文档库 最新最全的文档下载
当前位置:文档库 › 2色谱分离法-单机版多选题0401-0412

2色谱分离法-单机版多选题0401-0412

2色谱分离法-单机版多选题0401-0412
2色谱分离法-单机版多选题0401-0412

柱层析分离的实验方法和技巧

柱层析分离的实验方法和技巧 常说的过柱子应该叫柱层析分离,也叫柱色谱。我们常用的是以硅胶或氧化铝作固定相的吸附柱。由于柱分的经验成分太多,所以下面我就几年来过柱的体会写些心得,希望能有所帮助。 一:柱子可以分为:加压,常压,减压 压力可以增加淋洗剂的流动速度,减少产品收集的时间,但是会减低柱子的塔板数。所以其他条件相同的时候,常压柱是效率最高的,但是时间也最长,比如天然化合物的分离,一个柱子几个月也是有的。 减压柱能够减少硅胶的使用量,感觉能够节省一半甚至更多,但是由于大量的空气通过硅胶会使溶剂挥发(有时在柱子外面有水汽凝结),以及有些比较易分解的东西可能得不到,而且还必须同时使用水泵抽气(很大的噪音,而且时间长)。以前曾经大量的过减压柱,对它有比较深厚的感情,但是自从尝试了加压后,就几乎再也没动过减压的念头了。 加压柱是一种比较好的方法,与常压柱类似,只不过外加压力使淋洗剂走的快些。压力的提供可以是压缩空气,双连球或者小气泵(给鱼缸供气的就行)。特别是在容易分解的样品的分离中适用。压力不可过大,不然溶剂走的太快就会减低分离效果。个人觉得加压柱在普通的有机化合物的分离中是比较适用的。 二:关于柱子的尺寸 应该是粗长的最好。柱子长了,相应的塔板数就高。柱子粗了,上样后样品的原点就小(反映在柱子上就是样品层比较薄),这样相对的减小了分离的难度。试想如果柱子十厘米,而样品就有二厘米,那么分离的难度可想而知,恐怕要用很低极性的溶剂慢慢冲了。而如果样品层只有0.5厘米,那么各组分就比较容易得到完全分离了。当然采用粗大的柱子要牺牲比较多的硅胶和溶剂了,不过这些成本相对于产品来说也许就不算什么了(有些不环保的说,不过溶剂回收重蒸后也就减小了部分浪费)。 现在见到的柱子径高比一般在1:5~10,书中写硅胶量是样品量的30~40倍,具体的选择要具体分析。如果所需组分和杂质分的比较开(是指在所需组分rf在0.2~0.4,杂质相差0.1以上),就可以少用硅胶,用小柱子(例如200毫克的样品,用2cm ×20cm的柱子);如果相差不到0.1,就要加大柱子,我觉得可以增加柱子的直径,比如用3cm的,也可以减小淋洗剂的极性等等。

常见色谱仪的色谱分离原理

常见色谱仪的色谱分离原理 高效液相色谱法按分离机制的不同分为液固吸附色谱法、液液分配色谱法(正相与反相)、离子交换色谱法、离子对色谱法及分子排阻色谱法。 1.液固色谱法:使用固体吸附剂,被分离组分在色谱柱上分离原理是根据固定相对组分吸附力大小不同而分离。分离过程是一个吸附-解吸附的平衡过程。常用的吸附剂为硅胶或氧化铝,粒度5~10μm。适用于分离分子量200~1000的组分,大多数用于非离子型化合物,离子型化合物易产生拖尾。常用于分离同分异构体。 2.液液色谱法:使用将特定的液态物质涂于担体表面,或化学键合于担体表面而形成的固定相,分离原理是根据被分离的组分在流动相和固定相中溶解度不同而分离。分离过程是一个分配平衡过程。 涂布式固定相应具有良好的惰性;流动相必须预先用固定相饱和,以减少固定相从担体表面流失;温度的变化和不同批号流动相的区别常引起柱子的变化;另外在流动相中存在的固定相也使样品的分离和收集复杂化。由于涂布式固定相很难避免固定液流失,现在已很少采用。现在多采用的是化学键合固定相,如C18、 C8、氨基柱、氰基柱和苯基柱。 液液色谱法按固定相和流动相的极性不同可分为正相色谱法(NPC)和反相色谱法(RPC)。 正相色谱法:采用极性固定相(如聚乙二醇、氨基与腈基键合相);流动相为相对非极性的疏水性溶剂(烷烃类如正已烷、环已烷),常加入乙醇、异丙醇、四氢呋喃、三氯甲烷等以调节组分的保留时间。常用于分离中等极性和极性较强的化合物(如酚类、胺类、羰基类及氨基酸类等)。 反相色谱法:一般用非极性固定相(如C18、C8);流动相为水或缓冲液,常加入甲醇、乙腈、异丙醇、丙酮、四氢呋喃等与水互溶的有机溶剂以调节保留时间。适用于分离非极性和极性较弱的化合物。RPC在现代液相色谱中应用最为广泛,据统计,它占整个HPLC应用的80%左右。 随着柱填料的快速发展,反相色谱法的应用范围逐渐扩大,现已应用于某些无机样品或易解离样品的分析。为控制样品在分析过程的解离,常用缓冲液控制流动相的pH值。但需要注意的是,C18和C8使用的pH值通常为2.5~7.5(2~8),太高的pH

