文档库 最新最全的文档下载
当前位置:文档库 › 三次代数曲面上的一类G^2连续自由参数样条

三次代数曲面上的一类G^2连续自由参数样条

三次代数曲面上的一类G^2连续自由参数样条
三次代数曲面上的一类G^2连续自由参数样条

4.5常见曲面的参数方程

§4.5 常见曲面的参数方程 本节重点:掌握空间中的三种坐标系:直角坐标系、球坐标系、柱坐标系。 掌握旋转曲面的参数方程的建立。 掌握直纹面的参数方程。 本节难点:旋转曲面的参数方程。直纹面的参数方程。 在第二章中,我们已经引进一般曲面与曲线的参数方程的概念、并给出简单曲面与曲线的参数表示,例如球面与圆柱螺旋线,直线的参数方程。现在再介绍旋转曲面、直纹面的参数方程,同时给出空间中另外两种坐标系:球坐标系与柱坐标系。 (一)旋转曲面的参数方程,球坐标与柱坐标 设旋转曲面的轴为Z 轴,母线Γ的参数方程是 )()()()(b t a t h Z t g Y t f X ≤≤=== 则此旋转曲面可由Γ上每一点生成的纬圆所构成的。由于这纬圆上动点),,(Z Y X P 与它在坐标面XOY 上的投影' P 具有相同的Y X ,坐标,所以Γ上任一点),,(1111Z Y X P 生成的纬圆的参数方程是 ??? ????=+=+=121212121sin cos Z Z Y X Y Y X X θθ )20(πθ<≤ 其中2121Y X +是纬圆半径,即1P 到Z 轴的距离,而参数θ是X 轴到1OP 的转角。设1P 对应的参数是1t ,则 )())(())((112 1212121t h Z t g t f Y X =+=+ 再让1t 在其取值范围内变动,即得这旋转曲面的参数方程 ??? ????=+=+=)(sin ))(())((cos ))(())((2222t h Z t g t f Y t g t f X θθ ???? ??<≤≤≤πθ20b t a (4.5.1) 特别地,当母线P 为坐标面XOZ 上的径线 )(0) (t h Z Y t f X === 时,(4.5.1)成为

二次型理论起源于解析几何中的化二次曲线和二次曲面方

第八章 二次型 二次型理论起源于解析几何中的化二次曲线和二次曲面方程为标准形的问题,这一理论在数理统计、物理、力学及现代控制理论等诸多领域都有很重要的应用. 本章主要介绍二次型的基本概念,讨论化二次型为标准形及正定二次型的判定等问题. §8.1 二次型及其矩阵表示 在解析几何中,我们曾经学过二次曲线及二次曲面的分类,以平面二次曲线为例,一条二次曲线可以由一个二元二次方程给出: 2 2 0ax bxy cy dx ey f +++++= (1.1) 要区分(1.1)式是哪一种曲线(椭圆、双曲线、抛物线或其退化形式),我们通常分两步来做:首先将坐标轴旋转一个角度以消去xy 项, 再作坐标的平移以消去一次项. 这里的关键是消去 xy 项,通常的坐标变换公式为: cos sin sin cos x x y y x y θθθθ''=-??''=+? (1.2) 从线性空间与线性变换的角度看,(1.2)式表示平面上的一个线性变换.因此二次曲线分类的关键是给出一个线性变换,使(1.1)式中的二次项只含有平方项.这种情形也在空间二次曲面的分类时出现,类似的问题在数学的其它分支、物理、力学中也会遇到. 为了讨论问题的方便,只考虑二次齐次多项式. 定义8.1.1 设f 是数域P 上的n 元二次齐次多项式: 212111121211222223232222 1,111,1(,, ,)22222n n n n n n n n n n n n nn n f x x x a x a x x a x x a x a x x a x x a x a x x a x -----=++ ++++++ +++ (1.3) 称为数域P 上的n 元二次型,简称二次型. 如果数域P 为实数域R ,则称f 为实二次型; 如果数域P 为复数域C ,则称f 为复二次型; 如果二次型中只含有平方项,即 222121122(,, ,)n n n f x x x d x d x d x =+++ 称为标准形式的二次型,简称为标准形. 说明: 在这个定义中,非平方项系数用2ij a 主要是为了以后矩阵表示的方便. 例8.1.2 下列多项式都是二次型: 22 2 2 2 (,)33(,,)22343f x y x xy y f x y z x xy xz y yz z =++=+-++- 下列多项式都不是二次型:

不变量法化简二次曲面

不变量法化简二次曲面 徐晓利摘要:二次曲面的化简是一项复杂又高难度的工作.本文主要总结了计算简便易掌握的不变量法,即运用变量和不变量化简二次曲面的方法,并举例讲解方法.关键词:二次曲面;化简;不变量二次曲面是解析几何的重点内容,也是高等代数这一模块中重要的二次型理论的经典应用.我们往往通过化简其方程,判别二次曲面的类型,并确定其几何形状.化简二次曲面,是二次曲面一般理论中最重要的内容,也是难点所在.坐标变换法(正交变换)是化简二次曲面方程普遍常用的方法,但是由于相关高等代数理论抽象难懂,计算过程复杂,课堂教学显得很是困难.在欧式坐标系中,二次曲面存在着许多不变量,总结归纳不变量关系与二次曲面标准方程之间联系,由此来进行化简.1二次曲面定义1在三维空间中,用三元二次方程来表示的曲面称为二次曲面.设二次曲面的一般方程为:(1.1).二次曲面方程中的常用记号:将的二次项部分记为,将的系数排成矩阵,叫做二次曲面的矩阵..2不变量法化简二次曲面定义2二次曲面的标准方程:无法再使用平移、旋转变换进行化简的方程.即满足以下三者的方程:1)方程中不包含交叉项xy,xz,yz;2)若方程中存在某一坐标的二次项,就不存在这一坐标的一次项;3)若方程中只存在某一坐标的一次项,且此时其中不存在.在高等代数课程中,有一个重要理论,称为二次型理论.二次型理论告诉我们,通过求解矩阵的特征方程,求相应特征根,最后得到唯一的标准形.这也就是我们常常所说的正交变换.二次曲面方程中也有

相应的二次型矩阵,从而二次曲面便能用此变换化简,在这里不加以展开.在变换中我们发现,二次曲面方程在直角坐标变换后,方程虽然发生了一定变化,但是决定二次曲面的几何特征的性质却没有任何变化,那些不变的性质我们可以采用不变量来刻画.这种不变量可以用二次曲面方程的系数来表达.我们称,不因直角坐标变化而发生改变的量为正交不变量.正交不变量在解析几何研究中十分重要的一项,为二次曲面和二次曲线的化简有着尤为重要的作用,下面我将证明二次曲面中的不变量.引理 1.是二次曲面的不变量.即是正交不变量.推论 1.二次曲面的特征方程和特征根在任意直角坐标变换下都不变.引理2.和在转轴变换下不变,称为半不变量.引理3.给定二次曲面方程(1)当时,是不变量;(2)当时,是不变量.任意一个二次曲面方程在选取适当的直角坐标变化后可以被分为5大类别,表示为化简的五个方程之一,下面我们利用二次曲面在转轴变化下的不变量与半不变量对二次曲面进行化简.定理1.不变量得简化方程:(1)当时,简化方程为;(2)当时,简化方程为;(3)当时,简化方程为;(4)当时,简化方程为;(5)当时,简化方程为.其中表示非零特征根.证明:从略.例1:化簡下面二次曲面方程,并判断出它为何种二次曲面.解:二次曲面的矩阵,分别计算不变量,得,,,.特征方程为,特征根为:,,.又由,所以二次曲面的简化方程为:,该曲面为椭圆柱面.例2:化简二次曲面方程.解:二次曲面的矩阵,分别计算不变量,得,,,由故二次曲面为中心二次曲面,特征方程为,特征根为:,,又所以二次曲面的简化方程为:,这是一个

10三维空间中二次方程与二次曲面解读

三维空间中二次方程与二次曲面 张晓青(2010073060029) 指导教师:李厚彪 【摘要】 利用正交变换可以将二次型化为标准型,在三维空间中一个二次方程对应着一种 二次曲面.在研究二次方程的几何意义时,先将二次方程进行正交变换进而研究所得到的标准型对应的几何图形,可以证明所得的几何图形是一个与原几何图形相同但位于特殊位置的图形,具有一定的对称性,为研究带来方便.这种正交变换法适用于一般情况具有探究价值,本文基于教材,进一步讨论正交变换后不同的标准型与几何图形的关系,并附有图解. 【关键词】正交表换 二次方程 二次曲面 1 引 言 教材第六章二次型与二次曲面的几何应用中告诉我们不同的标准型的参数对应17种不同的几何图形,那么它们究竟是什么样的曲面图形呢?接下来我们一一讨论. 2.正 文 如果线性变换=X CY 中的系数举矩阵C 是正交矩阵,则称这个线性变换为正交变换 对n 维实向量T 12(,,,)n a a a =α,T 12(,,,)n b b b =β,设A 为n 阶正交矩阵,作正交变 换 =X A α,=Y A β, 则 T T T T (,)(,)()()(,).=====X Y A αA βA αA βαΑA βαβαβ 即,正交变换保持向量内积不变,因为也就保持向量的长度与夹角不变.于是在正交变换下,几何图形的形状不会发生改变. 设 222 12311122233312121313 2323112233(,,)222? f x x x a x a x a x a x x a x x a x x b x b x b x c =+++++++++ (1.1) 则方程123(,,)0f x x x =在几何空间中表示一个二次曲面. 令11 121321 222331 32 33a a a a a a a a a ?? ? = ? ???A ,123x x x ?? ?= ? ???X ,123b b b ?? ?= ? ??? b 则(1.1)式可记为 T T ()f c =++X X AX b X (1.2) 下面,令T ()g =X X AX 1. 作正交变换=X CY ,其中T 123(,,)y y y =Y ,则 223'' '112233112233()f y y y b y b y b y c λλλ=++++++X (1.3)

