文档库 最新最全的文档下载
当前位置:文档库 › 将军饮马专题练习

将军饮马专题练习

将军饮马专题练习
将军饮马专题练习

最短距离专题练习

姓名:

例1:如图,要在河边修建一个水泵站,向张庄A 、李庄B 送水。修在河边什么地方,可使使用的水管最短?

例:2:如图,OA 、OB 是两条相交的公路,点P 是一个邮电所,现想在OA 、OB 上各设立一个投递点,要想使邮电员每次投递路程最近,问投递点应设立在何处?

例3:如图1,在一条河的同一岸边有A 和B 两个村庄,要在河边修建码头M ,使M 到A 和B 的距离之和最短,试确定M 的位置;若A 与B 在河的两侧,其他条件不变,又该如何确定M 的位置?

·

· A

B a · P B

O A ·B ·A 1

A · ·

B 2

例4:如图所示,P和Q为△ABC边AB与AC上两点,在BC上求作一点M,使△PQM的周长最小。

中考最值专题--将军饮马

【例1】【两点间距离】 如图,一个底面圆周长为24cm ,高为5cm 的圆柱体,一只蚂蚁沿侧表面从点A 到点B 的最短路线长为_______ 【练习1】 如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺, 有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处.则葛藤的最短长度是___尺. 【例2】【两定一动】 如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △PAB =1 3S 矩形ABCD ,则PA +PB 的最小值为_______ 模型总结: 【练习2】 (1)如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为_________ 方法提炼

(2)已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4, 点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为. 【例3】【两定两动】 已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=230.M、N分别是直线a,b上的动点,且MN⊥a,当满足AM+MN+NB的长度和最短时,AM+NB= 模型总结:

已知直线 3 : 3 l y x =,CD是该直线上的一条动线段,且CD=2,点A() 23,1 +,连接AC、AD, 则△ACD周长的最小值为___________ 【例4】【一定两动】 如图所示,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A,B两点,D,E分别是AB,OA上的动点,则△CDE周长的最小值是 模型总结:

将军饮马问题讲定稿版

将军饮马问题讲 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

将军饮马问题 类型一、基本模式 类型二、轴对称变换的应用(将军饮马问题) 2、如图所示,如果将军从马棚M出发,先赶到河OA上的某一位置P,再马上赶到河OB 上的某一位置Q,然后立即返回校场N.请为将军重新设计一条路线(即选择点P 和Q),使得总路程MP+PQ+QN最短. 【变式】如图所示,将军希望从马棚M出发,先赶到河OA上的某一位置P,再马上赶到河OB上的某一位置Q.请为将军设计一条路线(即选择点P和Q),使得总路程MP+PQ最短. 3、将军要检阅一队士兵,要求(如图所示):队伍长为a,沿河OB排开(从点P到点Q);将军从马棚M出发到达队头P,从P至Q检阅队伍后再赶到校场N.请问:在什么位置列队(即选择点P和Q),可以使得将军走的总路程MP+PQ+QN最短? 4. 如图,点M在锐角∠AOB内部,在OB边上求作一点P,使点P到点M的距离与点P到OA边的距离之和最小 5已知∠MON内有一点P,P关于OM,ON的对称点分别是和,分别交OM, ON于点A、B,已知=15,则△PAB 的周长为() A. 15 B 7.5 C. 10 D. 24 6. 已知∠AOB,试在∠AOB内确定一点P,如图,使P到OA、OB的距离相等,并且到M、N两点的距离也相等.

7、已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数. 8. 如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为______. 练习 1、已知点A在直线l外,点P为直线l上的一个动点,探究是否存在一个定点B,当点P 在直线l上运动时,点P与A、B两点的距离总相等,如果存在,请作出定点B;若不存在,请说明理由. 2、如图,在公路a的同旁有两个仓库A、B,现需要建一货物中转站,要求到A、B两仓 库的距离和最短,这个中转站M应建在公路旁的哪个位置比较合理? 3、已知:A、B两点在直线l的同侧,在l上求作一点M,使得|| -最小. AM BM 4、如图,正方形ABCD中,8 AB=,M是DC上的一点,且2 DM=,N是AC上的一动点,求DN MN +的最小值与最大值. 5、如图,已知∠AOB内有一点P,试分别在边OA和OB上各找一点E、F,使得△PEF的周长最小。试画出图形,并说明理由。 6、如图,直角坐标系中有两点A、B,在坐标轴上找两点C、D,使得四边形ABCD的周长最小。

将军饮马

将军饮马问题——线段和最短 一.六大模型 1.如图,直线l和l的异侧两点A、B,在直线l上求作一点P,使PA+PB最小。 2.如图,直线l和l的同侧两点A、B,在直线l上求作一点P,使PA+PB最小。 3.如图,点P是∠MON内的一点,分别在OM,ON上作点A,B。使△PAB的周长最小 4.如图,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。使四边形PAQB的 周长最小。 5.如图,点A是∠MON外的一点,在射线ON上作点P,使PA与点P到射线OM的距离之和最小 6. .如图,点A是∠MON内的一点,在射线ON上作点P,使PA与点P到射线OM的距离之和最小