色谱分离技术

亲和色谱 亲和色谱是专门用于纯化生物大分子的色谱分离技术,它是基于固定相的配基与生物分子间的特殊生物亲和能力的不同来进行相互分离的。亲和色谱的显著特点: 具有其他分离技术所不能比拟的高选择性,且色谱过程操作条件温和,能有效地保持生物大分子高级结构的稳定性,活性样品的回收率也比较高。 所以亲和色谱被广泛用于酶、治疗蛋白、抗体、核酸、辅助因子等生物大分子以及细胞、细胞器、病毒等超分子物质的分离与纯化。 特别是对分离含量极少而又不稳定的活性物质最有效,经一步亲和色谱即可提纯几百至几千倍。 亲和色谱的基本过程: 把具有特异亲和力的一对分子的任何一方作为配基,在不伤害其生物功能情况下,与不溶性载体结合,使之固定化,装入色谱柱,然后把含有目的物质的混合液作为流动相,在有利于固定相配基和目的物质形成络合物的条件下进入色谱柱。目的物质被吸附,杂质直接流出。变换过柱溶液,使配基与其亲和物分离,获纯化的目的产物。 亲和色谱分离中经常采用的生物亲和关系 ①酶:底物、底物类似物、抑制剂、辅酶、金属离子; ②抗体:抗原、病毒、细胞; ③激素、维生素:受体蛋白、载体蛋白; ④外源凝集素:多糖、糖蛋白、细胞表面受体蛋白、细胞; ⑤核酸:互补碱基链段、组蛋白、核酸聚合酶、核酸结合蛋白; ⑥细胞:细胞表面特异蛋白、外源凝集素。 亲和色谱操作中的洗脱方法 在亲和色谱洗脱操作中,洗脱方法有两类,即普通洗脱法和专一性洗脱法。 普通洗脱法:与其他色谱分离方法一样,可以通过改变溶剂或缓冲液的类型,改变缓冲液的pH和离子强度,改变洗脱温度,以及添加促溶剂等措施进行洗脱。 专一性洗脱法:是指溶液中的配基、抑制剂或半抗原等物质与亲和层析剂上的配基,同时对生物活性物质产生竞争性的结合,从而达到洗脱的目的。一般说来,专一性洗脱可以获得很高的分辨能力。 但是,专一性洗脱剂的价格都比较昂贵,所以常与普通洗脱条件配合作用。 离子交换色谱 离子交换色谱利用被分离组分与固定相之间发生离子交换的能力差异来实现分离。离子交换色谱的固定相一般为离子交换树脂,树脂分子结构中存在许多可以电离的活性中心,待分离组分中的离子会与这些活性中心发生离子交换,形成离子交换平衡,从而在流动相与固定相之间形成分配。固定相的固有离子与待分离组分中的离子之间相互争夺固定相中的离子交换中心,并随着流动相的运动而运动,最终实现分离。

柱色谱分离的操作和注意事项

特别注意:有机溶剂对身体特有害别是心肺;肝脏等所有过柱操作都要在通风橱里进行!!!柱色谱是以硅胶或氧化铝作固定相的吸附柱。下面我就几年来过柱的体会写些心得,希望对大家能有所帮助。 1、柱子可以分为:加压,常压,减压压力可以增加淋洗剂的流动速度,减少产品收集的时间,但是会减低柱子的塔板数。所以其他条件相同的时候,常压柱是效率最高的,但是时间也最长,比如天然化合物的分离,一个柱子几个月也是有的。减压柱能够减少硅胶的使用量,感觉能够节省一半甚至更多,但是由于大量的空气通过硅胶会使溶剂挥发(有时在柱子外面有水汽凝结),以及有些比较易分解的东西可能得不到,而且还必须同时使用水泵抽气(很大的噪音,而且时间长)。以前曾经大量的过减压柱,对它有比较深厚的感情,但是自从尝试了加压后,就几乎再也没动过减压的念头了。加压柱是一种比较好的方法,与常压柱类似,只不过外加压力使淋洗剂走的快些。压力的提供可以是压缩空气,双连球或者小气泵(给鱼缸供气的就行)。特别是在容易分解的样品的分离中适用。压力不可过大,不然溶剂走的太快就会减低分离效果。个人觉得加压柱在普通的有机化合物的分离中是比较适用的。 2、关于柱子的尺寸,应该是粗长的最好柱子长了,相应的塔板数就高。柱子粗了,上样后样品的原点就小(反映在柱子上就是样品层比较薄),这样相对的减小了分离的难度。试想如果柱子十厘米,而样品就有二厘米,那么分离的难度可想而知,恐怕要用很低极性的溶剂慢慢冲了。而如果样品层只有0.5厘米,那么各组分就比较容易得到完全分离了。当然采用粗大的柱子要牺牲比较多的硅胶和溶剂了,不过这些成本相对于产品来说也许就不算什么了(有些不环保的说,不过溶剂回收重蒸后也就减小了部分浪费)。现在见到的柱子径高比一般在1:5~10,书中写硅胶量是样品量的30~40倍,具体的选择要具体分析。如果所需组分和杂质分的比较开(是指在所需组分rf在0.2~0.4,杂质相差0.1以上),就可以少用硅胶,用小柱子(例如200毫克的样品,用2cm×20cm的柱子);如果相差不到0.1,就要加大柱子,我觉得可以增加柱子的直径,比如用3cm的,也可以减小淋洗剂的极性等等。 3、关于无水无氧柱,适用于对氧,水敏感,易分解的产品可以湿柱,也可以干柱。不过在样品之前至少要用溶剂把柱子饱和一次,因为溶剂和硅胶饱和时放出的热量有可能是产品分解,毕竟要分离的是敏感的东东,小心不为过。这个我分离的次数很少,一般都是通过紫外灯查看的。 4、关于湿法、干法上样 湿法省事,一般用淋洗剂溶解样品,也可以用二氯甲烷、乙酸乙酯等,但溶剂越少越好,不然溶剂就成了淋洗剂了。有的上样后在硅胶上又会析出,这一般都是比较大量的样品才会出现,是因为硅胶对样品的吸附饱和这就应该先重结晶,得到大部分的产品后再柱分,如果不能重结晶那就不管它了,直接过就是了,样品随着淋洗剂流动会溶解的。有些样品溶解性差,能溶解的溶剂又不能上柱(比如DMF,DMSO等,会随着溶剂一起走,显色是一个很长的脱尾),这时就必须用干法上柱了。样品和硅胶的量有一种说法是1:1,我觉得是越少越好,但是要保证在旋干后,不能看到明显的固体颗粒(那说明有的样品没有吸附在硅胶上)。溶剂的选择。当然是最便宜,最安全,最环保的了。所以大多选用石油醚,乙酸乙酯。文献中有写用正己烷的,太贵了。二氯甲烷也有用的,但是要知道,它和硅胶的吸附是一个放热过程,所以夏天的时候经常会在柱子里产生气泡,天气冷的时候会好一些。甲醇,据说能溶解部分的硅胶,所以产品如果想过元素分析的话要留神,应该经过后继处理,比如说重结晶等。其他的溶剂用的相对较少,要依个人的不同需要选择了。由于某些原因,用到的淋洗剂多是大包装的(便宜嘛),我们这里是用2.5 L的塑料桶装的。另外溶剂在过柱子后最好也回收使用,一方面环保,另一方面也能节省部分经费,当然比较忙的时候我是不回收的,太费事了。这里要注意的是,一般在过柱同时进行的是减压旋蒸,石油醚和乙酸乙酯的比例由于挥发度的不同会导致极性的变化,一般会使得极性变大,在梯度淋洗时比较合适,正好极性越

