文档库 最新最全的文档下载
当前位置:文档库 › 开关磁阻电机的变速驱动设计

开关磁阻电机的变速驱动设计

开关磁阻电机的变速驱动设计
开关磁阻电机的变速驱动设计

Design and Development of Low-Cost and

High-Ef?ciency Variable-Speed Drive System

With Switched Reluctance Motor

Keunsoo Ha,Student Member,IEEE,Cheewoo Lee,Student Member,IEEE,Jaehyuck Kim,Student Member,IEEE, R.Krishnan,Fellow,IEEE,and Seok-Gyu Oh,Member,IEEE

Abstract—Low-cost switched-reluctance-motor(SRM)drive systems are actively sought for high-ef?ciency home appliances and power tools.Minimizing the number of switching devices has been in power converters that is the main method to re-duce drive costs.Single-switch-per-phase converters have been cost effective due to the compactness of the converter package resulting in a possible reduction in their cost.However,some of the single-switch-per-phase converters have the drawbacks that include higher losses and low-system ef?ciency.In order to over-come these shortcomings,the choice narrows down to the split ac converter through the quantitative analysis in terms of device ratings,cost,switching losses,conduction losses,and converter ef?ciency.Simulations to verify the characteristics of the converter circuit and control feasibility are presented.The motor drive is realized with a novel two-phase?ux-reversal-free-stator SRM and a split ac converter.The ef?ciency with various loads is numeri-cally estimated and experimentally compared from the viewpoint of subsystem and system in details.The acoustic noise with no load and full load is also compared.The focus of this paper is to compare the considered split ac converter to the asymmetric converter through experiments and demonstrate that the split ac converter is the most advantageous with respect to cost,ef?ciency, and acoustic noise.

Index Terms—Acoustic noise,high ef?ciency,low cost,switched reluctance motor(SRM).

I.I NTRODUCTION

T HE SEARCH for a lower cost and higher ef?ciency brushless motor drive has intensi?ed with the advent of variable-speed applications in home appliances and power tools.While a variable-speed motor drive may become accept-able in some appliances,the industry predominantly moves away from brush-and commutator-based machines for reasons of reliability,safety,longevity,and acoustic noise[1].Hence, the search for a simpler and lower cost brushless motor drive

Paper IPCSD-06-116,presented at the2006Industry Applications Society Annual Meeting,Tampa,FL,October8–12,and approved for publication in the IEEE T RANSACTIONS ON I NDUSTRY A PPLICATIONS by the Industrial Drives Committee of the IEEE Industry Applications Society.Manuscript submitted for review January15,2006and released for publication December8,2006. K.Ha,C.Lee,J.Kim,and R.Krishnan are with the Center for Rapid Transit Systems,The Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University,Blacksburg,V A24061USA (e-mail:ksha@https://www.wendangku.net/doc/817926557.html,;cwlee101@https://www.wendangku.net/doc/817926557.html,;marcjkim@https://www.wendangku.net/doc/817926557.html,;kramu@https://www.wendangku.net/doc/817926557.html,). S.-G.Oh is with the Department of Mechatronics Engineering,Jinju National University,Jinju660-758,Korea(e-mail:sgoh@inju.ac.kr).

Color versions of one or more of the?gures in this paper are available online at https://www.wendangku.net/doc/817926557.html,

Digital Object Identi?er10.1109/TIA.2007.895744has intensi?ed with the prospective oncoming variable-speed applications.One of the possible electrical machines in low-cost and variable-speed drives is the switched reluctance motor (SRM).SRM drive system is a strong candidate for low-cost variable-speed applications,and that is mainly due to the simple construction of the machine,brushless operation,absence of magnets,and windings on the rotor while still maintaining a relatively high torque density.This makes it potentially a very cost-effective and high-performance drive suitable for many applications.Another key to realize such low-cost motor drive is minimizing the number of switching devices,and one of the cost-effective solutions is using a single-switch-per-phase converters.

Many cost-reducing solutions have been proposed,and al-most all have concentrated on minimizing the number of power switches.Single-switch-per-phase converters are most suitable for inexpensive applications due to their relatively low compo-nent count and simplicity of the drive system as compared to other well-known converters[2].

The asymmetric converter[3],shown in Fig.1(a),is a well-known converter that has two power switches and two diodes per phase,resembling the conventional ac motor drives,and the minimum voltage rating of each switch is the dc-link supply voltage.The motor phases are independently controlled.The main disadvantage is the total number of the switches and the diodes which reduces its cost competitiveness,and it is only embraced in high-performance applications.

The single-switch-per-phase con?guration[4]is highly cost effective because it contains only one switch per phase.Several topologies in this category have been developed such as bi?lar, R-dump,C-dump,and split dc link.Bi?lar and R-dump have the drawback of lower system ef?ciency under high-voltage operation.The split dc-link converter[3],shown in Fig.1(b), has two equally split capacitors and also requires one switch per phase.This converter,however,has drawbacks of having half the dc supply voltage per phase and voltage asymmetry between the two dc-link capacitors.

In[1],a low-cost four-quadrant brushless motor drive,shown in Fig.1(c),using a single controllable switch is presented. The cost of this converter is signi?cantly lower due to the reduction of attendant circuits such as gate drives,logic power supplies,and heat sinks.However,it has the disadvantage of low-performance since the main phase winding is controlled using the single controllable switch,and the auxiliary winding

0093-9994/$25.00?2007IEEE

Fig.1.Converter topologies feasible for two-phase SRMs.(a)Asymmetric bridge converter.(b)Split dc-link converter.(c)Single controllable switch converter.(d)N+1converter.(e)Split ac supply converter.

is used for self-startup,recovering energy from the main phase and for speed reversal.

The N+1switch converter[5]shown in Fig.1(d),where N is the number of machine phases,uses only one switch

per Fig.2.Finite element?ux plot of two-phase SRM.

phase with an additional switch shared commonly by all phases. It is intended to minimize the total number of components while achieving a fairly wide range of operating modes:normal conduction,free wheeling,and commutation modes.It has fewer components than an asymmetric converter.In the N+1 converter,the phases are not entirely independent,which means that the commutation is sluggish with the common switch conducting.

In order to achieve low cost and high ef?ciency,the split ac converter[shown in Fig.1(e)],which has the structure of a single-switch-per-phase converter,is experimentally imple-mented in the drive system.The half-bridge recti?er splitting ac supply voltage charges one capacitor every ac half cycle,and the capacitor is also charged by storing the energy extracted during the free wheeling and the regeneration of the phase winding producing the torque,resulting in producing signi?-cantly greater torque than that is possible from the regular split dc supply converter.In addition,it has an advantage in faster commutation of the phase-winding current.

The experimental veri?cation of the high ef?ciency and acoustic noise level is achieved using a novel two-phase SRM having the self-starting capability.The novel two-phase?ux-reversal-free-stator SRM is described in[6].

This paper is organized as follows.Section II introduces the con?guration of the considered two-phase SRM.Section III describes the comparison of the considered converter to the other well-known converters.Section IV presents the operation and structure of the converter.Section V gives the structure of the controller.Based on these developments,its modeling, analysis,and simulation are presented in Section VI.Experi-mental results are presented both for measuring the ef?ciency and acoustic noise in Section VII.Conclusions are drawn and presented in Section VIII.

II.C ONSIDERED T WO-P HASE SRM[6]

Fig.2shows one-phase?ux in a two-phase SRM using computer-based?nite element analysis.It has one main stator pole and two auxiliary stator poles for one phase.The shape of rotor poles is separated by both a uniform air gap and a nonuniform air gap.The uniform air-gap region is generally formed to minimize reluctance so that inductance can be max-imized.The nonuniform air-gap region is necessary to keep

HA et al.:DESIGN AND DEVELOPMENT OF LOW-COST AND HIGH-EFFICIENCY V ARIABLE-SPEED DRIVE SYSTEM705

TABLE I

C OMPARISON OF C ONVERTER L OSSES B ETWEEN THE

D IFFERENT C ONVERTER T OPOLOGIES FOR T WO-P HAS

E SRM

706IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS,VOL.43,NO.3,MAY/JUNE2007

TABLE II

O VERALL C OMPARISON B ETWEEN THE D IFFERENT C ONVERTER T OPOLOGIES FOR T WO-P HASE SRM

HA et al.:DESIGN AND DEVELOPMENT OF LOW-COST AND HIGH-EFFICIENCY V ARIABLE-SPEED DRIVE SYSTEM

707 Fig.3.Drive-system control block

diagram.

Fig.4.Timing diagram of the speed controller.

and applies the necessary sequence of commands to each control loop to achieve the new target velocity.After SRM has settled to a new target speed,the soft start loop is encountering its wait state.In this state,it continuously checks if a new target velocity has arrived at the analog-to-digital-converter channel. If a new target speed arrives,the soft start loop shifts into its soft start state.Depending upon whether the new target velocity is above or below the current velocity,the soft start loop will either increment or decrement the current velocity command by1r/min every1ms.A closed loop velocity controller with a PI control law determines the torque required to bring the motor velocity to the command value at a certain load.A commutation algorithm determines the excitation and commutation logic with respect to the present velocity,and the torque command is eventually converted into a set of phase current commands. The current in an SRM phase winding is directly measured with a current sensor.The measured current is compared with the current command,forming an error signal.The current error is compensated via a PI control law and an appropriate pulsewidth modulation(PWM)control action is taken.