线性代数B期末试卷及答案

2008 – 2009学年第二学期《线性代数B 》试卷 2009年6月22日 1、 设?? ??? ?? ?? ???-=* 8030010000100001A ,则A = 、 2、 A 为n 阶方阵,T AA =E 且=+

二、单项选择题(共6小题,每小题3分,满分18分) 1、设D n为n阶行列式,则D n=0的必要条件就是[ ]、 (A) D n中有两行元素对应成比例; (B) D n中各行元素之与为零; (C) D n中有一行元素全为零; (D)以D n为系数行列式的齐次线性方程组有非零解. 2.若向量组α,β,γ线性无关,α,β,σ线性相关,则[ ]、 (A)α必可由β,γ,σ线性表示; (B) β必可由α,γ,σ线性表示; (C)σ必可由β,γ,α线性表示; (D)γ必可由β,α,σ线性表示、 3.设3阶方阵A有特征值0,-1,1,其对应的特征向量为P1,P2,P3,令P=(P1,P2,P3),则P-1AP=[ ]、 (A) 100 010 000 ?? ?? - ?? ?? ?? ; (B) 000 010 001 ?? ?? - ?? ?? ?? ; (C) 000 010 001 ?? ?? ?? ?? ?? - ; (D) 100 000 001 ?? ?? ?? ?? ?? - . 4.设α1,α2,α3线性无关,则下列向量组线性相关的就是[ ]、 (A)α1,α2,α3 - α1; (B)α1,α1+α2,α1+α3; (C)α1+α2,α2+α3,α3+α1; (D)α1-α2,α2-α3,α3-α1、 5.若矩阵A3×4有一个3阶子式不为0,则A的秩R(A) =[ ]、 (A) 1; (B)2; (C)3; (D) 4. 6.实二次型f=x T Ax为正定的充分必要条件就是[ ]、 (A) A的特征值全大于零; (B) A的负惯性指数为零; (C) |A| > 0 ; (D) R(A) = n、 三、解答题(共5小题,每道题8分,满分40分)

自由曲线曲面的基本原理(上)

自由曲线曲面的基本原理(上) 浙江黄岩华日(集团)公司梁建国 浙江大学单岩 1 前言 曲面造型是三维造型中的高级技术,也是逆向造型(三坐标点测绘)的基础。作为一个高水平的三维造型工程师,有必要了解一些自由曲线和曲面的基本常识,主要是因为:(1)可以帮助了解CAD/CAM软件中曲面造型功能选项的意义,以便正确选择使用;(2)可以帮助处理在曲面造型中遇到的一些问题。由于自由曲线和自由曲面涉及的较强的几何知识背景,因此一般造型人员往往无法了解其内在的原理,在使用软件中的曲(线)面造型功能时常常是知其然不知其所以然。从而难以有效提高技术水平。 针对这一问题,本文以直观形象的方式向读者介绍自由曲线(面)的基本原理,并在此基础上对CAD/CAM软件中若干曲面造型功能的使用作一简单说明,使读者初步体会到背景知识对造型技术的促进作用。 2 曲线(面)的参数化表达 一般情况下,我们表达曲线(面)的方式有以下三种: (1)显式表达 曲线的显式表达为y=f(x),其中x坐标为自变量,y坐标是x坐标的函数。曲面的显式表达为z=f(x,y)。在显式表达中,各个坐标之间的关系非常直观明了。如在曲线表达中,只要确定了自变量x,则y的值可立即得到。如图1所示的直线和正弦曲线的表达式就是显式的。

曲线的隐式表达为f(x,y)=0,曲面的隐式表达为f(x,y,z)=0。显然,这里各个坐标之间的关系并不十分直观。如在曲线的隐式表达中确定其中一个坐标(如x )的值并不一定能轻易地得到另外一个(如y )的值。图2所示的圆和椭圆曲线的表达式就是隐式的。 图2 (3) 参数化表达 曲线的参数表达为x=f(t);y=g(t)。曲面的参数表达为x=f(u,v);y=g(u,v);z=g(u,v)。这时各个坐标变量之间的关系更不明显了,它们是通过一个(t )或几个(u,v )中间变量来间接地确定其间的关系。这些中间变量就称为参数,它们的取值范围就叫参数域。 显然,所有的显式表达都可以转化为参数表达,如在图1所示的直线表达式中令x=t 则立即可有y=t 。于是完成了显式表达到参数化表达的转换。由此,我 y 2 x 2/a