色谱法的分类及其原理

色谱法的分类及其原理 (一)按两相状态 气相色谱法:1、气固色谱法 2、气液色谱法 液相色谱法:1、液固色谱法 2、液液色谱法 (二)按固定相的几何形式 1、柱色谱法(column chromatography) :柱色谱法是将固定相装在一金属或玻璃柱中或是将固定相附着在毛细管内壁上做成色谱柱,试样从柱头到柱尾沿一个方向移动而进行分离的色谱法 2、纸色谱法(paper chromatography):纸色谱法是利用滤纸作固定液的载体,把试样点在滤纸上,然后用溶剂展开,各组分在滤纸的不同位置以斑点形式显现,根据滤纸上斑点位置及大小进行定性和定量分析。 3、薄层色谱法(thin-layer chromatography, TLC) :薄层色谱法是将适当粒度的吸附剂作为固定相涂布在平板上形成薄层,然后用与纸色谱法类似的方法操作以达到分离目的。 (三)按分离原理 按色谱法分离所依据的物理或物理化学性质的不同,又可将其分为:

1、吸附色谱法:利用吸附剂表面对不同组分物理吸附性能的差别而使之分离的色谱法称为吸附色谱法。适于分离不同种类的化合物(例如,分离醇类与芳香烃)。 2、分配色谱法:利用固定液对不同组分分配性能的差别而使之分离的色谱法称为分配色谱法。 3、离子交换色谱法:利用离子交换原理和液相色谱技术的结合来测定溶液中阳离子和阴离子的一种分离分析方法,利用被分离组分与固定相之间发生离子交换的能力差异来实现分离。离子交换色谱主要是用来分离离子或可离解的化合物。它不仅广泛地应用于无机离子的分离,而且广泛地应用于有机和生物物质,如氨基酸、核酸、蛋白质等的分离。 4、尺寸排阻色谱法:是按分子大小顺序进行分离的一种色谱方法,体积大的分子不能渗透到凝胶孔穴中去而被排阻,较早的淋洗出来;中等体积的分子部分渗透;小分子可完全渗透入内,最后洗出色谱柱。这样,样品分子基本按其分子大小先后排阻,从柱中流出。被广泛应用于大分子分级,即用来分析大分子物质相对分子质量的分布。 5、亲和色谱法:相互间具有高度特异亲和性的二种物质之一作为固定相,利用与固定相不同程度的亲和性,使成分与杂质分离的色谱法。例如利用酶与基质(或抑制剂)、抗原与抗体,激素与受体、外源凝集素与多糖类及核酸的碱基对等之间的专一的相互作用,使相互作用物质之一方与不溶性担体形成共价结合化合物,

气相色谱分离技术

第三章气相色谱分离技术 第一节气相色谱系统 气相色谱法是一种很重要的,以气体为流动相,以液体或固体为固定相的色谱方法,气相色谱法(GC)有以下特点: (1)高选择性GC能够分离分析性质极为相近的物质。如氢的同位素,有机物的异构体。 (2)高效GC可在较短的时间内同时分离分析极其复杂的混合物。如用空心毛细管柱一次可以分析轻油中的200个组分。 (3)高灵敏度由于使用了高灵敏度的检测器,可以检测10-11-10-13克物质。检测浓度可达到ppt级。 (4)分析速度快GC一般只要几到几十分钟的分析时间,某些快速分析,一秒可以分析十几个组分。 GC法的应用相当广泛,在一千万个化合物中,大约有20%的物质可以用GC方法进行分析,如: 生物化学分析:GC一开始就是用于生物化学领域,气-液GC的创始人Martin首先进行了脂肪酸和脂肪胺的分析。 石油化工分析:用200m的毛细管GC法一次可以分析200个化合物。 环境分析:如水中有机物分析。 食品分析:如粮食中残留农药的分析。 药物临床分析:氨基酸、兴奋剂的分析。 法庭分析:各种物证鉴定。 空间分析:如飞船中气氛分析。 军工分析:如火药、炸药分析。

图3-1是GC的流程示意图。 9 图3-1气相色谱流程示意图 1—高压瓶,2—减压阀, 3—净化器,4—气流调节阀,5—进样口,6—气化室,7—色谱柱,8—检测器, 9—记录仪 气相色谱仪的种类很多,但主要由分离系统和检测系统组成。 3.1.1 分离系统 分离系统主要由气路系统、进样系统和色谱柱组成,其核心为色谱柱。 1.气路系统 气路系统指流动相载气流经的部分,它是一个密闭管路系统,必须严格控制管路的气密性,载气的惰性及流速的稳定性,同时流量测量必须准确,才能保证结果的准确性。载气通常用N2,He,H2,Ar等。 2.进样系统 进样系统包括进样装置和气化室。气体样品可以用注射器进样,也可用旋转式六通阀进样。气化室必须预热至设定温度。 3.色谱柱

色谱分析分离方法概述

色谱分析分离方法概述 本书是色谱世界《色谱技术丛书》的第一分册。全书共四章,主要说明了色谱法的发展及其在分析化学中的地位和作用,色谱法的特点、分类及性能比较,色谱法的原理,色谱模型理论等方面的内容。 第一章色谱法的发展及其在分析化学中的地位和作用 第一节色谱法发展简史 一、色谱法的出现 二、色谱法的发展 三、色谱法的现状和未来 第二节色谱法在工业生产和科学研究中的作用 一、色谱法在经济建设和科学研究中的作用 二、色谱法在分析化学中的地位和作用 第三节色谱法与其他方法的比较和配合 一、色谱法的特点和优点 二、色谱法和其他方法的配合 第二章色谱法的特点、分类及性能比较 第一节色谱法的定义与分类 一、按流动相和固定相的状态分类 二、按使用领域不同对色谱仪的分类 第二节现代色谱法的应用领域和性能比较 一、色谱法的应用领域

