文档库 最新最全的文档下载
当前位置:文档库 › 三重积分

三重积分

三重积分
三重积分

三重积分n重积分简介

§5 二重积分 一、三重积分的概念 1三重积分的物理解释 设非均匀物体A内分布着一种物质,其密度为,(x,y,z),并假定T在A上连续,那么怎样定义和计算这个物体的质量呢?我们的办法还是通过“分割,近似求和,取极限”这三个步骤得到A的质量是 m= ?(x, y, z)dxdydz A 2三重积分的定义 P243-244 3三重积分的性质、可积条件 与二重积分类似 线性性,单调性,可加性,绝对可积性,乘积可积性,中值定理等? 二、三重积分的计算---化三重积分为累次积分 1长方体[a,b] [c,d] [k,h]上的积分 定理21.15设A二[a,b] [c,d] [e, f],f是A上的连续函数,那么f在A上的三重积分 b d f 可以化为先对z,后对y,x的积分:丨丨丨f (x, y, z)dxdydz= dx dy f (x, y,z)dz, -a c e A 或先y > x > z: f b d II .1 f (x, y, z)dxdydz= dz dx f(x,y,z)dy e a c A 等等(共6种),并且此时(f连续时),各个三次积分的值与积分次序无关,他们都相等。 b d h III f (x, y,z)dxdyd^ dx dv f (x, y,z)dz. ack V 2. 一般区域上的三重积分、简单区域上的三重积分 一般区域上的三重积分、可以分解有限个简单区域上的三重积分简单区域(典型区域)的定义V 二{(x,y,z)|Z i(x,y)乞z ^Z2(x,y), (x,y) D},其中D 为V 在XY 平面上的投影, D =《x, y)|a 兰b, y i(x)兰y 兰y2(x)> 或者D ={(x,y) ^d,x1 (y)兰x2(y)}

二重积分的概念

第一节 二重积分的概念与性质 一、内容要点 1、引例 例1曲顶柱体的体积 例2平面薄片的质量 通过两个实际意义不同的例子,引出所求量可归结为同一形式的和式的极限,进而一般地抽象出二重积分的定义。 2、二重积分的概念:注意讲清楚定义中两个“任意性”及和式极限中各符号的意义。 3、二重积分的性质1-6,注意将其与定积分性质加以比较。 例3关于估值定理的应用 例4关于中值定理的应用 4、二重积分的几何意义——曲顶柱体的体积。 二、教学要求和注意点 理解二重积分,了解重积分的性质,了解二重积分的中值定理。 第二节 二重积分的计算法 一、内容要点 利用直角坐标计算二重积分 1、从几何入手,利用计算“平行截面面积为已知的立体的体积”方法,将二重分化为二次积分: ①若D 为X —型区域:{}b x a x y x y x ≤≤≤≤),()(),(21?? 则 ????=D x x b a dy y x f dx d y x f )()(21),(),(??σ ②若D 为Y —型区域:{}d y c y x y y x ≤≤≤≤),()(),(21?? 则 ????=D y y d c dx y x f dy d y x f )()(21),(),(??σ ③若D 既非X —型,又非Y —型区域,则将D 划分为若干子区域,使每一个子区域为X —型或Y —型。 2、介绍“对称性”在二重积分计算中的应用。 例1化二重积分为二次积分并求值,通过例子说明确定积分限的方法。 例2更换积分次序并计算,通过该例说明选择积分次序的重要性。