二次型与二次曲面

第七章 二次型与二次曲面 二次型的定义 定义:n 个变量n ,x ,,x x 21的二次齐次多项式 ()ji ij n i n j j i ij n a a ,x x a ,x ,,x x Q ==∑∑==11 21 称为n 元二次型或二次形式。当系数ij a 取实数时,称为实二次型;ij a 取复数时,称为复二次型。 例:()32212 13213x x x x x ,x ,x x Q +-= 例:()233221213212x x x x x x x ,x ,x x Q ++-= ()() () ????? ???????????????????=++++++++++++===∑∑==n nn n n n n n n nn n n n n n n n n ji ij n i n j j i ij n x x x a a a a a a a a a ,x ,,x x x a x x a x x a x x a x a x x a x x a x x a x a a a ,x x a ,x ,,x x Q 21212222111211212 22112222 221221112112211111 21 令()()T ij T n A A a ,A ,x ,,x x x ===则,21 ,且二次型可表示为 ()Ax x ,x ,,x x Q T n = 21, 称A 为二次型的矩阵。

()x x x x x x x ,x ,x x Q T ??????? ? ? ?--=+-=02 302302102113322121321 例:写出下列二次型对应的矩阵,假设A 为实对称矩阵,且 r (A )=n . ()∑∑ ===n i n j j i ij n x x |A| A ,x ,,x x Q 11 21 矩阵的相合 设n n ,β,,ββ,,α, ,αα 2121是n 维线性空间V 的两组基,这两组基的过渡矩阵为P ,即 ()()P ,α, ,αα,β,,ββn n 2121= 设向量V ∈α在两组基下的坐标分别为 ()()T n T n ,y ,,y y ,y ,x ,,x x x 2121== 则有坐标变换公式(也称可逆的线性替换): x P y Py x 1 -==或。 则 ()()() y AP P y APy Py Ax x αQ T T T T === 称同一个二次函数()αQ 在不同基下所对应的两个二次型 Ax x T 和()By y y AP P y T T T =是等价的。 定义:给定两个n 阶方阵A 和B ,如果存在可逆矩阵P ,使得B =P T AP ,则称B 与A 相合(或合同)。

常见的空间曲面与方程

常见的空间曲面与方程 常见的空间曲面有平面、柱面、锥面、旋转曲面和二次曲面。 1. 平面 空间中平面的一般方程为 0a x b y c z d +++= 其中,,a b c 均为常数,且,,a b c 不全为零。 例如,1x y z ++=(图8-6(a )),0x =(图8-6(b ))均表示空间中的平面, z yoz 平面(x =0) y y x 图8-6(a ) 图8-6 (b) 图8-6 2. 柱面 与给定直线L 平行的动直线l 沿着某给定的曲线C 移动所得到空间曲面,称为柱面, l 为母线,C 为准线。 如图8-7所示 图8-7 图8-8

例如,222x y R +=表示空间中母线平行于z 轴,准线是xoy 平面上的圆222x y R +=的 圆柱面的方程,简称圆柱面图(8-8)。 3. 二次曲面 三元二次方程 222 1231 2 31230a x a y a z b x y b y z b z x c x c y c z d +++ ++++++= 所表示的曲面称为二次曲面,其中,,(1,2,3),i i i a b c i d =均为常数,且,,i i i a b c 不全为0. 二次曲面有以下几种标准形式,它们分别为: 球面: 图8-9 椭球面:222 2221(,,0)x y z a b c a b c ++=>图8-10 图8-9 图8-10 单叶双曲面:222 2221(,,0)x y z a b c a b c -+=>图8-11 双叶双曲面:222 2221(,,0)x y z a b c a b c +-=->图8-12 2222(0)x y z R R + += >x z

线性代数二次型

二次型与对称矩阵 一、 二次型及其矩阵 1 定义:含有n 个变量的二次齐次函数: 22 2 12111222(,,,)n nn n f x x x a x a x a x =++ + 12121313(1)1222n n n n a x x a x x a x x --+++ + 称为二次型。 为便于用矩阵讨论二次型,令ij ji a a =,则二次型为: 2 12111121211(,,,)n n n f x x x a x a x x a x x =++ + 2 212122222n n a x x a x a x x ++++ + 2 1122n n n n nn n a x x a x x a x ++++ ,1 n ij i j i j a x x == ∑ 令1112 12122212 n n n n nn a a a a a a A a a a ???? ??=?? ? ???, 12n x x x x ?? ? ?= ? ? ??? , 则 12(,, ,)T n f x x x x Ax =,且A 为对称矩阵。 由于对称矩阵A 与二次型f 是一一对应关系,故称对称矩阵A 为二次 型f 的矩阵,也称二次型f 为对称矩阵A 的二次型,()R A 也称为二次型 f 的秩。 例1 设

3132212322 2132197532),,(x x x x x x x x x x x x f +++++= 试求二次型矩阵A . 解 111=a , 222=a , 333=a , 2 52112= =a a , 27 3223==a a , 2 9 3113==a a . 于是得 ??? ? ???? ??=32 729272 25 29251A ,1123235912257(,,)2 2297322x f x x x x x ?? ??? ? ? ?= ? ? ? ??? ? ??? 例2 已知三阶矩阵A 和向量X ,其中 ? ?? ?? ??--=233110321A , ???? ? ??=321x x x X . 求二次型AX X T 的矩阵. 解 由于A 不是对称矩阵,故A 不是二次型AX X T 的矩阵.因为 ??? ? ? ??????? ??--=T 321321233110321),,(x x x x x x AX X 3231212322 214622x x x x x x x x x -++++=, 故此二次型的矩阵为 ??? ? ? ??--223211311.