二、各种色谱方法的性能比较 第三章色谱法的原理 第一节色谱分析的基本原理 一、色谱分离的本质 二、色谱分离的塔板理论 第二节色谱法中常用的术语和参数 一、气相色谱中常用的术语和参数 二、液相色谱中常用的术语和参数 第三节色谱的速率理论 一、气相色谱速率理论 二、液相色谱速率理论 第四章色谱模型理论 第一节色谱模型概述 一、色谱模型理论的意义 二、色谱模型的建立 三、色谱模型的求解 第二节线性色谱 一、理想过程 二、反应色谱 三、扩散的影响 四、相间传质阻力的影响 五、同时含扩散与相同传质阻力的情形

第三节单组分理想非线性色谱 一、理想非线性色谱数学模型分析 二、谱带发展与流出曲线 三、理想非线性色谱间断解的数学意义———弱解 四、非线性反应色谱 第四节双组分理想非线性色谱 一、数学模型分析 二、情形 三、简单波的传播 四、激波 五、谱带的发展与保留值的计算 第一节色谱法发展简史 俄国植物学家茨维特于1903年在波兰华沙大学研究植物叶子的组成时,用碳酸钙作吸附剂,分离植物干燥叶子的石油醚萃取物。他把干燥的碳酸钙粉末装到一根细长的玻璃管中,然后把植物叶子的石油醚萃取液倒到管中的碳酸钙上,萃取液中的色素就吸附在管内上部的碳酸钙里,再用纯净的石油醚洗脱被吸附的色素,于是在管内的碳酸钙上形成三种颜色的6个色带。当时茨维特把这种色带叫作“色谱”.茨维特于1906年发表在德国植物学杂志上用此名,在这一方法中把玻璃管叫作“色谱柱”,碳酸钙叫作“固定相”,纯净的石油醚叫作“流动相”。把茨

实验_柱色谱

实验 10 柱色谱分离实验报告 --亚甲基蓝与荧光黄的分离 一实验目的 学习并掌握色谱法的原理及其应用。 学习并掌握柱色谱的实验操作技能。 二实验原理 色谱法亦称色层法,层析法等,是分离,纯化和鉴定有机化合物的重要方法之一。色谱法的基本原理是利用混合物各组分在某一物质中的吸附或溶解性能(即分配)的不同,或其它亲和作用性能的差异,混合物的溶液流经该种物质,进行反复的吸附或分配等作用,从而将各组分分开。 色谱分离法的分类 (按操作条件的不同)

色谱分离法的分类 (按组分在固定相中的作用原理不同) 色谱法的应用 色谱法在有机化学中的应用主要包括以下几个方面: (1)分离混合物 (2)精致提纯化合物 (3)利用比移值(Rf)鉴定化合物 (4)跟踪反应进程 柱色谱常用的有吸附色谱和分配色谱两类。前者常用氧化铝或硅胶为吸附剂。后者以硅胶,硅藻土和纤维素为支持剂,以吸收大量的液体为固定相。 当加入的洗脱剂流下时,由于不同化合物吸附能力不同,因而以不同的速度沿柱向下流动,继续洗脱时,吸附能力弱的组分随溶剂首先流出。在连续洗脱过程中,不同组分或不同色带就能分别收集,从而达到分离纯化的目的。

1 吸附剂 常用的吸附剂:氧化铝,硅胶,氧化镁,碳酸钙,活性炭或纤维素粉。选择吸附剂的首要条件:不与被分离物或展开剂发生化学反应。 吸附能力与以下几点有关: (1)吸附剂颗粒大小 (2)吸附剂含水量 柱色谱 2 溶剂 通常根据被分离物中各组分的极性、溶解度和吸附活性等来考虑。先将带分离的样品溶于尽量少的非极性溶剂中,从柱顶流入柱中,依次增大溶剂的极性,将不同化合物依次洗脱。 常用洗脱剂的极性: 石油醚<环己烷<四氯化碳<甲苯<苯<二氯甲烷<氯仿<乙醚<乙酸乙酯<丙酮<乙醇<甲醇<水<乙酸 三实验步骤及注意事项 (1)取一支色谱柱,在柱子的收缩部塞一小团脱脂棉花,注意松紧要适度。然后在棉花上铺一层粗硅胶或石英砂。 (2)将色谱柱垂直固定在铁架台上,往柱内加适量70%乙醇溶液,打开活塞,赶走气泡。 (3)再向柱中倒入适量70%乙醇溶液,打开活塞,控制滴速为1滴/秒,用小锥型瓶承接,同时通过漏斗慢慢装入5gAl2O3,使其逐渐沉入底部。 【在装吸附剂的过程中,应用质软的物体如试管夹、吸耳球等轻轻敲击柱身,促使吸附剂装填紧密,排除气泡。最终应使吸附剂的上端平整,无凹凸面。】(4)加完吸附剂后,在吸附剂上再盖一张直径大小合适的小滤纸。 (5)当溶剂的液面刚好流至滤纸面时关闭二通活塞,立即用移液管加入1mL亚甲基蓝和荧光黄的乙醇混合液,尽量免待分离混合液粘附在柱的内壁上。 (6)打开二通活塞,等柱内的溶剂恰好流到滤纸面时,关闭二通活塞,向柱内加入70%乙醇,打开二通活塞进行洗脱。 (7)用锥形瓶收集蓝色的亚甲基蓝溶液。【洗脱时切勿使溶剂流干!】 (8)当蓝色溶液收集完后,等柱内的70%乙醇溶液恰好流到滤纸面时,关闭二通活塞,加入适量2%氨水作为洗脱剂。打开二通活塞收集黄绿色的荧光黄溶液,直到其完全被洗出。 (9)用量筒分别量取所分离出来的亚甲基蓝和荧光黄溶液的体积后,倒入指定的回收瓶中。 (10)分离结束后,应先让溶剂尽量流干,然后倒置,用吸耳球从活塞口向管内挤压空气,将吸附剂从柱顶挤压出。使用过的吸附剂倒入垃圾桶里,切勿倒入水槽,以免堵塞水槽。 四操作注意事项 特别注意:有机溶剂对身体特有害别是心肺;肝脏等所有过柱操作都要在通风橱里进行!!!柱色谱是以硅胶或氧化铝作固定相的吸附柱。下面我就几年来过柱的体会写些心得,希望对大家能有所帮助。 1、柱子可以分为:加压,常压,减压压力可以增加淋洗剂的流动速度,减少产品收集的时间,但是会减低柱子的塔板数。所以其他条件相同的时候,常压柱是效率最高的,但是时间

