文档库 最新最全的文档下载
当前位置:文档库 › 机翼结冰事件

机翼结冰事件

机翼结冰事件
机翼结冰事件

解放军最惨重空难:预警机坠毁,35名专家全数牺牲

2006年6月3日,中国一架俗称“平衡木”的空警200预警机在试飞中因为遭遇严重结冰而坠毁;全机5名机组人员、35名电子专家全部遇难无一生还。这是自建军以来,解放军损失最为惨重的一次空难事故。

一、飞机为什么会结冰?结冰有什么影响?

在贴近地面的大气对流层(低纬度地区高度可达18000米,中维度地区可达12000米),气温基本上按照每升高1000米6.5度的趋势下降。因此在中高空的云层中,也因此存在大量的温度处于0度以下、但仍然是液态的过冷水滴。这些处于不稳定状态的过冷水,一旦被飞机撞上,立刻就会附着在飞机的表面凝固起来,形成飞机结冰的现象。

图1:机翼产生升力原理

而飞机之所以能飞起来,并且维持平衡、完成各种动作(比如爬升、俯冲、转弯);都是依靠气流高速流过各种气动面(比如机翼、尾翼),产生足够的升力、并且根据需要调整它们的大小,协调配合才能完成。

图2:机翼结冰

而在结冰以后,机翼、平尾、垂尾这些关键部位的形状全都变了,原有的气动外形设计被大幅度破坏。造成的结果就是它的阻力远比原来要高,产生的升力远比原来要低,机翼失速远比原来要早;而一些控制功能,比如方向舵的偏转等等,甚至会完全失效。

图3:萨博340双发螺旋桨飞机

特别是对于运八来说,螺旋桨本身同样存在结冰的问题;结冰带来的增重、破坏外形,会极大的损失飞机的动力。比如欧美在saab 340飞机的试飞测试中证明,仅仅是轻度和中度结冰,发动机效率就损失了20%。

而遭遇重度结冰以后,飞机就会遭遇这样极为不利的局面:阻力急剧上增,升力急剧下降,动力急剧下降;而飞行员试图拉大迎角获得更高升力的时候,飞机就极易陷入毁灭性的、无法改出的失控,并以螺旋形的轨迹下坠。

二:飞机怎么防止结冰带来的坠毁?

要阻止飞机陷入这种灭顶之灾,需要三个方面的设计制造保障。首先是飞机在设计过程中,一定要有非常精确的针对性设计,知道这架飞机结冰起来是什么样子,哪里结冰最快、最严重,在结冰以后会对飞机产生具体什么样的影响。这样才能设计出最合理的防结冰、除冰方案。

图4:风洞测试中的测试结果

其次是飞机本身要有能够精确侦测飞机结冰情况的技术手段。比如早年的波音747结冰传感器,就是采用磁致伸缩探测原理,在传感器的振管表面结冰以后,电路的谐振频率会产生偏移,通过这个偏移量就能计算出结冰状态。而在现在,微波传感器等更先进精确的探测技术已经大量验证成功、乃至于投入使用。

图5:热气流加温防、除冰

而在最后,飞机本身的防结冰、除冰能力必须足够强;目前在中大型飞机上最成熟的依旧是从发动机中引出热空气加热、采用电发热来进行防冰和除冰。这些方法的实际水平好坏,取决于飞机的发动机功率、管路设计制造能力、发配电

系统制造水平等等。

三:运八抗结冰能力为什么差?

对于飞机结冰的研究,兴起于上世纪20年代的欧美,特别是美国。比如硬件设施上,美国从1942年开始兴建IRT结冰风洞;基础理论上,40年代美国开始建立起针对结冰的数值计算理论,开始定量的分析过冷水滴在飞机上的运动轨迹、飞机积冰的热力学模型;在实验手段上,美国50年代率先发明了染色剂示踪技术详细分析结冰过程,80年代率先采用激光反射光谱方法。

而在飞机结冰领域,苏联飞机一直就做的非常差。特别是作为运八原型机的安-12,设计于上世纪50年代。当时苏联连冰风洞都没有一座,不仅没有详细深入的试验数据,也没有高水平的设计分析理论;因此苏联虽然重视飞机的抗结冰设计,但是能力就那样,造出来的大中型飞机——尤其是螺旋桨飞机,因为结冰而引发的空难坠毁比例远远高于欧美同时代水平。

图6:中国气动中心小型冰风洞

图7:美国麦金利气候试验室直流式冰风洞

而国内在抗结冰领域的发展起步更晚。直到歼10研制项目启动时,国内才出于避免歼10因为空速管等关键传感器结冰导致坠毁的考虑;由某航空仪器制造企业,在考察俄罗斯冰风洞以后,于1999年建成了一个非常小的只能供飞机传感器使用的冰风洞;大小只有18x28厘米,最大风速仅200米/秒,最低温度-35℃。

而在6·3空难之前,国内除了该仪器厂以外,只有中国气动中心在2004年建成了一座30x20厘米、最大风速60米/秒,最低温度025℃的小型冰风洞。换句话说,当时国内根本没有能力改善运八的抗结冰设计缺陷。直到6.3空难以后,国内才真正推动了较大的结冰风洞的建设,并在2007年5月10日正式开工,于2013年成功交付使用。

四:全国产化的C919是避免6·3空难再现的最好药方。

图8:C919是国内性能最好、设计、试验最完善的特种飞机平台在目前来说,国内抗结冰设计最好的机型是商飞的ARJ-21和C919,一方面是这两种飞机采用的是西方最新设计标准,另一方面也是它们的抗结冰设计、试验广泛与西方合作——比如ARJ-21结冰设计历时4年,并在加拿大(拥有世界一流水平的结冰风洞,研究积累非常深厚)完成试验。在C919实现全国产化、能够不受外来限制装备军队的前提下,用它改装预警机、电子战飞机的特种平台,是彻底避免6·3空难再现的最好办法。