例3关于利用对称性计算二重积分的例子。 例4被积函数为绝对值函数、符号函数,取最大值或最小值等函数的例子。 利用极坐标计算二重积分 1、介绍极坐标下二重积分的换元公式。 2、何时选用极坐标进行计算,一般说来,当积分域D 的边界曲线用极坐标方程表示比较简单或被积函数用极坐标表示比较简单,可考虑用积坐标计算。 3、确定积分上下限的办法。 例1将直角坐标系下的二次积分化为极坐标系下的二次积分 例2利用二重积分计算概率积分 dx e x 2 0-+∞? 例3将极坐标系下的二次积分化为直角坐标系下的二次积分 例4利用极坐标计算二重积分 二、教学要求和注意点 1、掌握二重积分(直角坐标、极坐标)的计算方法 2、将重积分化为累次积分计算时,积分限的确定要保持每个单积分的下限小于上限,因此在交换二次积分次序时应注意符号问题。 3、在二重积分的计算时应尽量利用区域和被积函数的对称性以简化计算。 第四节 三重积分 一、内容要点 1、三重积分的概念,存在性及性质 2、三重积分在直角坐标系下的计算 ①先单积分后二重积分 ②先二重积分后单积分 3、更换积分次序 例1将三重积分化为三次积分 例2更换积分次序 例3先二重积分后单积分 4、柱面坐标系下三重积分的计算。 5、何时选用柱面坐标——当Ω是柱形,锥形或旋转体且在坐标面上的投影是圆域或其部分,或者被积函数含有式子)(22y x +?等时,常用柱面坐标计算。 6、球面坐标系下三重积分的计算。 7、何时选用球面坐标——当Ω是球体或其部分,或被积函数含有式子)(222z y x ++?

三重积分及其计算和多重积分72254

第四节 三重积分及其计算和多重积分 在第三节中我们讨论了二重积分,本节将之推广到一般的n 维空间中去. 类似于第三节,我们先定义一个R 3中集合的可求体积性. 同样可以给出一列类似的结论. 读者自己推广. 这里将不再赘述. 一、 引例 设一个物体在空间R 3中占领了一个有界可求体积的区域V ,它的点密度为()z y x f ,,,现在要求这个物体的质量.假设密度函数是有界的连续函数,可以将区域V 分割为若干个可求体积的小区域n V V V ,...,,21,其体积分别是n V V V ???,...,,21,直径分别是n d d d ,...,,21,即},||sup{|i i V Q W WQ d ∈=, (i =1,2,…,n ), |WQ|表示W, Q 两点的距离.设 },...,,m ax {21n d d d =λ,则当λ很小时,()z y x f ,,在i V 上的变化也很小.可以用这个小 区域上的任意一点()i i i z y x ,,的密度()i i i z y x f ,,来近似整个小区域上的密度,这样我们可以求得这个小的立体的质量近似为()i i i i V z y x f ?,,,所有这样的小的立体的质量之和即为这个物体的质量的一个近似值.即 ()i i i i n i V z y x f M ?≈∑=,,1 . 当0→λ时,这个和式的极限存在,就是物体的质量.即 ()i i i i n i V z y x f M ?=∑=→,,lim 1 λ. 从上面的讨论可以看出,整个求质量的过程和求曲顶柱体的体积是类似的,都是先分割,再求和,最后取极限.所以我们也可以得到下面一类积分. 二、 三重积分的定义 设()z y x f ,,是空间3 R 中的一个有界可求体积的闭区域V 上的有界函数,将V 任意分割 为若干个可求体积的小闭区域n V V V ,...,,21,这个分割也称为V 的分划,记为P : n V V V ,...,,21. Φ=?o o j i V V (空, j i ≠), 其体积分别是n V V V ???,...,,21,直径分别是n d d d ,...,,21.设 },...,,m ax {21n d d d =λ,或记为||P ||. 在每个小区域中任意取一点()i i i i V z y x ∈,,,作和 ()i i i i n i V z y x f ?∑=,,1 (称为Riemann 和),若当0→λ时,这个和式的极限存在,则称其极