色谱技术简介

色谱技术简介 发布者:杭州科晓化工仪器设备有限公司发布时间:2007年1月30日 Audo look6.0下载引言 色谱法是1906年俄国植物学家Michael Tswett将含有有色的植物叶子色素和溶液通过装填有白垩粒子吸附剂的柱子,企图分离它们时而发现并命名的。各种色素以不同的速率通过柱子,从而彼此分开。分离开的色素形成不同的 色带而易于区分,由此得名为色谱法(Chromatography),又称层析法。其后的一个重大进展是1941年Martin和Synge 发现了液-液(分配)色谱法[Liquid-Lipuid(partition)Chromatography,简称LIC]。他们用覆盖于吸附剂表面的并与流动相不混溶的固定液来代替以前仅有的固体吸附剂。试样组分按照其溶解在两相之间分配。Martin和Synge 因为这一工作而荣获1952 年诺贝尔化学奖。在使用柱色谱的早期年代,可靠地鉴定小量的被分离物质是困难的,所以研究发展了纸色谱法(Paper Chromatography,简称PC)。在这种“平面的”技术中,分离主要是通过滤纸上的分配来实现的。然后由于充分考虑了平面色谱法的优点而发展了薄层色谱法(Thin-Layer Chromatography,简称TLC),在这种方法中,分离系在涂布于玻璃板或某些坚硬材料上的薄层吸附剂上进行。 在Stah-l于1958年进行了经典性的工作将技术和所用材料加以标准化之后, 薄层色谱法方赢得了声誉。为了帮助提高纸色谱法或薄层色谱法对离子化合物的分离效率,可以向纸或板施加电场。这种改进了方法分别称作纸上电泳或薄层电泳。 新近发展起来的色谱法 气相色谱法是Martin和James于1952 年首先描述的,现已成为所有色谱法中最高级和最广泛使用的一种方法,它特别适用于气体混合物或挥发性液体和固体,即便对于很复杂的混合物,其分离时间也仅为几分钟左右,这已属司 空见惯。高分辩率、分析迅速和检测灵敏等几种优点之综合使气相色谱法成了几乎每个化学实验室要采用的一种常规 方法。近年来,因为新型液相色谱仪和新型柱填料的发展以及对色谱理论的更深入了解,又重新引起对密闭柱液相色 谱法的兴趣。高效液相色谱法(High-Performance Liquid Chromatography,简称HPLC)迅速成为与气相色谱法一样广泛使用的方法,对于迅速分离非挥发性的或热不稳定的试样来说,高效液相色谱法常常是更可取的。 色谱法分类 色谱法有多种类型,也有多种分类方法。 (一)按两相所处的状态分类 液体作为流动相,称为“液相色谱”(liquid chromatograp-hy);用气体作为流动相,称为“气相色谱”(gas chromatogr-aphy)。固定相也有两种状态,以固体吸附剂作为固定相和以附载在固体上的液体作为固定相,所 以层析法按两相所处的状态可以分为: 液-固色谱(liquid-solid chromatography) 液-液色谱(liquid-liquid chromatography)

胡萝卜素的柱层析分离

胡萝卜素的柱层析法测定 Determination of carotene by column chromatography 摘要:胡萝卜素存在于辣椒、胡萝卜、菠菜等绿色植物中,由于各种胡萝卜素的化学结构不同,它们被氧化铝吸附的强度以及有机溶剂中溶解度都不相同,同植物其他色素比较,胡萝卜素的吸附最差,故最先被洗脱下来。层析法是近代生物学中应用较为广泛的物理化学分析方法之一,为了胡萝卜素分离试验的结果较好,生物化学课中也开设了柱层析法分离胡萝卜素的试验。 关键词:胡萝卜素菠菜柱层析法 胡萝卜素存在于辣椒和胡萝卜等黄绿色植物中,因其在动物体内可转变成维生素A,故称为维生素A原。胡萝卜素可用酒精、石油醚和丙酮等有机溶剂从食 物中提取出来,且能被氧化铝(Al 2O 3 )所吸附,先用高温处理氧化铝以除去水分, 提高氧化铝的吸附力。由于胡萝卜素与其它植物色素的化学结构不同,它们被氧化铝吸附的强度以及在有机溶剂中的溶解度都不相同,故将提取液利用氧化铝层析,再用石油醚等冲洗层析柱,即可分离成不同的色带。同植物其它色素比较,胡萝卜素吸附最差,跑在最前面,故最先被洗脱下来. 层析法(Chromatography)是近代生物化学中应用较为广泛的物理化学分析方法之一。1906年俄国植物学家米哈伊尔·茨维特将此法用于植物色素的分离,故又称色层分析法,最初命名采用Chromatography这一词来描述这一技术(源于希腊文Chromatos,颜色)[1]。该法是利用混合物中各组分分子结构互不相同,理化性质(溶解度、吸附力、分子大小形状及分子极性等)各异,因而在支持物(吸附剂)上分布于不同的区带,以达到分离的目的。层析法一般利用两个相,一个称固定相,一个称流动相。目前常用的层析法根据分离原理不同而分为吸附层析、分配层析、离子交换层析、凝胶层析和亲和层析法等。其中吸附层析法又可根据操作形式的不同分为柱层析法和薄板层析法等。[2]柱层析法是用一根玻璃 柱(1cm×16cm)内装吸附剂粉末(MgO、Al 2O 3 、硅胶等),在柱顶部加入要分离 的样品溶液,再加入一定的有机溶剂(流动相)以洗脱样品中各组分,由于吸附剂对各组分的吸附力不同及各组分在洗脱剂中的溶解度不同,因而在洗脱过程中各组分随洗脱剂向下流动时,层析柱中连续不断地产生吸附、溶解(解吸附),再吸附、再解吸附的现象。经过一段时间的吸附、解吸附后,样品中各组分即以不同的速度向下移动,逐渐分离,在柱上形成不同的区带,先后从柱下端流出,分步收集,可供进一步鉴定[3]。丙酮提取直接比色法及柱层析法在胡萝卜素的测定上存在极显著差异。经分析可知, 柱层析法所得到的数据体现了β胡萝卜素的含量, 而丙酮法所测出的除β胡萝卜素外, 还有α、γ等胡萝卜素的异构体, 另外可能还含有类胡萝卜素、叶黄素及硫化物等分子结构与β胡萝卜素相似的物质, 经相关性分析可知,丙酮法在测定胡萝卜素中取代柱层析法不合适。[4] 材料为菠菜叶时,各条色带清晰,经过几次重复实验后,结果也很稳定,每次均能看出4 条清晰色带,尤其是胡萝卜素远远地被分离开;材料为胡萝卜和红辣椒时,经过重复实验发现虽然胡萝卜素含量很高,也能清晰地看到,但由于其他红色的色素过多,与胡萝卜素混在一起,影响了实验结果,不能使学生一目了然,同时其他色素含量较少,也不能清晰地看到。由实验结果可以看出,菠菜叶

