文档库 最新最全的文档下载
当前位置:文档库 › 4.ARCGIS——建立水文模型

4.ARCGIS——建立水文模型

4.ARCGIS——建立水文模型
4.ARCGIS——建立水文模型

水文分析(均值变点的分析)

实验步骤:

第一步:填充(fill)打卡原dem图层在input surface raster里添加dem图层再点击OK运行即得到填充后的图层。填充的含义是是图层成为一个平面,制图是在平面图层里提取需要的数据。

第二步:水流方向的提取(flow direction)双击该工具,在input surface raster里添加填充后的图层也就是fill名称的图层,点击OK运行得到水流方向的图层direction。

第三步:汇流累积量的计算(flow accumulation)双击该工具,在input flow direction raster里添加名称为direction的图层,点击OK运行得到汇流累积量的图层flowacc。

第四步:重分类(reclassify)在任务栏加载spatial analyst工具,点击其下拉菜单→→raster calculator 计算河流的累积量。双击flowacc取一个阈值。例如[flowacc]>=1000点击evaluate 得到汇流累积量的初等分类结果(用Con命令实现,eg:C on(“flowacc”>=1000,1))。再进行重分类:在图层窗口选中calculation图层,再点击spatial analyst下拉菜单点击reclassify工具,将0改为nodata ,1改为1。选在存储路径把结果可以命名为reclassify点击OK运行即得到重分类的结果。

第五步:汇流节点的计算(stream link)还是在水文分析工具箱里,打开stream link在input stream raster里添加reclassify图层,在input flow direction raster里添加direction图层,点击OK得到汇流节点数据streaml_recl1的图层。

第六步:集水区分析(watershed)在水文分析工具箱里打开watershed工具,在input flow direction raster里输入direction图层,在input raster or feature pour point data里输入

streaml_recl1图层,点击OK得到集水区数据watersh_flow1图层。

第七步:栅格图层的矢量化打开index输入raster to polygon在input raster里添加watersh_flow1图层,点击OK运行得到矢量化图层rasterT_watersh1。

栅格图层的矢量化(stream to feature):这个在水文分析工具箱里完成。在input stream raster 里输入reclassify图层,在在input flow direction raster里添加名称为direction的图层,点击OK运行得到矢量化的河流分级图层streamT_streamO1。

第八步:河网的提取(stream to feature)在水文分析工具箱里打开stream to feature工具在input stream raster里添加重分类后的数据reclassify图层,在input flow direction raster里添加流向数据direction图层。点击OK得到阈值为1000米的河网数据streamT_reclass1。打开属性表可以增加一个len字段设置为长整型long integer。点击计算工具calculate geometry得到河流的长度数据再导出为.bdf格式文件(options→→export→→存储路径是自己易找到的文件夹里)。再通过Excel打开表,求长度总和。在矢量化后的集水区图层属性表增加area字段求面积总和。和网密度=河流长度/河流面积。

第九步:流域的裁剪在index里搜索(extract by mask)并双击打开,在input raster里输入原始的dem图层,在input raster or feature mask data里输入集水区分析所得结果的图层即名称为:watersh_flow1。点击OK即得到所需要流域的dem图层,再和整个研究区的分析方法一样进行水文分析,即可得到所需流域的数据。

水文分析模型(均值变点)

实验步骤:在空间分析模型工具箱里打开水文分析工具hydrology。

第一步:对dem图层进行填充fill。

第二步:提取河流方向flow direction。

第三步:汇流累积量的计算flow accumulation。

第四步:计算阈值great than。提取阈值就是通过great than(sa)工具来实现。

第五步:重分类reclassify(sa)。

第六步:栅格图层的矢量化stream to feature。

第七步:增加字段add field 命名为长度len。

第八步:计算字段总和calculate field,这一步要借助计算工具EasyCalculate50

第九步:对长度进行求和summary statistics。在这一步要正确选取字段的类型。

保存模型,save as 重新命名。保存的路径尽量是自己容易找到的盘里。

水文分析模型(河流分叉比分析)

实验步骤:

第一步:填充(fill)打卡原dem图层在input surface raster里添加dem图层再点击OK运行即得到填充后的图层。填充的含义是是图层成为一个平面,制图是在平面图层里提取需要的数据。

第二步:水流方向的提取(flow direction)双击该工具,在input surface raster里添加填充后的图层也就是fill名称的图层,点击OK运行得到水流方向的图层direction。

第三步:汇流累积量的计算(flow accumulation)双击该工具,在input flow direction raster里添加名称为direction的图层,点击OK运行得到汇流累积量的图层flowacc。

第四步:重分类(reclassify)在任务栏加载spatial analyst工具,点击其下拉菜单→→raster calculator 计算河流的累积量。双击flowacc取一个阈值。例如[flowacc]>=1000点击evaluate 得到汇流累积量的初等分类结果。再进行重分类:在图层窗口选中calculation图层,再点击spatial analyst下拉菜单点击reclassify工具,将0改为nodata ,1改为1。选在存储路径把结果可以命名为reclassify点击OK运行即得到重分类的结果。

第五步:河流分级(stream order)在水文分析工具箱里打开stream order工具,在input stream raster里输入reclassify图层,在在input flow direction raster里添加名称为direction的图层,

点击OK运行得到河流分级图层stream0_recl1。

第六步:栅格图层的矢量化(stream to feature):这个在水文分析工具箱里完成。在input stream raster里输入reclassify图层,在在input flow direction raster里添加名称为direction的图层,点击OK运行得到矢量化的河流分级图层streamT_streamO1。

第七步:裁剪流域图层:Fill→→Flow direction→→Flow accumulation→→Reclassify(raster calculator 计算河流的累积量)→→Stream order→→Watershed→→Raster to polygon→→data,export→→Extract by mask。

建立多个图层模型的步骤和单个图层模型的建立方法一样,需要注意的是在great than这一步输入图层的属性设为a list of values。同时注意检查运行结果图层的属性,如果出现错误得到的结果就是一样的值。