As shown in Fig.4,the commutation control,the current command generator,and the current control loop are executed at10kHz.Because of their lower bandwidth requirements,the velocity control loop is performed at1kHz.

VI.S IMULATIONS

In order to verify the feasibility of the drive system,it was modeled,simulated,and analyzed.For the controller,a standard modeling procedure given in[3]was used.From?nite element analysis of the motor,discrete data sets of3-D relationships between inductance versus current versus position and torque versus current versus position can be obtained.By using the cubic spline interpolation,the?ux linkages and the electro-magnetic torque for any rotor position and excitation current can be retrieved[3].V oltage drops and switching transients of the power electronic devices are negligible compared to the dc-link voltage and mechanical time constant of the motor; therefore,the switching devices are assumed to be ideal.The following system equations combining the converter and motor are derived for each mode of operation that corresponds with the IGBT switching modes.

T1:ON(phase A is energized)

νa=νc1

=R a i a+dλa

dt

=R a i a+L a(θ,i a)di a

dt

+i a

dL a(θ,i a)

ω(1)νc1=

1

C1

i c1dt+νc1(t OFF),i c1=?i a(2)

λa=L a(θ,i a).(3)

708IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS,VOL.43,NO.3,MAY/JUNE

2007

Fig.5.Simulation of the split ac drive system(scale:V oltage=200v/div,current=10A/div,and torque=5N·m/div).

T1:OFF(phase A is de-energized)

νa=?νc2

=R a i a+dλa

dt

=R a i a+L a(θ,i a)di a

dt +i a

dL a(θ,i a)

ω(4)

νc2=

1

C2

i c2dt+νc2(t ON),i c2=i a.(5)

where i a,i c1,and i c2are the phase A,capacitor C1,and capac-itor C2current,respectively;νa,νc1,andνc2are phase A,ca-pacitor C1,and capacitor C2voltage,respectively.νc1(t OFF) is the capacitor C1voltage at the last time during turn OFF T1, andνc2(t ON)is the capacitor C2voltage at the last time during turn ON T1.R a,L a,andλa are phase A winding resistance,in-ductance,and?ux linkages,respectively.The system equations for phase B can be derived similarly.The motor speed dynamic equation is given as

J dωm

dt

+Bωm=T e?T l(6)

whereωm,J,and B are the rotor speed,the rotor inertia,and the friction coef?cient,respectively.T e is the electromagnetic torque obtained from motor magnetic characteristics as a func-tion of the current and rotor position,and T l is the load torque. Fig.5shows the simulation results for operation at3000r/min under a load of4.5N·m.The upper and lower dc-link capacitor voltages,phase A and B currents,as well as the corresponding electromagnetic torque,are plotted.The voltage to the phase winding is applied in advance by6?,and the current turn OFF is initiated30?in advance.

VII.E XPERIMENTAL R ESULTS

A.Operation of the Split AC Drive System

The operation of the considered drive system at the rated speed and the full load is shown in Fig.6.Average

phase Fig.6.Operation of the split ac drive system(scale:Phase voltage and capac-itor voltage=100v/div,phase current=5A/div,and time=2ms/div). current is12A during the conduction region,and the ripple voltage of the capacitor is28V because chopping one phase continuously charged the opposite capacitor.It was caused by the phase energy transfer from the conducting phase to the capacitor during switch turn OFF.

B.Ef?ciency

1)Experimental Setup and Measurements:In order to val-idate the considered drive system,comprehensive sets of ex-periments were performed.The control algorithm mentioned in Section V was implemented in a16-b DSP controller,Texas Instrument’s TMS320LF2808.Current sensing and feedback was performed using the LA25-NP current transducers man-ufactured by LEM,Inc.In order to protect the control circuitry, all switches were driven using the optoisolating gate drivers to produce a+15-V gate signal with complete galvanic isolation. It is controlled in the way that the same advanced and conduc-tion angles are used in the considered split ac drive system and the asymmetric drive system in order to compare the ef?ciency and the acoustic noise level.

The considered split ac drive system and the asymmetric drive system have been tested on a2.2-hp3000-r/min two-phase SRM with dc generator as its load shown in Fig.7. The voltage and current can be measured using a differential

HA et al.:DESIGN AND DEVELOPMENT OF LOW-COST AND HIGH-EFFICIENCY V ARIABLE-SPEED DRIVE SYSTEM709

Fig.7.Experimental setup for measuring ef?ciency.

TABLE III

R ECTIFIER E FFICIENCY AT V ARIOUS L OADS(3000r/min)

710IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS,VOL.43,NO.3,MAY/JUNE

2007

n

n

i=1

10L p,i10

(7)

where L p is the averaged sound-pressure level in decibels,L p,i is the sound pressure at the i th measurement point,and n is the total number of measurement points.

The ambient noise was34.80dB,and it was below the measured acoustic noise from the tested two-phase SRM,and no correction is required for the ambient noise.It can be seen from Table VII for no load and Table VIII for full load that the acoustic noise from the considered split ac drive system is slightly lower than the asymmetric drive system,and it produces a reasonably quiet operation.

2)Frequency Spectrum:Figs.9and10show that the fre-quency spectra of the acoustic noise are measured from the con-sidered split ac drive system and the asymmetric drive system. The frequency spectra throughout the eight locations of point were found to have very similar pattern,and a measurement at P2location is taken for illustration.

The frequency component at160Hz is due to the frequency of the phase current at3000r/min,and the noise level of the split ac drive system is close to that of the asymmetric drive system.The frequency spectra also show a frequency

TABLE VII

M EASURED S OUND-P RESSURE L EVEL(N O L OAD

)

TABLE VIII

M EASURED S OUND-P RESSURE L EVEL(F ULL L OAD,4.5N·

m) component at10kHz,which is the PWM frequency of the phase current.The noise level of the split ac drive system is 2dB greater due to the hard chopping drive.The peak compo-nent at the frequency spectrum can be found at800Hz,and this frequency coincides with?ve times the phase frequency.It is referred that vibration is maximum when the natural frequency of the stator pole coincides with the odd times the phase frequency[10].

VIII.C ONCLUSION

This paper presented a split ac drive system for a novel two-phase?ux-reversal-free-stator SRM,and it has a single-switch-per-phase topology.Its performance has been theoretically compared to several types of converter topologies and exper-imentally compared to an asymmetric converter.It has been analyzed with the system dynamic equations and simulated in order to validate the performance of the split ac converter circuit.Although the ef?ciency of the machine with the split ac drive system is lower than the asymmetric drive system,the overall system ef?ciency is very close to the asymmetric drive system due to the better ef?ciency in recti?er and converter. Subsystem and system ef?ciency are estimated and measured at various loads,and they are reasonable and acceptable.The acoustic noise spectrum of the split ac drive system has slightly lower average sound-pressure level than the asymmetric drive system.The proposed split ac drive system is a strong contender to be a low-cost motor drive system with a single-switch per

HA et al.:DESIGN AND DEVELOPMENT OF LOW-COST AND HIGH-EFFICIENCY V ARIABLE-SPEED DRIVE SYSTEM

711 Fig.9.Frequency spectrum of acoustic noise at the split ac drive system while driving at3000r/min and the full

load.

Fig.10.Frequency spectrum of acoustic noise at the asymmetric drive system while driving at3000r/min and the full load.

phase having comparable ef?ciency and acoustic noise level as an asymmetric drive system under full load.

A PPENDIX

C ALCULATION OF THE O UTPUT P OWER OF SRM

The losses of dc generator,including the copper losses, mechanical losses,core losses,stray losses,and brush contact losses,can be calculated in advance,and based on these losses, the output power of SRM can be calculated.

1)Copper Losses(in Case of Separately Excited Field):

P copper=I2a·R a.(8) The change in resistance of the armature due to temperature and skin effect has to be considered in order to calculate the accurate copper losses in the dc generator.Improper value of resistance can lead to the reduction of the input power of dc generator,resulting in the reduction of the output of the tested drive system.Temperature measurements are made right after driving,and resistor values for copper at any temperature other than the standard temperature(usually speci?ed at20?C)are measured through the following formula[11]:

R=R ref[1+α·(T?T ref)](9) where R is the resistance at temperature T,R ref is the re-sistance at reference temperature T ref,αis0.004041,which means the temperature coef?cient of resistance for copper,and T is temperature in degree Celsius.Skin effect can be neglected

712IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS,VOL.43,NO.3,MAY/JUNE 2007

P in ,sys

.(16)

8)Converter Ef?ciency:It can be found from Fig.7that the converter ef?ciency is given as

ηconv =

P in ,SRM

P in ,dc

.(17)

9)Machine Ef?ciency:It can be found from Fig.7that the machine ef?ciency is given as

ηSRM =

P out ,SRM

P in ,SRM

.

(18)

10)System Ef?ciency:It can be found from Fig.7that the overall system ef?ciency is given as

ηsys =

P out ,SRM

P in ,sys

=ηrec ·ηconv ·ηSRM .