柱色谱分离经验

关于过柱的实验方法和技巧 注意:有机溶剂对身体特有害别是心肺;肝脏等所有过柱操作都要在通风橱里进行!! 常说的过柱子应该叫柱层析分离,也叫柱色谱。我们常用的是以硅胶或氧化铝作固定相的吸附柱。由于柱分的经验成分太多,所以下面我就几年来过柱的体会写些心得,希望能有所帮助。 1、柱子可以分为:加压,常压,减压 压力可以增加淋洗剂的流动速度,减少产品收集的时间,但是会减低柱子的塔板数。所以其他条件相同的时候,常压柱是效率最高的,但是时间也最长,比如天然化合物的分离,一个柱子几个月也是有的。减压柱能够减少硅胶的使用量,感觉能够节省一半甚至更多,但是由于大量的空气通过硅胶会使溶剂挥发(有时在柱子外面有水汽凝结),以及有些比较易分解的东西可能得不到,而且还必须同时使用水泵抽气(很大的噪音,而且时间长)。以前曾经大量的过减压柱,对它有比较深厚的感情,但是自从尝试了加压后,就几乎再也没动过减压的念头了。加压柱是一种比较好的方法,与常压柱类似,只不过外加压力使淋洗剂走的快些。压力的提供可以是压缩空气,双连球或者小气泵(给鱼缸供气的就行)。特别是在容易分解的样品的分离中适用。压力不可过大,不然溶剂走的太快就会减低分离效果。个人觉得加压柱在普通的有机化合物的分离中是比较适用的。 2、关于柱子的尺寸,应该是粗长的最好 柱子长了,相应的塔板数就高。柱子粗了,上样后样品的原点就小(反映在柱子上就是样品层比较薄),这样相对的减小了分离的难度。试想如果柱子十厘米,而样品就有二厘米,那么分离的难度可想而知,恐怕要用很低极性的溶剂慢慢冲了。而如果样品层只有0.5厘米,那么各组分就比较容易得到完全分离了。当然采用粗大的柱子要牺牲比较多的硅胶和溶剂了,不过这些成本相对于产品来说也许就不算什么了(有些不环保的说,不过溶剂回收重蒸后也就减小了部分浪费)。现在见到的柱子径高比一般在1:5~10,书中写硅胶量是样品量的30~40倍,具体的选择要具体分析。如果所需组分和杂质分的比较开(是指在所需组分rf在0.2~0.4,杂质相差0.1以上),就可以少用硅胶,用小柱子(例如200毫克的样品,用2cm×20cm的柱子);如果相差不到0.1,就要加大柱子,我觉得可以增加柱子的直径,比如用3cm的,也可以减小淋洗剂的极性等等。 3、关于无水无氧柱,适用于对氧,水敏感,易分解的产品

柱色谱实验操作方法

一、液-固色谱原理 液-固色谱是基于吸附和溶解性质的分离技术,柱色谱属于液-固吸附色谱。 当混合物溶液加在固定相上,固体表面借各种分子间力(包括范德华力和氢键)作用于混合物中各组分,以不同的作用强度被吸附在固体表面。 由于吸附剂对各组分的吸附能力不同,当流动相流过固体表面时,混合物各组分在液-固两相间分配。吸附牢固的组分在流动相分配少,吸附弱的组分在流动相分配多。流动相流过时各组分会以不同的速率向下移动,吸附弱的组分以较快的速率向下移动。随着流动相的移动,在新接触的固定相表面上又依这种吸附-溶解过程进行新的分配,新鲜流动相流过已趋平衡的固定相表面时也重复这一过程,结果是吸附弱的组分随着流动相移动在前面,吸附强的组分移动在后面,吸附特别强的组分甚至会不随流动相移动,各种化合物在色谱柱中形成带状分布,实现混合物的分离。 二、柱色谱分离条件 (1)固定相选择 柱色谱使用的固定相材料又称吸附剂。

吸附剂对有机物的吸附作用有多种形式。以氧化铝作为固定相时,非极性或弱极性有机物只有范德华力与固定相作用,吸附较弱;极性有机物同固定相之间可能有偶极力或氢键作用,有时还有成盐作用。这些作用的强度依次为: 成盐作用> 配位作用> 氢键作用> 偶极作用> 范德华力作用。有机物的极性越强,在氧化铝上的吸附越强。 常用吸附剂有氧化铝、硅胶、活性炭等(表1)。 色谱用的氧化铝可分酸性、中性和碱性三种。酸性氧化铝pH约为4~4.5,用于分离羧酸、氨基酸等酸性物质;中性氧化铝pH值为7.5,用于分离中性物质,应用最广;碱性氧化铝pH为9~10,用于分离生物碱、胺和其它碱性化合物等。