二重积分的概念及性质

二重积分的概念及性质 前面我们已经知道了,定积分与曲边梯形的面积有关。下面我们通过曲顶柱体的体积来引出二重积分的概念,在此我们不作详述,请大家参考有关书籍。 二重积分的定义 设z=f(x,y)为有界闭区域(σ)上的有界函数: (1)把区域(σ)任意划分成n个子域(△σk)(k=1,2,3,…,n),其面积记作△σk(k=1,2,3,…,n); (2)在每一个子域(△σk)上任取一点,作乘积; (3)把所有这些乘积相加,即作出和数 (4)记子域的最大直径d.如果不论子域怎样划分以及怎样选取,上述和数当n→+∞且d→0时的极限存在,那末称此极限为函数f(x,y)在区域(σ)上的二重积分.记作: 即:= 其中x与y称为积分变量,函数f(x,y)称为被积函数,f(x,y)dσ称为被积表达式,(σ)称为积分区域. 关于二重积分的问题 对于二重积分的定义,我们并没有f(x,y)≥0的限.容易看出,当f(x,y)≥0时,二重积分在几何上就是以z=f(x,y)为曲顶,以(σ)为底且母线平行于z轴的曲顶柱体的体积。 上述就是二重积分的几何意义。

如果被积函数f(x,y)在积分区域(σ)上连续,那末二重积分必定存在。 二重积分的性质 (1).被积函数中的常数因子可以提到二重积分符号外面去. (2).有限个函数代数和的二重积分等于各函数二重积分的代数和. (3).如果把积分区域(σ)分成两个子域(σ1)与(σ2),即(σ)=(σ1)+(σ2),那末: (4).如果在(σ)上有f(x,y)≤g(x,y),那末: ≤ (5).设f(x,y)在闭域(σ)上连续,则在(σ)上至少存在一点(ξ,η),使 其中σ是区域(σ)的面积. 二重积分的计算法 直角坐标系中的计算方法 这里我们采取的方法是累次积分法。也就是先把x看成常量,对y进行积分,然后在对x进行积分,或者是先把y看成常量,对x进行积分,然后在对y进行积分。为此我们有积分公式,如下:

[整理]三重积分的计算方法小结与例题76202

三重积分的计算方法介绍: 三重积分的计算是化为三次积分进行的。其实质是计算一个定积分(一重积分)和一个二重积分。从顺序看: 如果先做定积分?2 1),,(z z dz z y x f ,再做二重积分??D d y x F σ),(,就是“投 影法”,也即“先一后二”。步骤为:找Ω及在xoy 面投影域D 。多D 上一点(x,y )“穿线”确定z 的积分限,完成了“先一”这一步(定积分);进而按二重积分的计算步骤计算投影域D 上的二重积分,完成“后二”这一步。σd dz z y x f dv z y x f D z z ??????Ω =2 1]),,([),,( 如果先做二重积分??z D d z y x f σ),,(再做定积分?2 1 )(c c dz z F ,就是“截面 法”,也即“先二后一”。步骤为:确定Ω位于平面21c z c z ==与之间,即],[21c c z ∈,过z 作平行于xoy 面的平面截Ω,截面z D 。区域z D 的边界曲面都是z 的函数。计算区域z D 上的二重积分??z D d z y x f σ),,(,完成 了“先二”这一步(二重积分);进而计算定积分?2 1 )(c c dz z F ,完成“后 一”这一步。dz d z y x f dv z y x f c c D z ]),,([),,(2 1σ??????Ω = 当被积函数f (z )仅为z 的函数(与x,y 无关),且z D 的面积)(z σ容易求出时,“截面法”尤为方便。 为了简化积分的计算,还有如何选择适当的坐标系计算的问题。可以按以下几点考虑:将积分区域Ω投影到xoy 面,得投影区域D(平面) (1) D 是X 型或Y 型,可选择直角坐标系计算(当Ω的边界曲

定积分与重积分的定义与性质应用

定积分与重积分的定义与性质应用 1.定义 (1)定积分: <1>定积分定义与夹逼定理的综合应用 例1 :1 2222 lim n n n n n →+∞ +… 提示:分母由夹逼定理全部替换成1/n ,然后用定积分定义求和。 <2>取对数,求积变求和后用定积分定义 例2:求122 2=1 4 (n +i ) lim n n i n n →∞ ∏ 222=1 22=122=12 22 2 2 2 2 n 0 2arctan 2-4 n ln =ln[n (1+())]-4ln 11=22ln +ln[1+()]-4ln 1=ln[1+()]2+2-2lim ln =lim ln (1+x )dx=ln (1+x )|-1+=2ln 5-4+2arctan 2lim =25n n n i n i n i n n n x i x n n i n n n n n n i n n x x x x x e →∞ →∞ →∞ =∴∑∑∑?? 令原式,则 <3>使用定义累次积分 例3:112220011lim ()() 11n n n i j n dx dy n i n j x y →+∞===++++∑∑?? <4>不是所有和式一看到就用定积分定义 例4:(stolz 定理) 例5:基本代数变换技巧 A.(隔项约分)