遥感水文模型的研究进展-中国农村水利水电

生态环境 2006, 15(6): 1391-1396 https://www.wendangku.net/doc/8a2000157.html, Ecology and Environment E-mail: editor@https://www.wendangku.net/doc/8a2000157.html, 基金项目:中国科学院知识创新工程重要方向项目(KZCX-SW-446) 作者简介:赵少华(1980-),男,博士研究生,主要研究方向为农业生态及遥感水文生态。Tel: +86-311-85814806; E-mail: zshyytt@https://www.wendangku.net/doc/8a2000157.html, *通讯作者 遥感水文耦合模型的研究进展 赵少华1, 2,邱国玉1,杨永辉2 *,吴 晓1,尹 靖1 1. 北京师范大学环境演变与自然灾害教育部重点实验室//北京师范大学资源学院,北京 100875; 2. 中国科学院遗传与发育生物学研究所农业资源研究中心//河北省节水农业重点实验室,河北 石家庄 050021 摘要:遥感水文的耦合模型在目前生态环境领域,特别是在水资源的应用和管理中其作用日益重要,具有大流域尺度上快速应用、实时动态监测等优点。结合国内外近年来取得的研究成果,文章综述了遥感水文耦合模型的研究进展。首先介绍了遥感技术在水文学中的应用,讨论了它的分类发展概况,接着介绍了几种主要的遥感水文耦合模型及其应用实例,包括SCS (Soil Conservation Services )模型、SiB2(Simple Biosphere Model version 2)简化生物圈模型、SRM (Snowmelt Runoff Model )融雪径流模型以及SWAT (Soil and Water Assessment Tool )模型,最后展望了遥感水文耦合模型未来的发展趋势,指出尺度问题上的时空变异性仍是其发展的关键,与GIS (Geographic information system )及其他空间技术的相结合是其未来发展的重要方向,从而为水文学、水资源的预测评价等研究提供参考。 关键词:遥感;水文;径流;流域 中图分类号:P338.9 文献标识码:A 文章编号:1672-2175(2006)06-1391-06 水文模型是以水文系统为研究对象,根据降雨和径流在自然界的运动规律建立数学模型,通过电子计算机快速分析、数值模拟、图像显示和实时预测各种水体的存在、循环和分布,以及物理和化学特性[1]。通过对各种参数的计算,水文模型可以对河流、流域、径流以及水体等进行监测预报、水资源调度等。然而随着社会的发展和科学技术的不断进步,对水文模型的功能要求也越来越多,也越来越高,从单纯的流域某控制断面的洪水预报到全流域的洪水、水资源调度,导致模型的框架结构越来越复杂。地理信息技术和遥感技术的发展更是大力促进了水文模型的应用和发展。对于遥感在水文模拟中的应用,Schultz [2]举出了利用多光谱Landsat 卫星数据估算模型参数、利用NOAA 红外卫星数据作为模型的输入量来计算历史的月径流量以及应用雷达测雨数据于分布式模型中来实时预报洪水的三个例子。水文模型需要大量的空间数据,通过遥感技术可以为其提供DEM (数字高程模型)、土地覆盖/利用、降雨、地表温度、土壤特性、LAI (叶面积指数)和蒸散发等资料[3-5]。 遥感水文的耦合模型是流域水文模型发展的一个重要方向,有广阔的发展前景。简单来说,遥感水文耦合模型就是与遥感信息相结合的水文模型,模型中可以直接或间接地应用遥感资料,通过遥感水文耦合模型可以在更大范围内更准确地估算流域的水文概况、水体变化监测、洪水过程监测 预报等。然而目前国内外对遥感水文耦合模型的研究还不多,还没有对该方面的研究做系统深入的报道,本文正是基于此目的,综述了近年来遥感水文耦合的模型在国内外取得的研究成果,分别讨论了它的分类发展概况、几种主要的遥感水文耦合模型及未来的发展趋势,以期为水资源、水文学的预测评价研究等提供参考。 1 遥感技术在水文学中的应用 遥感技术在水文学中的应用大致可分为两个方面:一是直接运用:如降雨量变化的估算[6]、水体(湖泊、湿地等)面积变化的推算[7-10]、冰川和积雪的融化状态监测以及洪水过程的动态监测等(其中监测洪水过程的动态最具有代表性)。如Zhang 等[11]在长江的汉口段流域上,提出利用高分辨率的QuickBird 2 卫星影像资料估算河流流量的方法,该法通过与河流宽度-水位及遥测水位-流量关系曲线耦合来测量河流水面宽度变化,从而准确评估其流量。二是间接运用:利用遥感资料推求有关水文过程中的参数和变量。通常是利用一些统计模型和概念性水文模型、经验公式等,结合遥感资料来获取诸如径流、水质(如全氮TN 、全磷TP 、悬浮物SS 、化学需氧量COD 、生物需氧量BOD 等)、 土壤水分等水文变量[12] ,如对径流的估算,可通过估算降雨、截流、蒸散发和土壤蓄水量等参数来进行[13]。对于全球或区域尺度上的蒸发估算,遥感技术不仅具有对大面积地面特征信息同时快捷获得

新安江流域水文模型

2新安江流域水文模型 60年代初,河海大学(原华东水利学院)水文系赵人俊等开始研究蓄满产流模型,配合一定的汇流计算,将模型应用于水文预报和水文设计。1973年,他们在对新安江水库做入库流量预报的工作中,把他们的经验归纳成一个完整的降雨径流流域模型——新安江模型。模型可用于湿润地区和半湿润地区的湿润季节径流模拟和计算。 最初的新安江模型为两水源模型,只能模拟地表径流和地下径流。80年代初期,模型研制者将萨克拉门托模型与水箱模型中,用线性水库函数划分水源的概念引入新安江模型,提出了三水源新安江模型,模型可以模拟地面径流、壤中流、地下径流。1984至1986年,又提出了四水源新安江模型,可以模拟地面径流、壤中流、快速地下径流和慢速地下径流。三水源新安江模型一般应用效果较好,但模拟地下水丰富地区的日径流过程精度不够理想。在新安江三模型中增加慢速地下水结构就成为四水源新安江模型。 当流域面积较小时,新安江模型采用集总模型,当面积较大时,采用分块模型。分块模型把流域分成许多块单元流域,对每个单元流域做产、汇计算,得到单元流域的出口流量过程。再进行出口以下的河道洪水演算,求得流域出口的流量过程。把每个单元流域的出流过程相加,就求得了流域出口的总出流过程。 划分单元流域的主要目的是处理降雨分布的不均匀性,因此单元流域应当大小适当,使得每块面积上的降雨分布比较均匀。并有一定数目的雨量站。其次尽可能使单元流域与自然流域相一致,以便于分析与处理问题,并便于利用已有的小流域水文资料。如果流域内有大中型水库,则水库以上的集水面积即应作为一个单元流域。因为各单元流域的产汇、流计算方法基本相同,以下只讨论一个单元流域的情况。 新安江模型包括4个计算环节:蒸散发计算;流域产流计算;径流划分;汇流计算。4个计算环节分别概化了流域降雨径流的主要产、汇流物理过程。 2.1流域蒸散发计算 各种水源的蒸散发计算模型均可采用两层蒸发模型或两层蒸发模型,一般根据实际情况选用。原则是在模拟径流精度相同的情况下,尽量采用参数少的两层蒸散发模型。蒸散发模型不考虑面上分布的不均匀性,但可考虑土湿垂向分布的不均匀性。 两层蒸散发模型将土层分为上、下两层,各层蓄水容量分别为WUM、WLM