二次型的几何分类及其应用

二次型的几何分类及其应用 田金慧 内容摘要:通过对二次型的基本概念与基本理论的阐述,重点讨论了二次型的五种分类:正定二次型、半正定二次型、负定二次型、半负定二次型和不定二次型,通过具体的实例给出了分类问题的几何描述。其次,分析并列举了二次型相关理论在实际中的一些应用,其中包括二次型标准型在二次曲面分类上的应用,由此得到了十七种二次曲面标准方程,并对典型方程给出了图形描述;同时包括二次型正定性用于求解多元函数极值问题的应用实例;还包括以实例展示半正定二次型用于不等式证明的步骤和方法。最后,作为二次型理论应用广泛的例证,阐述了它在统计学中关于统计距离、参数估计量的自由度求解以及量子物理中关于耦合谐振子问题的应用。 在问题的研究中,采用理论分析与实例应用相结合,充分发挥数学应用软件的优势,将二次型(实)理论的内涵形象、直观、清晰地给予展现。 关键词:二次型;几何描述;正定性;实际应用 1导言 在数学的学习和应用中,二次型的理论是十分重要的,它不仅是代数中的重要理论,更是连接代数与几何的有力桥梁。事实上,二次型的理论就起源于解析几何中二次曲线、二次曲面方程的化简问题。学习和理解二次型的理论不但可以对数学中的代数定理有深刻地理解,也可以对几何有更为形象的认识。 因此,掌握二次型理论的有关应用问题是十分必要的。 但是,在现有的教材中,都只是对二次型理论的代数性质进行了一定的介绍,

并没有对它的几何意义加以阐述;即使有一些书籍对它的几何性质稍有涉及,但也只是点到为止,并没有给出形象的表示,关于二次型可能的应用问题更是很少提及,然而在数学的很多分支以及一些其他学科中都或多或少地涉及到二次型有关理论的应用,如解析几何、统计学和量子物理等。 本文以二次型分类为切入点,以几何描述为主线,充分发挥数学软件的优势,将二次型有关理论的内涵加以展现。 当然,这里所讨论的二次型理论只是其中的基础,关于它的深入研究请参阅参考文献[1]。 2 二次型及其标准型 所谓二次型就是一个二次齐次多项式。 定义2.1 在数域F 上,含有n 个变量12,, ,n x x x 的二次齐次函数 22 212111222(,, ,)n nn n f x x x a x a x a x =++ + n n x x a x x a 11211222+++ +n n n n x x a 112--+ (1) 称为n 元二次型,简称二次型【2】。 当ij a 为复数时,),,,(21n x x x f 称为复二次型;当ij a 为实数时,),,,(21n x x x f 称为实二次型。本文仅讨论实二次型。 若取ij ji a a =,则i j ji j i ij j i ij x x a x x a x x a +=2于是(1)式可写成 12,1 (,, ,)n T n ij i j i j f x x x a x x X AX ===∑ (2) 其中,11 12121 2221 2 n n n n nn a a a a a a A a a a ?? ? ?= ? ? ???,12 n x x X x ?? ? ?= ? ? ??? ,A 为实对称矩阵,称为二次型f 的矩阵

实验四 自由曲线曲面算法实验(2)

实验四 自由曲线曲面算法实验 实验项目性质:设计性实验 所属课程名称:3D 游戏图形学 实验计划学时:3学时 一、 实验目的和要求 1. 了解自由曲线和曲面的生成原理; 2. 掌握并实现Bezier 曲线和B 样条曲线的生成算法; 3. 实现Bezier 曲面的生成算法。 二、 实验原理 1. Bezier 曲线是通过一组多边形折线的顶点来定义的。如果折线的顶点固定不变,则由其定义的Bezier 曲线是唯一的。在折线的各顶点中,只有第一点和最后一点在曲线上且作为曲线的起始处和终止处,其他的点用于控制曲线的形状及阶次。曲线的形状趋向于多边形折线的形状,要修改曲线,只要修改折线的各顶点就可以了。因此,多边形折线又称Bezier 曲线的控制多边形,其顶点称为控制点。 三次多项式,有四个控制点,如图1所示, 其数学表示如下: ,300.31 1.32 2.33 3.30 ()()()()()()i i i Q t PB t P B t PB t P B t P B t ===+++∑