例5.1:33=2-1 lim +1 n n k k k →+∞ ∏求 22=222=22211 =lim 11 1(1)(1)1 lim 1 112(1)(1)12lim (1)2113 n n k n n k n k k k k k k k k k k k k n n n n →+∞ →+∞→+∞-+++-+-+-++=+-+?+-++==+-+∏∏解:原式 B.(连环反应(分子分母同乘)) a.例5.2: n n 1242n 242n 21111lim(1)(1)(1)(1)=2222 11111lim (1)(1)(1)(1)122221-2 1 lim 2(1)22 n n +→∞→∞→∞ ++++++++=-=………… 变式:22n n lim(1)(1)(1),|a|<1lim n n a a a x →∞ →∞ +++……其中,求; b.例5.3: 23232311 lim cos cos cos cos 2222 cos cos cos cos sin 22222lim sin 2 cos cos cos cos sin 22222lim 2sin 2 sin lim =12sin 2 n n n n n n n n n n n n n x x x x x x x x x x x x x x x x x x →∞→∞--→∞→∞===……………… C.本身就有公式(下例分母) 例5.4: 0lim lim n n n === (2)二重积分

(精选)三重积分的计算方法与例题

三重积分的计算方法: 三重积分的计算是化为三次积分进行的。其实质是计算一个定积分(一重积分)和一个二重积分。从顺序看: 如果先做定积分?2 1),,(z z dz z y x f ,再做二重积分??D d y x F σ),(,就是“投 影法”,也即“先一后二”。步骤为:找Ω及在xoy 面投影域D 。多D 上一点(x,y )“穿线”确定z 的积分限,完成了“先一”这一步(定积分);进而按二重积分的计算步骤计算投影域D 上的二重积分,完成“后二”这一步。σd dz z y x f dv z y x f D z z ??????Ω =2 1]),,([),,( 如果先做二重积分??z D d z y x f σ),,(再做定积分?2 1 )(c c dz z F ,就是“截面 法”,也即“先二后一”。步骤为:确定Ω位于平面21c z c z ==与之间,即],[21c c z ∈,过z 作平行于xoy 面的平面截Ω,截面z D 。区域z D 的边界曲面都是z 的函数。计算区域z D 上的二重积分??z D d z y x f σ),,(,完成 了“先二”这一步(二重积分);进而计算定积分?2 1 )(c c dz z F ,完成“后 一”这一步。dz d z y x f dv z y x f c c D z ]),,([),,(2 1σ??????Ω = 当被积函数f (z )仅为z 的函数(与x,y 无关),且z D 的面积)(z σ容易求出时,“截面法”尤为方便。 为了简化积分的计算,还有如何选择适当的坐标系计算的问题。可以按以下几点考虑:将积分区域Ω投影到xoy 面,得投影区域D(平面) (1) D 是X 型或Y 型,可选择直角坐标系计算(当Ω的边界曲