(19)

A CKNOWLEDGMENT

The authors would like to thank Panaphase Technologies for funding this paper and helping with manufacturing the proto-type machine and for their support in measuring the acoustic noise.

R EFERENCES

[1]R.Krishnan,S.-Y .Park,and K.Ha,“Theory and operation of a four-quadrant switched reluctance motor drive with a single controllable switch—The lowest cost four-quadrant brushless motor drive,”IEEE Trans.Ind.Appl.,vol.41,no.4,pp.1047–1055,Jul./Aug.2005.

[2]S.Vukosavic and V .R.Stefanovic,“SRM inverter topologies:A compar-ative evaluation,”IEEE Trans.Ind.Appl.,vol.27,no.6,pp.1034–1047,Nov./Dec.1991.

[3]R.Krishnan,Switched Reluctance Motor Drives .Boca Raton,FL:CRC

Press,2001.

[4]R.Krishnan and P.N.Materu,“Design of a single-switch-per-phase con-verter for switched reluctance motor drives,”IEEE Trans.Ind.Electron.,vol.37,no.6,pp.469–476,Dec.1990.

[5]J. C.Morse,“Design and implementation of a novel control sys-tem for four quadrant operation of a two-phase switched reluc-tance motor,”M.S.thesis,ECE Dept.,Virginia Tech,Blacksburg,2003.

[6]S.-G.Oh and R.Krishnan,“Two phase ?ux reversal free stator:

Concept,analysis,design,and experimental veri?cation,”in Proc.IAS Conf.,Oct.2006,pp.1155–1162.

[7]K.Ha,C.Lee,J.Kim,R.Krishnan,and S.-G.Oh,“Design and devel-opment of brushless variable speed motor drive for low cost and high ef?ciency,”in Proc.IAS Conf.,Oct.2006,pp.1649–1656.

[8]W.Thong and C.Pollock,“Two phase switched reluctance drive with

voltage doubler and low dc link capacitance,”in Proc.IEEE IAS Conf.,2005,pp.2155–2159.

HA et al.:DESIGN AND DEVELOPMENT OF LOW-COST AND HIGH-EFFICIENCY V ARIABLE-SPEED DRIVE SYSTEM713 [9]S.J.Yang,Low-Noise Electrical Motors.Oxford,U.K.:Clarendon,

1981.

[10]P.Vijayraghavan and R.Krishnan,“Noise in electric machines:

A review,”IEEE Trans.Ind.Appl.,vol.35,no.5,pp.1007–1013,

Sep./Oct.1999.

[11]T.R.Kuphaldt,All about Circuits—Chapter12.The physics of conductors

and insulators—Temperature coef?cient of resistance,vol.1-DC,2003.

[Online].Available:https://www.wendangku.net/doc/817926557.html,

[12]G.R.Slemon and A.Straughen,Electric Machines.Reading,MA:

Addison-Wesley,

1980.

Keunsoo Ha(S’04)was born in Seoul,Korea,on February25,1970.He received the B.S.and M.S.

degrees in electrical and control engineering from Hong-Ik University,Seoul,Korea,in1993and1995, respectively.He is currently working toward the Ph.D.degree at Virginia Polytechnic Institute and State University,Blacksburg.

In1995,he worked with the Precision Machinery Research Center,Korea Electronics Technology In-stitute,where he had been a Senior Researcher for two years and researched in developing the brushless

dc motor drives for household air-conditioners and refrigerator’s fan and step motor controllers for car dashboard and linear motor drivers for machine tools. His research interests include electric motor drives and power electronics,and his principal research concerns the sensorless control of switched reluctance motor.

Mr.Ha was the recipient of the Third Paper Prize Award from the Industrial

Drives Committee of the IEEE Industry Applications

Society.

Cheewoo Lee(S’05)was born in Busan,Korea,

in1972.He received the B.S.and M.S.degrees in

electrical engineering from Pusan National Univer-

sity,Pusan,Korea,in1996and1998,respectively.

He is currently working toward the Ph.D.degree at

Virginia Polytechnic Institute and State University,

Blacksburg.

In1998,he was with the Digital Appliance Com-

pany of LG Electronics Inc.,where he had been

a Senior Research Engineer since2002and has

conducted research on the development of Induction Motors,SynRMs,and brushless dc motors for a compressor in home-appliance air conditioners and refrigerators.His research interests include controllable

electric motor drives and their optimal control using a

DSP.

Jaehyuck Kim(S’05)received the B.S.degree

in electrical engineering from Hanyang University,

Seoul,South Korea,in1999,and the M.S.degree

from University of Wisconsin,Madison,in2004.

He is currently working toward the Ph.D.degree at

Virginia Polytechnic Institute and State University,

Blacksburg.

From1999to2000,he worked with the Un-

derwriters Laboratory Korea,Ltd.,where he was a

Field Engineer in the area of the product safety and

certi?cation.His primary area of interest is power electronic control of electric motors,speci?cally,switched reluctance and permanent magnet synchronous

motor.

R.Krishnan(S’81–M’82–SM’95–F’01)received

the Ph.D.degree in electrical engineering from

Concordia University,Montreal,QC,Canada.

He is a Professor of electrical and computer en-

gineering at Virginia Polytechnic Institute and State

University,Blacksburg.His research interests are

analysis,design and innovations in electric motor

drives,electric machines,and power converters for

motor drives and applied control.He is the author

of Electric Motor Drives(Prentice Hall,Feb.2001),

its Chinese translation(Pearson Education Taiwan, 2002),Indian Edition(Prentice Hall of India,2002),and International Edition (Prentice Hall International Edition,2001),and the author of Switched Reluc-tance Motor Drives(CRC Press,June2001)(?rst edition)and2003(second edition),and Coeditor of Control in Power Electronics(Academic Press,Aug. 2002).He directs the Center for Rapid Transit Systems pursuing unique,safe, high-speed,energy ef?cient,and personal electric transit solutions.He has been a Consultant for more than18companies in USA.He has developed and delivered short courses for industry on vector-controlled induction motor drives,permanent magnet synchronous and brushless dc motor drives,switched reluctance motor(SRM)drives,and linear electric motor drives.His inventions constituted the founding technologies for two start-up companies in the U.S.in linear and rotating SRM drives technologies,respectively.Apart from founding these companies,he served as the founding Chief Technical Of?cer for some time to both.He has been granted three U.S.patents,and many are pending in U.S.,Europe,and other countries.His inventions have been prominently featured in public media,including radio,TV,and newspapers such as The Wall Street Journal.

Mr.Krishnan was the recipient of Four Best Paper Prize Awards from IEEE Industry Applications Society Industrial Drives committee.His coedited book Control in Power Electronics won the Best Book Award from Ministry of Education and Sport,Poland,in2003.In addition,he received the?rst prize from the IEEE T RANSACTIONS ON I NDUSTRY A PPLICATIONS for his paper. He is a Fellow of the IEEE cited for his contributions to the development of ac and SRM drives.He was also the recipient of IEEE Industrial Electronics Society’s Dr.Eugene-Mittelmann Achievement Award for Outstanding Techni-cal Contributions to the Field of Industrial Electronics.He is a Distinguished Lecturer of IEEE Industrial Electronics Society.He is an elected Senior AdCom Member of IEEE Industrial Electronics Society and served as Vice President (publications)from2002to2005.He served as the General Chair of the2003 IEEE Industrial Electronics Conference,Roanoke,V A,and as one of the three General Co-Chairs of the IEEE Industrial Electronics Society International Conference on Industrial Technology2006in Mumbai,

India.

Seok-Gyu Oh(S’93–M’98)was born in Korea in

1967.He received the B.S.,M.E.,and Ph.D.de-

grees in electrical engineering from Pusan National

University,Pusan,Korea,in1991,1993,and1997,

respectively.

He was an Engineer with Hyundai Heavy Indus-

tries from1993to1994.He has been with Jinju

National University,Jinju,Korea,as an Associate

Professor in the Department of Mechatronics Engi-

neering since1998.He was a Visiting Professor in

the Department of Electrical and Computer Engi-neering,Virginia Polytechnic Institute and State University,Blacksburg,from 2004to2006.His current research interests are motor design and control of motor using power electronics.