吸附剂的活性与其含水量有关。含水量越低,活性越高。脱水的中性氧化铝称为活性氧化铝。 硅胶是中性的吸附剂,可用于分离各种有机物,是应用最为广泛的固定相材料之一。 活性炭常用于分离极性较弱或非极性有机物。 吸附剂的粒度越小,比表面越大,分离效果越明显,但流动相流过越慢,有时会产生分离带的在重叠,适得其反。 (2)流动相选择 色谱分离使用的流动相又称展开剂。 展开剂对于选定了固定相的色谱分离有重要的影响。 在色谱分离过程中混合物中各组分在吸附剂和展开剂之间发生吸附-溶解分配,强极性展开剂对极性大的有机物溶解的多,弱极性或非极性展开剂对极性小的有机物溶解的多,随展开剂的流过不同极性的有机物以不同的次序形成分离带。 在氧化铝柱中,选择适当极性的展开剂能使各种有机物按先弱后强的极性顺序形成分离带,流出色谱柱。 当一种溶剂不能实现很好的分离时,选择使用不同极性的溶剂分级洗脱。如一种溶剂作为展开剂只洗脱了混合物中一种化合物,对其它组分不能展开洗脱,需换一种极性更大的溶剂进行第二次洗脱。这样分次用不同的展开剂可以将各组分分离。 三、柱色谱分离操作

蛋白质色谱分离方法

蛋白质色谱分离方法 摘要蛋白质是生命有机体的主要成分,在生命体生长发育的各个阶段都起着重要作用。所以分离和检测蛋白质一直是人们研究的热点。依据蛋白质的物理、化学及生物学特性,已有多种分离手段,如:超滤法、SDS-PAGE、亲和层析等,其中,液相色谱分离技术由于具有重复性好、分辨率高等优势在蛋白质分离检测中得到了广泛的应用。 关键词高效液相色谱高效离子交换色谱反相高效液相色谱高效凝胶过滤色谱高效亲和色谱 一、引言 蛋白质在组织或细胞中一般都是以复杂的混合物形式存在,每种类型的细胞都含有成千种不同的蛋白质。蛋白质的分离和提纯工作是一项艰巨而繁重的任务,到目前为止,还没有一个单独的或一套现成的方法能把任何一种蛋白质完全的从复杂的混合物中提取出来,但对任何一种蛋白质都有可能选择一套适当的分离提纯程序来获取高纯度的制品。 1、蛋白质纯化的总战略考虑 蛋白质回收要采用简便易行的方法尽可能多地将目标蛋白从细胞培养上清液、细菌破碎液或组织匀浆中提取出来,收率至少达到90%以上。然后进一步作精纯化,这第一步要求去掉大部分杂蛋白,同时要使样品的体积得到充分浓缩,一般要求要浓缩几十到几百倍,粗提液的体积大大缩小,便于下一步精纯化。而且每一步都要做电泳判断纯化效果。 2、蛋白质分离纯化技术的选择 要尽可能多地了解目标蛋白的结构、氨基酸组成、氨基酸序列,以及蛋白质的空间结构所决定的物理、化学、生物化学和物理化学性质等信息,根据不同蛋白质之间的性质差异或者改变条件使之具有差异,利用一种或多种性质差异,在兼顾收率和纯度的情况下,选择最佳的蛋白质提纯方法。 二、色谱技术简介 1、色谱分离技术基本概念 色谱分离技术又称层析分离技术或色层分离技术,是一种分离复杂混合物中各个组分的有效方法。它是利用不同物质在由固定相和流动相构成的体系中具有不同的分配系数,当两相作相对运动时,这些物质随流动相一起运动,并在两相间进行反复多次的分配,从而使各物质达到分离。当流动相中携带的混合物流经

高效液相色谱法的分类及其分离原理

高效液相色谱法的分类及其分离原理 高效液相色谱法分为:液-固色谱法、液-液色谱法、离子交换色谱法、凝胶色谱法。 1.液-固色谱法(液-固吸附色谱法) 固定相是固体吸附剂,它是根据物质在固定相上的吸附作用不同来进行分配的。 ①液-固色谱法的作用机制 吸附剂:一些多孔的固体颗粒物质,其表面常存在分散的吸附中心点。 流动相中的溶质分子X(液相)被流动相S带入色谱柱后,在随载液流动的过程中,发生如下交换反应: X(液相)+nS(吸附)<==>X(吸附)+nS(液相) 其作用机制是溶质分子X(液相)和溶剂分子S(液相)对吸附剂活性表面的竞争吸附。 吸附反应的平衡常数K为: K值较小:溶剂分子吸附力很强,被吸附的溶质分子很少,先流出色谱柱。 K值较大:表示该组分分子的吸附能力较强,后流出色谱柱。 发生在吸附剂表面上的吸附-解吸平衡,就是液-固色谱分离的基础。 ②液-固色谱法的吸附剂和流动相 常用的液-固色谱吸附剂:薄膜型硅胶、全多孔型硅胶、薄膜型氧化铝、全多孔型氧化铝、分子筛、聚酰胺等。 一般规律:对于固定相而言,非极性分子与极性吸附剂(如硅胶、氧化铜)之间的作用力很弱,分配比k较小,保留时间较短;但极性分子与极性吸附剂之间的作用力很强,分配比k大,保留时间长。 对流动相的基本要求: 试样要能够溶于流动相中 流动相粘度较小 流动相不能影响试样的检测 常用的流动相:甲醇、乙醚、苯、乙腈、乙酸乙酯、吡啶等。 ③液-固色谱法的应用 常用于分离极性不同的化合物、含有不同类型或不;数量官能团的有机化合物,以及有机化合物的不同的异构体;但液-固色谱法不宜用于分离同系物,因为液-固色谱对不同相对分子质量的同系物选择性不高。 2.液-液色谱法(液-液分配色谱法) 将液体固定液涂渍在担体上作为固定相。 ①液-液色谱法的作用机制 溶质在两相间进行分配时,在固定液中溶解度较小的组分较难进入固定液,在色谱柱中向前迁移速度较快;在固定液中溶解度较大的组分容易进入固定液,在色谱柱中向前迁移速度较慢,从而达到分离的目的。 液-液色谱法与液-液萃取法的基本原理相同,均服从分配定律:K=C固/C液 K值大的组分,保留时间长,后流出色谱柱。 ②正相色谱和反相色谱 正相分配色谱用极性物质作固定相,非极性溶剂(如苯、正己烷等)作流动相。 反相分配色谱用非极性物质作固定相,极性溶剂(如水、甲醇、己腈等)作流动相。

