?这一点和其他哪些常见的含水氯化物的脱水情况相似? 10.写出Ce 4+、Sm 2+、Eu 2+、Yb 2+ 基态的电子构型。 11.试求出下列离子成单电子数:La 3+、Ce 4+、Lu 3+、Yb 2+、Gd 3+、Eu 2+、Tb 4+。 12.完成并配平下列反应方程式: (1)EuCl 2+FeCl 3 → (2)CeO 2+HCl → (3)UO 2(NO 3)2 → (4)UO 3 → (5)UO 3+HF → (6)UO 3+NaOH → (7)UO 3+SF 4 → (8)Ce(OH)3+NaOH +Cl 2 → (9)Ln 2O 3+HNO 3 → 13.稀土金属常以+3氧化态存在,其中有些还有其他稳定氧化态。如Ce 4+和Eu 2+。Eu 2+的半径接近Ba 2+。怎样将铕与其他稀土分离? 14.f 组元素的性质为什么不同于d 组元素?举例说明。 △ △

15.讨论下列性质 (1)Ln(OH)3的碱强度随Ln原子序数的提高而降低? (2)镧系元素为什么形成配合物的能力很弱?镧元素配合物中配位键主要是离子性的?(3)Ln3+离子大部分是有色的,顺磁性的。 16.回答下列问题: (1)钇在矿物中与镧系元素共生的原因何在? (2)从混合稀土中提取单一稀土的主要方法有哪些? (3)根据镧系元素的标准电极电势,判断它们在通常条件下和水及酸的反应能力。镧系金属的还原能力同哪个金属的还原能力相近? (4)镧系收缩的结果造成哪三对元素在分离上困难? (5)镧系+3价离子的配合物只有La3+、Gd3+和Lu3+具有与纯自旋公式所得相一致的磁矩? 17.Ln3+(aq)+EDTA(aq) →Ln(EDTA)(aq) 上述生成配合物的反应中,随镧系元素原子序数的增加,配合物的稳定性将发生怎样的递变?为什么? 18.试述238U和235U的分离方法和原理。 19.在核动力工厂,核燃料铀生产中的关键反应如下: UO2(s)+4HF(g)→UF4(s)+2H2O(g) UF4(s)+F2(g)→UF6(g) 计算上述反应的△rH?m。 20.用配合剂2-羟基异丁酸作淋洗剂从离子交换柱上淋洗重镧系金属离子时(含Eu3+到Lu3+之间的多种三价稀土离子),问洗出的顺序如何?为什么?

稀土是化学元素周期表中镧系元素1

稀土是化学元素周期表中镧系元素:镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Th)、镝(Dy)、钬(Ho)、铒(Er)、铥( Tm)、镱(Yb)、镥(Lu),以及与镧系的l 5个元素密切相关的两个元素:钪(Sc) 和钇(Y)共l 7种元素。因为稀土元素最初是从瑞典产的比较稀少的矿物中发现的,“土”是按当时的习惯,称不溶于水的物质。故得名稀土。稀土,在自然界中广泛分布,其中中国的储量就占世界储量的80%左右。随着稀土分离技术的迅速发展以及对其生物活性的不断深入研究,稀土在生物医药领域方面的作用是一个被广泛涉猎的重要研究课题。自上世纪6 0年代以来陆续发现稀土化合物具有一系列特殊的药效作用,可广泛用于治疗烧伤、炎症、皮肤病、血栓病以及镇静止痛等。很多稀土化合物可直接用作药物,如铈盐可用于医治慢性呕吐症和晕船病;铒盐和铈盐可提高血液中血红蛋白和红血球的含量。此外,简单的无机铈盐可用作伤口消毒剂。因此稀土在医药学领域的应用研究也日益受到重视。稀土生物化学、毒理学、药理学、人体组织学、临床医学以及稀土环境科学方面的研究在全球广泛展开,并取得了不少很有价值的研究成果。近年来,人们在稀土及稀土配合物的抗肿瘤、抗突变、抗菌、抗病毒,以及其对消化系统和内分泌系统的作用等方面的研究均取得了很大的进展。随着配位化学的发展,稀土配合物不断被合成,其活性研究也成为人们的研究重点。大量实验结果明,稀土配合物可以在很大程度上改变、修饰和增强稀土的生物活性,但是确属于毒性较低的物质,比许多有机合成物或过渡金属配合物的毒性低。如何有效地利用稀土及其配合物对生物细胞和病毒的作用,并应用到生物医学领域中,是人们研究的主要目标之一。