二重积分与三重积分区别

都是递进关系,从一重积分开始,只说几何意义吧。 一重积分(定积分):只有一个自变量y = f(x) 当被积函数为1时,就是直线的长度(自由度较大) ∫(a→b) dx = L(直线长度) 被积函数不为1时,就是图形的面积(规则) ∫(a→b) f(x) dx = A(平面面积) 另外,定积分也可以求规则的旋转体体积,分别是 盘旋法(Disc Method):V = π∫(a→b) f2(x) dx 圆壳法(Shell Method):V = 2π∫(a→b) xf(x) dx 计算方法有换元积分法,极坐标法等,定积分接触得多,不详说了 ∫(α→β) (1/2)[A(θ)]2 dθ = A(极坐标下的平面面积) 二重积分:有两个自变量z = f(x,y) 当被积函数为1时,就是面积(自由度较大) ∫(a→b) ∫(c→d) dxdy = A(平面面积) 当被积函数不为1时,就是图形的体积(规则)、和旋转体体积 ∫(a→b) ∫(c→d) dxdy = V(旋转体体积) 计算方法有直角坐标法、极坐标法、雅可比换元法等 极坐标变换:{ x = rcosθ { y = rsinθ { α≤θ≤β、最大范围:0 ≤θ≤ 2π ∫(α→β) ∫(h→k) f(rcosθ,rsinθ) r drdθ 三重积分:有三个自变量u = f(x,y,z) 被积函数为1时,就是体积、旋转体体积(自由度最大) ∫(a→b) ∫(c→d) ∫(e→f) dxdydz = V(旋转体体积) 当被积函数不为1时,就没有几何意义了,有物理意义等 计算方法有直角坐标法、柱坐标切片法、柱坐标投影法、球面坐标法、雅可比换元法等极坐标变化(柱坐标):{ x = rcosθ { y = rsinθ { z = z { h ≤ r ≤ k { α≤θ≤β、最大范围:0 ≤θ≤ 2π ∫(α→β) ∫(h→k) ∫(z?→z?) f(rcosθ,rsinθ,z) r dzdrdθ 极坐标变化(球坐标):{ x = rsinφcosθ { y = rsinφsinθ { z = rcosφ

重积分论文

重积分论文 摘要:高等数学讨论的重积分主要包括二重积分和三重积分两部分,引起二重积分概念的过程是测量曲顶柱体体积的过程的反映,三重积分概念是作为二重积分概念的推广而引出的,但事实上三重积分也是某些具体现实过程的反映。重积分在各种知识领域中的应用非常广阔,我们将在理论力学,材料力学,水力学及其她一些工程学科中碰到它们。重积分主要用来解决实际问题,在本文中,首先我总结一下学习中遇到的重积分的应用,比如求空间立体的体积,空间物体的质量及其在几何和物理方面的应用,并借以实例加以说明。其次,谈谈我个人对学习重积分的一些建议和想法。 关键词:重积分 在高等数学中,重积分是多元函数积分学的内容,在一元函数积分学中我们知道定积分是某种确定形式的和的极限。这种和的概念推广到定义在区域、曲线及曲面上多元函数的情形,便得到重积分、曲线积分及曲面积分的概念。高等数学讨论的重积分主要包括二重积分和三重积分两部分,引起二重积分概念的过程是测量曲顶柱体体积的过程的反映,三重积分概念是作为二重积分概念的推广而引出的,但事实上三重积分也是某些具体现实过程的反映。在本章中将介绍重积分的概念、计算法以及它们的一些应用。重积分在各种知识领域中的应用非常广阔,我们将在理论力学,材料力学,水力学及其她一些工程学科中碰到它们。文章中我分为两个部分来谈重积分,第一部分主要归纳了重积分的应用,对于重积分的学习,要求主要掌握重积分的计算和应用,会用重积分的思想解决实际问题,然而计算又涵盖在具体应用中。因此学习重积分要从它的应用着手。第二部分谈了谈自己对学习重积分的一些建议和想法。主要从学习重积分的思想和计算方法两方面来谈。