开关磁阻电机速度控制

Journal of Electrical Engineering 电气工程, 2016, 4(1), 55-62 Published Online March 2016 in Hans. https://www.wendangku.net/doc/817926557.html,/journal/jee https://www.wendangku.net/doc/817926557.html,/10.12677/jee.2016.41008 Speed Control Strategy of Switched Reluctance Motor Zhou Du1,2, Dingxiang Wu2,3, Lijun Tang1,2 1School of Physics and Electronic Sciences, Changsha University of Science & Technology, Changsha Hunan 2Hunan Province Higher Education Key Laboratory of Modeling and Monitoring on the Near-Earth Eletromagnetic Environments, Changsha Hunan 3Billion Set Electronic Technology Co, Ltd., Changsha Hunan Received: Mar. 1st, 2016; accepted: Mar. 19th, 2016; published: Mar. 24th, 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.wendangku.net/doc/817926557.html,/licenses/by/4.0/ Abstract Aimed at research on starting mode and speed control of switched reluctance motor speed control system, a two-phase starting is adopted to start the electric, in order to increase the torque and reduce the torque ripple. A fuzzy adaptive PID control algorithm is proposed, and a switched re-luctance motor speed control system with STM32 + FPGA as the main controller is designed, ap-plying current chopping in low speed and angle position control mode in high speed, which has a certain effect on solving the problems of high overshoot, slow dynamic response and low accuracy. The experimental results show that the precision of the system speed is within 10 r/min, and the maximum overshoot is 15 r/min. Keywords Switched Reluctance Motor, Torque Ripple, Fuzzy Adaptive Tuning PID 开关磁阻电机速度控制 杜舟1,2,吴定祥2,3,唐立军1,2 1长沙理工大学物理与电子科学学院,湖南长沙 2近地空间电磁环境监测与建模湖南省普通高校重点实验室,湖南长沙 3长沙亿旭机电科技有限公司,湖南长沙

开关磁阻电机的原理及其控制系统

开关磁阻电机的原理及其控制系统 开关磁阻电机80年代初随着电力电子、微电脑和控制理论的迅速发展而发展起来的一种新型调速驱动系统。具有结构简单、运行可靠、成本低、效率高等突出优点,目前已成为交流电机调速系统、直流电机调速系统、无刷直流电机调速系统的强有力的竞争者。 一、开关磁阻电机的工作原理 开关磁阻电机的工作原理遵循磁磁阻最小原理,即磁通总是要沿着磁阻最小路径闭合。因此,它的结构原则是转子旋转时磁路的磁阻要有尽可能大的变化。所以开关磁阻电动机采用凸极定子和凸极转子的双凸极结构,并且定转子极数不同。 开关磁阻电机的定子和转子都是凸极式齿槽结构。定、转子铁芯均由硅钢片冲成一定形状的齿槽,然后叠压而成,其定、转子冲片的结构如图1所示。

图1:开关磁阻电机定、转子结构图 图1所示为12/8极三相开关磁阻电动机,S1. S2是电子开关,VD1, VD2 是二极管,是直流电源。 电机定子和转子呈凸极形状,极数互不相等,转子由叠片构成,定子绕组可根据需要采用串联、并联或串并联结合的形式在相应的极上得到径向磁场,转子带有位置检测器以提供转子位置信号,使定子绕组按一定的顺序通断,保持电机的连续运行。电机磁阻随着转子磁极与定子磁极的中心线对准或错开而变化,因为电感与磁阻成反比,当转子磁极在定子磁极中心线位置时,相绕组电感最大,当转子极间中心线对准定子磁极中心线时,相绕组电感最小。 当定子A相磁极轴线OA与转子磁极轴线O1不重合时,开关S1, S2合上,A 相绕组通电,电动机内建立起以OA为轴线的径向磁场,磁通通过定子扼、定子极、气隙、转子极、转子扼等处闭合。通过气隙的磁力线是弯曲的,此时磁路的

开关磁阻电动机驱动系统简介

开关磁阻电动机驱动系统(SRD)简介 开关磁阻电动机驱动系统(SRD)是较为复杂的机电一体化装置,SRD的运行需要在线实时检测的反馈量一般有转子位置、速度及电流等,然后根据控制目标综合这些信息给出控制指令,实现运行控制及保护等功能。转子位置检测环节是SRD的重要组成部分,检测到的转子位置信号是各相主开关器件正确进行逻辑切换的根据,也为速度控制环节提供了速度反馈信号。开关磁阻电机具有再生的能力,系统效率高。对开关磁阻电机的理论研究和实践证明,该系统具有许多显著的优点:(1)电机结构简单、坚固,制造工艺简单,成本低,可工作于极高转速;定子线圈嵌放容易,端部短而牢固,工作可靠,能适用于各种恶劣、高温甚至强振动环境。(2)损耗主要产生在定子,电机易于冷却;转子无永磁体,可允许有较高的温升。(3)转矩方向与电流方向无关,从而可最大限度简化功率变换器,降低系统成本。(4)功率变换器不会出现直通故障,可靠性高。(5)起动转矩大,低速性能好,无感应电动机在起动时所出现的冲击电流现象。(6)调速范围宽,控制灵活,易于实现各种特殊要求的转矩-速度特性。(7)在宽广的转速和功率范围内都具有高效率(8)能四象限运行,具有较强的再生制动能力。(9)容错能力强。开关磁阻电机的容错体现在电机某一相损坏,电机照样可以运行。与当前广泛应用的变频调速感应电动机相比,开关磁阻电机在成本、效率、调速性能、单位体积功率、可靠性、散热性等都具有明显的优势或竞

争力。如果说第一代开关磁阻电机(1983年研制)在小功率范围的效率比高效变频调速感应电动机低,第二代开关磁阻电机(1988年研制)的效率已全面超过了高效变频调速感应电动机。更难得的是,开关磁阻电机在宽广的速度和功率范围内都能保持较高的效率,这是变频调速感应电动机难以比拟的。感应电动机要取得与直流电机相近的调速特性需采用复杂的矢量控制系统,而开关磁阻电机通过调整开通角、关断角、电压和电流,可以得到不同负载要求的机械特性,控制简单、灵活,能容易地实现软启动和四象限运行,而且由于这是一种纯逻辑的控制方式,很容易智能化,通过修改软件调整电机工作特性满足不同应用要求。由于开关磁阻电机固有的转矩波动,可能导致较大的噪声和振动,事实上这种情况的发生往往与电机设计和控制的不合理相关,通过优化电机设计和控制策略,转矩波动和噪声完全可以得到有效的抑制,正确认识到这一点对开关磁阻电机的开发和应用是很重要的。SRD Ltd.公司开发的伺服应用开关磁阻电机,转矩波动仅为0.05%。近年研究的最优励磁控制策略、两次换流控制策略、电机噪声根源、定子振动模态、定子固有频率计算等成果对降低电机噪声都有积极的促进作用。随着设计和制造水平的提高,噪声必将进一步降低。三、开关磁阻电机的应用近年来,开关磁阻电机的应用和发展取得了明显的进步,已成功地应用于电动车驱动、通用工业、家用电器和纺织机械等各个领域,功率范围从10W到5MW,最大速度高达100000 r/min。3.1 电动车应用开关磁阻电机最初的应用领域就是电动车。目前电动摩托车和电动自行车的驱动电机主要有永磁

开关磁阻电机控制系统软件设计

开关磁阻电机控制系统软件设计 开关磁阻电机SRM(Switched Reluctance Motor)是随着电力电子、微电脑和控制技术的迅猛发展而出现的一种新型调速系统,具有结构简单、运行可靠及效率高等突出优点,成为交流、直流和无刷直流电动机调速系统强有力的竞争者,引起各国学者和企业的广泛关注。 1 基本控制策略 开关磁阻电机基本控制策略主要包括电流斩波控制(CCC)、电压PWM 控制、角度位置控制(APC)三种控制策略。 电流斩波控制的优点是可限制电流峰值的增长,保护开关器件的安全,并起到良好有效的调节效果,因此适用于低速调速系统。当相电流超过约定的上限电流值时,则主开关关断,当相电流低于约定的下限电流值时,则组合开关开通,从而实现电流斩波控制效果。 电压PWM控制是通过调整占空比,来调节相绕组的平均电压,以改变相绕组电流的大小,从而实现转速和转矩的调节,电压PWM控制的特点是通过调节相绕组电压的平均值,进而能间接地限制和调节相电流,因此既能用于高速调速系统,又能用于低速调速系统,而且控制也较简单。 角度位置控制是指对开通角和关断角的控制。它的实质就在于输入电压保持不变而通过改变主开关的开通角和关断角来调节电流,以达到调节电机转矩的目的。角度控制的优点是转矩调节范围较大,可允许多相同时通电,以增加电机输出转矩,可实现效率最有控制和转矩

最优控制。 为了实现开关磁阻电机良好的调速性能,该软件设计采用以下组合控制策略,即电机基速以下运行时,采用电流斩波控制方式;在中低速下,采用电压PWM控制方式;而在高速运行时,采用角度位置控制方式。 2 软件设计 软件采用前后台系统作为软件框架,分为主程序和中断程序两部分,相较于现有控制系统软件设计中的多中断程序,该软件设计仅采用了一个定时中断,是程序更简洁,增加了程序的可读性及可移植性,同时也有利于程序的进一步扩充与完善。现有控制系统软件中多数使用多中断设计,其中包括计算电机转速使用的捕获中断,获取电机位置使用一路或两路外部中断,电流采样时使用的DMA中断,以及一至两个定时中断,这些中断不仅增加了程序的复杂性,同时也降低了软件的可靠性。 在软件设计中,重点和难点就是如何获得较好的斩波效果,而软件设计的好坏直接影响了斩波效果的好坏。在现有的软件设计中,一般是将各相电流通过ADC采样,再经DMA通道传输,同时产生一个DMA 中断,然后在一个定时中断(定时中断时间一般为50us至100us)中实现电流斩波。而这种设计会产生两个问题。其一,因为要实现其他功能,定时中断时间不能进一步缩短,而这对电流斩波而言,时间间隔又太长,以50us为例,电流可能会在50us的时间中上升40A。其二,DMA中断优先级要高于定时中断,这可能会导致定时中断的执