图:安-10客机,安-12运输机就是用它拆除座椅、加装尾舱门改出来的

飞行基础知识:机翼形状与飞行速度的关系

飞机能上天,就是机翼产生升力的结果。但是飞机上天后,机翼也产生阻力,影响飞机前进,所以机翼的形状、大小关系到飞机的速度。随着气动理论的完善、制造工艺的提高以及新材料的不断应用,机翼的性能经过多次改进,已今非昔比。 早期的飞机机翼都是平直的。最初是矩形机翼,很容易制作。但由于其翼端宽,会给飞机带来阻力,严重地影响了飞机的飞行速度。为此,人们曾设计了一种椭圆形机翼。这种新机翼的翼端虽然窄了,但其制作工艺却十分复杂,很难制作。后来,人们又设计出了梯形机翼。梯形机翼兼具矩形和椭圆形机翼之长,制作也比较方便,尽管仍有一个小小的翼尖,但阻力还不算大。因此,20世纪30年代至40年代末,梯形平直机翼几乎一统天下。二战中出名的飞机如美国的P-51、苏联的杜-2、日本的零式战斗机等都是梯形平直机翼。 1945年,英国研制了两架飞机,安装了当时最先进的喷气发动机,飞机平飞的最大速度达到974千米/小时。若从12000米高度俯冲到9000米高度时,速度甚至达到1120千米/小时,接近音速。但机翼上出现了“激波”,使机翼表面的空气压力发生变化,空气作用力的总作用点后移,飞机会自动俯冲。当时飞机的操纵系统和舵面的大小等,都没有考虑这种情况,所以不可能把俯冲状态中的飞机拉起来平飞。大角度的俯冲,使飞机增速更快,最后,超出它本身能承受的强度,所以飞机就散架解体了。 机翼上产生激波后,飞机的阻力会急剧增加,比低空飞行大十倍甚至几十倍,所以即使用喷气式发动机,也很难使飞机超音速。当时把这种困难叫做“音障”。德国人发现,把飞机的机翼做成后掠的形式,像燕子的翅膀,可以延迟“激波”的产生,减少阻力,也可以缓和飞机接近音速时自动俯冲的不稳定现象。1948年,美国在F-86战斗机上应用后掠机翼。原苏联在上个世纪40年代末期,也研制出带后掠机翼的喷气式歼击机米格-15。进入20世纪50年代,世界上超音速飞机的翅膀几乎全都是后掠机翼的。 20世纪五六十年代,人们设计飞机的指导思想是越高越快就越好。为了达此目的,机翼的后掠角越来越大。而为了保证飞机的安全,又要加重钢梁,加厚蒙皮。但飞机重量增加了,又直接影响飞机的速度和高度。怎么办?人们把后掠机翼的前缘和平直机翼的后缘结合起来,设计制作出了三角机翼。从俯视角度看,三角机翼飞机的两只机翼连接起来是一个等腰三角形,刚度明显增强。1963年8月试飞的美国SR-71飞机就是三角机翼,其大部分用钛合金制成,最大飞行速度相当于音速的3.5倍,飞行高度可达2.4万米。法国“幻影”系列飞机也采用了三角机翼。20世纪60年代三角机翼又风靡一时。 飞机机翼采取向后掠的形式后,又出现了新问题,它比不向后斜的普通机翼,在同样的条件下产生的升力小。飞机起飞时,要滑跑到很大速度,才能使升力等于重量,然后飞机才能离去,跑道要很长,着陆的情况也一样。因此,现代歼击机起飞跑道多在1000米以上,重型轰炸机起飞跑道大于2000米。所以现代大型机场跑道的长度都要超过3000米,战时很容易被敌人破坏。在空中巡航时,后掠翼飞机比普通机翼飞机耗费油料多,航程也会受影响。于是,有人研究出一个方案,就是使机翼能改变后掠角。起飞、着陆和巡航时,机翼在平直位置;要飞大速度时,机翼向后斜。要想让一架普通飞机改变它的机翼后掠角,首先要解决飞机的平衡问题。原来机翼在平直位置平衡好的飞机,当机翼向后转,加大后掠角时,升力作用点向后移,飞机会低头俯冲,不能飞行。经过多次试验,1964年,世界上第一架变后掠翼飞机F-111终于研制成功。这种飞机在起飞、着陆和低速飞行时,其两翼尽量伸直,后掠角只有16度,从而具备了平直机翼升力大的特点;而在高速飞行时,它的两翼又尽量后掠,后掠角可达72.5度,变得像三角机翼一样,因此能够轻易突破“音障”。其后苏联也相继推出了变后掠翼飞机米格-23、苏-20和苏-24等。 要改变机翼的后掠角,其实是很难的。机翼前后转动,要用很大的轴承和坚固的结构,这样,变后掠翼飞机的重量要增大。不过,随着气动力学的发展,人们发现边条机翼可以为其后方的基本机翼提供升力。所谓边条机翼就是在基本机翼根部前缘加装一条后掠角大于70度的

飞机蒙皮结构

飞机结构详细讲解 2006年12月18日星期一上午 02:25 机翼 机翼是飞机的重要部件之一,安装在机身 上。其最主要作用是产生升力,同时也可以 在机翼内布置弹药仓和油箱,在飞行中可以 收藏起落架。另外,在机翼上还安装有改善 起飞和着陆性能的襟翼和用于飞机横向操 纵的副翼,有的还在机翼前缘装有缝翼等增 加升力的装置。 由于飞机是在空中飞行的,因此和一般的运输工具和机械相比,就有很大的不同。飞机的各个组成部分要求在能够满足结构强度和刚度的情况下尽可能轻,机翼自然也不例外,加之机翼是产生升力的主要部件,而且许多飞机的发动机也安装在机翼上或机翼下,因此所承受的载荷就更大,这就需要机翼有很好的结构强度以承受这巨大的载荷,同时也要有很大的刚度保证机翼在巨大载荷的作用下不会过分变形。 机翼的基本受力构件包括纵向骨架、横向骨架、蒙皮和接头。其中接头的作用是将机翼上的载荷传递到机身上,而有些飞机整个就是一个大的飞翼,如B2隐形轰炸机则根本就没有接头。以下是典型的梁式机翼的结构。 一、纵向骨架机翼的纵向骨架由翼梁、纵 樯和桁条等组成,所谓纵向是指沿翼展方 向,它们都是沿翼展方向布置的。 * 翼梁是最主要的纵向构件,它 承受全部或大部分弯矩和剪力。翼梁一般由 凸缘、腹板和支柱构成(如图所示)。凸缘 通常由锻造铝合金或高强度合金钢制成,腹 板用硬铝合金板材制成,与上下凸缘用螺钉 或铆钉相连接。凸缘和腹板组成工字型梁, 承受由外载荷转化而成的弯矩和剪力。 * 纵樯与翼梁十分相像,二者的区别在于纵 樯的凸缘很弱并且不与机身相连,其长度有 时仅为翼展的一部分。纵樯通常布置在机翼 的前后缘部分,与上下蒙皮相连,形成封闭 盒段,承受扭矩。靠后缘的纵樯还可以悬挂 襟翼和副翼。 * 桁条是用铝合金挤压或板材弯制而成,铆接在蒙皮内表面,支持蒙皮以提高其承载能