D B C A A N 二、常见题目 Part1、三角形 1.如图,在等边△ABC 中,AB = 6,AD ⊥BC ,E 是AC 上的一点,M 是AD 上的一点,且AE = 2,求EM+EC 的最小值 2.如图,在锐角△ABC 中,AB = 42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是____. 3.如图,△ABC 中,AB=2,∠BAC=30°,若在AC 、AB 上各取一点M 、N ,使BM+MN 的值最小,则这个最小值

M B D A D A Part2、正方形 1.如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值为_________。 即在直线AC 上求一点N ,使DN+MN 最小 2.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( ) A .23 B .2 6 C .3 D . 6 3.在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝(结果不取近似值). 4.如图,四边形ABCD 是正方形, AB = 10cm ,E 为边BC 的中点,P 为BD 上的一个动点,求PC+PE 的最小值;

将军饮马问题讲义

将军饮马问题 唐朝诗人李颀的诗《古从军行》开头两句说:"白日登山望烽火,黄昏饮马傍交河." 诗中隐含着一个有趣的数学问题? 如图所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河边饮马后再到B点宿营. 请问怎样走才能使总的路程最短? 这个问题早在古罗马时代就有了,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题 将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的B地开会,应该怎样走 才能使路程最短?从此,这个被称为”将军饮马”的问题广泛流传? 将军饮马问题=轴对称问题=最短距离问题(轴对称是工具,最短距离是题眼)。所谓 轴对称是工具,即这类问题最常用的做法就是作轴对称。而最短距离是题眼,也就意味着归类这类的题目的理由。比如题目经常会出现线段a+b这样的条件或者问题。一旦出现可以 快速联想到将军问题,然后利用轴对称解题。 5?如图,点A是/ MON 外的一点,在射线ON上作点P, 使PA与 点P到射线0M的距离之和最小

6..如图,点A是/ MON 内的一点,在射线 常见问题 首先明白几个概念,动点、定点、对称点。动点一般就是题目中的所求点,即那个不定的点。定点即为题目中固定的点。对称的点,作图所得的点,需要连线的点。 1. 怎么对称,作谁的对称?。简单说所有题目需要作对称的点,都是题目的定点。或 者说只有定点才可以去作对称的。(不确定的点作对称式没有意义的)那么作谁的对称点 首先要明确关于对称的对象肯定是一条线,而不是一个点。那么是哪一条线?一般而言都是 动点所在直线。 2. 对称完以后和谁连接? 一句话:和另外一个定点相连。绝对不能和一个动点相连。明确一个概念:定点的对称点也是一个定点。例如模型二和模型三。 3. 所求点怎么确定? 首先一定要明白,所求点最后反应在图上一定是个交点。实际就是我们所画直线和已知直线 的交点。 下面我们来看看将军饮马与二次函数结合的问题: 1.如图,抛物线y=ax+bx+c 经过A( 1,0)、B(4,0)、C(0,3)三点. (1)求抛物线的解析式; (2)如图,在抛物线的对称轴上是否存在点P,使得四边形PAOC勺周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由. 11 C V L 【分析】(1)设交点式为y=a (x- 1) (x- 4),然后把C点坐标代入求出a亠,于是得到抛 4 物线解析式为y=—x2-——x+3; 4 4 (2)先确定抛物线的对称轴为直线x&,连结BC交直线x一于点P,如图,利用对称性 得到PA=PB所以PA+PC=PC+PB=BC艮据两点之间线段最短得到PC+PA最短,于是可判断此时四边形PAOC勺周长最小,然后计算出BC=5,再计算OC+OA+B即可.

轴对称与将军饮马问题(基础篇)专题练习(解析版)

轴对称与将军饮马问题(基础篇)专题练习 一、两定点一动点 1、答案:D 分析: 解答:∵点B和B’关于直线l对称,且点C在l上, ∴CB=CB’, 又∵AB’交l于C,且两条直线相交只有一个交点, ∴CB’+CA最短,即CA+CB的值最小,将轴对称最短路径问题利用线段的性质定理两点之间,线段最短,体现了转化思想,验证时利用三角形的两边之和大于第三边. 2、答案:B 分析: 解答:MN是正方形ABCD的一条对称轴, ∴PD=AP, 当PC+PD最小时,即点P位于AC与MN的交线上, 此时∠PCD=45°. 3、答案:C 分析: 解答:当PC+PE最小时,P在BE与AD的交点位置, 如图, ∵△ABC是等边三角形, ∴∠ACB=60°, ∵D、E分别是边BC,AC的中点, ∴P为等边△ABC的重心, ∴BE⊥AC, ∴∠PCE=1 2 ∠ACB= 1 2 ×60°=30°, ∴∠CPE=90°-∠PCE=90°-30°=60°,