第22--23章:镧系和锕系元素等习题参考答案

第22章:镧系和锕系元素习题参考答案(P1110-1111) 1. 答:镧系和锕系元素的名称、元素符号和原子序数如下: 镧系元素:锕系元素: 2. 答:(1) 镧系元素的特征氧化态为+3: 镧系元素原子的(基态)价层结构为:4f 0~14 5d 0~1 6s2; 镧系元素原子的基态电子层结构中“最外三个电子层的结构”为: (4s24p64d10)4f 0~14, (5s25p6)5d 0~1, 6s2。 由于镧系元素最外两个电子层对4f轨道有较强的屏蔽作用,4f电子与核的作用较强(即4f电子受核的引力较大),当镧系元素与其它元素化合时,它们都是失去最外层的2个6s电子、次外层的1个5d电子或倒数第三层 的1个4f电子(4f轨道中的电子一般只有1~2个能够参与形成化学键),这三级电离势之和是比较低的、且都很相近(3450~4190 kJ·mol-1 ),而且它们的Ln3+离子半径很相近,Ln3+的水合能相近。因此,镧系元素的特征氧化 态为+3。 (2) Ce(铈)、Pr(镨)、Tb(铽)、Dy(镝)还常呈现+4氧化态: Ce4+(4f0)、Pr4+(4f1)、Tb4+(4f7)、Ce4+(4f8),是因为它们的4f能级具有全空或接近全空、半满或接近半满的结构,这符合Hund规则。

(3) Sm(钐)、Eu(铕)、Tm(铥)、Yb(镱)能呈现+2氧化态: 凡是具有相对稳定电子层结构的镧系元素Ln2+的离子,都是可以形成的。镧系元素中几乎有一半的元素都能形成+2氧化态的离子,特别是: Sm2+(4f6 )、Eu2+(4f7 )、Tm2+(4f13 )、Yb2+(4f14 )。 3. 解释镧系元素在化学性质上的相似性。 答:镧系元素在化学性质上都十分相似,尤其是下列两组的元素: 铈组稀土(轻稀土):La、Ce、Pr、Nd、Pm、Sm、Eu; 钇组稀土(重稀土):Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu(Sc)、Y。 镧系元素原子的基态电子层结构中“最外三个电子层的结构”为: (4s24p64d10)4f 0~14, (5s25p6)5d 0~1, 6s2,倒数一、二两个电子层结构几乎相同,仅是倒数第三电子层中的4f能级中电子数不同,即:镧系元素原子的价层 结构(4f 0~14 5d 0~1 6s2 )十分相似。由于镧系元素最外两个电子层对4f轨道有较强的屏蔽作用,4f电子与核的作用又较强(即4f电子受核的引力较大), 尽管4f能级中电子数不同,它们的化学性质受4f电子数的影响很小,所以 它们的化学性质都十分相似。 (*注:镧系元素4f能级中的电子,一般只有1~2个能够参与形成化学键) 例如: 镧系元素都有特征+3氧化态,镧系金属在水溶液中都容易形成+3价离子; 镧系金属都是较强的还原剂,其还原性强弱仅次于碱土金属,?θ(Ln3+/Ln) 在(-2.5V)~(-2.3V)之间、?θ[Ln(OH)3/Ln] 在(-2.9V)~(-2.7V)之间,都比较接近; 镧系元素的电负性(1.10~1.27)都相近,(I1+I2+I3)三级电离势之和是比较低的、且都很相近(3450~4190 kJ·mol-1 ),而I4(3600~4800 kJ·mol-1 )都较大; 镧系金属的Ln3+离子半径很相近,Ln3+的水合能相近;…等。 4. 什么叫做“镧系收缩”?讨论“镧系收缩”的原因,并回答“镧系收缩” 对周期表中其它元素的性质所造成的影响。 答:La系元素的原子半径和离子半径“随原子序数的增大而逐渐减小”,这种 现象叫“镧系收缩”(Lanthanide Contraction )。镧系收缩有两个特点: (1) 相邻元素原子半径之差仅1pm左右,即在镧系内“原子半径呈缓慢减 小的趋势”,但是经过从La→Lu 14种元素的原子半径递减的累积却减小了约14pm之多。 (2) 离子半径收缩的幅度比原子半径大得多。 镧系收缩的原因→与4f电子的屏蔽效应强弱有关: 镧系元素的4f电子在倒数第三层,4f电子比6s和5s 5p电子对核电荷的