机翼蒙皮模具制造改进技术研究

机翼蒙皮模具制造改进技术研究 发表时间:2018-08-14T09:41:22.947Z 来源:《建筑模拟》2018年第12期作者:李荣[导读] 针对机翼蒙皮拉伸模具质量不稳定、一次交检合格率低等问题进行了研究,分析了影响模具数控加工质量的因素。 西安航空学院飞行器学院西安 710089摘要:针对机翼蒙皮拉伸模具质量不稳定、一次交检合格率低等问题进行了研究,分析了影响模具数控加工质量的因素。通过对模具数控加工经验的总结,论述了提高模具数控加工质量的设计思想和实现方法,从加工工艺、软件和切削参数、人员素质等方面,介绍了提高模具数控加工质量所采取的措施。 关键词:机翼制造;拉伸模具;质量改进 1.前言 数控加工技术的飞速发展促进了飞机零件设计向整体化、复杂化方向发展,模具的设计与生产周期、产品的精度和使用寿命已日益成为企业新产品开发周期是否具有优势的决定因素。在某型飞机研制中,机翼蒙皮拉伸模具为关键工装,由于经验不足,数控加工模具质量不稳定,工装一次交检合格率仅为20%,反复返修,延误了飞机交付进度。因此,缩短加工周期,降低制造成本,尽快提高模具数控加工质量是亟待解决的问题。 2.影响模具制造质量的因素分析下列因素直接影响模具最终质量: ⑴加工方法选择; ⑵确定零件的装夹定位方式并选择夹具; ⑶模具加工时数控基准的设置; ⑷数控加工刀具的制造精度及轨迹的设置; ⑸数控加工切削参数的选择; ⑹型面数控加工顺序控制; 3.数控加工工艺特点及其编制原则数控加工工艺是由零件初始状态(毛坯),经过一系列工艺方法,最终形成零件的全过程。结合机床具体情况,考虑工件的定位和适用夹具。数控加工的自动化程度很高,一旦出现问题,工人很难现场纠正,因此要预先做好数控工艺的设计,确定合理的加工方案。其数控工艺方案的编制应注意以下几点: ⑴数控工艺要考虑加工零件的工艺性,确定加工零件的装夹与定位,选择刀具、制定工艺路线、切削方法及工艺参数等。应考虑工序集中原则,通过选择合理的加工工艺和工装方案,减少重复装夹与定位,且在一次装夹找正后,加工零件的大部分区域,以减少加工的辅助时间,提高生产效率,缩短零件制造周期。 ⑵数控工序的排列应遵循以下一般规则:先主后次;先面后孔;先铣后钻;先粗后精;先做内腔加工后做外形加工;按工序的顺序、刀具的直径由大到小排列;上道工序的加工不能影响下道工序的装夹与定位;使用相同的工装和夹具应安排在一起做完;减少重复装夹与定位;数控工序要集中;不要把削弱零件刚性的工序安排在前面。 4.提高拉伸模具加工质量的改进研究 4.1 设计基准改进。 设计基准用来建立工装坐标系,基本元素由点、线、面组成。原设计时,将拉伸模的基准面设计在拉伸模底面,基准孔在工作型面顶面,如下图所示。同时基准孔与基准面不重合,存在基准误差,再者由于拉伸模型面曲度很大,基准孔设在拉伸模顶面很难找正。鉴于以上缺陷,我们在模具上制出一个基准面,将基准孔制在基准面上,这样就大大减小了找正误差(见图2)。实践证明,将基准改变后,由此产生的基准误差大大减小。 图2 设计基准改善前后 4.2变形的控制。 4.2.1 数控工艺方法改进。 由于模具的结构较复杂,存在许多难加工结构、关键尺寸和关键部位,例如:薄壁、深型腔、窄槽、小转角、弱刚性结构等,加工精度要求高。因此要求CAM系统能够满足这些特定的工艺要求。编程时,应避免刀具轨迹中走刀方向的突然变化,以免因局部过切造成设备和刀具的损坏。具体来说,行切的端点采用圆弧连接,避免直线连接;残余量加工或清根加工是提高加工效率的重要手段,一般应采用多次加工或采用系列刀具从大到小分次加工,避免用小刀一次加工完成,还应避免全力宽切削。此外,刀具轨迹编辑优化、刀具轨迹剪裁修复也很重要。

机翼结冰事件

解放军最惨重空难:预警机坠毁,35名专家全数牺牲 2006年6月3日,中国一架俗称“平衡木”的空警200预警机在试飞中因为遭遇严重结冰而坠毁;全机5名机组人员、35名电子专家全部遇难无一生还。这是自建军以来,解放军损失最为惨重的一次空难事故。 一、飞机为什么会结冰?结冰有什么影响? 在贴近地面的大气对流层(低纬度地区高度可达18000米,中维度地区可达12000米),气温基本上按照每升高1000米6.5度的趋势下降。因此在中高空的云层中,也因此存在大量的温度处于0度以下、但仍然是液态的过冷水滴。这些处于不稳定状态的过冷水,一旦被飞机撞上,立刻就会附着在飞机的表面凝固起来,形成飞机结冰的现象。

图1:机翼产生升力原理 而飞机之所以能飞起来,并且维持平衡、完成各种动作(比如爬升、俯冲、转弯);都是依靠气流高速流过各种气动面(比如机翼、尾翼),产生足够的升力、并且根据需要调整它们的大小,协调配合才能完成。 图2:机翼结冰

而在结冰以后,机翼、平尾、垂尾这些关键部位的形状全都变了,原有的气动外形设计被大幅度破坏。造成的结果就是它的阻力远比原来要高,产生的升力远比原来要低,机翼失速远比原来要早;而一些控制功能,比如方向舵的偏转等等,甚至会完全失效。 图3:萨博340双发螺旋桨飞机 特别是对于运八来说,螺旋桨本身同样存在结冰的问题;结冰带来的增重、破坏外形,会极大的损失飞机的动力。比如欧美在saab 340飞机的试飞测试中证明,仅仅是轻度和中度结冰,发动机效率就损失了20%。 而遭遇重度结冰以后,飞机就会遭遇这样极为不利的局面:阻力急剧上增,升力急剧下降,动力急剧下降;而飞行员试图拉大迎角获得更高升力的时候,飞机就极易陷入毁灭性的、无法改出的失控,并以螺旋形的轨迹下坠。 二:飞机怎么防止结冰带来的坠毁? 要阻止飞机陷入这种灭顶之灾,需要三个方面的设计制造保障。首先是飞机在设计过程中,一定要有非常精确的针对性设计,知道这架飞机结冰起来是什么样子,哪里结冰最快、最严重,在结冰以后会对飞机产生具体什么样的影响。这样才能设计出最合理的防结冰、除冰方案。

机翼分析

B-2隐形战略轰炸机 一、飞机简介: B-2隐形战略轰炸机是冷战时期的产物,由美国诺思罗普公司为美国空军研制。1979年,美国空军根据战略上的考虑,要求研制一种高空突防隐形战略轰炸机来对付苏联90年代可能部署的防空系统。1981年开始制造原型机,1989年原型机试飞。后来对计划作了修改,使B-2轰炸机兼有高低空突防能力,能执行核及常规轰炸的双重任务。 二、飞机整体结构: 飞机三视图和飞机内部结构剖析(图下)

三、飞机机翼结构分析: B-2轰炸机采用翼身融合、无尾翼的飞翼构形,其机体扁平,采用翼身融合的无尾(无垂直尾翼)的飞翼构型,机翼前缘为直线,交接于机头处,机翼后掠33度,飞机头部到翼尖成锐角,机翼后缘成双“W”形(锯齿形)有8个操纵面(6个升降副翼,2个阻流方向舵),巨大的锯齿状后缘由10条直的边缘组成,翼展尺寸为52.43米机翼前缘交接于机头处,机翼后缘呈锯齿形。机身机翼大量采用石墨/碳纤维复合材料、蜂窝状结构,表面有吸波涂层,发动机的喷口置于机翼上方。这种独特的外形设计和材料,能有效地躲避雷达的探 测,达到良好的隐形效果。 形尾翼原始设计 是专门为高空飞 行设计的,能够 满足高空阵风载 荷的需求,但不 适应于低空阵风 载荷的需求。飞 机主翼的设计进 行了重大改动, 因为空军不仅要 求飞机能从高空 突入,而且还要 能超低空突防, 从而带来了提高 飞机升力、增强