选C. 4、答案:作图见解答. 分析: 解答:如图所示: 5、答案:作图见解答. 分析: 解答:所作图形如图所示: 6、答案:(1)画图见解答.(2)画图见解答. (3)P(0,4). 分析: 解答:(1)

(2) (3)过点A作AM⊥x轴于M, ∵A(2,6), ∴M(2,0),AM=6, 又∵B(4,0), ∴点B关于y轴的对称点B’(-4,0), ∴B’M=6=AM, ∴△AB’M为等腰直角三角形, ∴∠P’BO=45°, ∴△P’BO也为等腰直角三角形, ∴B’O=PO=4, ∴P(0,4). 7、答案:(1)画图见解答. (2)画图见解答. 分析: 解答:(1)关于y轴对称,纵坐标不变,横坐标相反. (2)作C关于y轴的对称点C1,连接C1B,交y轴于点P.连接PB,PC,此时△PBC周

初中数学将军饮马问题的六种常见题型汇总

第 6 页 共 10 页 初中数学将军饮马问题的六种常见模型 将军饮马问题——线段和最短 一.六大模型 1. 如图,直线l 和l 的异侧两点A 、B ,在直线l 上求作一点P ,使P A +PB 最小。 2.如图,直线l 和l 的同侧两点A 、B ,在直线l 上求作一点P ,使P A +PB 最小。 3.如图,点P 是∠ MON 内的一点,分别在OM ,ON 上作点A ,B 。使△P AB 的周长最小 4.如图,点P , Q 为∠MON 内的两点,分别在OM ,ON 上作点A ,B 。使四边形P AQB 的 周长最小。 5.如图,点A 是∠MON 外的一点,在射线ON 上作点P ,使P A 与点P 到射线OM 的距离之和最小

第 6 页 共 10 页 6. .如图,点A 是∠MON 内的一点,在射线ON 上作点P ,使P A 与点P 到射线OM 的距离之和最小 二、常见题目 【1】、三角形 1.如图,在等边△ABC 中,AB = 6,AD ⊥BC ,E 是AC 上的一点,M 是AD 上的一点,AE =2,求EM +EC 的最小值 解: ∵点C 关于直线AD 的对称点是点B , ∴连接BE ,交AD 于点M ,则ME +MD 最小, 过点B 作BH ⊥AC 于点H , 则EH = AH – AE = 3 – 2 = 1, BH =22BC CH -=2263-=33 在直角△BHE 中,BE =22BH EH - =22(33)1+=27 2.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点, 则BM +MN 的最小值是____. 解:作点B 关于AD 的对称点B ',过点B '作B 'E ⊥AB 于点E ,交AD 于点F ,则线段B 'E 长就是BM +MN的最小值在等腰Rt △AEB '中,根据勾股定理得到,B 'E = 4

将军饮马问题(讲)

类型一、基本模式 类型二、轴对称变换的应用(将军饮马问题) 2、如图所示,如果将军从马棚 上的某一位置 Q ,然后立即返回校场 Q ),使得总路程 MP +PQ + QN 最短. OB 上的某一位置 Q .请为将军设计一条路线 (即选择点P 和Q ),使得总路程 MP +PQ 最短. 3、将军要检阅一队士兵,要求 (如图所示):队伍长为a ,沿河0B 排开(从点P 到点Q );将 军从马棚M 出发到达队头P,从P 至Q 检阅队伍后再赶到校场 N .请问:在什么位置列队(即 将军饮马问题 fl M 出发,先赶到河 0A 上的某一位置 P ,再马上赶到河 0B N .请为将军重新设计一条路线 (即选择点P 和 【变式】如图所示,将军希望从马棚 M 出发, 先赶到河OA 上的某一位置P ,再马上赶到河 A OA 边的距离之和最小 P 到

练习 1、已知点A 在直线 直线I 上运动时,点 请说明理由. I 外,点P 为直线I 上的一个动点,探究是否存在一个定点 B ,当点P 在 P 与A 、B 两点的距离总相等,如果存在,请作出定点 B ;若不存在, 5已知/ MON 内有一点P , P 关于OM , ON 的对称点分别是 百和均,分别交OM, ON 于点A 、B,已知耳时=15,则^ PAB 的周长为( 6. 已知/ AOB ,试在/ AOB 内确定一点 P ,如图,使 P 到OA 、OB 的距离相等,并且到 N 两点的距离也相等. 7、已知/ MON = 40°, P 为/ MON 内一定点,OM 上有一点 A , ON 上有一点B ,当△ PAB 的周长取最 小值时, A. 15 B 7.5 C. 10 D. 24 求/ APB 的度数 . 8.如图,在四边形 ABCD 中,/ A = 90°, AD = 4,连接 BD , BD 丄 CD,/ ADB =/ C 若 P 是 BC 边上一动点,则 DP 长的最小值为