中科院地理所自然地理学考博水文学试题及参考答案整理4_水资源学与生态水文学

一、流域水文模型 简述流域水文模型的类型及其应用问题 水文模型的基本类型有哪些?各有哪些作用? 论述流域水文模型的类型及其特征? 二、流域产流 流域产流过程及其方式有哪些? 我国南北方流域产流过程及其方式有哪些不同? 三、径流形成 影响径流形成的主要因素有哪些?气候变化及人类活动如何影响流域径流形成? 试述河川径流中的基流分割主要方法及研究基流的意义。 径流形成的基本原理及其影响条件。 四、下渗 影响下渗的因素由哪些? 五、蒸发能力 何为流域的蒸发能力?干旱与湿润地区的实际蒸发与蒸发能力之间有什么联系与区别? 实际蒸发与蒸发能力之间有什么联系与区别,如何计算? 六、水文循环 如何理解水资源可再生(可更新)性?其意义就是什么? 试述水量转化及其在水资源评价中的应用。 试述流域水文循环过程及其科学问题。 论述流域水文循环与水量转化过程及其在水资源评价中的应用?

七、水文学科理论 您认为生态水文学的科学问题有哪些 水文学的基础理论问题 水文学与水资源学的关系 八、人类活动对水文影响 试述人类活动的水文效应及其研究方法? 气候变化及人类活动如何影响流域径流形成? 九、水资源特点及开发利用 论述中国水资源开发利用问题及其对策。 论述中国水资源的时空分布特点及其开发利用对策? 十、区域水文 分析流域地下水的补给来源、地下水径流、地下水排泄,以及地下水动态的影响因素? 如何理解湖泊、沼泽的水量平衡与调节作用? 十一、新技术方法

一、试题 您认为生态水文学的科学问题有哪些 水文学的基础理论问题 水文学与水资源学的关系 水文学与水资源学的关系 水文学主要就是研究地球上水的起源、存在、分布、循环运动规律,水资源学主要研究水资源的形成、演化、运动规律及水资源的合理开发利用的基础理论。水文学与水资源学即有区别又有密切的联系。水文学就是水资源学的重要科学基础,水资源学就是水文学服务于人类社会的重要应用。 水文学就是水资源学的基础。从水文学与水资源学的发展过程瞧,水文学具有悠久的发展历史,而水资源学就是在水文学的基础上,为了研究与解决日益窋的水资源问题而逐步形成的一个知识体系。因此,可近似的认为,水资源学就是在水文学的基础上衍生出来的。从研究内容上瞧,水文学就是一门研究地球上各种水体的形成、运动规律以及相关问题的学科体系;水资源学主要研究水资源评价、配置、综合开发、利用、保护以及对水资源的规划与管理,按照水资源的定义,水资源就是指可被人类利用的淡水资源,世界上大量的水中只有一小部分可以划归为水资源的范畴,水资源学对水资源的研究就是建立在水文学对地球上各种水体的研究的基础之上的。 水资源学就是水文学服务于人类社会的重要应用。人们研究水文现象的一个重要目的就就是为了更好的利用水资源,来实现水资源的可持续利用。水资源的开发利用规划与管理等工作就是水文学服务于人类社会的重要应用内容。水文学中的水循环理论支撑水资源可再生性研究,就是水资源可持续利用的理论依据。在对水资源进行量化进程中,根据水文规律与水文学基本理论,利用数学工具建立模拟模型,就是水资源承载能力量化研究、优化配置量化研究的基础。由于人类对水资源的开发利用,使水循环过程成为自然循环与社会循环的集合,在水资源配置、水资源管理、水资源承载能力计算等模型中,要充分体现这种集合,需要把水文模拟模型作为基础模型嵌入到水资源模型中。 对水文学若干基础研究领域的展望 1、气候变化对水文循环时空分布的影响:全球气候变化将影响到大气、 海洋与陆地的相互作用过程。近20年来波及许多国家与地区的水危 机与洪涝灾害与此有相当密切的关系,这就是因为由此引起的地球 上太阳辐射分布的改变将影响到自然的蒸发、大气中的水汽输送与 降水时空分布。水文学应对这种被称为大尺度水文学的科学研究作 出贡献。 2、水文时间序列演变机理及影响因子:水文时间序列的长期演变既有确 定性的一面,又有不确定性的一面,目前无论从哪个方面分析,都至多 只能识别水文时间序列的局部特性,而不能识别其全部特性,因此水 文时间序列的长期演变规律至今无法在衫精度范围内予以提示。这