机械结构强度、进一步降低其雷达反射截面积等一系列问题,使飞机的设计历经数年才得以定型。B-2飞机的结构设计是基于满足阵风载荷(又称突风载荷)标准进行设计的,航空历史上仅有几种型号的飞机是按阵风载荷需求设计的,大部分军用飞机是根据机动载荷(又称惯性载荷)需求而设计。 机翼结构为单块式。从构造上看,单块式机翼的长桁较多且较强;蒙皮较厚;长桁、蒙皮组成可受轴向力的壁板。当有梁时,一般梁缘条的剖面面积与长桁的剖面面积接近或略大,有时就只布置纵墙。为了充分发挥单块式机翼的受力特点,左、右机翼一般连成整体贯穿机身。但有时为了使用、维护方便,在展向布置有设计分离面。分离面处采用沿翼箱周缘分散连接的形式将机翼连为一体。 单块式机翼的上、下壁板成为主要受力构件。这种机翼比梁式机翼的刚度特性好(这点对后掠机翼很重要)。同时由于结构分散受力,能更好地利用剖面结构高度,因而在某些情 况下(如飞机速度较大时)材料利用率较高,重量可能较轻。此外单块式机翼比梁式机翼生存力强。它的缺点是不便于开口 (Boeing)波音747 SP 一、飞机名称: 波音747 SP 波音747,又称为“珍宝客机”(Jumbo Jet),是一种双层客舱四发动机飞机,是世界上最易识别的客机之一,亦是全世界首款生产的宽体民航客机,由美国波音民用飞机集团制造。波音747原型大小是1960年代被广泛使用的波音707的两倍。1965年8月开始研制,自1970年投入服务后,一直是全球最大的民航机,垄断着民用大型运输机的市场,到A380投入服务之前,波音747保持全世界载客量最高飞机的纪录长达37年。 二、飞机整体结构:

机翼外形发展史

机翼外形发展史 1903年12月17日,这是一个载入史册的日子,莱特兄弟制造出的第一架依靠自身动力进行载人飞行的飞机"飞行者"1号试飞成功。它采用了一副前翼和一副主机翼,并且都是双翼结构,用麻布蒙皮和木支柱联结而成。一台汽油活塞发动机被固定在主机翼下面的一个翼面之上,机翼后面安装着左右各一副双叶螺旋桨,机尾是一个双翼结构的方向舵,用来操纵飞机的方向,而飞机上下运动则由前翼来操纵。飞机没有起落架和机轮.只有滑橇。起飞时飞机装在滑轨上,用带轮子的小车拉动辅助弹射起飞。驾驶员俯伏在主机翼的下机翼中间拉动操纵绳索的手柄操纵飞机。这次飞行的留空时间只有短短的12秒,飞行距离只有微不足道的36米,但它却是人类历史上第一次有动力、载人、持续、稳定和可操纵的重于空气飞行器的首次成功升空并飞行,从此,人类的航空事业揭开了崭新的一页。 100多年来,飞机的发展取得了丰硕的成果,运输机、侦察机、战斗机等各种各样的飞机应运而生,同时随着飞机种类的不同及功能需求的不同,机翼的外形也发生了翻天覆地的变化。 在飞机诞生之初,机翼的形状千奇百怪,有的像鸟的翅膀,有的像蝙蝠的黑翼,有的像昆虫的翅膀;有的是单机翼,有的是双机翼。聪明的古人观察出鸟类所以会飞,完全因为那对奇妙的翅膀。于是,好奇的人们开始制造各式各样的翅膀,因此最初飞机的机翼大多数与鸟类的翅膀相似。随后,随着时代的进步,人们的目光不仅仅局限于鸟类,人们吸取桥梁建造方面的经验,把上下机翼通过支柱和张线联成一个桁架梁,增加结构受力高度,以提高机翼刚度,减轻结构重量。这些优点使双翼机成为早期飞机的主要型式。随着飞机速度的不断提高,双机翼支柱和张线的阻力越来越大,成为提高速度的主要障碍。高强度铝合金问世后,人们已有可能制造出结构重量不太大而又能承受大载荷的薄机翼。从20世纪30年代起,双机翼逐渐被单机翼取代。在现代的飞机中,除对载重量和低速性能有特殊要求的小型飞机外,双机翼已不多见。 到第二次世界大战时,虽然绝大多数飞机"统一"到单机翼上来,但单机翼的位置又有上单机翼、中单机翼和下单机翼之分,其形状有平直机翼、后掠机翼、三角机翼、梯形机翼、变后掠角机翼、前掠角机翼之别。 1945年,英国研制了两架飞机,安装了当时先进的喷气发动机,速度达到音速。但过了不多久,这两架飞机先后在空中解体坠毁。后来人们通过研究才发现原来飞机接近音速时,机翼上出现"激波",使机翼表面的空气压力发生变化 空气作用力的总作用点后移,飞机会突然自动俯冲,又使飞机增速更快,最后 超过它本身能承受的强度,所以飞机散架了。后来,用其他飞机做试验飞行时,还发现一个严重的问题,就是机翼上产生激波后,飞机的阻力会急剧增加,比低速飞行时大10倍甚至几十倍,所以即使用喷气式发动机,也很难使飞机超音速。当时把这种困难叫做"音障"。 为了解决机翼影响飞行速度的问题,许多国家都在研制新型机翼。德国人发现把飞机的机翼做成向后斜的形式,像燕子的翅膀,可以延迟"激波"的产生,减小由于激波引起的阻力,也可以缓和飞机接近音速时自动俯冲的不稳定现象。这种形状的机翼被称为后掠翼,后掠翼是机翼设计的一种型态,特指机翼沿着翼展方向的轴线与机身具有一个向后的角度,即掠角为锐角。机翼的后掠程度由后掠角大小来进行表示。后掠翼是平直机翼发展而来的,适用于较高的飞行速度,气动特点为可增大机翼的临界速度,并减小超音速飞行时的阻力。1948年,美国把后掠机翼应用在F-86战斗机上,苏联也于40年代末期,研制出带后掠翼的喷气式米格-15歼击机。但是,后来进一步研究表明,为了超音速飞行,后掠翼并不是