32230123(1)3(1)3(1),[0,1]t P t t P t t P t P t =-+-+-+∈ (1) 其矩阵形式为 01322313313630()(1),[0,1]33001000P P Q t t t t t P P --????????-????=∈????-???????? (2) 2. B 样条曲线保留了Bezier 曲线的优点,对Bezier 曲线进行了拓广,用B 样条基代替Bernstein 基,克服了Bezier 曲线由于整体表示带来的不具备局部性质的缺点。B 样条曲线的数学定义为 0n k k,m k p(t)P B (t) ==∑ (3) 式中,(0,1 ,,)k P k n = 为n+1个控制点,由控制点顺序连成的折线称为B 样条控制多边形。m 是一个阶参数,可以取2到控制顶点个数n+1之间的任一整数,m-1是B 样条曲线的次数。参数t 的选取取决于B 样条结点矢量的选取。k,m B (t)是B 样条基函数, ()()k 1,1,,11,111 1 ()0 ()k k k k m k m k m k m k m k k m k t t t B t t t t t B t B t B t t t t t ++-+-+-++≤

二次型理论起源于解析几何中的化二次曲线和二次曲面方.

第八章二次型 二次型理论起源于解析几何中的化二次曲线和二次曲面方程为标准形的问题,这一理论 在数理统计、物理、力学及现代控制理论等诸多领域都有很重要的应用?本章主要介绍二次 型的基本概念,讨论化二次型为标准形及正定二次型的判定等问题 § 8.1二次型及其矩阵表示 在解析几何中,我们曾经学过二次曲线及二次曲面的分类,以平面二次曲线为例,一条二次曲线可以由一个二元二次方程给出: 2 2 ax bxy cy dx ey f 0 (1.1) 要区分(1.1)式是哪一种曲线(椭圆、双曲线、抛物线或其退化形式),我们通常分两步来做:首先将坐标轴旋转一个角度以消去xy项,再作坐标的平移以消去一次项.这里的关键是消去 xy项,通常的坐标变换公式为: x x cos y sin (1.2) y x sin y cos 从线性空间与线性变换的角度看,(1.2)式表示平面上的一个线性变换.因此二次曲线分类的关 键是给出一个线性变换,使(1.1)式中的二次项只含有平方项.这种情形也在空间二次曲面的分类时出现,类似的问题在数学的其它分支、物理、力学中也会遇到.为了讨论问题的方便,只 考虑二次齐次多项式. 定义8.1.1设f是数域P上的n元二次齐次多项式: 2 f (X1,X2 ,L ,X n) 印必242X1X2 L 2a1n X1X n 2 a22X2 2a23X2X3 L 2a2n X2X n (1.3) 1 2 2 2 L a n 1,n 1 x n 1 2a n 1,n x n 1 x n a nn x n 称为数域P上的n元二次型,简称二次型.如果数域P为实数域R,则称f为实二次型;如果 数域P为复数域C,则称f为复二次型;如果二次型中只含有平方项,即 2 2 2 f(X1,X2丄,X n) d j X1 d2X2 L d n X n 称为标准形式的二次型,简称为标准形. 说明:在这个定义中,非平方项系数用2a j主要是为了以后矩阵表示的方便 例8.1.2下列多项式都是二次型: 2 2 f (x, y) x 3xy 3y f (x, y,z) 2x22xy 3xz y24yz ,3z2 F列多项式都不是二次型

线性代数论文

华北水利水电学院 题目 线性代数发展简史 课程名称:线性代数 专业班级:电子信息工程2012154 成员组成:姓名 姓名 姓名 联系方式: 2013年10月25日

摘要:代数学可以笼统地解释为关于字母运算的学科。线性代数是高等代数的一大分支,是研究如何求解线性方程组而发展起来的。线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧氏空间和二次型等。 关键词:行列式矩阵向量线性方程组二次型 英文题目 A brief history of the development of linear algebra Abstract:Algebra can be broadly interpreted as a computing discipline letters. Linear algebra is a branch of higher algebra, is the study of how to solve the linear equations and the development of. The main content of linear algebra is determinant, matrix, vector, linear equations, linear space, linear transformation in Euclidean space, and two time etc. Key words: Determinant Matrix Vector Linear equation The two type 正文: 1 引言 由于研究关联着多个因素的量所引起的问题,则需要考察多元函数。如果所研究的关联性是线性的,那么称这个问题为线性问题。历史上线性代数的第一个问题是关于解线性方程组的问题,而线性方程组理论的发展又促成了作为工具的矩阵论和行列式理论的创立与发展,这些内容已成为我们线性代数教材的主要部分。最初的线性方程组问题大都是来源于生活实践,正是实际问题刺激了线性代数这一学科的诞生与发展。另外,近现代数学分析与几何学等数学分支的要求也促使了线性代数的进一步发展。 2 发展简史