三重积分概念及其计算

§5 三重积分 教学目的 掌握三重积分的定义和性质. 教学内容 三重积分的定义和性质;三重积分的积分换元法;柱面坐标变换;球面坐标变换. 基本要求 掌握三重积分的定义和性质,熟练掌握化三重积分为累次积分,及用柱面坐标变 换和球面坐标变换计算三重积分的方法. 教学建议 (1) 要求学生必须掌握三重积分的定义和性质,知道有界闭区域上的连续函数必可 积.由于三重积分的定义与性质及充要条件与二重积分类似,可作扼要叙述与比较. (2) 对较好学生可布置这节的广义极坐标的习题. 一、三重积分的概念 背景:求某非均匀密度的曲顶柱体的质量时,通过“分割、近似,求和、取极限”的步骤, 利用求柱体的质量方法来得到结果.一类大量的“非均匀”问题都采用类似的方法,从而归结出下面一类积分的定义. 定义1 设()z y x f ,,是定义在三维空间可求体积的有界闭区域V 上的函数,J 是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于V 的任何分割T ,当它的细度δ

则()z y x f ,,必在V 上可积. 二、化三重积分为累次积分 定理21.15 若函数()z y x f ,,在长方体V =[][][]f e d c b a ,,,??上的三重积分存在,且对任何x ∈[]b a ,,二重积分 ()x I =()dydz z y x f D ??,, 存在,其中D =[][]f e d c ,,?,则积分 ?b a dx ()??D d z y x f σ ,, 也存在,且 ()???V dxdydz z y x f ,,=?b a dx ()??D d z y x f σ ,,. (1) 为了方便有时也可采用其他的计算顺序.若简单区域V 由集合 ()()()()(){} b x a x y y x y y x z z y x z z y x V ≤≤≤≤≤≤=,,,,,,2121 所确定,V 在xy 平面上的投影区域为 D =()()(){ }b x a x y y x y y x ≤≤≤≤,,21 是一个x 型区域,设()z y x f ,,在上连续, ()y x z ,1,()y x z ,2在D 上连续,()x y 1,()x y 2上[]b a ,连续,则 ()???V dxdydz z y x f ,,= ()()???D z y x z dz z y x f dxdy 21,,,=()()()() ???b a x y x y z y x z dz z y x f dy dx 212 1,,,, 其他简单区域类似. 一般区域V 上的三重积分,常将区域分解为有限个简单区域上的积分的和来计算. 例1 计算 ???+V dxdydz y x 221 ,其中V 为由

三重积分独家解法

§重积分 重积分是定积分延伸,定积分是如图(1) 所示,由上曲线和下曲线在定义域内所 围成面积S ;二重积分的已知条件是一 平面区域作为二重积分的“定义域”,被积函数是两个 空间曲面函数的差值,如 xydθD ,其实,它的二重积分的原始形式为 [f x ?g x ]dθD ,即f x ?g x =xy 。其中,f (x )和g (x )均为空间 曲面的函数表达式。而如果把二重积分以定积分的 形式表现则比较牵强: xydθA B ,A 与B 的差值就是二重积分的定义区域,但是,A 和B 只是作者假设 的虚拟值,实际并不存在,为了简洁地表达二重积分,引入了“ ”符号,这是二重积分的高度抽象化,单从这个符号是看不出二重积分的几何意义的。 §三重积分 三重积分是在体积的基础上的四维积分。定积分的定义域在一维数轴上(X )反映,积分函数为曲线,对应积分几何意义为面积;二重积分的定义域在二维数轴(X-Y )上反映,积分函数为曲面,对应几何意义为体积;三重积分的被积函数没有固定的意义,积分也就没有固定的意义,比如, xdxdydz Ω ,被积函数为f(x)=x ,当x 表示密度