第 章稀土元素 习题答案

第九章稀土元素 【习题答案】 9.1 什么叫内过渡元素?什么叫镧系元素?什么叫稀土元素? 解:内过渡元素:指镧系和锕系元素,位于f区,也称为内过渡元素。 镧系元素:从57号元素镧到第71号元素镥,共15种元素,用Ln表示。 稀土元素:是15个镧系元素加上钪(Sc)和钇(Y),共计17个元素。 9.2 从稀土元素的发现史,你能得到何种启示? 解:请阅读“9.1.1 稀土元素的发现”一节的内容,体会科学研究的精神。 9.3 稀土元素在地壳中的丰度如何?主要的稀土矿物有哪些?世界和我国的稀土矿藏分布 情况如何? 解:稀土元素在地壳中的丰度如下表所示: 元素名称Sc Y La Ce Pr Nd Pm Sm 丰度/g·t-1 5 28.1 18.3 64.1 5.53 23.9 4.5×10-20 6.47 元素名称Eu Gd Tb Dy Ho Er Tm Yb Lu 丰度/g·t-1 1.06 6.36 0.91 4.47 1.15 2.47 0.20 2.66 0.75 主要的稀土矿物有独居石、氟碳铈矿、磷酸钇矿等。 我国稀土资源极其丰富,其特点可概括为:储量大、品种全、有价值的元素含量高、分 布广。已在18个省市发现蕴藏各类稀土矿,储量占世界已探明稀土矿藏的55%左右。南方 以重稀土为主,内蒙古以轻稀土为主。在内蒙古包头市北边白云鄂博,称为“世界稀土之都”, 储量占全国储量70%以上。国外稀土资源集中在美国、印度、巴西、澳大利亚和俄罗斯等国。 9.4 如何从稀土矿物中提取稀土元素? 解:从稀土矿物中提取稀土元素主要包括三个阶段: (1)精矿的分解:利用化学试剂与精矿作用使稀土元素富集在溶液或沉淀中,与伴生元 素分离开来。方法可分为干法和湿法。 (2)化合物的分离与纯化:从混合稀土氧化物或混合稀土盐中分离出单一的稀土元素。 方法有分级结晶法、分级沉淀法、选择性氧化还原法、离子交换法、溶剂萃取法等。 (3)稀土金属的制备:通常采用熔融盐电解和热还原法。

镧系元素

镧系元素 在周期系中,你知道什么是镧系元素?什么是稀土元素吗?它们的电子层结构和性质有什么特点?它们在科学技术和生产中扮演了什么样的角色? “镧系元素”在周期表中从原子序数为57号的镧到原子序数为71号的镥共15种元素,它们的化学性质十分相似,都位于周期表中第ⅢB族,第6周期镧的同一格内,但它们不是同位素。同位素的原子序数是相同的,只是质量数不同。而这15种元素,不仅质量数不同,原子序数也不同。称这15种元素为镧系元素,用Ln表示。它们组成了第一内过渡系元素。“稀土元素”镧系元素以及与镧系元素在化学性质上相近的、在镧系元素格子上方的钇和钪,共17种元素总称为稀土元素,用RE表示。按照稀土元素的电子层结构及物理和化学性质,把钆以前的7个元素:La、Ce、Pr、Nd、Pm、Sm和Eu称为轻稀土元素或铈组稀土元素;钆和钆以后的7个元素:Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu,再加上Sc和Y共10个元素,称为重稀土元素或钇组稀土元素。 “稀土”的名称是18世纪遗留下来的。由于当时这类矿物相当稀少,提取它们又困难,它们的氧化物又和组成土壤的金属氧化物Al2O3很相似,因此取名“稀土”。实际上稀土元素既不“稀少”,也不像“土”。它们在地壳中的含量为0.01534,其中丰度最大的是铈,在地壳中的含量占0.0046,其次是钇、钕、镧等。铈在地壳中的含量比锡还高,钇比铅高,就是比较少见的铥,其总含量也比人们熟悉的银或汞多,所以稀土元素并不稀少。这些元素全部是金属,人们有时也叫它们稀土金属。 我国稀土矿藏遍及18个省(区),是世界上储量最多的国家。内蒙包头的白云鄂博矿是世界上最大的稀土矿。在我国,具有重要工业意义的稀土矿物有氟碳铈矿Ce(CO3)F,独居石矿RE(PO4),它们是轻稀土的主要来源。磷钇矿YPO4和褐钇铌矿YNbO4是重稀土的主要来源。我们从以下几个方面来讨论镧系元素的通性: 1、价电子层结构 2、氧化态 3、原子半径和离子半径 4、离子的颜色 5、离子的磁性 6、标准电极 7、金属单质 电子层结构 这是目前根据原子光谱和电子束共振实验得到的镧系元素原子的电子层结构:

稀土元素资料汇总

稀土元素资料汇总 第一篇 周期系ⅢB族中原子序数为21、39和57~71的17种化学元素的统称。其中原子序数为57~71的15种化学元素又统称为镧系元素。稀土元素包括钪、钇、镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥。通常把镧、铈、镨、钕、钷、钐、铕称为轻稀土元素;钆、铽、镝、钬、铒、铥、镱、镥、钇称为重稀土元素。稀土元素是历史遗留下来的名称,通常把不溶于水的固体氧化物叫做土,而在18世纪,这17种元素都是很稀少的尚未被大量发现,因而得名为稀土元素。现已查明,它们并不稀少,特别是中国的稀土资源十分丰富,有开采价值的储量占世界第一位。从1794年芬兰J加多林从瑞典斯德哥尔摩附近的于特比镇发现钇开始,一直到1947年美国JA马林斯基从铀的裂变产物中分离出钷,共经历150多年。 已经发现的稀土矿物有250种以上,最重要的有氟碳铈镧矿[(Ce,La)FCO3]、独居石[CePO4,Th3(PO4)4]、磷钇石(YPO4)、黑稀金矿[(Y,Ce,Ca) (Nb,Ta,Ti)2O6]、硅铍钇矿(Y2FeBe2Si2O10)、褐帘石[(Ca,Ce)2(Al,Fe)3Si3O12]、铈硅石[(Ce,Y,Pr)2Si2O7·H2O]。 第二篇 稀土元素是镧系元素系稀土类元素群的总称,包含钪Sc、钇Y及镧系中的镧La、铈Ce、镨Pr、钕Nd、钷Pm、钐Sm、铕Eu、钆Gd、铽Tb、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、镥Lu,共17个元素。 “稀土”一词是十八世纪沿用下来的名称,因为当时用于提取这类元素的矿物比较稀少,而且获得的氧化物难以熔化,也难以溶于水,也很难分离,其外观酷似“土壤”,而称之为稀土。稀土元素分为“轻稀土元素”和“重稀土元素”: “轻稀土元素”指原子序数较小的钪Sc、钇Y和镧La、铈Ce、镨Pr、钕Nd、钷Pm、钐Sm、铕Eu。 “重稀土元素”原子序数比较大的钆Gd、铽Tb、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、镥Lu。 二、稀土资源及储备状况 由于稀土元素性质活跃,使它成为亲石元素,地壳中还没有发现它的天然金属无水或硫化物,最常见的是以复杂氧化物、含水或无水硅酸盐、含水或无水磷酸盐、磷硅酸盐、氟碳酸盐以及氟化物等形式存在。由于稀土元素的离子半径、氧化态和所有其它元素都近似,因

稀土元素的发现、种类和用途

稀土元素的发现、种类和用途稀土一词是历史遗留下来的名称。稀土元素是从18世纪末叶开始陆续发现,当时人们常把不溶于水的固体氧化物称为土。稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。这些稀土元素的发现,从1794年芬兰人加多林(J.Gadolin)分离出钇到1947年美国人马林斯基(J.A.Marinsky)等制得钷,历时150多年。其中大部分稀土元素是欧洲的一些矿物学家、化学家、冶金学家等发现制取的。钷是美国人马林斯基、格兰德宁(L.E.Glendenin)和科列尔(C.D.Coryell)用离子交换分离,在铀裂变产物的稀土元素中获得的。过去认为自然界中不存在钷,直到1965年,芬兰一家磷酸盐工厂在处理磷灰石时发现了痕量的钷。 1.稀土种类 镧系元素:镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)共15种元素。 与镧系的15个元素密切相关的:钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE或R)。 2.稀土分类 (1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆 (2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇 铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。 也有的根据稀土元素物理化学性质的相似性和差异性,除钪之外(有的将钪划归稀散元素),划分成三组: (1)除钪之外(有的将钪划归稀散元素) (2)轻稀土组:为镧、铈、镨、钕、钷; (3)中稀土组:钐、铕、钆、铽、镝; (4)重稀土组:钬、铒、铥、镱、镥、钇。