(完整word版)Arcgis操作第九章水文分析

第九章 水文分析 水文分析是DEM 数据应用的一个重要方面。利用DEM 生成的集水流域和水流网络,成为大多数地表水文分析模型的主要输入数据。表面水文分析模型研究与地表水流有关的各种自然现象例如洪水水位及泛滥情况,划定受污染源影响的地区,预测当某一地区的地貌改变时对整个地区将造成的影响等。 基于DEM 地表水文分析的主要内容是利用水文分析工具提取地表水流径流模型的水流方向、汇流累积量、水流长度、河流网络(包括河流网络的分级等)以及对研究区的流域进行分割等。通过对这些基本水文因子的提取和分析,可再现水 流的流动过程,最终完成水文分析过程。 本章主要介绍ArcGIS 水文分析模块的应用。ArcGIS 提供 的水文分析模块主要用来建立地表水的运动模型,辅助分析地 表水流从哪里产生以及要流向何处,再现水流的流动过程。同 时,通过水文分析工具的应用,有助于了解排水系统和地表水 流过程的一些基本概念和关键过程。 ArcGIS 将水文分析中的地表水流过程集合到ArcToolbox 里,如图11.1所示。主要包括水流的地表模拟过程中的水流 方向确定、洼地填平、水流累计矩阵的生成、沟谷网络的生成 以及流域的分割等。 本章1至5节主要是依据水文分析中的水文因子的提取过 程对ArcGIS 中的水文分析工具逐一介绍。文中所用的DEM 数据在光盘中chp11文件夹下的tutor 文件夹里面,每个计算 过程以及每一节所产生的数据存放在tutor 文件夹的result 文件 夹里面,文件名与书中所命名相同,读者可以利用该数据进行 参照练习。本章最后一节还提供了三个水文分析应用的实例。 9.1 无洼地DEM 生成 DEM 一般被认为是比较光滑的地形表面的模拟,但是由于内插的原因以及一些真实地形(如喀斯特地貌)的存在,使得DEM 表面存在着一些凹陷的区域。这些区域在进行地表水流模拟时,由于低高程栅格的存在,使得在进行水流流向计算时在该区域得到不合理的或错误的水流方向。因此,在进行水流方向的计算之前,应该首先对原始DEM 数据进行洼地填充,得到无洼地的DEM 。 洼地填充的基本过程是先利用水流方向数据计算出DEM 数据中的洼地区域,然后计算出这些的洼地区域的洼地深度,最后以这些洼地深度为参考而设定填充阈值进行洼地填充。 9.1.1 水流方向提取 水流方向是指水流离开每一个栅格单元时的指向。在ArcGIS 中通过 将中心栅格的8个邻域栅格编码,水流方向便可由其中的某一值来确定, 图11.2 水流流向编码 图11.1 ArcToolBox 中的 水文分析模块

流域水文模型研究现状及发展趋势

流域水文模型研究现状及发展趋势 发表时间:2018-09-11T16:04:44.667Z 来源:《基层建设》2018年第24期作者:王慧锋 [导读] 摘要:地球上的水文事件,是一种诸多因素相互作用的结果,在尚未找到复杂水文现象的科学规律之前,通过建立水文模型来仿真有关水文事件是一种合理、可行的途径。 安徽国祯环保节能科技股份有限公司安徽省 230088 摘要:地球上的水文事件,是一种诸多因素相互作用的结果,在尚未找到复杂水文现象的科学规律之前,通过建立水文模型来仿真有关水文事件是一种合理、可行的途径。随着计算机技术和一些交叉学科的发展,分布式物理模型被广泛提出,并逐渐成为21世纪水文学研究的热点课题之一。基于此,本文主要对流域水文模型研究现状及发展趋势进行分析探讨。 关键词:流域水文模型;研究现状;发展趋势 1、前言 流域水文模型是为模拟流域水文过程所建立的数学结构,在进行水循环机理的研究和解决生产实际问题中起着重要的作用,能有效应用于水文分析、水文预报、水资源开发、利用、保护和管理等方面。目前,国内外开发研制的流域水文模型众多,结构各异,按照不同的分类方法可划分为不同类型的流域水文模型。 2、模型的发展及现状 流域水文模型的研究始于20世纪50年代,早期主要依据传统产汇流理论和数理统计方法建立数学模型,应用于水利工程规划设计和洪水预报等领域。其间系统理论模型和概念性水文模型得到了快速充分的发展,国外曾出现了几个著名的概念性水文模型。比如,最简单的包顿模型和最具代表性的第Ⅳ斯坦福模型。包顿模型是澳大利亚的包顿(W.C.Boughton)先生于1966年研制成功的一个以日为计算时段的流域水文模型,在澳大利亚、新西兰等国有着广泛的应用,比较适用于干旱和半干旱地区。由N.H.克劳福特先生和R.K.林斯雷先生研制的第Ⅳ斯坦福模型(SWM-IV)是世界上最早也是最有名的流域水文模型,此模型物理概念明确,结构层次分明,为以后许多模型的建立提供了基础。此后比较有名的还有萨克拉门托模型和水箱模型。水箱模型是对水文现象的一种间接模拟,模型中并无直接的物理量,参数简单,操作简便,在我国湿润地区的水文计算和水文预报中采用较多。 水箱模型由菅原正已先生在20世纪50年代提出,对我国流域水文模型的发展影响较大。国内的流域水文模型在20世纪70年代至80年代中期也得到蓬勃的发展,其中典型代表为赵人俊教授等于70年代提出的新安江模型。新安江模型在湿润半湿润地区得到广泛应用,模拟精度也比较高,对我国水文模型的发展起了重要的作用。 1969年,当概念性水文模型的研究开展得如火如荼时,Freeze和Harlan提出了分布式水文物理模型的概念和框架,但当时的相关研究并不多。20世纪80年代以后,流域水文模型开始面临着许多新的挑战,包括水文循环的规律和过程如何随时间和空间尺度变化而变化的问题,水文过程的空间变异性问题,还有水文、地球化学、环境生态、气象和气候之间的耦合问题。以前研制的大部分流域水文模型(系统模型和概念性模型),由于其自身存在着许多不足和局限性,无法适应这些挑战。因此,人们开始关注分布式水文物理模型的研究。在20世纪90年代,计算机技术、GIS、遥感技术和雷达测雨技术等迅速发展,为研制和建立分布式水文物理模型提供了强大和及时的技术支撑,使得分布式水文物理模型成为水文学研究的热点课题之一。 第一个具有代表性的分布式水文物理模型由英国、法国和丹麦等国家的科学家联合研制而成,发表于1986年,称之为SHE模型。该模型主要的水文物理过程均用质量、能量和动量守恒的偏微分方程的差分形式来描述,也采用了一些经验关系;模型模拟流域特性、降水和流域响应的空间分布信息在垂直方向用层来表示,水平方向则采用正交的长方形网格来表示,能较好地描述降雨径流形成机理。从SHE模型开始,人们先后研制建立了一些分布式水文模型,例如MIKESHE、SHETRAN等,这些演化模型在许多流域得到检验和应用。我国水文学者在这方面的研究也取得了一些进展:黄平先生[1]等提出了流域三维动态水文数值模型;郭生练先生[2]等提出和建立了一种基于DEM的分布式水文物理模型,模拟整个流域的径流形成过程,分析径流形成机理;夏军先生[3]等开发了分布式时变增益水文模型,该模型既有分布式水文概念性模拟的特征,同时又具有水文系统分析适应能力强的特点,能够在水文资料信息不完全或不确定性的干扰条件下完成分布式水文模拟与分析;研究者提出了一个基于DEM的分布式水文模型,主要用来模拟蓄满产流机制,并通过实例检验模型模拟流量过程以及土壤需水量空间分布的能力;研究者等对分布式水文模型的发展现状进行了详尽概述,并对其发展前景作出展望。 3、模型研究展望 在经历了最初的萌芽与蓬勃发展之后,随着先进的计算机技术及地理信息系统、数字化高程模型等在水文学领域的应用,流域水文模型的发展进入了一个新的历史时期,其研究方法必将产生根本性的变化: (1)具有物理基础的分布式水文模型能为真实地描述和科学地揭示现实世界的降雨径流形成机理提供有力工具,是一种发展前景看好的新一代水文模型。另外,分布式水文模型所需资料主要来自空间水文、气象及下垫面等方面的信息,对实测降雨径流资料的依赖较小,这使得其在无资料及资料精度不高的地区有更好的适应性,也较集总式概念性水文模型有更广阔的发展空间。 (2)加强分布式水文模型的物理基础研究、更加合理地模拟和描述水文过程,是改善模型结构和明确参数意义的关键。对水文学基本理论的研究,尤其是降雨径流形成机理与地形、地貌、土壤、植被、地质、水文地质、土地利用和气候气象之间定量关系的揭示,将在本质上推动模型的发展,使其物理意义更加明确,对水文规律的模拟更加贴近真实情况。 (3)GIS和遥感技术为水文模拟提供了新的研究思路和技术方法。GIS用于水文模拟,可以用来获取、操作及显示与模型有关的空间数据和所得的成果,使模型进一步细化,从而深入认识水文现象的物理本质,为分布式的水文物理模型研制提供了平台。遥感技术可以提供一些确定产汇流特性和模型参数所必需的下垫面信息和降雨信息,是描述流域水文特性的最为可行的方法,尤其是在地面观测手段和资料缺乏的地区。 (4)尺度问题是当代水文学理论研究的中心内容。近些年来物理性水文模型的最新进展反映了目前处理尺度问题的几种研究思路,其中在物理性和计算效率之间取得平衡的准物理性水文模型、基于不规则网格的物理性水文模型以及直接在宏观尺度上建立数学物理方程的尺度协调的物理性水文模型都有了明显的突破,在一定程度上代表着物理性流域水文模型的发展方向。 4、结语 传统的概念性集总式模型由于忽略了参数和下垫面条件的时空变化,将参数和变量都取流域的平均值,这与流域的实际情况并不相