时, xdxdydz Ω 表示质量,当x 表示单位粒子能量时, xdxdydz Ω 表示内能…即:密度、单位粒子能量都是一种四维变量。 这些变量是关于x 、y 、z 的函数,我们 暂设为h(x,y,z)。即 (x ,y,z)dxdydz Ω .以高等数学(第六版 下册 同济大学数学系编)P159 页例1(计算三重积分 xdxdydz Ω ,其中Ω为三个坐标面及平面x+2y+z=1 所围成的闭区域)为例,闭区域Ω如图所示, xdxdydz Ω 中的h(x,y,z)=x 是x 的一元一次函数,与y,z 无关,我们采用微分思想,把三棱锥C-OAB 分成若干份,则阴影部分的体积为dV=yzdx .阴影部分的三重积分为xyzdz (x 为被积函数h(x,y,z)=x ).则 所求重积分为 xyzdx x 2x 1,但是y,z 必须用x 的函数关系式表示,即 z=-x+1,y= 1?x 2,三重积分 xyzdx 10= [x ? 1?x 2 ? ?x +1 ]dx 10=14 x ?2x 2+x 3 dx 10=148,所以,同样, 只是三重积分的高度抽象化的表达式,反映不出三重积分的几何意义。 附同济六版解法:作闭区域Ω如图所示. 将Ω投影到xOy 面上,得投影区域D xy 为三角形闭区域 OAB .直线OA 、OB 、及AB 的方程依次为y=0、x=0及x+2y=1, 所以 D xy = (x ,y) 0≤y ≤1?x 2,0≤x ≤1 . 在D xy 内任取一点 x ,y ,过此点作平行于z 轴的直线,

重积分论文

《高等数学》——重积分 麻安平 贵州民族大学建筑工程学院土木一班 摘要:高等数学讨论的重积分主要包括二重积分和三重积分两部分,引起二重积分概念的过程是测量曲顶柱体体积的过程的反映,三重积分概念是作为二重积分概念的推广而引出的,但事实上三重积分也是某些具体现实过程的反映。重积分在各种知识领域中的应用非常广阔,我们将在理论力学,材料力学,水力学及其她一些工程学科中碰到它们。重积分主要用来解决实际问题,在本文中,首先我总结一下学习中遇到的重积分的应用,比如求空间立体的体积,空间物体的质量及其在几何和物理方面的应用。 关键词:重积分;曲面面积. I .重积分的应用归纳如下: 1.1曲面的面积 设曲面∑的方程为(),y x f z ,=∑在xoy 面上的投影为xy D ,函数 ()y x f ,在D 上具有连续偏导数,则曲面∑的面积为: ()()????++=? ??? ????+??? ????+=D y x D d y x f y x f dxdy y f x f A σ,,11222 2 若曲面∑的方程为 (),z y g x ,=∑在yoz 面上的投影为yz D ,则曲面 ∑ 的面积为:

()()???? ++=??? ????+? ??? ????+=D z y D d z y f z y f dydz z g y g A σ,,112 22 2 若曲面∑的方程为(),x z h y ,=∑在zox 面上的投影为zx D , 则曲面∑的面积为: ()()????++=??? ????+??? ????+=D x z D d x z f x z f dzdx x h z h A σ,,112 22 2 例1:计算双曲抛物面xy z =被柱面222R y x =+所截出的面积A 。 解:曲面在xoy 面上投影为222 :R y x D ≤+,则 ??++=D y x dxdy z z A 2 2 1 即有 : ()322 20 2113R D A d R πθπ??===+-???? ???? 从而被柱面222 R y x =+所截出的面积A 如上所示。 1.2质量 1.2.1平面薄片的质量 若平面薄片占有平面闭区域 D ,面密度为()y x ,μ,则它的质量为 ()??=D d y x m σμ,,其中()σμd y x dm ,=称为质量元素. 1.2.2物体的质量

(初稿)三重积分计算方法小结

江西师范大学数学与信息科学学院 学士学位论文 三重积分的计算方法小结Methods of Calculation of Triple Integral 姓名:蒋晓颖 学号: 1007012048 学院:数学与信息科学学院 专业:数学与应用数学 指导老师:蒋新荣(副教授) 完成时间:2014年1月23日

三重积分的计算方法小结 蒋晓颖 【摘要】三重积分的计算是数学分析中的难点,本文结合教材以及相关资料较全面地给出了三重积分计算中的四种处理方法。第一,利用降低三重积分重数的思想,将其化为累次积分;第二,采用坐标变换的方法,将积分体表示成适当的形式;第三,充分运用被积函数的奇偶性和积分区域的对称性,简化计算;第四,利用高斯公式将三重积分的计算转化成曲面积分计算。希望这几种方法能对学习者具有一定的指导意义。 【关键词】三重积分累次积分坐标变换对称性高斯公式