飞机机翼浅析

飞机机翼结构浅析 摘要 飞机发明人美国人莱特兄弟说“每只鸟都是一名特级飞行员,谁要飞行,谁就得模仿鸟”的论述,对鸟的飞行动作,作了更仔细的观察研究,于1903年成功地发明了世界上有动力、可操纵的飞机,成为世界公认的飞机发明人。飞机机翼结构和升力产生的机理与鸟翼的结构及产生升力的原理基本上是一致的。飞机在发动机驱动下向前飞行时,流过上下翼面气流的流速不一致,上翼面流速快于下翼面,造成上翼面空气压力低于下翼面,从而使机翼产生升力,当升力大于飞机的重力时飞机就能升空飞行了。由此可见机翼的作用非同寻常,下面我们来看一下究竟。本文主要介绍机翼的功用、机翼的设计标准以及对机翼典型零件的分析来对机翼的构造和翼型原理有一个更清楚的认识。 关键词:机翼功用、机翼设计、副翼、机翼元件 Abstract: The Wright brothers invented the airplane who said Americans "Each bird is a super pilot, who will fly, who have to imitate the birds," the exposition of the birds flying, made a more detailed observational study, in 1903 successfully invented the world have power, maneuverability of aircraft, aircraft, the world recognized inventor. Aircraft wing structure and mechanism of lift generated by the structure of bird wings and produce lift are basically the same principle. Engine-driven aircraft in forward flight, the flow velocity of the upper and lower wing surface flow is inconsistent, on the wing faster than under the wing surface flow, causing surface air pressure below the wing under the wing surface, so that the wings produce lift, when greater than the gravity lift aircraft flying off the aircraft will be able to. This shows an unusual wing, let's look at what had happened. This paper describes the function of the wing, the wing's design standards and analysis of typical parts of the wing to the wing structure and airfoil theory have a better understanding. Key words: Function of the wing, wing design, flaps, wing components.

飞机蒙皮损伤维修方案

飞机蒙皮损伤维修方案 一、飞机蒙皮的结构及特点 蒙皮是包围在机翼骨架外的维形构件,用粘接剂或铆钉固定于骨架上,形成机翼的气动力外形。蒙皮除了形成和维持机翼的气动外形之外,还能够承受局部气动力。早期低速飞机的蒙皮是布质的,而如今飞机的蒙皮多是用硬铝板材制成的金属蒙皮。 二、飞机蒙皮的损伤和维修 2.1 蒙皮的损伤和后果 蒙皮的常见损伤:划伤、变形、裂纹和破孔等。 蒙皮损伤的后果: 破坏了飞机的良好气动性能 使损伤部位的蒙皮强度降低,承载能力下降 危及飞行安全。 2.1.1蒙皮轻微损伤的修理 蒙皮轻微损伤: 蒙皮某些部位产生轻微的鼓动、压坑或划伤等。 ①蒙皮鼓动的修理 主要采用整形加强 挖补 更换蒙皮 加强型材(或盒型材)的方向应垂直或平行于桁条,并至少与相邻的构件搭接一端 根据蒙皮的形状和搭接形式将加强型材制出相应的下陷或弧度

②蒙皮压坑的修理 蒙皮上的压坑,主要是破坏了蒙皮的光滑表面。 压坑微小,分布分散、且未破坏内部结构,则不必修理。 压坑较浅,范围较大,用无锐角且表面光滑的榔头和木顶块修整。 压坑较深,范围较小,不易整平时,可在压坑处钻直径为4~5mm 孔,用适当的钢条打成钩形,拉起修平,然后用螺纹空心铆钉堵孔。 压坑较深,范围较大时,可在压坑处开直径为10~16mm的施工孔, 用钩子钩住,锤击蒙皮四周使其恢复平整。然后安装堵盖铆钉堵孔。

当蒙皮压坑较深,且出现棱角时,可局部退火后,从棱角线周围逐步向棱角线整形收缩。为防止棱角线扩大和整形中出现大裂纹,在两端预先钻2mm止裂孔,并打光孔边。整形至基本符合外形后,在棱角线上切口,细加工整形,直到 达到规定的外形,然后在切口背面铆补加强片。 2.1.2蒙皮裂纹的修理 钻止裂孔 蒙皮上的裂纹较短时(一般小于5mm),可采用钻止裂孔(直径通常为1.5~ 2mm)的方法止裂。

波音777飞机的机翼结构分析

波音777飞机的机翼结构分析 机翼设计 波音777飞机的机翼是在改进757和767设计的基础上,将777增加了机翼的长度及厚度。这种先进的机翼提高了飞机的巡航速度,增加了飞机的爬升能力和飞行高度,并且能在许多高海拔和炎热地区满载乘客和货物起降。 加仑(117335升),777-200LR环球飞机的载油量为53440加仑(202287升)。 在航空公司的协助下,波音把777的翼展加大到了199英尺11英寸(60.9 米),优化了机翼的性能。

777-200LR和777-300ER的机翼加装了6.5英尺长的斜削式翼尖,提高了机翼的整体气动性能。斜削式翼尖有助于缩短起飞滑行距离、提高爬升性能并降低油耗。 材料 777的几款机型采用了重量轻、成本低的新型结构材料。例如,在机翼上部蒙皮和桁条采用经过改进的7055铝合金,这种材料比其它合金具有更大的抗压强度,能减轻重量,抗腐蚀性和疲劳强度也有所提高。 在 777飞机上,重量更轻的先进复合材料开发和生产取得了明显进展。在垂直和水平尾翼上采用了碳纤维增强型树脂材料。客舱的地板横梁也是由这些先进复合材料制成的。 复合材料还被用于整流罩等辅助结构上。复合材料(包括树脂和粘结剂)占777飞机结构重量的9%,而在其它波音喷气机上约为3%。 波音公司的方案是采用71.30米的加长型机翼,新机翼的翼展将比波音747-8飞机的宽3.05米。另一项新工艺是将原来的金属机翼改为碳纤维增强复合材料机翼。较大的翼展将提高波音777-8X/-9X的升力,复合材料机翼在增加强度的同时也降低了新机型的空重。波音公司初步估计,在航程小于14800千米/时,波音777-9X飞机的最大起飞重量至少能达到753000磅(约342吨)。这将有效地稳固该系列飞机的市场竞争力,并在上述航程区间内保持对现有机型的载运能力的领先优势。 波音777X项目将采用新型碳纤维复合材料制造的机翼,这也包含3中方案:翼展71.1米加后掠式小翼(raked wingtip)、65米翼展加融合式翼梢小翼(blended winglets)、68.6米翼展架融合式翼梢小翼。 碳纤维复合材料机翼可以使机翼面积较波音777-300ER及-200LR增加约10%,从而降低进近时的速度并减少噪音。 如果采用71.1米的翼展,那么波音777对应的机场飞行区等级将由E提高到F,也就是波音747-8及空中客车A380的使用等级。 777飞机的机翼是迄今为止亚音速民用飞机中气动效率最高的。在改进757