稀土元素介绍

稀土元素介绍 在周期系中,你知道什么是镧系元素?什么是稀土元素吗?它们的电子层结构 和性质有什么特点?它们在科学技术和生产中扮演了什么样的角色? “镧系元素”在周期表中从原子序数为57号的镧到原子序数为71号的镥共15种元素,它们的化学性质十分相似,都位于周期表中第ⅢB 族,第6周期镧的同一格内,但它们不是同位素。同位素的原子序数是相同的,只是质量数不同。而这15种元素,不仅质量数不同,原子序数也不同。称这15种元素为镧系元素,用Ln 表示。它们组成了第一内过渡系元素。 “稀土元素”镧系元素以及与镧系元素在化学性质上相近的、在镧系元素格子上方的钇和钪,共17种元素总称为稀土元素,用RE 表示。按照稀土元素的电子层结构及物理和化学性质,把钆以前的7个元素:La 、Ce 、Pr 、Nd 、Pm 、Sm 和Eu 称为轻稀土元素或铈组稀土元素;钆和钆以后的7个元素:Gd 、Tb 、Dy 、Ho 、Er 、Tm 、Yb 、Lu ,再加上Sc 和Y 共10个元素,称为重稀土元素或钇组稀土元素。 “稀土”的名称是18世纪遗留下来的。由于当时这类矿物相当稀少,提取它们又困难,它们的氧化物又和组成土壤的金属氧化物Al2O3很相似,因此取名“稀土”。实际上稀土元素既不“稀少”,也不像“土”。它们在地壳中的含量为0.01534,其中丰度最大的是铈,在地壳中的含量占0.0046,其次是钇、钕、镧等。铈在地壳中的含量比锡还高,钇比铅高,就是比较少见的铥,其总含量也比人们熟悉的银或汞多,所以稀土元素并不稀少。这些元素全部是金属,人们有时也叫它们稀土金属。 我国稀土矿藏遍及18个省(区),是世界上储量最多的国家。内蒙包头的白云鄂博矿是世界上最大的稀土矿。在我国,具有重要工业意义的稀土矿物有氟碳铈矿Ce(CO 3)F ,独居石矿RE(PO 4),它们是轻稀土的主要来源。磷钇矿YPO 4和褐钇铌矿YNbO 4是重稀土的主要来源。 我们从以下几个方面来讨论镧系元素的通性: 1、价电子层结构 2、氧化态 3、原子半径和离子半径 4、离子的颜色 5、离子的磁性 6、标准电极 7、金属单质 电子层结构 这是目前根据原子光谱和电子束共振实验得到的镧系元素原子的电子层结构:

第二十章 镧系元素和锕系元素

第二十章镧系元素和锕系元素 Chapter 20The Lanthanides and Actinides 镧系元素 La、 Ce、 Pr、 Nd、 Pm、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 Lu (镧)(铈)(镨)(钕)(钷)(钐)(铕)(钆)(铽)(镝)(钬)(铒)(铥)(镱)(镥) 锕系元素 Ac、 Th、 Pa、 U、 Np、 Pu、 Am、 Cm、 Bk、 Cf、 Es、 Fm、 Md、 No、 Lr (锕)(钍)(镤)(铀)(镎)(钚)(镅)(锔)(锫)(锎)(锿)(镄)(钔)(锘)(铹) §20-1 镧系元素(Ln) The Lanthanides 一、General Properties: 1.镧系元素从57号元素镧到第71号元素镥,共十五种元素,称为镧系元素,用Ln 表示。 2.稀土元素周期表ⅢB族中的钪(Sc)、钇(Y)和镧系元素在性质上都非常相似并在矿物中共生,由于镧系收缩,Y3+离子的半径落在Er3+附近,Sc3+离子的半径接近于Lu3+,所以Sc、Y可以看作镧系元素的成员。在化学上把Sc、Y和镧系元素统称为稀土元素(r are earth’s elements),用RE表示。 3.Oxidation states(以+3为特征氧化态,其他还有+2或+4氧化态) 4f 6、4f 7 4f 13、4f 14 Sm2+、Eu2+ Tm2+、Yb2+ 4f 0、4f 1、4f 2、4f 3、4f 4、4f 5、4f 6、4f 7、4f 8、4f 9、4f 10、4f 11、4f 12、4f 13、4f 14 La3+、Ce3+、Pr3+、Nd3+、Pm3+、Sm3+、Eu3+、Gd3+、Tb3+、Dy3+、Ho3+、Er3+、Tm3+、Yb3+、Lu3+ 4f 0、4f 1 4f 7、4f 8 Ce4+、Pr4+ Tb3+、Dy3+ 溶液中能稳定存在的氧化态有:Ln3+、Eu2+(4f 7)、Yb2+(4f 14)、Ce(IV)(4f 0) 4.原子半径和离子半径 (1) 镧系收缩镧系元素的原子半径和离子半径在总的趋势上都是随着原子序数的增 加而逐渐地缩小,这种原子半径依次缩小的积累,称为镧系收缩。 (2) 镧系收缩的影响 (a) Sc、Y与镧系元素共生; (b) Zr、Hf,Nb、Ta,Mo、W,Tc、Re在原子半径上非常接近,造成分离极其困 难。 5.离子的颜色 (1) 电子构型全空,半满和全满,或接近全空,半满和全满的4f电子的离子是稳定的 或比较稳定,难以实现4f电子激发,故是无色的。 ∴La3+ (4f 0 )、Gd3+ (4f 7 )、Lu3+ (4f 14 )、Ce3+ (4f 1 )、Eu3+ (4f 6 )、Tb3+ (4f 8 )、Yb3+ (4f 13 )都是无色 (2) 具有4f x和4f 14 x的+3价离子显示的颜色相同或相近。