八上专题复习将军饮马

八(上)数学专题复习______将军饮马问题 傅苏球 2013年12 月25日 一、任务一-------------阅读理解 1、问题提出 1111、一 一, 早在古罗 马时代, 传说亚历 山大城有 一位精通 数学和物理的学者,名叫海伦.一天,一位罗马 将军专程去拜访他,向他请教一个百思不得其解 的问题:将军每天从军营B出发,先到河边饮马,然后再去河岸同侧的A地开会,应该怎样走才能使路程最短?从此,这个被称为“将军饮马”的问题广泛流传.这个问题的解决并不难,据说海伦略加思索就解决了它. 2、解决办法

如图所示,从A出发向河岸引垂线,垂足为D,在AD的延长线上, 取A关于河岸的对称点A',连结A'B,与河岸线相交于C,则C点就是饮马的地方,将军只要从A出发,沿直线走到C,饮马之后,再由C沿直线走到B, 所走的路程就是最短的.如果将军在河边的另外任一点 C'饮马,所走的路程就是AC'+C'B,但是, AC'+C'B=A'C'+C'B>A'B=A'C+CB=AC+CB.可见,在C点外任何 一点C'饮马,所走的路程都要远一些. 这有几点需要说明的:(1)由作法可知,河流l相当于线段 AA'的中垂线,所以AD=A'D,AC=A'C。(2)由上一条知:将军 走的路程就是AC+BC,就等于A'C+BC,而两点确定一线,所 以C点为最优。 思考:解题思路是 _______________________________________________ 3、将军饮马问题的应用 如图,有A、B两个村庄,他们想在河流l的边上建立一个水泵站, 已知每米的管道费用是100元,A到河流的距离AD是1km,B到河流 的距离BE是3km,DE长3km。请问这个水泵站应该建立在哪里使得 费用最少,为多少? 解:如图所作,C点为水泵站的位置。 依题意,得:所铺设的水管长度就是AC+BC,即:A'C+BC=A'B的长度。 因为EF=A'D=AD=1km, 所以BF=BE+EF=4km 又A'F=DE=3km 在Rt△A'BF中,A'B2=A'F2+BF2 所以:解得:A'B=5km 所以总费用为:5×1000×100=500000(元) 二、任务二-----------将军饮马问题在几何中的应用 1、如图,已知正方形ABCD的边长是8,点E在BC边上,且CE=2,点P是对角线BD上的一个动点,求PE+PC的最小值.

将军饮马(最完整讲义)

第1讲将军饮马模型 ?知识点睛 “将军饮马”问题主要利用构造对称图形解决两条线段和差、三角形周长、四边形周长等一类问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。 一、定直线与两定点 模型作法结论 A、在直线l异侧 当两定点B 时,在直线l上找上点P,使 PA+最小. PB A、在直线l同侧 当两定点B 时,在直线l上找上点P,使 PA+最小. PB A、在直线l同侧 当两定点B 时,在直线l上找上点P,使 PA-最大. PB A、在直线l异侧 当两定点B 时,在直线l上找上点P,使 PA-最大. PB A、在直线l同侧 当两定点B 时,在直线l上找上点P,使 PA-最小. PB

二、角到定点 模型 作法 结论 点P 在AOB ∠的内部,在OA 上找一点M ,在OB 上找一点N ,使得 PCD ?周长最小. 点P 在AOB ∠的内部,在OA 上找一点M ,在OB 上找一点N ,使得 MN PN +最小. 点Q P 、在AOB ∠的内部,在OA 上找一点M ,在OB 上找一点N ,使得四边形PMNQ 周长最小. 点M 在AOB ∠的外部,在射线OA 上找一点P ,使PM 与点P 到射线OB 的距离和最小. 点M 在AOB ∠的内部,在射线OA 上找一点P ,使PM 与点P 到射线OB 的距离和最小.

点Q P 、分别在AOB ∠的边 OB OA 、是,在OA 上找一点 M ,在OB 上找一点N ,使得 MQ MN PN ++最小. 二、两定点一定长 模型 作法 结论 如图在直线l 上找上两点N M 、(M 在左),使NB MN AM ++最小,且d MN =. 如图,21//l l ,21l l 、之间的距离为 d ,在21l l 、上分别找N M 、两 点 , 使 1 l MN ⊥,且 NB MN AM ++最小.

将军饮马问题

将军饮马问题 路径最短、线段和最小、线段差最大、周长最小等一系列最值问题 1.两点之间,线段最短; 2.三角形两边之和大于第三边,两边之差小于第三边; 3.中垂线上的点到线段两端点的距离相等; 4.垂线段最短. 1. 已知:如图,定点A、B分布在定直线l两侧; 要求:在直线l上找一点P,使PA+PB的值最小 解:连接AB交直线l于点P,点P即为所求, PA+PB的最小值即为线段AB的长度 理由:在l上任取异于点P的一点P′,连接AP′、BP′, 在△ABP’中,AP′+BP′>AB,即AP′+BP′>AP+BP ∴P为直线AB与直线l的交点时,PA+PB最小. 2. 已知:如图,定点A和定点B在定直线l的同侧 要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小) 解:作点A关于直线l的对称点A′,连接A′B交l于P, 点P即为所求; 理由:根据轴对称的性质知直线l为线段AA′的中垂线, 由中垂线的性质得:PA=PA′,要使PA+PB最小,则 需PA′+PB值最小,从而转化为模型1.