机 翼

5.1 机翼 1.机翼的基本结构元件及受力 机翼的基本结构元件是由纵向骨架、横向骨架以及蒙皮和接头等组成,现将各个结构元件的作用及 受力分述如下: 1.纵向骨架——沿翼展方向安置的构件,包括梁、纵樯和桁条。 (1)梁——最强有力的纵向构件。它承受着全部或大部分的弯矩和剪力。梁的椽条承受由弯矩而产生的正应力;腹板承受剪力。梁的数量一般为一根或两根,也有两根以上的。机翼结构只有一根梁者称为单梁机翼;有两根者称为双梁机翼;两根以上者称为多梁机翼;没有翼梁称为单块式机翼。 翼梁的位置:在双翼及有支撑的机翼上,根据统计,前梁在12~18%翼弦处;后梁在55~70%翼弦处。在悬臂式单翼机上,单梁机翼的梁位于25~40%翼弦处。双梁机翼的前梁在20~30%翼弦处; 后梁在50~70%翼弦处。 (2)纵樯——承受由弯矩和扭转而产生的剪力。与梁的区别是椽条较弱,椽条不与机身相连。其长度与翼展相等或仅为翼展的一部分。纵樯通常放置在机翼的前缘或后缘,与机翼上下蒙皮相连,形 成一封闭的盒段以承受扭矩。 在后缘的纵樯,通常还用来连接襟翼及副翼。 (3)桁条——承受局部空气力载荷;支持和加强蒙皮;并将翼肋互相连系起来。而且还可以承受由弯曲而产生的正应力。有的机翼为了更加强蒙皮,桁条需要很密,因而导致使用波纹板来代替桁条, 或者把桁条与蒙皮作成一体,形成整体壁钣。 2.横向骨架——沿翼弦方向安置的构件。主要包括普通翼肋和加强翼肋。 (1)普通翼肋——将纵向骨架和蒙皮连成一个整体;把由蒙皮传来的空气动力载荷传给翼梁;并保 证翼剖面之形状。参与一部分机翼结构的受力。 (2)加强翼肋——除了起普通翼肋作用外,还承受集中载荷。 3.蒙皮——它固定在横向和纵向骨架上而形成光滑的表面。 布质蒙皮主要是承受局部空气动力载荷,并把它传给骨架。硬质蒙皮除了上述作用外,还参与结构整体受力。视具体结构的不同,蒙皮可能承受剪应力,也可能还承受正应力。 4.接头——把载荷从一个构件传到另一个构件上去的构件。如机翼与机身的连接、副翼与机翼连接等,均需用接头。机翼接头的形式很多,常见的有耳片式接头,套管式接头、对孔式接头,垫板式和 角条式接头等多种。

飞机机翼力学分析报告

飞机机翼力学分析报告 飞行器制造083614 孙诚骁一概述 机翼的主要功用是产生升力,以支持飞机在空中飞行;同时也起一定的稳定和操纵作用。是飞机必不可少的部件,在机翼上一般安装有飞机的主操作舵面:副翼,还有辅助操纵机构襟翼、缝翼等。另外,机翼上还可安装发动机、起落架等飞机设备,机翼的主要内部空间经密封后,作为存储燃油的油箱之用。 1.受力形式 机翼主要受两种类型的外载荷: 一种是以空气动力载荷为主,包括机翼结构质量力的分布载荷; 另一种是由各连接点传来的集中载荷。这些外载荷在机身与机翼的连接处,由机身 提供的支反力取得平衡。 2.主要单元 纵向元件有翼梁、长桁、墙(腹板) 横向元件有翼肋(普通翼肋和加强翼肋) 以及包在纵、横元件组成的骨架外面的蒙皮 二建立实体模型 机翼型号:NACA 2414;矩形翼共5根肋,间距100mm,弦长550mm,梯形翼共12根肋(包括与矩形翼重复的翼肋),间距100mm,翼梢弦长318mm,前缘直径8mm,厚度1mm 通过向patran软件导入翼型初始模型,运用patran的3d建模功能,对初始模型添加后墙,前缘和主梁,最后得到3d机翼模型 三有限元划分 对已经建立好的机翼模型进行网格划分,后墙及翼肋后半部分采用粗粒度三角单元网格,value值采用15 。翼肋前半部分、前缘采用细粒度三角单元网格,value值采用10。主梁采用实体网格,采用自动生成的value。划分成功后删除重复节点就得到了分析模型。 四加载 网格划分完成之后对其进行加载:支撑条件为翼根固结,受力形式为翼肋和梁交线中点处受到Z轴方向升力。

机翼上气动载荷分布表(表中编号X的意义为翼根处翼肋的右边第X根翼肋) 五材料性能及属性 单元类型 材料属性表 运用配套的nastran软件对机翼进行计算,主要计算量有总体应力,主梁应变,翼肋的面应力

飞机蒙皮修理

飞机外部蒙皮的修理与维护 1.1关于蒙皮的概述 目录 工作条件及性能要求 材料 工艺流程 热处理工艺 飞机蒙皮是维持飞机外形,使之具有很好的空气动力特性的一层铝合金。 工作条件及性能要求 飞机蒙皮的作用是维持飞机外形,使之具有很好的空气动力特性。蒙 皮承受空气动力作用后将作用力传递到相连的机身机翼骨架上,受力复杂,加之蒙皮直接与外界接触,所以不仅要求蒙皮材料强度高、塑性好,还要 求表面光滑,有较高的抗蚀能力。 材料 一般选择 LY12 技术要求:σb =390~410MPa,σ0.2 =255~265MPa,δ 5 ≥15%。 工艺流程 轧板→退火→清理→固溶处理→拉伸成型→时效→机械加工→表面处理。 热处理工艺 495~503℃,0.4h 水冷,室温96h 以上。 民用飞机蒙皮腐蚀研究王在俊(中国民航飞行学院民航飞行技术与飞行安全科研基地四川广汉618307)摘要:统计民用飞机蒙皮油漆涂层和基体材料腐蚀的种类,分析其腐蚀机理。提出飞机蒙皮腐蚀过程为:表面油漆涂层的老化破坏,环境中的腐蚀介质渗透铝合金表面的氧化膜层到达基体材料,然后基体材料出现点腐蚀坑,再进一步发展为其它腐坑. l概述飞机蒙皮受到面漆+底漆+阳极氧化层的保护具有良好的保护 效果,不易产生腐蚀。但随着服役时间的增加,飞机蒙皮上发现不同程度的腐