开关磁阻电机驱动系统的运行原理及应用

开关磁阻电机驱动系统的运行原理及应用(二) (低轴阻发电机参考资料) 1 引言 开关磁阻电机驱动系统(SDR)具有一些很有特色的优点:电机结构简单、坚固、维护方便甚至免维护,启动及低速时转矩大、电流小;高速恒功率区范围宽、性能好,在宽广转速和功率访问内都具有高输出和高效率而且有很好的容错能力。这使得SR电机系统在家用电器、通用工业、伺服与调速系统、牵引电机、高转速电机、航空航天等领域得到广泛应用。 SR电机是一种机电能量转换装置。根据可逆原理,SR电机和传统电机一样,它既可将电能转换为机械能—电动运行,在这方面的理论趋于成熟;也可将机械能转换为电能—发电运行,其内部的能量转换关系不能简单看成是SR电动机的逆过程。本文将从SR电机电动和发电运行这两个角度阐述SR电机的运行原理。 2 电动运行原理 2.1 转矩产生原理 控制器根据位置检测器检测到的定转子间相对位置信息,结合给定的运行命令(正转或反转),导通相应的定子相绕组的主开关元件。对应相绕组中有电流流过,产生磁场;磁场总是趋于“磁阻最小”而产生的磁阻性电磁转矩使转子转向“极对极”位置。当转子转到被吸引的转子磁极与定子激磁相相重合(平衡位置)时,电磁转矩消失。此时控制器根据新的位置信息,在定转子即将达到平衡位置时,向功率变换器发出命令,关断当

前相的主开关元件,而导通下一相,则转子又会向下一个平衡位置转动;这样,控制器根据相应的位置信息按一定的控制逻辑连续地导通和关断相应的相绕组的主开关,就可产生连续的同转向的电磁转矩,使转子在一定的转速下连续运行;再根据一定的控制策略控制各相绕组的通、断时刻以及绕组电流的大小,就可使系统在最隹状态下运行。 图1 三相sr电动机剖面图 从上面的分析可见,电流的方向对转矩没有任何影响,电动机的转向与电流方向无关,而仅取决于相绕组的通电顺序。若通电顺序改变,则电机的转向也发生改变。为保证电机能连续地旋转,位置检测器要能及时给出定转子极间相对位置,使控制器能及时和准确地控制定子各相绕组的通断,使srm能产生所要求的转矩和转速,达到预计的性能要求。 2.2 电路分析

步进电机与开关磁阻电机

开关磁阻电机: 开关磁阻电动机驱动系统(SRD)是较为复杂的机电一体化装置,SRD的运行需要在线实时检测的反馈量一般有转子位置、速度及电流等,然后根据控制目标综合这些信息给出控制指令,实现运行控制及保护等功能。转子位置检测环节是SRD的重要组成部分,检测到的转子位置信号是各相主开关器件正确进行逻辑切换的根据,也为速度控制环节提供了速度反馈信号。 开关磁阻电机具有再生的能力,系统效率高: 对开关磁阻电机的理论研究和实践证明,该系统具有许多显著的优点: (1)电机结构简单、坚固,制造工艺简单,成本低,可工作于极高转速;定子线圈嵌放容易,端部短而牢固,工作可靠,能适用于各种恶劣、高温甚至强振动环境。 (2)损耗主要产生在定子,电机易于冷却;转子无永磁体,可允许有较高的温升。 (3)转矩方向与电流方向无关,从而可最大限度简化功率变换器,降低系统成本。 (4)功率变换器不会出现直通故障,可靠性高。 (5)起动转矩大,低速性能好,无感应电动机在起动时所出现的冲击电流现象。 (6)调速范围宽,控制灵活,易于实现各种特殊要求的转矩-速度特性。 (7)在宽广的转速和功率范围内都具有高效率 (8)能四象限运行,具有较强的再生制动能力。 (9)容错能力强。开关磁阻电机的容错体现在电机某一相损坏,电机照样可以运行。 开关磁阻电机的应用: 近年来,开关磁阻电机的应用和发展取得了明显的进步,已成功地应用于电动车驱动、通用工业、家用电器和纺织机械等各个领域,功率范围从10W到5MW,最大速度高达100000 r/min。

开关磁阻电机电动车应用 开关磁阻电机最初的应用领域就是电动车。目前电动摩托车和电动自行车的驱动电机主要有永磁无刷及永磁有刷两种,然而采用开关磁阻电机驱动有其独特的优势。当高能量密度和系统效率为关键指标时,开关磁阻电机变为首选对象。 SRD开关磁阻电机驱动系统的电机结构紧凑牢固,适合于高速运行,并且驱动电路简单成本低、性能可靠,在宽广的转速范围内效率都比较高,而且可以方便地实现四象限控制。这些特点使SRD开关磁阻电机驱动系统很适合电动车辆的各种工况下运行,是电动车辆中极具有潜力的机种。SRD的最大特点是转矩脉动大,噪声大;此外,相对永磁电机而言,功率密度和效率偏低;另一个缺点是要使用位置传感器,增加了结构复杂性,降低了可靠性。因此无传感器的SRD也是未来的发展趋势之一。其优点主要表现在以下几个方面: (1)开关磁阻电机不仅效率高,而且在很宽的功率和转速范围内都能保持高效率,这是其它类型驱动系统难以达到的。这种特性对电动车的运行情况尤为适合,有利于提高电动车的续驶里程。 (2)开关磁阻电机很容易通过采用适当的控制策略和系统设计满足电动车四象限运行的要求,并且还能在高速运行区域保持强有力的制动能力。 (3)开关磁阻电机有很好的散热特性,从而能以小的体积取得较大的输出功率,减小电机体积和重量。 (4)通过调整开通角和关断角,开关磁阻电机完全可以达到它激直流电机驱动系统良好的控制特性,而且这是一种纯逻辑的控制方式,很容易智能化,从而能通过重新编程或替换电路元件,方便地满足不同运行特性的要求。 (5)开关磁阻电机无论电机还是功率变换器都十分坚固可靠,无需或很少

开关磁阻电机及其调速系统

第二章开关磁阻电机及其调速系统 2.1 开关磁阻电机的发展概况 磁阻式电机诞生于160年前,一直被认为是一种性能不高的电机。然而通过近20年的研究与改进,使磁阻式电机的性能不断提高,目前已能在较大功率范围内不低于其它型式的电机[9]。 70年代初,美国福特电动机(Ford Motor)公司研制出最早的开关磁阻电机调速系统。其结构为轴向气隙电动机、晶闸管功率电路,具有电动机和发电机运行状态和较宽范围调速的能力,特别适用于蓄电池供电的电动车辆的传动。 70年代中期,英国里兹(Leeds)大学和诺丁汉(Nottingham)大学,共同研制以电动车辆为目标的开关磁阻电机调速系统。样机容量从10W至50KW,转速从750 r/min至10000 r/min,其系统效率和电机利用系数等主要指标达到或超过了传统传动系统。该产品的出现,在电气传动界引起了不小的反响。在很多性能指标上达到了出人意料的高水平,整个系统的综合性能价格指标达到或超过了工业中长期广泛使用的一些变速传动系统。 近年来,国内外已有众多高校、研究所和企业投入了开关磁阻电机调速系统的研究、开发和制造工作。至今已推出了不同性能、不同用途的几十个系列的产品,应用于纺织、冶金、机械、汽车等行业中。 目前,在汽车行业意大利FIAT公司研制的电动车和中国第二汽车制造厂研制的电动客车都采用了开关磁阻电机。SRM是没有任何形式的转子线圈和永久磁铁的无刷电动机,它的定子磁极和转子磁极都是凸的。由于SRM具有集中的定子绕组和脉冲电流,其功率变换器可以采用更可靠的电路拓扑形式。SRM具有简单可靠、在较宽转速和转矩范围内高效运行、控制灵活、可四象限运行、响应速度快、成本较低等优点,这是其它调速系统难以比拟的,作为具有潜力的电动车电气驱动系统日益受到重视。然而目前SRM还存在转矩波动大、噪声大、需要位置检测器、系统非线性等缺点,所以,它的广泛应用还受到限制。 2.2 开关磁阻电机的基本结构与特点 开关磁阻电机为定、转子双凸极可变磁阻电机。其定、转子铁心均由硅钢片