高数下册常用常见知识点

高等数学下册常用常见知识点 第八章 空间解析几何与向量代数 (一) 向量及其线性运算 1、 向量,向量相等,单位向量,零向量,向量平行、共线、共面; 2、 线性运算:加减法、数乘; 3、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式; 4、 利用坐标做向量的运算:设),,(z y x a a a a = ,),,(z y x b b b b = , 则 ),,(z z y y x x b a b a b a b a ±±±=± , ),,(z y x a a a a λλλλ= ; 5、 ; 6、 7、 向量的模、方向角、投影: 1) 向量的模: 2 22z y x r ++= ; 2) 两点间的距离公式: 2 12212212)()()(z z y y x x B A -+-+-= 3) 方向角:非零向量与三个坐标轴的正向的夹角γβα,, 4) 方向余弦:r z r y r x ===γβαcos ,cos ,cos 1cos cos cos 222=++γβα 5) 投影:?cos Pr a a j u =,其中?为向量a 与u 的夹角。 | (二) (三) 数量积,向量积 1、 数量积:θcos b a b a =? 1)2 a a a =? 2)?⊥b a 0=?b a z z y y x x b a b a b a b a ++=? 2、 向量积:b a c ?=

大小:θsin b a ,方向:c b a ,,符合右手规则 1)0 =?a a 2)b a //? =?b a z y x z y x b b b a a a k j i b a =? 运算律:反交换律 b a a b ?-=? (四) 曲面及其方程 1、 ] 2、 曲面方程的概念: ),,(:=z y x f S 3、 旋转曲面:(旋转后方程如何写) yoz 面上曲线0),(:=z y f C , 绕y 轴旋转一周: 0),(22=+±z x y f 绕 z 轴旋转一周: 0),(22=+±z y x f 4、 柱面:(特点) 0),(=y x F 表示母线平行于z 轴,准线为?????==0 0),(z y x F 的柱面 5、 @ 6、 二次曲面(会画简图) 1) 椭圆锥面:2 2222z b y a x =+ 2) 椭球面:122 2222=++c z b y a x

5常见曲面的参数方程

§ 常见曲面的参数方程 本节重点:掌握空间中的三种坐标系:直角坐标系、球坐标系、柱坐标系。 掌握旋转曲面的参数方程的建立。 掌握直纹面的参数方程。 本节难点:旋转曲面的参数方程。直纹面的参数方程。 在第二章中,我们已经引进一般曲面与曲线的参数方程的概念、并给出简单曲面与曲线的参数表示,例如球面与圆柱螺旋线,直线的参数方程。现在再介绍旋转曲面、直纹面的参数方程,同时给出空间中另外两种坐标系:球坐标系与柱坐标系。 (一)旋转曲面的参数方程,球坐标与柱坐标 设旋转曲面的轴为Z 轴,母线Γ的参数方程是 )()()()(b t a t h Z t g Y t f X ≤≤=== 则此旋转曲面可由Γ上每一点生成的纬圆所构成的。由于这纬圆上动点),,(Z Y X P 与它在坐标面XOY 上的投影' P 具有相同的Y X ,坐标,所以Γ上任一点),,(1111Z Y X P 生成的纬圆的参数方程是 ??? ????=+=+=121212121sin cos Z Z Y X Y Y X X θθ )20(πθ<≤ 其中2121Y X +是纬圆半径,即1P 到Z 轴的距离,而参数θ是X 轴到1OP 的转角。设1P 对应的参数是1t ,则 )())(())((112 1212121t h Z t g t f Y X =+=+ 再让1t 在其取值范围内变动,即得这旋转曲面的参数方程 ??? ????=+=+=)(sin ))(())((cos ))(())((2222t h Z t g t f Y t g t f X θθ ???? ??<≤≤≤πθ20b t a (4.5.1) 特别地,当母线P 为坐标面XOZ 上的径线

第4章 自由曲线与曲面建模

CAD/CAM
CAD/CAM
典型机械零件
CAD/CAM技术基础 —第4章 自由曲线与自由曲面建模
天津大学机械工程学院 产品设计与制造技术研究所 陈永亮
曲线曲面
1
曲线曲面
2
CAD/CAM
典型机构
CAD/CAM
圆柱齿轮
曲线曲面
3
曲线曲面
4
CAD/CAM
蜗轮蜗杆
CAD/CAM
锥齿轮
弧齿锥齿轮
摆线锥齿轮
曲线曲面
5
面齿轮
曲线曲面
6
1

CAD/CAM
? ? ? ? 齿轮类零件 涡轮类零件 凸轮类零件 叶轮叶片类零件
离心压缩机叶轮
CAD/CAM
曲线曲面
7
曲线曲面
8
CAD/CAM
? ? ? ? ? ? ? ? ? ? ?
圆的参数方程
? ? ? ? ? ? ? ?
曲线曲面
9
CAD/CAM
渐开线的参数方程
例1:圆 参数方程文件:Rel.ptd /* 为笛卡儿坐标系输入参数方程 /*根据t (将从0变到1) 对x, y和z /* 例如:对在 x-y平面的一个圆,中心在原点 /* 半径 = 50,参数方程将是: db=100 rb=db/2 x = rb * cos ( t * 360 ) y = rb* sin ( t * 360 ) z=0
例2:渐开线 1)采用直角坐标系 db=100 rb=db/2 u =t* 45 x=rb*cos(u)+rb* sin(u)*u* pi/180 y=rb* sin(u)-rb*cos(u)* u* pi/180 z=0
曲线曲面 10
CAD/CAM
渐开线的参数方程
CAD/CAM
渐开线的参数方程
rb-基圆半径 u=45t t-参数 ,[0,1]
曲线曲面 11
db=100 rb=db/2 u =t* 45 x=rb*cos(u)+rb* sin(u)*u* pi/180 y=rb* sin(u)-rb*cos(u)* u* pi/180 z=0
曲线曲面 12
2