镧系元素资料

稀土化合物的发光是基于它们的4f电子在f-f组态之内或f-d组态之间的跃迁。具有未充满的4f壳层的稀土原子或离子,其光谱大约有30 000条可观察到的谱线,它们可以发射从紫外光、可见光到红外光区的各种波长的电磁辐射。稀土离子丰富的能级和4f电子的跃迁特性,使稀土成为巨大的发光宝库,从中可发掘出更多新型的发光材料。 稀土因其特殊的电子层结构,而具有一般元素所无法比拟的光谱性质.稀土元素的原子具有未充满的受到外界屏蔽的4f5d电子组态,因此有丰富的电子能级和长寿命激发态,能级跃迁通道多达20余万个,可以产生多种多样的辐射吸收和发射,构成广泛的发光和激光材料。 二氧化铈用于抛光精密玻璃制品,也可做玻璃去色剂和用于生产有色玻璃,硝酸铈用于制造白炽灯罩。 铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内度,从而节约空调用电。 铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中美国在这方面的消费量占稀土总消费量的三分之一强。 硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。 铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。 5、制造高辉度碳弧灯,掺入特种金属里充当合金添加剂。氧化物用于光学器件和玻璃工业,铈盐用于摄影和纺织工业。铈可作催化剂、电弧电极、特种玻璃等。铈的合金耐高热,可以用来制造喷气推进器零件。硝酸铈可用来制造煤气灯上用的白热纱罩。

稀土元素的化学反应

稀土元素的化学反应 一、稀土元素简介 稀土元素是指周期表中第57(镧)~71(镥)号原子序的镧系元素,以及第三副族的钪和钇共17个元素,即镧La(lan)、铈Ce(shi)、镨Pr(pu)、钕Nd(nv)、钷Pm(po) 、钐Sm(shan) 、铕Eu(you) 、钆Gd(ga),铽Tb(te)、镝Dy(di)、钬Ho(huo)、铒Er(er)、铥Tm(diu)、镱Yb(yi)、镥Lu(lu)以及钇Y(yi)、钪Sc(kang)。它们在自然界中共同存在,性质非常相似,但彼此之间又存在有一些差别,这是由它们的原子和离子的电子结构决定的。由于这些元素发现的比较晚,又难以分离出高纯的状态,最初得到的是元素的氧化物,他们的外观似土,所以称它们为稀土元素。其实从它们在地壳中的含量(丰度)看,其中的某些元素并不稀少。 二、稀土元素的化学反应 1、稀土金属及合金制取 制备稀土金属,首先是制备出稀土氧化物、氯化物或氟化物后再用熔盐电解法或金属热还原法等制取金属。单一稀土金属的制备方法因元素不同而异。熔盐电解法被广泛用于制取稀土合金,金属热还原也可以直接制取某些具有实际价值的稀土合金。此外,国外还研究了其他制取稀土金属的还原方法。 (1) 熔盐电解法制取稀土金属与合金 熔盐电解法是用稀土的氧化物、氯化物或氟化物,与钙、钡、钠或钾的氯化物或氟化物组成的混合熔盐作为电解质,高温下进行电解。一般而言,熔盐电解法生产规模较大,适用于生产混合稀土金属、铈组或镨钕混合金属以及镧、铈、镨、钕等单一稀土金属,其产品纯度有限。钐、铕、铥、臆因蒸汽压高等原因不适宜用熔盐电解法制备。 (2) 金属热还原法制取稀土金属 根据化学热力学的计算,在一定温度、压力和物理条件下,一些碱金属或碱土金属与无水稀土氯化物反应可以将稀土氯化物还原为稀土金属,并与反应生成的渣相分离,这就是金属热还原法。 钙热还原稀土氟化物 2REF3(s)+3Ca(l) →2RE(l)+3CaF2(l) (1450-1750度) 锂热还原稀土氯化物 RECl3(l)+3Li(g) →RE(l)+3LiCl(g) (800-1100度) 镧、铈还原稀土氧化物 RE2O3(s) + 2La (l) →2RE(g) + La2O3 (s) (1200-1400度) 2RE2O3(s) + 3Ce(l) →4RE(g)+ 3CeO2(s) 2、稀土元素的活泼性及氧化还原性 (1)稀土元素的活泼性 稀土元素是典型的金属元素。稀土元素的化学活性很强,仅次于碱金属和碱土金属。 17种稀土元素中,按金属活泼性顺序排列,由钪→钇→镧递增,由镧→镥递减,即镧