开关磁阻电机工作原理及其驱动系统

开关磁阻电机工作原理及其驱动系统 开关磁阻电机 Switched Reluctance Drivesystem, SRD 开关磁阻电机驱动系统(Switched Reluctance Drive system, SRD)具有一些很有特色的优点:电机结构简单、坚固、维护方便甚至免维护,起动及低速时转矩大、电流小;高速恒功率区范围宽、性能好,在宽广转速和功率范围内都具有高输出和高效率而且有很好的容错能力。这使得SR电机驱动系统在家用电器、通用工业、伺服与调速系统、牵引电机、高转速电机、航空航天等领域得到广泛应用。 SR电机是一种机电能量转换装置。根据可逆原理,SR电机和传统电机一样,它既可将电能转换为机械能——电动运行,在这方面的理论趋于成熟;也可将机械能转换为电能——发电运行,其内部的能量转换关系不能简单看成是SR电动机的逆过程。 开关磁阻电机的发展概况和发展趋势 “开关磁阻电机(Switched reluctance motor)”一词源见于美国学者 S.A.Nasarl969年所撰论文,它描述了这种电机的两个基本特征:①开关性——电机必须工作在一种连续的开关模式,这是为什么在各种新型功率半导体器件可以获得后这种电机才得以发展的主要原因;②磁阻性——它是真正的磁阻电机,定、转子具有可变磁阻磁路,更确切地说,是一种双凸极电机。开关磁阻电机的概念实际非常久远,可以追溯到19世纪称为“电磁发动机”的发明,这也是现代步进电机的先驱。在美国,这种电机常常被称为“可变磁阻电机(variable reluctance motor, VR电机)”一词, 但是VR电机也是步进电机的一种形式,容易引起混淆。有时人们也用“无刷磁阻电机(Brushless reluctance motor)”一词,以强调这种电机的无刷性。“电子换向磁阻电机(Electronically commutated reluctance motor)”一词也曾采用,从工作原理来看,甚至比“开关磁阻”的说法更准确—些,但也容易与电子换向的水磁直流电机相混淆。毫无疑问,正是由于英国 P.J.Lawrenson教授及其同事们的杰出贡献,赋予了现代SR电机新的意义,开关磁阻电机一词也因此逐渐为人们所接受和采用。 从电机结构和运行原理上看,SR电机与大步距角的反应式步进电机十分相似,因此有人将SR电机看成是一种高速大步距角的步进电机。但事实上,两者是有本质差别的,这种差别体现在电机设计、控制方法、性能特性和应用场合等方面,见表11-1。

开关磁阻电机研究的背景及意义

开关磁阻电机研究的背景及意义

一、项目目的与意义 开关磁阻电机设计及其在矿山机械中的应用研究项目属于《国家中长期科学和技术发展规划纲要(2006-2020)》中工业节能(机电产品节能)、基础件和通用部件的重点支持领域,同时符合《湖南省加快培育和发展战略性新兴产业总体规划纲要》高效节能制造产业中节能电机重点发展领域。 开关磁阻电动机(SRD)调速系统是基于计算机和电力电子技术的控制器及开关磁阻电动机的新型调速系统,由开关磁阻电动机与微机智能控制器两个部分组成。开关磁阻电动机调速系统的突出特点是效率高、节能效果好、调速范围广、无启动冲击电流、启动转矩大、控制灵活,此外还具有结构简单、坚固可靠、成本低等优点。除可以取代已有的电气传动调速系统(如直流调速系统、变频调速系统)外,开关磁阻电动机调速系统还十分适用于矿山井下机电设备需要重载启动、频繁启动、正反转、长期低速运行的应用场合,如无极绳牵引车、电牵引采煤机、刮板输送机等。 据有关资料统计,我国煤矿辅助运输职员约占井下职工总数的1/3,且矿井每采百万吨煤需要1200 ~ 1500名职工从事辅助运输,用工量是发达国家的7 ~ 10倍。其主要原因就是我国煤矿辅助运输系统落后,效率太低,大多数煤矿的辅助运输系统仍然是小绞车、小蓄电池机车等多段分散落后的传统方式,严重影响矿井生产效率和煤矿安全生产。随着当前大中型矿井的建设,矿井辅助运输设计与选型是矿井建设的重要课题之一,提高矿井辅助运输的装备水平对确保矿井生产产量进步具有极其深远的意义。 目前,我国矿用机械交流电动机采用较多的调速方式主要有交流变频调速和开关磁阻电动机调速。交流变频技术硬件成本较高、控制电路复杂且不宜进行维护和维修,特别是国内的公司现在还未能很好地掌握变频器核心技术,产品基本上依靠国外进口,不能针对矿井特殊的应用条件将变频器加以改进和设计,较难适应矿用要求。开关磁

电机驱动及控制模块

电机驱动及控制模块

3.3电机驱动及控制模块 331 电机特性 —小车前进的动力是通过直流电机来驱动的,直流电机是最早出现的电动机, 也是最早能实现调速的电动机。长期以来,直流电动机一直占据着调速控制的 统治地位。它具有良 图7主、从单片机小系统应用电路 好的线性调速特性,简单的控制性能, 较高的效率,优异的动态特性。系统 选用的大谷基础车的260马达作为驱动电机。其额定电压为 3-12V ,额定功率 0.02KW 额定转速 3000r/min 。 近年来,直流电动机的结构和控制方式都发生了很大变化, 随着计算机进入 控制领域,以及新型的电力电子功率元件的不断出现,使采用全控制型的开关 功率元件进行脉冲调制(Pulse Width Modulation 简称PWM 控制方式已经成 为主流,这种控制方式容易在单片机控制中实现。 BE yr CAPCAP 2+ CAP + CiP I * EP Z CAP b HT-OVTl rr-xrr: T-m TDU rae.-[tfi E-C'UTL 化UT2 H 山习4 F21TF 匸曲 ~IF P22 vcc P22 m 酯T KX1WXI Pi - ? TTCZ'JPJL Pl? YT 11 T m 電 XTALi P14 nffo/pss F13 D1TLJP3J P12 JP34 P1J PLD PA 回■! P 討TCAO PM 时 ow P 禹 PIO Vcc P]1 FOCUADQ P32 POL/ADL E>JJ ! Plfl Pt3(AD3 P]5 P 】6 f :^AD5 P17 P0*'AD6 PB7/AD7 RST Tmjpsi EX LVD^ fiZRST2 AL&FI 5 曲朗 卜⑷PJ 4 wwu TflrP34 ri 郴 PIT PM 廻p 北 F35 FiZiiP]! F24 F33 xrAi.3 P]3 j^TALL P.3L Pin tr 空【 时 LED T 级, 厂:1巧处4打"卜单怜机 VCC 鱼T Z? 1. P ■ ■ ?一 ■■ ■ ■ b w 1 ? 3 *?!>rr ? .1 L I I I I r —PF p p Lp

开关磁阻电机调速系统

开关磁阻电机调速系统 开关磁阻电机调速系统(Switched Reluctance Driver,简称SRD)是以现代电力电子与微机控制技术为基础的机电—体化产品。除了具有显著的节能效果外,开关磁阻电机的理论研究和实践证明,它与常用的三相异步电动机相比还有以下优点: 1.电机结构简单、坚固,制造工艺简单,成本低,可工作于极高转速;定子线圈嵌放容易,端部短而牢固,工作可靠,能适用于各种恶劣、高温甚至强振动环境; 2.起动转矩大,低速性能好,无感应电动机在起动时所出现的冲击电流现象; 3.调速范围宽,控制灵活,易于实现各种特殊要求的转矩;λ λ 4.在宽广的转速和功率范围内都具有高效率; 5.损耗主要产生在定子,电机易于冷却,转子无永磁体,无高温退磁现象;λλ 6.转矩方向与电流方向无关,从而可最大限度简化功率变换器,降低系统成本; 7.功率变换器不会出现直通故障,可靠性高;λ λ 8.能四象限运作,具有较强的再生制动能力; 开关磁阻电机调速系统(SRD) 开关磁阻电机调速系统(SRD)是当今世界最新、性能价格比最高的调速系统。它是一种基于改变供电电源频率的调速方式——交流变频调速系统应运而生。而开关磁阻电机调速系统(又称开关磁阻电机驱动系统)简称SRD系统,是它们中崭新的一种系统,并且已经是智能化和模块化,不仅调速性优越,而且各种保护功能也很完善,已在很多方面大量使用。这项技术一经问世,便以其宽广的调速范围,良好的机械特性,卓越的启动制动性能,节能,易维护等一系列突出优点而引起电气及其他行业的关注。SRD系统是磁阻电动机和电力电子技术相结合而产生的一种机电一体化装置,主要由SRM开关磁阻电动机、功率变换器、单片机(或DSP 芯片)、电流及位置检测器等五大部分组成。其组成与特点: 1.1开关磁阻电动机(Switched Reluctance Motor,简称SRM) 是系统中实现能量转换的部件, 它与传统的磁阻电动机相比,具有本质的区别。在结构上,SRM采用双凸极形式,即定子、转子均为凸极式构造;定子线圈采用集中式而不是分布式绕组;加在定子绕组上的电压为不连续的矩形波而非连续的正弦波。转子仅由硅钢片叠压而成,既无绕组也无永磁体,定子各极上绕有集中绕组。图2所示为8/6极(定子八极、转子六极)四相SRM剖面图. SRM有两种独特的运行方式:低速时采用电流斩波方式;高速时采用单脉冲角度控制方式。在电流斩波方式中,系统是通过调节相绕组电流的大小来控制转矩,因此能准确知道绕组中实际电流的大小,对电流进行反馈是很必要的;在角度位置控制方式中,系统通过调节触发角和关断角来实现对转矩的控制,此时电流己不再作为控制量,但为了防止系统过载或故障则要进行过流保护,所以系统中需要进行电流检测。 1.11开关磁阻电动机(SRM)工作原理遵循“磁阻最小原理”,通电后,磁路有向磁阻最小路径变或化的趋势。当转子凸极与电子凸极错位时,气隙大、磁阻大:一旦定子磁极绕组通