蚀。本文对民用飞机蒙皮腐蚀形式进行统计并分析其产生机理。2油漆层2.1失效形式蒙皮表面的油漆层受到光照、温度、湿度、活性阴离子等多因素影响,造成了蒙皮表面有机涂层的老化、龟裂、局部脱落等现象,图l所示。(a)涂层表面鼓泡呻国民航飞行学院科研基金资助项目(J200846,J200944)(b)涂层表面残留盐粒(c)部分脱落的涂层表面 飞机蒙皮修理补片对气动特性的影响分析 众所周知,在现代战争中,飞机战伤抢修,是弥补航空兵部队战争损耗、补充战斗实力和保持持续作战能力最直接、最有效、最经济的途径[1],是战斗力“倍增器”,因而也是现代高技术条件下局部战争中的一个重要研究课题。飞机战伤抢修涉及到许多方面,以飞机蒙皮的抢修为例,在战伤抢修中,具有一定厚度、面积及几何形状的修理补片,势必改变飞机局部外形,从而对飞机气动特性产生影响,因此必须对其影响程度,事先进行理论的量化分析计算,以便给战伤抢修规范的制定、战时修补工艺及飞机战伤抢修后的实际飞行,提供直接而科学的参考依据,提高维修保障性、安全可靠性、快速机动性和战斗效能,取得事半功倍的效果。正是基于这些考虑,本文以某型战斗机为例,计算分析了飞机机翼蒙皮战伤修理后,修理补片对飞机气动特性和气动载荷的影响问题。 飞机蒙皮表面处理新技术 海军航空工程学院青岛分院徐丽陈跃良郁大照摘要介绍了飞机蒙皮常用的表面处理方法,概述了铝合金微弧氧化技术生成的陶瓷层的耐磨、耐蚀、强度、疲劳性能等,微弧氧化处理的陶瓷层具有优良特性,为微弧氧化技术推广到飞机蒙皮的表面处理上奠定了基础。关键词表面处理新技术微弧氧化静载特性疲劳特性飞机蒙皮 1 引言铝在自然界中分布极广,几乎占地壳中全部金属含量的三分之一[1]。它具有比重轻、易加工、导电导热性好、抗腐蚀能力强等特点,因此,铝及其合金在现代工业和航空工业中得到了广泛的应用。飞机、导弹、宇宙火箭及人造卫星均使用大量的铝及其合金,导弹的用铝量达到其全部重量的10%~

飞机机翼结构分析

飞机机翼结构分析 前言 飞机机翼结构分析实根据发《飞机结构强度》一书中第三章的内容,本文主要论述了飞机机翼的功用及翼面结构。机翼由副翼前缘缝翼襟翼扰流板组成,从机翼的空气动力载荷到机翼的总体受力,能够更深入更全面的了解机翼了解航空领域所涉及学科的基础知识基础原理及发展概况,对开拓视野,扩大知识面以及今后的学习和工作都有帮助。 1.1机翼的功用 机翼是飞机的一个重要部件,其主要功用是产生升力。当它具有上反角时,可为飞机提供一定的横侧安定性。除后缘布置有横向操纵用的副翼、扰流片、等附翼外,目前在机翼的前、后缘越来越多地装有各种形式的襟翼、缝翼、等增升装置,以提高飞机的起降或机动性能。机翼上常安装有起落架、发动机等其它部件。现代歼击机和歼击轰炸机往往在机翼下布置多种外挂,如副油箱和导弹、炸弹等军械设备。机翼的内部空间常用来收藏起落架或其部分结构和储放燃油。特别是旅客机,为了保证旅客的安全,很多飞机不在机身内贮存燃油,而全部贮存在机翼内。为了最大限度地利用机翼容积,同时减轻重量,现代飞机的机翼油箱大多采用利用机翼结构构成的整体油箱。此外机翼内常安装有操纵系统和一些小型设备和附件。 1.2翼面结构设计要求 1.气动要求 翼面是产生升力主要部件,对飞行性能有很大的影响,因此,满足空气动力方面的要求是首要的。翼面除保证升力外,还要求阻力尽量小﹙少数特殊机动情况除外﹚。翼面的气动特性主要取决于其外行参数﹙如展弦比、相对厚度、后掠角和翼型等﹚,这些参数在总体设计时确定;结构设计则应强度、刚度及表面光滑度等方面来保证机翼气动外形要求的实现。 2.质量要求 在外形、装载和连接情况一定的条件下,质量要求时翼面结构设计的主要要求。具体地说,就是在保证结构完整性的前提下,设计出尽可能请的结构。结构完整性包含了强度、刚度、耐久性和损伤容限等多方面内容。 3.刚度要求 随着飞机速度的提高,翼面所受载荷增大,特别对于高机动性能歼击机和高速飞行的导弹;由于减小阻力等空气动力的要求,翼面的相对厚度越来越小,再加上后掠角的影响,导致翼面结构的扭转刚度、弯曲度将越来越难保证,这些均将引起翼面在飞行中的变形增加。高速飞行时,很小的变形就可能严重的恶化翼面的空气动力性能;刚度不足还会引起震颤和操纵面反效等严重问题。因此,对高速飞机和导弹,为满足翼面的气动要求,保证足够的刚度十分重要。 4.气动加热要求 一般亚音速飞行器,所选用的结构材料是常用金属及非金属材料,不必考虑温度对材料的影响。高速飞行时,翼面将受到气动加热的影响,尤其是翼面前缘的起动加热问题尤为严重。因此当以大马赫数的速度飞行时,还要考虑气动加热对结构强度和刚度的影响。 5.使用维修要求 翼面结构应便于检查、维护和修理。翼面内部通常铺设有相当数量的操纵系统零部件、燃油管路、电气线路和液压管路等,对这些系统和线路需要经常检查调整。当机翼结构作为整体油箱舱使用时,必须保证燃油系统工作的高度可靠性,包括油箱的密封可靠。对所有要