SWAT水文模型

SWAT水文模型介绍 1概述 SWAT(Soil and Water Assessment Tool)模型是美国农业部(USDA)农业研究局(ARS)开发的基于流域尺度的一个长时段的分布式流域水文模型。它主要基于SWRRB模型,并吸取了CREAMS、GLEAMS、EPIC和ROTO的主要特征。SWAT 具有很强的物理基础,能够利用GIS和RS提供的空间数据信息模拟地表水和地下水的水量和水质,用来协助水资源管理,即预测和评估流域水、泥沙和农业化学品管理所产生的影响。该模型主要用于长期预测,对单一洪水事件的演算能力不强,模型主要由8个部分组成:水文、气象、泥沙、土壤温度、作物生长、营养物、农业管理和杀虫剂。SWAT模型拥有参数自动率定模块,其采用的是Q.Y.Duan等在1992年提出的SCE-UA算法。模型采用模块化编程,由各水文计算模块实现各水文过程模拟功能,其源代码公开,方便用户对模型的改进和维护。 2模型原理 SWAT模型在进行模拟时,首先根据DEM把流域划分为一定数目的子流域,子流域划分的大小可以根据定义形成河流所需要的最小集水区面积来调整,还可以通过增减子流域出口数量进行进一步调整。然后在每一个子流域再划分为水文响应单元HRU。HRU是同一个子流域有着相同土地利用类型和土壤类型的区域。每一个水文响应单元的水平衡是基于降水、地表径流、蒸散发、壤中流、渗透、地下水回流和河道运移损失来计算的。地表径流估算一般采用SCS径流曲线法。渗透模块采用存储演算方法,并结合裂隙流模型来预测通过每一个土壤层的流量,一旦水渗透到根区底层以下则成为地下水或产生回流。在土壤剖面中壤中流的计算与渗透同时进行。每一层土壤中的壤中流采用动力蓄水水库来模拟。河道中流量演算采用变动存储系数法或马斯金根演算法。模型中提供了三种估算潜在蒸散发量的计算方法—Hargreaves、Priestley-Taylor和Penman-Monteith。每一个子流域侵蚀和泥沙量的估算采用改进的USLE方程,河道泥沙演算采用改进

ArcGIS之水文分析

ArcGIS教程之DEM水文分析详细图文教程,本教程和之前的两个教程有关联的,数据上是使用上一个教程的结果,步骤相互联系!最后会提供给大家数据和教程的链接!水文分析需要: 1.理解基于DEM数据进行水文分析的基本原理。 2.利用ArcGIS的提供的水文分析工具进行水文分析的基本方法和步骤。 下面开始教程: 工具/原料 ?软件准备:ArcGIS Desktop 10.0---ArcMap(spatial Analyst模块) ?数据准备:DEM(使用由本人前面的教程【ArcGIS地形分析--TIN及DEM 的生成,TIN的显示】中使用的原始数据。 方法/步骤 1.数据基础:无洼地的DEM 在ArcMap中加载 DEM数据,右击DEM图层,点击缩放至图层,显示全部。 2.在【ArcToolbox】中,(要打开扩展模块)执行命令[SpatialAnalyst工 具]——>[水文分析]——> [填洼],按下图所示指定各参数,其中Z限制——填充阈值,当设置一个值后,在洼地填充过程中,那些洼地深度大于阈值的地方将作为真实地形保留,不予填充;系统默认情况是不设阈值,也就是所有的洼地区域都将被填平。之后点击确定即可。 3.确定后执行结果得到无洼地的DEM数据[Fill_dem1]

4.关键步骤:流向分析 在上一步的基础上进行,在【ArcToolbox】中,执行命令[SpatialAnaly st工具]——>[水文分析]——>[流向],按下图所示指定各参数: 5.确定后执行完成后得到流向栅格[Flowdir_fill1],理解代表什么含义! 6.计算流水累积量 在上一步的基础上进行,在【ArcToolbox】中,执行命令[SpatialAnaly st工具]——>[水文分析]——>[流量],按下图所示指定各参数: 1.7 确定后执行完成得到流水累积量栅格[flowacc_flow1] 如图: 7.提取河流网络 首先,提取河流网络栅格。 在上一步的基础上进行,打开【Arctoolbox】,运行工具[Spatial Anal yst 工具]——>[地图代数]——>[栅格计算器],在[地图代数表达式]中输入公式:Con(Flow Accumulation1>800,1),(这里的Flow Accumulat ion1要以上一步得到的文件名为准,注意是Con,不是con,大写第一个字母,不然出错)如图: [输出栅格]指定为:StreamNet保存路径和文件名任意)