开关磁阻电机的基本了解

开关磁阻电机的基本学习内容 1 开关磁阻电机的基本原理以及结构 开关磁阻电动机(Switched Reluctance Motor ,简称SRM) 定转子为双凸极结构,铁心均由普通硅钢片叠压而成,其定子极上有集中绕组,径向相对的两个绕组串联构成一相,转子非永磁体,其上也无绕组[1,3]。SRM 的定转子极数必须满足如下约束关系: s r s N =2km N = N + 2k (1-1) 其中,Ns ,Nr 分别为电机定、转子数;m 为电机相数值减1;k 为一常数。以下图1-1所示一个典型四相8/6极SRM 为例,相数为4,因而m=3,取k=1,则Ns=6,Nr=8。m 及k 值越高,越利于高控制性能控制,但相应成本越高,结构越复杂。目前技术较为成熟,发展较为迅速的产品多为三、四相SRM [2]。

图1-1即为一典型四相8/6结构的SRM电机本体及其不对称功率变换器主电路的示意图(图1-1在末尾手画)。为表述清晰,图中仅画出不对称半桥电路的一相,其他各相均与该相相同,并省略了相应的驱动及检测电路。完整的开关磁阻电机调速系统(Switched Reluctance Motor Drive,简称SRD)则由SRM、功率变换器、控制器、位置检测器等四大部分组成,如下图1-2示。 SRM可以认为是同步电机的一个分支,它运行时遵循磁阻最小原理,同步进电机较为类似[2,30]。其具体运行原理如下:首先要保证励磁相的定子凸极和最近的转子凹极中心线不重合,也即初始位移不能位于磁阻最小位置。通以交流电后,经过一个整流桥变为直流电源,当开关S1和S2开通时,AA’相通电励磁,产生一个磁拉力。在该电磁力的轴向分量作用下,产生电磁转矩,凸极转子铁心趋向于旋转到定转子极轴线B-B’与A-A’重合的位置;而电磁力的径向力分量则造成定子的“变形”,这也是产生转矩脉动和电机噪声的根本原因之一。在该过程中电机吸收电能。关断S1和S2,开通BB’相,此时AA’相经续流二极管VD1、VD2将电能回馈给电源,同时BB’相趋向运行到定转子极轴线C-C’与B-B’重合的位置。以此类推,顺次给A→B→C→D相循环励磁,在惯性和轴向力的作用下,转子将一直逆着励磁顺序旋转,从而完成自同步运行。同理若改变励磁顺序为C→B→A→D,则转子沿顺时针方向转动。由此可以看出, SRM与直流电机不同,其运行方向与相电流方向无关,而仅与相绕组通电顺序有关。 图1-2开关磁阻电机调速系统构成

开关磁阻电机的电磁设计方法

2010 年5 月 摘要 开关型磁阻电动机驱动系统(Switched Reluctance Drive,简称SRD电动机)。是20世纪80年代迅猛发展起来的一种新型调速电机驱动系统。它是由功率变换电路、双凸极磁阻电机、控制器及位置检测器构成。它的结构极其简单,调速范围宽,调速性能优异,而且在整个调速范围内都具有较高的效率,系统可靠性高,是各国研究和开发的热点之一。 本文介绍了开关磁阻电机的发展历史,应用领域以及它的优点;对三相6/4结构的开关磁阻电机与四相8/6结构的开关磁阻电机进行了比较;对开关磁阻电机的电磁设计与参数优化进行了分析与研究,简单介绍了ANSYS软件在开关磁阻电机电磁分析中的应用;提出8/6结构开关磁阻电机的一种设计方案;并对开关磁阻电机的磁通波形和电机损耗进行了分析。 关键词: 开关磁阻电机,磁场,电磁设计,参数优化

ABSTRACT The switched reluctance drive (SRD) is a new-type drived-electromotor system which develops rapidly since 1980, and consists of power converter circuits、the doubly-salient reluctance motor、the controller and the examination of position. The structure of the SRD is simple. It has a wide range and excellent performance in speed. It also has a high efficiency and high reliability. So the SRD is one of the hot spots which is studied and designed all over the world. This thesie introduced the SRD development history, the application domain as well as its merit; comparison to the three-phase 6/4 structure SRD with four-phase 8/6 structure SRD overall performance. also analysis and research SRD electromagnetism design and parameter optimization, and introduced ANSYS software in SRD electromagnetism analysis application; Proposes 8/6 structure SRD one kind of design proposal; And analysis to the switched reluctance drive magnetic flux profile and the loss of machine. Keywords:switched reluctance motor, magnetic field, electromagn- etism design, parameter optimization

电机驱动系统效率优化控制技术研究现状

1.2 电机驱动系统效率优化控制技术研究现状 电动汽车的动力由电动机提供,电机驱动系统(简称驱动系统)的性能直接影响了电动汽车的性能。电动汽车系统需要能够满足频繁停车启动、加速、大负载爬坡以及紧急制动等要求,也需要考虑到汽车行驶路况复杂多变,存在雨天、酷热、下雪等恶劣天气,以及颠簸、泥泞等复杂路况。另外,在满足行驶条件的情况下还应最大限度地保证驾驶人员和乘坐人员的舒适安全。作为电动汽车的核心部分,驱动系统应满足宽调速范围、宽转矩输出范围、良好的加减速(起动、制动)性能、运行效率高(提高续航里程)以及高可靠性等要求。 针对永磁同步电机驱动系统的效率优化,总体来说可分为以下三个方向: 1)从电机本体的电磁设计、制造工艺以及电机的材料着手,开发高效电机。 2)改进脉宽调制(Pulse Width Modulation,PWM)技术,降低功率开关器件上的损耗从而提高逆变器的整体效率;降低变频器输出电压的谐波含量,如采取空间矢量脉宽调制(Space Vector Pulse Width Modulation,SVPWM)技术和软开关技术,减小谐波含量从而提高驱动系统的整体效率。 3)研究合适的控制策略,在保证电机满足运行条件的情况下减小直流侧的功率输入,提高驱动系统的效率。 目前,针对永磁同步电机驱动系统效率优化所提出的控制策略很多,总体来说可以分为两大类:第一类是基于损耗模型的效率优化控制(Loss Model Control,LMC)策略;第二类是基于搜索法的效率优化控制(Search Control,SC)策略。下面分别进行概述。 1.2.1 基于损耗模型的效率优化控制策略 该控制策略作为一种基于前馈式的控制方法,基本原理是:在充分考虑电机各部分损耗的基础上,建立较为精确的损耗模型,根据电机运行状况(负载转矩和实际转速)计算出该运行状况下最优的控制变量(一般为磁场、电压或者电流)以减小驱动系统的损耗。若控制变量为电枢电流,对永磁电机驱动系统来讲一般选择最优的直轴电流i d和交轴电流i q,对混合励磁电机驱动系统来讲包括i d、i q以及励磁电流I f。这种控制策略目前已被广泛应用到了闭环传动系统中,可以保障电机驱动系统在全局运行范围内都能实现效优化。基于损耗模型的同步电机效率优化控制基本框图如图1.1所示。 基于损耗模型的驱动系统效率优化策略最早由T.M.Rowan和T.A.Lipo[1],以及H.G.Kim [2]等人提出并进行研究;1987年Bose[3][4]等人将该策略运用到永磁同步电机驱动系统中。美国学者X.Wei和R.D.Lorenz已将基于损耗模型控制策略结合直接转矩控制(Direct Torque Control,DTC)中,以提高永磁同步电机在瞬态过程中的效率[5]。针对同步电机而言,基于损耗模型的效率优化策略总共可以分为五种类型:考虑铁损的损耗模型控制策略[6][7]、考虑铜损的损耗模型控制策略[8][9]、考虑铁损和铜损的损耗模型控制策略[10][11]、基于电机精确损耗模型损耗模型控制策略[12][13]和约束条件下的损耗模型控制策略[14][15]。

开关磁阻电机原理动画演示_说明

开关磁阻电动机原理 资料来源:https://www.wendangku.net/doc/817926557.html,/zindex01.html 开关磁阻电动机(SR)是近些年发展的新型调速电机,结构简单结实、调速范围宽且性能好,现已广泛用在仪器仪表、家电、电动汽车等领域。 下面通过一个开关磁阻电动机原理模型来介绍工作原理。 双凸极结构 磁阻电机的定子铁芯有六个齿极,由导磁良好的硅钢片冲制后叠成,见下图。 磁阻电机定子铁芯 磁阻电机的转子铁芯有四个齿极,由导磁良好的硅钢片冲制后叠成,见下图。 磁阻电机转子铁芯