3. 已知:如图,定点A、B分布在定直线l的同侧(A、B两 点到l的距离不相等) 要求:在直线l上找一点P,使︱PA-PB︱的值最大 解:连接BA并延长,交直线l于点P,点P即为所求; 理由:此时︱PA-PB︱=AB,在l上任取异于点P的一点P′, 连接AP′、BP′,由三角形的三边关系知︱P′A-P′B︱

将军饮马强方法

将军饮马模型 一、背景知识: 【传说】 早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题. 将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今. 【问题原型】将军饮马造桥选址 【涉及知识】两点之间线段最短,垂线段最短; 三角形两边三边关系;轴对称;平移; 【解题思路】找对称点,实现折转直 二、将军饮马问题常见模型 1.两定一动型:两定点到一动点的距离和最小 例1:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB 最小. 作法:连接AB,与直线l的交点Q, Q即为所要寻找的点,即当动点P跑到了点Q处, PA+PB最小,且最小值等于AB. 原理:两点之间线段最短。 证明:连接AB,与直线l的交点Q,P为直线l上任意一点, 在⊿PAB中,由三角形三边关系可知:AP+PB≧AB(当且仅当PQ重合时取﹦)

例2:在定直线l上找一个动点P,使动点P到两个定点A与B的距离之和最小,即PA+PB的和最小. 关键:找对称点 作法:作定点B关于定直线l的对称点C,连接AC,与直线l的交点Q即为所要寻找的点,即当动点P跑到了点Q处,PA+PB和最小,且最小值等于AC. 原理:两点之间,线段最短 证明:连接AC,与直线l的交点Q,P为直线l上任意一点, 在⊿PAC中,由三角形三边关系可知:AP+PC≧AC(当且仅当PQ重合时取﹦) 2.两动一定型 例3:在∠MON的内部有一点A,在OM上找一点B,在ON上找一点C,使得△BAC周长最短. 作法:作点A关于OM的对称点A’,作点A关于ON的对称点A’’,连接A’ A’’,与OM交于点B,与ON交于点C,连接AB,AC,△ABC即为所求. 原理:两点之间,线段最短

将军饮马问题讲

4. 如图,点 边的距离之和最小 类型一、基本模式 类型二、轴对称变换的应用(将军饮马问题) 2、如图所示,如果将军从马棚 M 出发,先赶到河 OA 上的某一位置 P ,再马上赶到河 OB 上 的某一位置 Q ,然后立即返回校场 N .请为将军重新设计一条路线 (即选择点 P 和 Q ), 使得总路程 MP + PQ +QN 最短. 3、将军要检阅一队士兵,要求 (如图所示 ) :队伍长为 a ,沿河 OB 排开(从点 P 到点 Q );将 军从马棚 M 出发到达队头 P ,从 P 至 Q 检阅队伍后再赶到校场 N .请问:在什么位置列队 (即 选择点 P 和 Q ),可以使得将军走的总路程 MP +PQ + QN 最短? 将军饮马问题 变式】如图所示,将军希望从马棚 OB 上的某一位置 Q .请为将军设计一条路线 MP +PQ 最短. ,再马上赶到河 P 到

5 已知∠ MON内有一点 P,P 关于 OM,ON的对称点分别是和,分别交 OM, ON于点 A、B,已知= 15,则△ PAB 的周长为( ) A. 15 B 7.5 C. 10 D. 24 6. 已知∠ AOB,试在∠ AOB内确定一点 P,如图,使 P 到 OA、OB的距离相等,并且到 M、N 两点的距离也相等 . 7、已知∠ MON= 40 , P为∠ MON内一定点, OM上有一点 A,ON上有一点 B,当△ PAB的周 边上一动点,则 DP长的最小值为 练习 1、已知点A在直线l 外,点P为直线l 上的一个动点,探究是否存在一个定点B,当点P在直线l 上运动时,点P 与A 、B 两点的距离总相等,如果存在,长取最小值时,求∠APB的度数 . 8. 如图,在四边形ABCD中,∠ A= 90°, ADB=∠ C.若 P 是