南方地区海绵城市水文模型构建及应用

南方地区海绵城市水文模型构建及应用 发表时间:2019-01-02T11:05:56.190Z 来源:《建筑学研究前沿》2018年第27期作者:李简朝1 李凌1 林观祥1 卓镇伟2 唐雄飞3 [导读] 随着近些年来我国经济的迅猛发展,国内城市的建设形式越来越多样,海绵城市建设理念应运而生。 1 中铁房地产集团华南有限公司广东广州 510000 2广州市卓骏节能科技有限公司 3科进香港有限公司摘要:海绵城市,作为一种生态建设,是落实生态文明建设的重要举措,是改善城市水环境、提高城市水安全等多重目标的有效手段。水文模型是进行海绵城市设计以及评估的重要手段。为了对水文模型在南方地区海绵城市建设设计评估方法进行探讨,本文以南方地区某市一个学校的LID改造项目为例,分别从海绵城市水文模型构建过程中划分汇水分区、参数输入、制定指标体系、评估分析几个方面, 阐述了海绵城市水文模型构建及应用的方法,望能为海绵城市的水文模型理论应用发展提供价值。关键词:南方地区;海绵城市;水文模型;构建Construction and Application of Urban Hydrographic Model of Sponge in Southern Region Lijianzhao1 Li Ling1 Lin guanxiang1 Zhuo zhenwei2 Tang xiongfei3 (1 China Railway Real Estate Group South China Co.,Ltd..Guangdong Guangzhou 510,000)Abstract:sponge city,as an ecological construction,is an important measure to implement the construction of ecological civilization,and is an effective means to improve the urban water environment and improve the urban water security.Hydrographic model is an important technical guarantee for the construction of sponge city.In order to improve the pertinence of the construction of sponge city in different regions,this paper takes the LID renovation project of a school in a city in the South as an example,from the aspects of dividing catchment area,parameter input,establishing index system and evaluation and analysis,to expounds the construction and application of sponge city hydrological model,and provides help for the healthy development of the city. Key words:Southern region;Sponge City;Hydrographic models;build 前言 随着近些年来我国经济的迅猛发展,国内城市的建设形式越来越多样,海绵城市建设理念应运而生。目前应用较广泛的雨洪模型可分为水文模型与水力模型两大类。水文模型采用系统分析的方法,将汇水区域中复杂的水文变化概化为“黑箱”或者“灰箱”系统;水力模型以水力学为理论基础,通过联立连续性方程与动量方程模拟水体自身以及水体与河床、管道、污染物等其它介质之间的相互关系。当前国外主流的模型城市雨洪模型的类别繁多,应用较广泛的雨洪模型可分为水文模型与水力模型两大类。现行的雨洪模型多将水文模型与水力模型进行耦合,可用于城市排洪防涝规划,城市市政雨水管网设计以及非点源污染控制等。国外对于相关理论的研究始于 20 世纪 30 年代。进入 20 世纪 60 年代后,计算机技术的蓬勃发展为城市雨洪模型提供了良好的技术保障。据统计,与城市雨洪模拟相关的有40 余种。目前应用较广泛的模型包括 SWMM、HSPF、Inforworks CS、DHI-MIKE、MOUSE。各模型之间各有优势与弊端,SWMM 模型凭借自身操作简单易掌握、运用范围广、包含 LID 模块、模拟误差相对较小、模型源代码均开源等优点在国内外得到广泛应用,国内利用SWMM 模型对雨水花园、过滤带等低影响开发设施的模拟,对学校、住宅小区的水质水量模拟,甚至运用到城市排水管网规划、城市的防洪计算中。据统计,国内与 SWMM 相关的文献达千余篇,研究相对成熟,结合研究区域的实际特情况,因此本文选择 SWMM 作为LID模拟模型。 1建模过程 以水文模型为工具对径流总量控制为目标的项目方案进行评估,其方法及原理主要为按照设计方案构建模型,选用合理的参数、降雨输入模型,进行模拟,统计分析降雨量和径流量,计算得出项目年径流总量控制率。本研究以广西某市的一个学校的LID改造项目为例,进行SWMM模型的构建,具体建模过程如下:(1)划分研究区域的汇水分区、汇水通道、管网系统等;(2)确定LID设计控制目标(例如年降雨总量控制率70%);(3)设定SWMM模型输入,包括地形、土壤、土地利用、不透水率、坡度等;(4)初步设定不同LID设施可能告知指标及组合并进行模拟,分析是否满足设计目标;(5)调整控制指标,直至满足设计目标,设定过程及末端控制的BMP措施,进行水文模拟;确定最优的LID+BMP组合措施,制定指标体系。 (6)评估LID设施在径流总量和污染物削减方面的功效;(7)评估LID设施在径流峰值方面的削峰作用。 2 设计暴雨 在我国的市政雨水管渠设计中,通常利用暴雨公式选择降雨强度最大的雨作为设计标准。这种降雨的特点是降雨强度大,降雨历时短,降雨面积小。然而,该方法设计简单,但不能综合反映区域的典型降雨特征。该项目组已收集广西某市1957年至2015年的逐日降雨量数据,共59年,先以年最大值法整理历年日降雨数据,再进行重现期暴雨分析。各年最大逐日降雨量如下表1所示。表1:广西某市各年最大单日降雨量列表