与普通电机一样,转子与定子直接有很小缝隙,转子可在定子内自由转动,见下图。 双凸极结构的定子铁芯与转子铁芯 由于定子与转子都有凸起的齿极,这种形式也称为双凸极结构。在定子齿极上绕有线圈(定子绕组),是向电机提供工作磁场的励磁绕组。 定子铁芯上有励磁绕组 在转子上没有线圈,这是磁阻电机的主要特点。在讲电动机工作原理时常用通电导线在磁场中受力来解释电动机旋转的道理,但磁阻电机转子上没有线圈,也无“鼠笼”,那是靠什么力推动转子转动呢?磁阻电动机则是利用磁阻最小原理,也就是磁通总是沿磁阻最小的路径闭合,利用齿极间的吸引力拉动转子旋转。

三相6/4结构工作原理 下面通过图示来说明转子的工作原理,下面是磁阻电动机的正视图,定子六个齿极上绕有线圈,径向相对的两个线圈连接在一起(标有紫色圆点的线端连接在一起),组成一“相”,该电机有3相,结合定子与转子的极数就称该电机为三相6/4结构。在下图标注的A相、B相、C相线圈仅为后面分析磁路带来方便,并不是连接普通的三相交流电。 磁阻电机励磁绕组分布图 在下面有一组磁阻电动机运转原理动画的截图,从中我们将看到磁阻电动机是如何转动起来的。A相、B相、C相线圈由开关控制电流通断,图中红色的线圈是通电线圈,黄色的线圈没有电流通过;通过定子与转子的深蓝色线是磁力线;约定转子启动前的转角为0度。 从左面图起,A相线圈接通电源产生磁通,磁力线从最近的转子齿极通过转子铁芯,磁力线可看成极有弹力的线,在磁力的牵引下转子开始异时针转动;中间图是转子转了10度的图,右面图是转到20度的图,磁力一直牵引转子转到30度为止,到了30度转子不再转动,此时磁路最短。 磁阻电机工作原理示意图-1 为了使转子继续转动,在转子转到30度前已切断A相电源在30度时接通B相电源,磁通从最近的转子齿极通过转子铁芯,见下左图,于是转子继续转动。中间图是转子转到40度的图,右面图是转到50度的图,磁力一直牵引转子转到60度为止。 磁阻电机工作原理示意图-2

开关磁阻电机原理和应用

开关磁阻电机 开关磁阻电机是一种新型调速电机,调速系统兼具直流、交流两类调速系统的优点,是继变频调速系统、无刷直流电动机调速系统的最新一代无极调速系统。它的结构简单坚固,调速范围宽,调速性能优异,且在整个调速范围内都具有较高效率,系统可靠性高。主要由开关磁阻电机、功率变换器、控制器与位置检测器四部分组成。控制器内包含控制电路与功率变换器,而转子位置检测器则安装在电机的一端。 其电机部分由于是运用了磁阻最小原理,故称为磁阻电动机,又由于线圈电流通断、磁通状态直接受开关控制,故称为开关磁阻电动机。 特征 开关磁阻电机结构简单,性能优越,可靠性高,覆盖功率范围10W~5MW的各种高低速驱动调速系统。使的开关磁阻电机存在许多潜在的领域,在各种需要调速和高效率的场合均能得到广泛使用(电动车驱动、通用工业、家用电器、纺织机械、电力传动系统等各个领域)。 优点 ◆其结构简单,价格便宜,电机的转子没有绕组和磁铁。 ◆电机转子无永磁体,允许较高的温升。由于绕组均在定子上,电机容易冷却。效率高,损耗小。 ◆转矩方向与电流方向无关,只需单方相绕组电流,每相一个功率开关,功率电路简单可靠。 ◆转子上没有电刷结构坚固,适用于高速驱动。 ◆转子的转动惯量小,有较高转矩惯量比。 ◆调速范围宽,控制灵活,易于实现各种再生制动能力。 ◆并具频繁启动(1000次/小时),正向反向运转的特殊场合使用。 ◆且启动电流小,启动转矩大,低速时更为突出。 ◆电机的绕组电流方向为单方向,电力控制电路简单,具有较高的经济性和可靠性。 ◆可通过机和电的统一协调设计满足各种特殊使用要求。 缺点 其工作原理决定了,如果需要开关磁阻电机运行稳定可靠,必须使电机与控制配合的很好。 因其要使用位置传感器,增加了结构复杂性,降低了可靠性。 对于电机本身而言,转矩脉动大是其固有的缺点;在电机远离设计点的时候,转矩脉动大会体现的更加明显。 如果单纯使用电流斩波或最优导通角控制方法,对其转矩脉动的改善不是很大,需要加入更加复杂的算法。 另外,运行时噪音和振动较大、非线形性强也是开关磁阻电机需要解决的问题。 目前国内实用的磁阻电机属于初级阶段,部分产品控制相对粗放,电机的响应速度慢、低速下的脉动大,难以实现较高的控制精度。 结构原理 双凸极结构

【CN109742876A】一种六相开关磁阻电机驱动系统【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910164931.8 (22)申请日 2019.03.05 (71)申请人 欣盛尚驰科技股份有限公司 地址 214522 江苏省泰州市靖江市经济开 发区城北园区新二路21号 (72)发明人 孙剑波 盛立兴 卢志高  (74)专利代理机构 无锡市大为专利商标事务所 (普通合伙) 32104 代理人 殷红梅 (51)Int.Cl. H02K 1/24(2006.01) H02K 1/14(2006.01) H02P 25/092(2016.01) (54)发明名称 一种六相开关磁阻电机驱动系统 (57)摘要 本发明属于开关磁阻电机技术领域,涉及一 种六相开关磁阻电机驱动系统,包括电机本体、 位置编码器、驱动电路和控制电路;所述位置编 码器与所述电机本体同轴联接;所述电机本体与 驱动电路连接;所述驱动电路与所述控制电路相 连接。由以上部件配置成:所述接收外部操作信 号的控制电路,通过控制驱动电路的导通方式与 导通时间以实现控制绕组的通电状态,进而控制 六相开关磁阻电机的转速和转向。本发明的六相 开关磁阻电机系统,提出了六相开关磁阻电机的 定转子极数配合规律;六相导通比三相导通可增 加相间重叠导通时间,通过多相同时导通时产生 的转矩叠加作用,可明显减小电机转矩脉动;同 时具有电机引线少, 驱动电路成本低的优点。权利要求书1页 说明书4页 附图3页CN 109742876 A 2019.05.10 C N 109742876 A

1.一种六相开关磁阻电机驱动系统,其特征在于,包括 六相电机本体(1),在所述六相电机本体(1)的定子(7)上绕制有六相线圈绕组(9); 位置编码器(2),所述位置编码器(2)与六相电机本体(1)同轴连接; 驱动电路(3),所述驱动电路(3)与六相线圈绕组(9)连接; 控制电路(4),所述控制电路(4)与位置编码器(2)信号连接,同时接收外部操作信号(5),与驱动电路(3)连接,并输出控制信号。 2.根据权利要求1所述的一种六相开关磁阻电机驱动系统,其特征在于,所述六相开关磁阻电机的定子(7)和转子(8)均为双凸极电机,六相开关磁阻电机的定转子极数配合关系为: 定子极数Ns=2mK1 转子极数Nr=2 K1*(K2m±1) 其中m代表相数,六相电机m=6;K1和K2都取正整数(1,2,3,……); 由以上定转子极数配合关系可知,六相开关磁阻电机可能的定转子极数配合为:12/ 14,12/10,12/26,12/22,24/28,24/20,24/52,24/44,……。 3.根据权利要求2所述的一种六相开关磁阻电机驱动系统,其特征在于,当K1=1时,定子极数为12,所述六相电机本体(1)的每个定子极上有一个线圈,每相距六个极的线圈相互接成一相绕组,通电时形成的磁极为反极性,共有六相绕组,组成六相线圈绕组(9)。 4.根据权利要求3所述的一种六相开关磁阻电机驱动系统,其特征在于,所述六相线圈绕组(9)的每相绕组有一个首端和一个尾端,六相绕组的六个首端相连形成1个上引线端 Tcom;六相绕组的六个尾端分别引出,形成6个下引线端TA ~TF;所述六相电机本体(1)共有7 个引线端。 5.根据权利要求1所述的一种六相开关磁阻电机驱动系统,其特征在于,所述驱动电路(3)与供电电源(6)连接; 所述供电电源(6)为交流供电时,所述驱动电路(3)包括整流电路和逆变电路; 所述供电电源(6)为直流供电时,所述驱动电路(3)包括逆变电路。 6.根据权利要求5所述的一种六相开关磁阻电机驱动系统,其特征在于, 所述逆变电路包括六相桥臂电路,每一相桥臂电路均包含1个功率开关元件和1个续流二极管。 7.根据权利要求1或6所述的一种六相开关磁阻电机驱动系统,其特征在于, 所述驱动电路(4)的直流母线正极性端接六相线圈绕组(9)的上引线端Tcom;每一相绕组的下引线端串联1个功率开关元件后接到直流母线负极性端;同时每一相绕组的下引线端通过1个续流二极管连接到DC/DC变换器(10)的输入端,所述DC/DC变换器(10)的输出端接直流母线正极性端。 权 利 要 求 书1/1页 2 CN 109742876 A

相关文档
相关文档 最新文档