浅析民航飞机机身蒙皮航线常见结构损伤简介及处理方法

浅析民航飞机机身蒙皮航线常见结构损伤简介及处理方法 发表时间:2019-04-11T10:50:07.687Z 来源:《科技新时代》2019年2期作者:高彦晋 [导读] 本文以民航飞机为研究对象,对其机身蒙皮航线的常见结构损伤修复进行分析。在概述结构损伤类型的技术上,对划痕、雷击、凹陷等问题的修复方法做出说明。从技术与经验两个方面出发,帮助相关岗位技术人员提高技能水平,为优化民航飞机的使用寿命与效果提供方法参考。 高彦晋 深圳航空有限责任公司广东深圳 518128 摘要:本文以民航飞机为研究对象,对其机身蒙皮航线的常见结构损伤修复进行分析。在概述结构损伤类型的技术上,对划痕、雷击、凹陷等问题的修复方法做出说明。从技术与经验两个方面出发,帮助相关岗位技术人员提高技能水平,为优化民航飞机的使用寿命与效果提供方法参考。 关键词:民航飞机;结构损伤;蒙皮修复 引言:飞机机身的蒙皮结构,是极其重要的组成部分。为了更好的维护飞机的使用效果,必须在日常维护工作中,通过技术手段的完善,对结构损伤类型与修复方法进行精确核对。在缩减飞机停场时间的同时,降低航班的运营压力,并以此保证民航飞机的正常使用条件。 一、机身蒙皮结构损伤类型 蒙皮结构损伤,可以在损伤条件的影响效果上进行分类,并总结出以下四种类型。其一,A类永久损伤。此类损伤对于飞机的适航性与安全性影响可以忽略不计,仅执行损伤记录即可,无需对其作出修复与额外检查;其二,B类永久损伤。此类损伤在未发生恶化与扩展的条件下,无需进行修理,但必须以飞机的适航性与安全性作为基本前提;其三,C类临时损伤。这类损伤必须在一定期限内进行处理,以防发生损伤恶化;其四,D类损伤。这类损伤的影响较为明显,不仅对飞机运行的适航性与安全性造成了明显的负面影响,其影响区间甚至已经超出了容忍界限,必须立即对其进行修复。 另外,以损伤形式为分类标准,可以将蒙皮结构损伤分为划痕、雷击、沟槽、裂纹、磨损、腐蚀、变形等多种类型[1]。出现此类结构损伤,不仅受到外部环境条件与操作方法的影响,甚至会对飞机的使用耗损产生影响。针对此类情况,可以采用DFR(细节疲劳额定值)的计算方法,完成基本的磨损分析。DFR计算方法下,可以保证分析的准确率在95%以上,并区别于实用载荷条件,作为结构本身固有疲劳性的特征分析方法发挥作用。技术原理上,可以通过紧固件拉伸结构获得DFR阈值的计算公式: DFR=DFRbasc·A·B·C·D·E·U·RC·η·Χ 在这一公式中,A代表孔充填系数;B代表蒙皮合金与表面的处理系数;C代表埋头深度系数;D代表材料的叠层系数;E代表螺栓的夹紧系数;U代表凸台有效系数;RC代表组成构件的额定疲劳数值;η为铆接厚度修正值;Χ代表其它影响条件的修正系数。 二、机身蒙皮结构损伤处理方法 (一)划痕与雷击损伤 民航飞机在航线运行过程中如果遇到划痕与雷击损伤,可以通过打磨的方法进行修复。在打磨之前,必须对损伤的情况作出归类,如果损伤位于非紧固件区,可将损伤20%以下的情况定义为B类损伤,如损伤覆盖在20%-50%之间可将其定义为C类损伤,当损伤条件大于50%时,需将其作为D类损伤进行处理。如果损伤区域为紧固件区,B类损伤则定义在10%以下,C类损伤定义在10-25%之间,25%以上的损伤情况,则需及时联系设备厂商,进行标准化修理。 方法上,首先要对修理区域进行退漆处理,然后对坑深处大于3.2mm的蒙皮进行切除。在拆除修理区铆钉的基础上,将深度小于 3.2mm的蒙皮区进行原始去读整修修复。经过目视检查后,在确认无“油罐”现象后,再对损伤区进行涡流检测,以此核对裂纹的末端情况。对裂纹区域进行切除处理时,需将切除的最小半径条件控制在10mm,然后完成修理件的制作[2]。规格上,可根据民航飞机的实际需要,对合金板材进行型号选择,在填充片的处理上,应将其厚度调整为1.3mm,将加强片的厚度控制在1.6mm,并按照相关的技术图纸对铆钉进行排列布设。在安放完毕后,需进行钻孔定位,并及时的清理蒙皮的表面毛刺,然后使用阿洛丁并施加底漆、封胶,完成蒙皮面漆修复。 (二)机身蒙皮凹陷损伤 凹陷损伤相较于划痕损伤更为严重,在进行归类的过程中,当凹坑最大深度的小于等于区域的10%,且凹坑最深点到边缘的最近距离大于15mm、深度不超过8mm、无尖角或其他损伤问题,可将损伤情况定义为B类,根据实际情况的不同,也可将其划分到C类。注意,如果飞机机身的蒙皮大于6mm,则不允许出现凹坑,如果发现此类现象,必须在第一时间进行处置,以防危害扩大并产生进一步的恶化发展,为飞机的安全性、适航性造成严重隐患。 (三)飞机航班压力损伤处理 对飞机蒙皮结构损伤进行维修的过程中,出于对航班压力的考量,技术人员须拥有足够的事故处理经验,并尽可能的缩减飞机在场的停靠时间。具体方法上,可以通过以下案例对故障处理经验的作用做出说明。 某航空公司对飞机进行航线检查的过程中,发现一架空客A320飞机发生蒙皮结构损伤,并定位了左侧两空速管之间的凹陷点。通过对结构修理手册(SRM)内容的核对,将这一凹陷定义为了C类损伤。根据SRM的技术说明,此类故障可以不必立即修复,且由于故障位置的特殊性,为处理带来了较大的难度。在综合分析飞机当前飞行线路的航空压力条件后,该公司对维修计划作出了调整。通过目视检测,在确定该凹陷及周围结构无额外损伤的条件下,对固件进行了更换。采用相同型号的加大紧固件完成替换后,对蒙皮表面进行恢复保护,并按照SRM与NTM(无损探伤手册)的规范内容执行处理。在完成整个凹陷部位修复后,通过结构工程师,将此方案上报给相关的厂商部门,并在征得技术肯定后,执行维修方案。由此,在岗位经验的引导下,大大的缩短了民航飞机航线的停场时间,并在降低维修成本与难度的同时,为保证飞行安全与运营效益创造了条件。 总结:综上,机身蒙皮结构损伤的类型多种多样,必须在对各种损伤情况有充足认知的条件下,对每种损伤条件采取针对性的技术措

机翼所受升力与机翼形状的关系

机翼所受升力与机翼形状的关系 XXX中高一X班物理组吴XX 前言 随着科学技术的发展,飞机已成为现代社会较为常见的交通工具,它具有速度快,运输效率高等优点,是最快捷的现代化交通工具,在交通运输行业中有着重要地位。飞机飞行依靠的是空气动力,飞机的升力主要由机翼提供,在其他条件相同时,飞机所受升力与机翼形状有关,因此研究飞机机翼与其升力的关系,对飞机的发展有着重要意义。 研究经过 要探究机翼所受升力与机翼形状的关系,就要先较为深入和透彻地了解升力。升力一词在初中课本有所提及,所以对于组员来说并不算陌生,但初中课本只是笼统地科普了相关知识,对其进行了概括性的描述,这并不能满足本次研究的知识需要。所以在研究机翼形状与升力的关系之前,小组成员商议决定先了解升力的定义及其来源。随后组员进入校内图书馆进行相关书籍的查阅并在网上收集相关资料。从收集的资料中,我们得到了升力的定义:一般认为在空气中,当向上的力大于向下的力时,其合力方向向上,使物体上升,这个合力叫做升力。从定义上分析,我们可以知道升力的本质是合力,也就是说,影响其分力的大小及方向的因素都可能成为最终影响升力的因素。那么,影响升力的因素就较为复杂了,这促使我们决定继续探究升力的成因。 在第二次研究活动中,我们的主要目的就是了解升力的成因,从而分析影响升力大小及方向的因素有哪些。通过我们查阅的资料,我们发现判断升力的大小及方向要考虑实际流体的粘性、可压缩性等诸多条件,具体就是由物体在空气中运动形成了绕翼环流,从而产生上下压力差,这个压力差就是在此剖面的升力,升力和向后的诱导阻力合成为空气动力,流过各个剖面升力总合就是机翼的升力。这个说法推翻了初中物理科普用的等时间论:当气流经过机翼上表面和下表面时,由于上表面路程比下表面长,则气流要在相同时间内通过上下表面,根据运动学基本公式S=VT,上表面流速比下表面大,再根据伯努利定理(在一个不可压、理想的流体系统,比如气流、水流

相关文档