流域水文概述

近几十年,新安江模型不断改进,已成为有我国特色应用较为广泛的一个流域水文模型。新安江模型是分散型模型,把全流域按泰森多边形法分成若干块,每一块称为单元流域。在每块单元流域内至少有一个雨量站;单元流域大小要适当,使得每块单元流域上的降雨分布相对比较均匀,并尽可能使单元流域与自然流域的地形、地貌和水系相一致,以便于能充分利用小流域的实测水文资料以及对某些问题的分析处理。新安江模型的结构分为蒸散发计算、产流计算、分水源计算和汇流计算4个层次。蒸散发计算采用3层模型;产流计算采用蓄满产流模型;用自由水蓄水库结构将总径流划分为地表径流、壤中流和地下径流3种;流域汇流计算采用线性水库;河道汇流计算采用马斯京根分段连续演算法或滞后演算法。对划分好的每块单元流域分别进行蒸散发计算、产流计算、水源划分计算和汇流计算,得出单元流域的出口流量过程。对单元流域出口的流量过程进行出口以下的河道汇流计算,得到该单元流域在全流域出口的流量过程。将每块单元流域的出流过程线性叠加,即为全流域出口总的流量过程。新安江模型的结构特点可以简单的归纳为:(1)三分特点,即分单元计算产流、分水源坡面汇流和分阶段流域汇流;(2)模型参数少且大多数具有明确的物理意义,容易确定;(3)模型参数与流域自然条件的关系比较清楚,可以寻找到参数的区域规律;(4)模型中未设超渗产流机制,适用于湿润与半湿润地区。王金忠、胡环[4]利用新安江模型对清河水库产流进行了预报。吉林省水文水资源局[5]利用新安江三水源模型对竞赛流域的洪水进行了预报。李致家[6]等利用改进的新安江模型对高理流域和临沂流域的洪水进行了预报。瞿思敏[7]等利用新安江模型与垂向混合产流模型对青峰岭水库和危水水库流域的洪水进行了预报和比较。这些预报结果都说明了新安江模型在湿润地区和半湿润地区具有较好的适应性,而在干旱半干旱地区的模拟效果则不够理想。此外,新安江模型在大中流域的模拟效果比在小流域的模拟效果要好。 SAC模型虽然研制完成时间相对较晚,但是其功能较为完善。SAC模型在美国的

流域生态水文研究

流域生态水文模型研究进展 摘要:流域生态水文模型是全球变化下流域生态水文响应研究的重要工具,通过定量刻画植被与水文过程的相互作用及全球变化对流域生态水文过程演变的影响机制,为流域水资源管理和生态恢复提供科学支撑,是生态水文研究的前沿和热点。基于植被与水文过程相互作用规律,流域生态水文模型一方面要充分描述植被与水文过程相互作用和互为反馈机制,另一方面要精确刻画流域的空间异质性。本文在分析流域尺度陆地植被与水文过程相互作用特点的基础上,将现有流域生态水文模型进行归纳和分类,剖析不同类型模型的优缺点,并总结现有模型应用的代表性研究成果,最后,对流域生态水文模型存在的关键问题(如植被与水文相互作用机制的描述、模型参数的估计、模拟结果的不确定性分析等)进行讨论。 在全球变化加剧水资源危机的背景下,传统的水文学研究难以解决流域出现的新问题,生态水文过程的耦合研究日益引起学者们的关注[1-6]。国际地圈生物圈计划及联合国教科文组织(UNESCO)国际水文计划(IHP)等都将陆地植被生态过程与水文过程的耦合研究作为核心内容 1992年召开的国际水和环境会议首次将生态水文学作为一个独立的学科提出,其核心是在不同的时空尺度上揭示不同环境条件下植物与水的相互作用关系,为解决流域水资源危机和生态环境问题提供理论支持。指出生态水文耦合研究将是21世纪水文学研究最前沿和最激动人心的创新领域。流域生态水文模型是定量评估环境变化流域生态水文响应的重要工具,通过定量刻画植被与水文过程的相互作用及全球变化对流域生态水文过程演变的影响机制,为流域水资源管理和生态恢复提供科学支撑。目前,国内外对流域生态水文模型已开展了一定深度的研

水文学文献综述

森林对水文的影响 唐恩勇 ( 贵州大学林学院水土保持与荒漠化防治091班) 摘要:森林与人类的生活息息相关,他不仅是可供人类开采利用的一种自然资源,更是人类及其他生命赖以生存的环境与物质基础。随着人类的发展进步,无论是生活和生产实践还是科学的研究探索,对于森林的作用都有一个深刻地认识,总的来说,森林的防护效益有这几个方面:森林的水源涵养作用,土壤改良及水土保持作用,气候和环境的改善与维持作用,大气污染、土壤污染、水体污染防治作用,各种生物资源的保护作用,人类健康保健与环境美化作用等等。水不仅是生命存在和延续的先决条件,而且是全球与局部气候状况的重要决定因素,随着人类文明的发展,人们对水的用途的要求越来越高,用量越来越大,然而,随着全球环境的改变,地球上的可以利用的水资源越来越少,征对森林对水资源的作用,森林的存在对于水文效应的影响,无论是从宏观还是微观,无论是从地上还是地下都有着不可替代的作用,研究森林对水文的影响,更有利于合理利用水资源、保护生态环境的对策和措施有效地实施。研究和认识森林对水文影响的规律,对于开发、利用水资源,防治水患,充分发挥森林的生态效益具有重要意义。 关键字:森林水文效应生态效益 为了认识森林对自然界水分运动的影响及所产生的效应。研究森林对水文的影响,它起源于19世纪中叶。1864年德国的 E.埃贝迈尔在巴伐利亚建立了第一个森林气象站,对林区降水量、土壤蒸发和枯枝落叶层对地面蒸发的影响进行了观察。1900年在瑞士的埃曼托尔山地的两个集水区,对森林和牧地、耕地进行了河流流量的对比观察。之后,日本、美国、苏联等国家相继开展了这方面的研究。20世纪中期以来,研究范围进一步扩大,手段日趋现代化。如在不同自然地域内开展各种林分的水量平衡和水质研究,探索不同林种、不同采伐方式对降水和径流的影响,找出最佳森林水文效益的林种和采伐、更新方式,以及在测试仪器和装置方面采用中子散射、无线电遥控、室内模拟等。中国最早是于1924~1926年在山西、山东等地的寺庙林里进行了径流试验。 1森林的地上部分对降雨的再分配过程 大气降水落到森林表面时,首先被森林植物地上部分截留引起降水的第一次分配。然后,当降水量足够大时,一部分降水到达枯枝