常见曲面的参数方程

§4、5 常见曲面得参数方程 本节重点:掌握空间中得三种坐标系:直角坐标系、球坐标系、柱坐标系。 掌握旋转曲面得参数方程得建立。 掌握直纹面得参数方程、 本节难点:旋转曲面得参数方程。直纹面得参数方程。 在第二章中,我们已经引进一般曲面与曲线得参数方程得概念、并给出简单曲面与曲线得参数表示,例如球面与圆柱螺旋线,直线得参数方程。现在再介绍旋转曲面、直纹面得参数方程,同时给出空间中另外两种坐标系:球坐标系与柱坐标系。 (一)旋转曲面得参数方程,球坐标与柱坐标 设旋转曲面得轴为轴,母线得参数方程就是 则此旋转曲面可由上每一点生成得纬圆所构成得、由于这纬圆上动点与它在坐标面上得投影具有相同得坐标,所以上任一点生成得纬圆得参数方程就是 其中就是纬圆半径,即到轴得距离,而参数就是轴到得转角、设对应得参数就是,则 再让在其取值范围内变动,即得这旋转曲面得参数方程 (4、5.1) 特别地,当母线为坐标面上得径线 时,(4。5、1)成为 (4.5.2) 例1、如图,以原点为中心,为半径得球面可瞧作就是由坐标面上得半圆, ()绕轴旋转所生成得,由(4.5。2)得其参数方程为 (4、5。3) 它与§2。1中得球面参数方程得形式就是相同得。 (4、5、3)中得参数分别叫做经度与纬度,序对叫做地理坐标、显然,除两极外,球面上得点与序对一一对应。这种利用曲面参数方程中得两个参数来表示曲面上得点得坐标叫做曲纹坐标,它对于曲面理论得进一步研究有着重要得作用。 利用球面得这种曲纹坐标还可以引入空间得另一种坐标系。设为空间任意一点,它到原点得距离为,过作以原点为中心,以为半径得球面,则在这球面上具有地理坐标,可令点P对应有序数组;反之,由非负实数可确定所在得球面,再由在这球面上确定点。空间中点得这种坐标叫做球坐标。显然,轴上点得球坐标可取任意值、 把(4.5。3)中得常数换为变数,就成为球坐标与直角坐标得变换式,即 (4、5。4) 反之,有 (4。5.5) 当时,=0,于就是,对坐标面上得点,只需序对即可确定、这里不就是别得,正就是大家熟知得极坐标。这时原点就是极点,轴就是极轴,因此,球坐标可以瞧作就是平面极坐标在空间中得一种推广。 例2、如图4-17,以轴为对称轴,半径为得圆柱面可瞧作就是由坐标面上得直线: ,

第二章第二节曲面的参数方程

第二章 曲面论 第二节 曲面的参数方程 一、 曲面的参数方程 设曲面∑是由显式 D y x y x f z ∈=),(),,( 所表示。 设),,(z y x 是曲面∑上的点,记向量),,(z y x r = ,则它们可构成一一对应。 于是曲面∑上的点可以用向量值函数 D y x y x f y x r ∈=),()),,(,,( 来表示, 也可以写为参数形式 ?????===),(, ,y x f z y y x x D y x ∈),(。

一般地,设3),(R v u r r ∈= ,其中参 数?∈),(v u ,这里?是2R 中的一 个区域。 我们称由3),(R v u r r ∈= , ?∈),(v u ,所构成的3R 中点集∑为一张参数曲面,(即曲面∑,可以表示为参数方程表示的点集。) 记为?∈=∑),(),,(:v u v u r r ,(1) 把(1)用分量表示出来,就是 ?? ???===),(),(),,(v u z z v u y y v u x x ,?∈),(v u (2) 通常,我们称(1)是曲面∑的向量方程,而(2)是曲面∑的参数方程。 显然方程(1)和(2)之间的转换是直截了当的,所以我们可以认为(1)与(2)是一回事。

二、 几个用参数方程表示的常见 曲面 例1 平面的参数方程, 设30000),,(R z y x p ∈= 是一个固定的点, ),,(321a a a a = 与),,(321b b b b = 是自0p 出发的两个不平行的向量。这时,由a 与b 张成的平面可以用向量方程, 20),(,R v u b v a u p r ∈++= 来表示; 写成分量表示为 v b u a x x 110++=, v b u a y y 220++=, v b u a z z 330++=,

相关文档
相关文档 最新文档