将军饮马问题例题及应用

射频神经疼痛治疗仪 页脚内容1 将军饮马问题例题及应用 一, 简介 唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一 个有 趣的数学问题. 诗中将军在观望烽火之后从山脚下的A 点出发,走到河边饮马后,再到B 点宿营.请问怎样走才能使总的路程最短? 这个问题早在古罗马时代就有了,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题:“将军每天从军营A 出发,先到河边饮马,然后再去河岸同侧的B 地开会,应该怎样走才能使路程最短?” 从此,这个被称为“将军饮马”的问题广泛流传. 二,例题 1, 基本类型问题 问题:有一位将军骑着马要从A 地走到B 地,但途中要到水边喂马喝一次水,则将军怎样走最近? 解答:作B 点与河面的对称点B ′,连接AB ′,可得到马喝水的地方C ,如图所示,由对称的性质可知AB ′=AC+BC ,根据两点之间线段最短的性质可知,C 点即为所求. 2, 与其他类型问题相结合 问题:某课题组在探究“将军饮马问题”时抽象出数学模型:直线l 同旁有两个定点A 、B ,在直线l 上存在点P ,使得P A +PB 的值最小.解法:作 点A 关于直线l 的对称点A ′,连接A ′B ,则A ′B 与直线l 的交点即为P ,且PA +PB 的最小值为A ′B .请利用上述模型解决问题 如图1,等腰直角三角形A B C 的直角边长为2,E 是斜边A B 的中点,P 是A C 边上的一动点, 则P B+P E 的最小值为( ); 解答:作点B 关于A C 的对称点B ′,连接B ′E 交A C 于P , 此时PB+P E 的值最小.连接A B ′. A B ′=A B=√A C 2+BC 2=√22+22=2√2 A B=√2∵∠ B ′A C=∠BA C=45°∴∠B ′A B=90°∴PB+PE 的最小值 =B ′E=√B ′A 2+A E 2=√(2√2)2+(√2)2=√10

八年级数学将军饮马问题专题练习汇总(20200708010955)

八年级数学将军饮马问题专题练习汇总 1.如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为_________。 2.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为________。 3.如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=6,AB=7,BC=8。点P是AB上一个动点,则PC+PD的最小值为_________。 4.如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点,若AE=2,求EM+BM的最小值_____。 5.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为______。 6.如图,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A 点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1。如果B为反比例函

数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上存在一点P,使PA+PB最小,则P点坐标为_______。 7.如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm 的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜 相对的点A处,则蚂蚁到达蜂蜜的最短距离为________cm. 拓展①:一定点、一动点到直线上一动点组成的线段距离和最短问题 如图,在锐角三角形ABC中,AB=6,∠BAC=60°。∠BAC的角平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是 _________。 拓展②:一定点与两条直线上两动点组成的三角形周长和最短问题 如图,∠AOB=45°,角内有点P,PO=10,在角的两边上有两点 Q,R(均不同于O点),则△PQR的周长的最小值为 _________。 拓展③:一定点与两条直线上两动点组成的三角形周长和最短问题 在BC,CD上 如图,在四边形ABCD中,∠BAD=120°, ∠B=∠D=90°, 分别找一点M,N,使△AMN的周长最小,则此时∠AMN+∠ ANM=_______°

将军饮马问题地11个模型及例题

将军饮马问题 问题概述 路径最短、线段和最小、线段差最大、周长最小等一系列最值问题 方法原理 1.两点之间,线段最短; 2.三角形两边之和大于第三边,两边之差小于第三边; 3.中垂线上的点到线段两端点的距离相等; 4.垂线段最短. 基本模型 1. 已知:如图,定点A、B分布在定直线l两侧; 要求:在直线l上找一点P,使PA+PB的值最小 解:连接AB交直线l于点P,点P即为所求, PA+PB的最小值即为线段AB的长度 理由:在l上任取异于点P的一点P′,连接AP′、BP′, 在△ABP’中,AP′+BP′>AB,即AP′+BP′>AP+BP ∴P为直线AB与直线l的交点时,PA+PB最小. 2. 已知:如图,定点A和定点B在定直线l的同侧 要求:在直线l上找一点P,使得PA+PB值最小(或△ABP的周长最小) 解:作点A关于直线l的对称点A′,连接A′B交l于P, 点P即为所求; 理由:根据轴对称的性质知直线l为线段AA′的中垂线, 由中垂线的性质得:PA=PA′,要使PA+PB最小,则 需PA′+PB值最小,从而转化为模型1.