斯坦福流域水文模型研究综述

斯坦福流域水文模型SWMM研究综述 摘要:自然界的水文现象,是一种多因素相互作用的复杂过程,由于其形成机理还不完全清楚,水文模型成为一种研究复杂水文现象的重要工具。本文在在查阅文献的基础上,从斯坦福流域水文模型,国内外 SWMM 研究进展,斯坦福模型主要组成,其他流域水文模型的研究进展个方面对斯坦福模型的研究现状及进展进行了整理和分析,并在此基础上探讨了流域水文模型研究的发展趋势。关于流域水文模型的研究成果有目共睹,但仍需要深入研究。总之,流域水文模型与GIS、遥感技术的结合越来越多的受到重视,必将成为今后研究中的一个主要方面。 关键词:斯坦福流域水文模型;综述;研究进展; 1.斯坦福流域水文模型 流域水文模型的起源是从水文预报模型开始的,即降雨-径流模型。1932年Sherman用叠加原理提出了单位线模型,单位线模型统治水文界20多年。随后Nash和Dooge对单位过程线进行了改进,提出了连续变化的暴雨响应模型。 第一个真正的流域水文模型就是1959年Linsley&Crawford开发的斯坦福流域水文模型,并经过改进和扩展,于1966年发展了SWM-IV。属于概念性集总式水文模型,将整个流域看作一个整体,不考虑流域内的空间变化,数据输入、流域特征描述(土壤类型、土地利用和坡度)通常采用平均值。这个时期的水文模型应用计算机模拟水循环系统,而不是简单地利用数学公式计算洪峰和降雨-径流关系。模型已可以模拟降雨、截留、入渗、蒸散发、河道流等水文过程,但模型中的参数大都缺乏明确的物理意义,以经验公式为主,不能反映流域水文过程空间上分散性输入和集中性输出的特点,且模型参数对水文实测资料的依赖性很大,无法模拟产汇流的空间分布规律,以及气候变化、土地利用/覆被等因素对水文过程变化的影响;这个时期的模型还主要表现在以模拟水量为主,无法模拟污染物等的迁移。虽然这些模型考虑的因素较粗,模拟精度不足,但在资料不完善地区仍然应用广泛。 HSPF模型是在斯坦福模型(Stanford-IV)的基础上发展萨克模型是集总参数型的连续运算的确定性流域水文模型,是在第IV斯坦福模型基础上改进和发展的。 2.国内外SWMM研究进展 2.1国外SWMM 研究进展 SWMM 是由美国环保局于 1971 年推出的,在世界各地获得了广泛的关注,为降雨径流方面的研究提供了可靠的技术支持,并且应用在面源污染负荷计算、城市防洪、雨洪调蓄、径流计算、雨水利用等方面。1975 年 Marsalek等人对美国3 个流域内的12 场暴雨事件

流域水文模型

课程:流域水文模型姓名:xxx 专业:水利工程 学号:xxxxxxxxxxxx

流域水文模型研究的若干进展 摘要: 计算机技术和一些交叉学科的发展, 给水文模拟的研究方法带来了根本性的变化。文章阐述了分布式物理水文模型、地理信息系统( GI S) 和遥感( RS) 技术在流域模拟中的应用等方面的进展。指出分布式模型具有良好的发展前景,应用GI S的水文模型尽管有诸多优点, 但并不能代表模型本身的高质量, 遥感资料还没有完全融入水文模型的结构中, 给直接应用带来较大的困难。提出立足于产汇流机理研究, 建立基于RS和GI S的耦 合水文模型是研究的趋势, 尺度问题仍然是关注的焦点。 1引言 用数学的方法去描述和模拟水文循环的过程,产生了水文模型的概念[1],水文模型的产生是对水文循环规律研究的必然结果。水文模型在水资源开发利用、防洪减灾、水库、道路、城市规划、面源污染评价、人类活动的流域响应等诸多方面得到了广泛的应用,当今的一些研究热点,如生态环境需水、水资源可再生性等均需要水文模型的支持。流域水文模型是在计算机技术和系统理论的发展中产生的,20世纪60、70年代是蓬勃发展的时期, 涌现出了大量的流域水文模型,Stanford流域模型(SWM)、Sacramento模型、Tank模型、Boughton模型、前期降水指标(API)模型、新安江模型等是这一时期的典型代表[2]。其后一段时期,相对处于缓慢的发展阶段。随着计算机技术和一些交叉学科的发展,流域水文模拟的研究方法也开始产生了根本性的变化。流域水文模型研究的突出趋势主要反映在计算机技术、空间技术、遥感技术等的应用方面,分布式物理模型被广泛提出,遥感(RS)、地理信息系统(GIS)在水文模拟中的应用给传统的研究方法带来了创新。但由于受到技术等原因的制约,分布式模型目前的应用还较困难,应用GIS的水文模型尽管有诸多优点,但并不能代表模型本身的高质量,遥感资料还没有完全融入水文模型的结构中。 2 分布式水文模型 流域水文模型根据不同的标准有多种分类[3],根据模型结构和参数的物理完善性,目前常用的可分为概念性模型和分布式物理模型。概念性模型用概化的方法表达流域的水文过程,具有一定的物理基础,也具有相当的经验性,模型结构简单,实用性强。分布式物理模型的优点是模型的参数具有明确的物理意义,可以通过连续方程和动力方程求解,可以更准确的描述水文过程,具有很强的适应性。与概念性模型相比,分布式水文模型用严格的数学物理方程表述水文循环的各子过程,参数和变量中充分考虑空间的变异性,并着重考虑不同单元间的水平联系,对水量和能量过程均采用偏微分方程模拟。因此,在模拟土地利用、土地覆盖、水土流失变化的水文响应及面源污染、陆面过程、气候变化影响评价等方面应用显出优势。参数一般不需要通过实测水文资料来率定,解决了参数间的不独立性和不确定性问题,便于在无实测水文资料的地区推广应用。自1969年Freeze和Harlan[4]第一次提出了关于分布式物理模型的概念,分布式模型开始得到快速发展。三个欧洲机构提出的SHE模型[5]是最早的分布式水文模型的代表。SHE模型考虑了截留、下渗、土壤蓄水量、蒸散发、地表径流、壤中流、地下径流、融雪径流等水文过程。流域参数、降雨及水文响应的空间分布垂直方向用层表示,水平方向用方形网格表示。该模型的主要水文过程可由质量、动量和能量守恒偏微分方程的有限差分表示,也可由经验方程表示。模型有18个参数,部分具有物理意义,可由流域特征确定。它的物理基础和计算的灵活性使它适用于多种资料条件,在欧洲和其它地区得到了应用和验证[6]。这期间还有一些考虑流域空间特性、输入、输出空间变化的分布式物理模型,如, CEQUEAU模型[7],将流域分为方形网格,输入所有网格的地形、地貌、雨量等特征,对每一个网格进行计算,在水质模拟、防洪、水库设计等诸多方面有适用性;Susa流域模型[8]

相关文档