镧系锕系元素-内容要点

内容提要、重点难点、本章要求 1.内容提要 (1)镧系、锕系元素的名称、符号、电子层构型、氧化态及变化规律; (2)镧系收缩及后果; (3)镧系元素化合物; (4)稀土元素; (5)习题与测试; 2.重点难点 (1)镧系元素原子半径及离子半径变化规律; (2)镧系收缩及后果; 3.本章要求 (1)掌握镧系元素名称、符号、价电子构型及半径变化规律; (2)掌握镧系收缩及后果; (3)了解镧系元素性质; (4)了解稀土元素的用途; 4.建议学时----2学时 15.1 镧系、锕系元素的名称、符号、电子层构型、氧化态及变化规律 1.名称和符号 周期表中有两个系列的内过渡元素,即第六周期的镧系和第七周期的锕系。镧系包括从镧(原子序数57)到镥(原子序数为71)的15种元素;锕系包括从锕(原子序数89)到铹(原子序数103)的15种元素。 2.电子层构型 镧系、锕系电子层构型比较复杂,第三层4f、5f轨道上。 表15-1 镧系元素原子的电子层结构

57镧La 58铈Ce 59镨Pr 60钕Nb 61钷Pm 62钐Sm 63铕Eu 64钆Gd 65铽Tb 66镝Dy 67钬Ho 68铒Er 69铥Tm 70镱Yb 71镥Lu 从表15-1可知,除镧原子外,其余镧系元素原子的基态电子层结构中都有f电子。镧虽然没有f电子,但它与其余镧系元素在化学性质上十分相似。镧系元素最外两个电子层对4f轨道有较强的屏蔽作用,尽管4f能级中电子数不同,它们的化学性质受4f电子数的影响很小,所以它们的化学性质很相似。 【问题】为什么La最外层电子构型不是4f16s2,而是4f05d16s2; Gd最外层电子构型不是4f86s2,而是4f75d16s2? 根据洪特规则,电子处于半满、全空时较为稳定。

镧系元素的光学性质.

镧系元素的光学性质 一、镧系离子的电子吸收光谱和离子的颜色 镧系离子的颜色来源于: ①荷移跃迁电荷从配体的分子轨道向金属离子空轨道跃迁。其光谱的谱带具有较大的强度和较短的波长,且受配体及金属离子的氧化还原性所影响。 ②f-d(u→g)跃迁光谱选律所允许的跃迁。因而谱线强度大,一般出现在紫外区,其中+2价离子也可能出现在可见区。 ③f-f(u→u)跃迁光谱选律所禁阻的跃迁。然而,由于中心离子与配体的电子振动偶合、晶格振动和旋-轨偶合使禁阻产生松动,从而使f-f跃迁得以实现。 可以发现:除La3+和Lu3+的4f亚层为全空或全满外,其余+3价离子的4f 电子都可以在7条4f轨道之间任意配布,从而产生多种多样的电子能级,这种能级不但比主族元素多,而且也比d区过渡元素多,因此,+3价镧系元素离子可以吸收从紫外、可见到红外光区的各种波长的辐射。据报导,具有未充满f电子轨道的原子或离子的光谱约有3万条可以观察到的谱线。

先看为什么镧系离子的基态光谱项呈周期性变化? 参看左表示出的Ln3+离子的电子排布和基态光谱项。以4f7的Gd3+为中心,两边具有fx和f14-x组态的离子的角动量量子数、自旋量子数相同,基态光谱项 对称分布。这是因为4f轨道上未成对电子数目在Gd3+两边是等数目递减之故。

再看为什么镧系离子的具有fx与f14-x结构的离子颜色相同。 这是因为半满的4f7结构的Gd把镧系其余14个元素分成了具有fx与f14-x 结构的两个小周期。具有fx与f14-x结构的离子的未成对f电子数相同,电子跃迁需要的能量相近,故颜色相同。 所以,镧系元素的性质只要是和原子或离子的电子层结构密切相关的,则随着原子序数的增加,电子依次充填周期性地组成了相似的结构体系。因而其性质就都 应呈现周期性变化。

镧系元素

镧系元素的性质 及其 性质变化规律性 镧系元素在地壳中的丰度和奇偶变化 镧系元素的价电子层结构 原子半径和离子半径 Ln3+离子的碱度 氧化态 镧系元素化合物的一些热力学性质 镧系元素的光学性质 镧系元素的磁学性质 镧系元素的放射性