3. 已知:如图,定点A、B分布在定直线l的同侧(A、B两 点到l的距离不相等) 要求:在直线l上找一点P,使︱PA-PB︱的值最大 解:连接BA并延长,交直线l于点P,点P即为所求; 理由:此时︱PA-PB︱=AB,在l上任取异于点P的一点P′, 连接AP′、BP′,由三角形的三边关系知︱P′A-P′B︱

中考数学压轴题专题复习:将军饮马问题----两线段和最小值专题讲解训练

将军饮马问题----两线段和最小值专题讲解训练知识链接 几何中最值问题的解题思路 轴对称最值图形 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直线, P为直线l上的一个动点, 求AP+BP的最小值 A,B为定点,l为定直线,MN为直线l 上的一条动线段,求AM+BN的最小值 A,B为定点,l为定直线,P 为直线l上的一个动点,求 |AP-BP|的最大值 转化 作其中一个定点关于定直 线l的对称点 先平移AM或BN使M,N重合,然后 作其中一个定点关于定直线l的对称点 作其中一个定点关于定直线 l的对称点 折叠最值图形 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折,B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 例题精讲 例、如图,直线y=kx+b交x轴于点A(-1,0),交y轴于点B(0,4),过A、B两点的抛物线交x 轴于另一点C. (1)直线的解析式为_______; (2)在该抛物线的对称轴上有一点动P,连接PA、PB,若测得PA+PB的最小值为5,求此抛物线的解析式及点P的坐标; (3)在(2)条件下,在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

题型强化 1、在平面直角坐标系中,已知 2 12 y x bx c (b 、c 为常数)的顶点为 P ,等腰直角三角形ABC 的顶点A 的 坐标为(0,﹣1),点C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若抛物线经过 A 、 B 两点,求抛物线的解析式. (2)平移(1)中的抛物线,使顶点P 在直线AC 上并沿AC 方向滑动距离为 2时,试证明:平移后的抛物线与 直线AC 交于x 轴上的同一点.(3)在(2)的情况下,若沿 AC 方向任意滑动时,设抛物线与直线AC 的另一交点为 Q ,取BC 的中点N ,试探究 NP+BQ 是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.

初中将军饮马问题题型总结(全)

初中涉及将军饮马问题题型总结 题型一:将军饮马之单动点 1. 三角形中的将军饮马 【真题链接1.】(2017?天津) 如图,在ABC ?中,AB AC =,AD 、CE 是ABC ?的两条中线,P 是AD 上一个动点,则下列线段的长度等于BP EP +最小值的是( ) A .BC B .CE C .AD D .AC 【解析】 解:如图连接PC , AB AC =,BD CD =, AD BC ∴⊥, PB PC ∴=, PB PE PC PE ∴+=+, PE PC CE +, P ∴、C 、E 共线时,PB PE +的值最小,最小值为CE 的长度,故选:B . B B

【真题链接2.】(2020?天津一模) 如图,ABC ?是等边三角形,2AB =,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,则PE PC +的最小值为( ) A .1 B .2 C D . 【解析】 解:如图, 连接BE 交AD 于点P ', ABC ?是等边三角形,2AB =,AD 是BC 边上的高,E 是AC 的中点, AD ∴、BE 分别是等边三角形ABC 边BC 、AC 的垂直平分线, P B P C ∴'=', P E P C P E P B BE '+'='+'=, 根据两点之间线段最短, 点P 在点P '时,PE PC +有最小值,最小值即为BE 的长. BE == 所以P E P C '+' 故选:C . B B

【真题链接3.】(2019秋?东至县期末) 如图,在ABC ?中,AB AC =,4BC =,面积是16,AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM ?周长的最小值为( ) A .6 B .8 C .10 D .12 【解析】解:连接AD ,AM . ABC ?是等腰三角形,点D 是BC 边的中点, AD BC ∴⊥, 11 41622 ABC S BC AD AD ?∴= =??=,解得8AD =, EF 是线段AC 的垂直平分线, ∴点C 关于直线EF 的对称点为点A , MA MC ∴=, AD AM MD +, AD ∴的长为CM MD +的最小值, CDM ∴?的周长最短11 ()84821022 CM MD CD AD BC =++=+ =+?=+=. 故选:C . A A

《将军饮马问题》教案 (2)

《将军饮马问题》教案 一、问题背景: 唐代诗人李颀的诗《古从军行》开头两句说“白日登山望烽火,黄昏饮马傍交河。”诗中隐含着一个有趣的数学问题。 如图所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河边饮马后再到B点宿营,请问怎样走使总的路程最短? B·营地 A·山峰 河流 这个问题在古罗马时代就有了,传说在亚历山大城有位精通数学和物理的学者,名叫海伦。一天,以为罗马将军专程拜访他,向他请教一个百思不其解的问题。 将军每天从军营A出发,先到河边饮马,然后再去河边同侧的B 营地开会,应怎样走使路程最短?这个问题很简单,海伦略加思索就解决了 二、引用“饮马问题”: 将军饮马问题,应用拓展到人教版八年级上册轴对称性质当中一实际应用问题: 如图所示,要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短? B·镇 A·镇 L 三、教学方法的探究:

当教师在组织教学活动中,平铺直叙得讲,学生不易理解。“将军饮马”问题,在学生理解方面,存在两大难点,一是如何利用轴对称的性质作出使得线路最短的点。二是说明最短的理由,如何设计探究活动组织有意义的方法和策略,成为了突出重点、突破难点,化难为易的关键,可采用镜面反射的原理创设探究活动,使问题简单化,学生易于理解和掌握。 设想把河流看作诗一面平面镜,村庄A、B看作诗甲、乙两人,这样设计: 甲、乙两人分别位于镜面的同侧A、B两点,甲、乙通过镜面分别看到自己的影子A′、B′。如图,连接AB′,AB′与L交于C,甲、乙通过镜面都能看到对方的影子。连接A′C与BC,探究: B A L C C′ A′ B′ (1)、AC与A′C,B′C与BC上存在什么关系,说明理由。 (2)、AC+B′C与AC+BC存在大小关系如何,说明理由。 (3)、平面镜L有异于C点的另外一点C′,连接AC′、BC′、B′C′,AC′+BC′与AC′+B′C′是否相等?AC′+BC′与AC+BC是否相等?不相等大小关系如何?说明理由。 这样设计探究活动,能充分体现轴对称性质,使复杂问题简单化,难点分解,由浅入深,通过实际生活中的镜面反射原理使得问题通俗化、趣味化,能调动学生学习的兴趣,易于学生掌握和理解。 四、妙用饮马问题: 利用轴对称思想,将该问题转化为“两点间线段最短”,即“三角形两边之和大于第三边”的问题。饮马问题可归结为“求定直线上一动点与直线外两点的距离之和的最小值”问

(完整版)将军饮马问题

将军饮马问题一一线段和最短 1.如图,直线I和I的异侧两点A、B,在直线I上求作一点P,使PA+PB最小。 2.如图,直线I和I的同侧两点A、B,在直线I上求作一点P,使PA+PB最小。 3.如图,点P 是ZMON内的一点,分别在0M , ON上作点A, B。使△PAB的周长最小。

离之和最小 4.如图,点P, Q为/MON内的两点,分别在OM, ON上作点A, B。使四边形PAQB 的周长最小。 5.如图,点A是/MON外的一点,在射线 离之和最小。 OM上作点P , 使PA与点P到射线ON的距 6.如图,点A是/MON内的一点,在射线ON上作点P,使PA与点P到射线OM的距

、常见题目 Parti、三角形 1.如图,在等边厶ABC中,AB=6 , AD丄BC, E是AC上的一点,M是AD上的一点, 且AE=2,求EM+EC的最小值 2 .如图,在锐角厶ABC中,AB=42 , Z BAC= 45。,启AC的平分线交BC于点D, M、N分别是AD和AB上的动点,贝V BM+MN的最小值是_____ 。 3 .如图,△ ABC 中,AB=2 , Z BAC=30。,若在AC、AB上各取一点M、N,使BM+MN 的值最小,则这个最小值

Part2、正方形1.如图,正方形ABCD的边长为8 , M在DC上,丐DM = 2 , N是AC上的一动点, DN + MN的最小值为_________ 。即在直线AC上求一点N,使DN+MN最小。 2 .如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+ PE的和最小,则这个最小值为() A. 23 B . 26 C . 3 D . 6

将军饮马问题(讲)

4.如图,点边的距离之和最小 将军饮马问题 类型一、基本模式 类型二、轴对称变换的应用(将军饮马问题) 2、如图所示,如果将军从马棚M出发,先赶到河0A上的某一位置P,再马上赶到河0B上 的某一位置Q,然后立即返回校场N.请为将军重新设计一条路线(即选择点P和Q), 使 得总路程M卉PQ+ QN最短. 0B上的某一位置Q.请为将军设计一条路线(即选择点P和Q),使得总路程M卉PQ最短. 3、将军要检阅一队士兵,要求(如图所示):队伍长为a,沿河0B排开(从点P到点Q);将军从马棚M出发到达队头P,从P至Q检阅队伍后再赶到校场N.请问:在什么位置列队(即选择点P和Q),可以使得将军走的总路程皿卉PQ^ QN最短? 【变式】如图所示,将军希望从马棚 P 至U 0A

A. 15 B 7.5 C. 10 D. 24 6. 已知/ AOB 试在/ AOB 内确定一点 P,如图,使 P 到OA OB 的距离相等,并且到 M N 两点的距离也相等? 7 、已知 / MON= 40 ° , P 为/ MON 内一定点,OM 上有一点 A , ON 上有一点 B ,当△ PAB 的周 长取最小值时,求/ APB 的度数. 练习 1、已知点A 在直线I 夕卜,点P 为直线I 上的一个动点,探究是否存在一个定点 B ,当点P 在 直线I 上运动时,点P 与A 、B 两点的距离总相等,如果存在,请作出定点 B ;若不存在, 请说明理由. A ■ 5已知/ MON 内有一点P , P 关于OM ON 的对称点分别是 丄1和二,分别交OM, ON 于点 8.如图,在四边形 ABCD 中,/ A = 90°, AD= 4,连接 BD, BD 丄CD / ADB=Z C.若 P 是 BC 边上一动点,贝U DP 长的最小值为 _____ A B ,已知 =15,则厶PAB 的周长为( C

相关文档
相关文档 最新文档