色谱法分离原理教案

第十四章色谱法分离原理 一.教学内容 1.色谱分离的基本原理和基本概念 2.色谱分离的理论基础 3.色谱定性和定量分析的方法 二.重点与难点 1.塔板理论,包括流出曲线方程、理论塔板数(n)及有效理论塔板数 (n e f f)和塔板高度(H)及有效塔板高度(H e f f)的计算 2.速率理论方程 3.分离度和基本分离方程 三.教学要求 1.熟练掌握色谱分离方法的原理 2.掌握色谱流出曲线(色谱峰)所代表的各种技术参数的准确含义 3.能够利用塔板理论和速率理论方程判断影响色谱分离各种实验因素 4.学会各种定性和定量的分析方法 四.学时安排4学时 第一节概述 色谱法早在1903年由俄国植物学家茨维特分离植物色素时采用。他在研究植物叶的色素成分时,将植物叶子的萃取物倒入填有

碳酸钙的直立玻璃管内,然后加入石油醚使其自由流下,结果色素中各组分互相分离形成各种不同颜色的谱带。这种方法因此得名为色谱法。以后此法逐渐应用于无色物质的分离,“色谱”二字虽已失去原来的含义.但仍被人们沿用至今。 在色谱法中,将填入玻璃管或不锈钢管内静止不动的一相(固体或液体)称为固定相;自上而下运动的一相(一般是气体或液体)称为流动相;装有固定相的管子(玻璃管或不锈钢管)称为色谱柱。当流动相中样品混合物经过固定相时,就会与固定相发生作用,由于各组分在性质和结构上的差异,与固定相相互作用的类型、强弱也有差异,因此在同一推动力的作用下,不同组分在固定相滞留时间长短不同,从而按先后不同的次序从固定相中流出。 从不同角度,可将色谱法分类如下: 1.按两相状态分类 气体为流动相的色谱称为气相色谱(G C) 根据固定相是固体吸附剂还是固定液(附着在惰性载体上的 一薄层有机化合物液体),又可分为气固色谱(G S C)和气液色谱(GL C)。液体为流动相的色谱称液相色谱(LC) 同理液相色谱亦可分为液固色谱(L SC)和液液色谱(L LC)。超临界流体为流动相的色谱为超临界流体色谱(SF C)。随着色谱工作的发展,通过化学反应将固定液键合到载体表面,这种化学键合固定相的色谱又称化学键合相色谱(CB PC). 2.按分离机理分类 利用组分在吸附剂(固定相)上的吸附能力强弱不同而得以分离的方法,称为吸附色谱法。 利用组分在固定液(固定相)中溶解度不同而达到分离的方法称为分配色谱法。 利用组分在离子交换剂(固定相)上的亲和力大小不同而达到分离的方法,称为离子交换色谱法。

色谱分离技术原理及其的应用

色谱法的最早应用是用于分离植物色素,其方法是这样的:在一玻璃管中放入碳酸钙,将含有植物色素(植物叶的提取液)的石油醚倒入管中。此时,玻璃管的上端立即出现几种颜色的混合谱带。然后用纯石油醚冲洗,随着石油醚的加入,谱带不断地向下移动,并逐渐分开成几个不同颜色的谱带,继续冲洗就可分别接得各种颜色的色素,并可分别进行鉴定。色谱法也由此而得名。现在的色谱法早已不局限于色素的分离,其方法也早已得到了极大的发展,但其分离的原理仍然是一样的。我们仍然叫它色谱分析。 一、色谱分离基本原理:由以上方法可知,在色谱法中存在两相,一相是固定不动的,我们把它叫做固定相;另一相则不断流过固定相,我们把它叫做流动相。色谱法的分离原理就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的。使用外力使含有样品的流动相(气体、液体)通过一固定于柱中或平板上、与流动相互不相溶的固定相表面。当流动相中携带的混合物流经固定相时,混合物中的各组分与固定相发生相互作用。由于混合物中各组分在性质和结构上的差异,与固定相之间产生的作用力的大小、强弱不同,随着流动相的移动,混合物在两相间经过反复多次的分配平衡,使得各组分被固定相保留的时间不同,从而按一定次序由固定相中先后流出。与适当的柱后检测方法结合,实现混合物中各组分的分离与检测。 二、色谱分类方法:色谱分析法有很多种类,从不同的角度出发可以有不同的分类方法。从两相的状态分类:色谱法中,流动相可以是气体,也可以是液体,由此可分为气相色谱法(GC)和液相色谱法(LC)。固定相既可以是固体,也可以是涂在固体上的液体,由此又可将气相色谱法和液相色谱法分为气-液色谱、气-固色谱、液-固色谱、液-液色谱。高效液相色谱法是继气相色谱之后,70年代初期发展起来的一种以液体做流动相的新色谱技术。高效液相色谱是在气相色谱和经典色谱的基础上发展起来的。现代液相色谱和经典液相色谱没有本质的区别。不同点仅仅是现代液相色谱比经典液相色谱有较高的效率和实现了自动化操作。经典的液相色谱法,流动相在常压下输送,所用的固定相柱效低,分析周期长。而现代液相色谱法引用了气相色谱的理论,流动相改为高压输送(最高输送压力可达4.9 107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。因此,高效液相色谱具有分析速度快、分离效能高、自动化等特点。所以人们称它为高压、高速、高效或现代液相色谱法。 液相色谱法 气相色谱不能由色谱图直接给出未知物的定性结果,而必须由已知标准作对照定性。当无纯物质对照时,定性鉴定就很困难,这时需借助质谱、红外和化学法等配合。另外大多数金属盐类和热稳定性差的物质还不能分析。此缺点可高效液相色谱法来克服。 原理和分类 液相色谱法的分离机理是基于混合物中各组分对两相亲和力的差别。根据固定相的不同,液相色谱分为液固色谱、液液色谱和键合相色谱。应用最广的是以硅胶为填料的液固色谱和以微硅胶为基质的键合相色谱。根据固定相的形式,液相色谱法可以分为柱色谱法、纸色谱法及薄层色谱法。按吸附力可分为吸附色谱、分配色谱、离子交换色谱和凝胶渗透色谱。近年来,在液相柱色谱系统中加上高压液流系统,使流动相在高压下快速流动,以提高分离效果,因此出现了高效(又称高压)液相色谱法。 液固吸附色谱 高效液相色谱中的一种,是基于物质吸附作用的不同而实现分离。其固定相是一些具有

相关文档