1 镧系元素在地壳中的丰度和奇偶变化 是中子,在基态时总以自旋相反配对存在,由于原子序数为偶数的元素能满足这种自旋相反配对的要求,因而能量较低,所以就特别稳定,既然该核特别稳定,那么它在地壳中的丰度就大。 稳定的原子核,吸收热中子后仍然很稳定,反之,奇原子序数的核本身不稳定,吸收热中子后变得更不稳定,所以吸收热中子的数目有限。 原子序数是原子核内质子数的代表 ,偶原子序数的元素意味着核内质子数 为偶数。已经知道,核内无论是质子还 左图显示出镧系元素在地壳中的丰 度随原子序数的增加而出现奇偶变化的 规律:原子序数为偶数的元素,其丰度 总是比紧靠它的原子序数为奇数的大。 除丰度之外,镧系元素的热中子吸 收截面也呈现类似的奇偶变化规律性。 奇偶变化

下表列出镧系元素在 气态时和在固态时原子的电子层结构。2镧系元素的价电子层结构

镧系元素气态原子的 4f轨道的充填呈现两种构 型,即4f n-15d16s2和4f n6s2 ,这两种电子构型的相对 能量如图1所示: 其中La、Ce、Gd、Lu 的基态处于4f n-15d16s2时 能量较低,而其余元素皆 为4f n6s2。 La、Gd、Lu的构型可以用f0、f7、f14(全空、半满和全满)的洪特规则来解释,但Ce的结构尚不能得到满意的解释,有人认为是接近全空的缓故。

第14章镧系和锕系元素

第14章镧系和锕系元素 一、是非题 1 从元素钪开始,原子轨道上填3d电子,因此第一过渡系列元素原子序数的个位数等于3d上的电子数. 2 除ⅢB外,所有过渡元素在化合物中的氧化态都是可变的,这个结论也符合与ⅠB族元素. 3 ⅢB族是副族元素中最活泼的元素,它们的氧化物碱性最强, 接近于对应的碱土金属氧化物. 4 第一过渡系列的稳定氧化态变化,自左向右,先是逐渐升高,而后又有所下降, 这是由于d轨道半充满以后倾向于稳定而产生的现象. 5 元素的金属性愈强,则其相应氧化物水合物的碱性就愈强;元素的非金属性愈强,则其相应氧化物水合物的酸性就愈强. 6 低自旋型配合物的磁性一般来说比高自旋型配合物的磁性相当要弱一些. 二、选择题: 1 过渡元素原子的电子能级往往是(n-1)d > ns,但氧化后首先失去电子的是ns 轨道上的,这是因为: A、能量最低原理仅适合于单质原子的电子排布. B、次外层d上的电子是一个整体,不能部分丢失. C、只有最外层的电子或轨道才能成键. D、生成离子或化合物,各轨道的能级顺序可以变化. 2 下列哪一种元素的(Ⅴ)氧化态在通常条件下都不稳定 A、Cr(Ⅴ) B、Mn(Ⅴ) C、Fe(Ⅴ) D、都不稳定 3 Cr2O3,MnO2,Fe2O3在碱性条件下都可以氧化到(Ⅵ)的酸根, 完成各自的氧化过程所要求的氧化剂和碱性条件上 A、三者基本相同 B、对于铬要求最苛刻 C、对于锰要求最苛刻 D、对于铁要求最苛刻 4 下列哪一体系可以自发发生同化反应而产生中间氧化态离子? A、Cu(s) + Cu2+(aq) B、Fe(s) + Fe3+(aq) C、Mn2+(aq) + MnO42-(aq) D、Hg(l) + HgCl2(饱和) 5 下列哪一种关于FeCl3在酸性水溶液的说法是不妥的? A、浓度小时可以是水合离子的真溶液 B、可以形成以氯为桥基的多聚体 C、可以形成暗红色的胶体溶液 D、可以形成分子状态的分子溶液. 6. 关于过渡元素,下列说法中哪种是不正确的. A.所有过渡元素都有显著的金属性; B.大多数过渡元素仅有一种价态; C.水溶液中它们的简单离子大都有颜色; D.绝大多数过渡元素的d轨道未充满电子. 7 在酸性介质中,用Na2SO3还原KMnO4,如果KMnO4过量,则反应产物为: A.Mn2+ +SO42- B.Mn2++ SO2 C.MnO2+ SO42- D.MnO42- +SO42- 三、填空题: 1 写出下列物质的化学式和化学名称: 铬黄( ), 灰锰氧( ), 铬铁矿( ).

相关文档