Methods of Calculation of Triple Integral Jiang Xiaoying 【Abstract】The calculation of triple integral is the difficulty in Mathematics analysis.In this paper,unifying the teaching and related materials ,we give four instructive methods of the calculation of triple integral for learner.The four methods are as follows:the first,lower the multiplicity of triple integral and replace it with iterated integral;the second,with the method of coordinate alternate,we can transform the integral volume into appropriate form;the third,fully use the parity of integrand and symmetry of integral area to simplify calculation;finally,we can calculate the triple integral with the Gauss formula that could transform triple integral into a surface integral. 【Key words】triple integral iterated integral coordinate alternate symmetry Gauss formula

二重积分的概念及计算法(一)

习题9-1,9-2 二重积分的概念及计算法(一) 1.填空题: (1)由二重积分的几何意义得 ∫∫≤+=??122221y x d y x σ . (2)根据二重积分的性质,比较下列积分的大小: ① ,其中是三角形区域,三顶点为(1,0),(1,1),(2,0),则 ∫∫+=D d y x I σ)ln(1∫∫ +=D d y x I σ22)][ln(D 1I 2I . ②,,其中是由∫∫++=D d y x I σ21)1(∫∫ ++=D d y x I σ32)1(D x 轴与直线围成的区域,则 1,0?==+x y x 1I 2I . (3)化二重积分为两种不同次序下的二次积分,其中是直线D 2,==x x y 及双曲线)0(1f x x y =所围成的闭区域,= ∫∫d y x f σ),(D = (4)①交换积分次序: ∫∫??=22221),(x x x dy y x f dx ②交换积分次序: ∫∫∫∫?=+y y dx y x f dy dx y x f dy 20313010),(),( 2.利用二重积分的性质,估计积分的值: ∫∫++=D d y x I σ)94(22,其中是圆形闭区域:. D 422≤+y x 3.计算下列二重积分: (1)∫∫+= D d x x y I σ2)1(cos ,其中是顶点分别为(0,0),(1,0),(1,2)和(0,1)的梯形闭区域. D (2),其中是由∫∫+=D y x d e I σD 1≤+y x 所确定的闭区域. 4.计算二次积分∫∫101dx e dy y x y . 5.交换积分次序,证明: ∫∫∫???=a y a x a m x a m dx x f e x a dx x f e dy 000)()()()()(. 6.设平面薄片所占的闭区域是由直线D x y y x ==+,2和x 轴所围成,它的面密度

高等数学三重积分计算方法总结

高等数学三重积分计算方法总结 1、利用直角坐标计算三重积分: (1)投影法(先一后二): 1)外层(二重积分):区域Ω在xoy 面上的投影区域Dxy 2)内层(定积分): 从区域Ω的底面上的z 值,到区域Ω的顶面上的z 值。 (2)截面法(先二后一): 1)外层(定积分): 区域Ω在z 轴上的投影区间。 2)内层(二重积分):Ω垂直于z 轴的截面区域。 2、利用柱坐标计算三重积分 3、利用球面坐标计算三重积分 定限方法: (1)转面定θ(2)转线定φ (3)线段定r 4、利用对称性化简三重积分计算 设积分区域Ω关于xoy 平面对称, (1)若被积函数 f (x,y,z ) 是关于z 的奇函数,则三重积分为零。 (2)若被积函数 f (x,y,z ) 是关于z 的偶函数,则三重积分等于:在xoy 平面上方的半个Ω,区域上的三重积分的两倍. 使用对称性时应注意: 1)积分区域关于坐标面的对称性; 2)被积函数关于变量的奇偶性。 (cos ,sin ,)f z d d dz ρθρθρρθΩ???(,,)f x y z dv Ω=??? (,,)f x y z dxdydz Ω??? (sin cos ,sin sin ,cos )f r r r φθφθφΩ=???2 sin r drd d φφθ

例 计算 ,其中Ω是由曲面z = x 2 + y 2和x 2 + y 2 + z 2 =2所围成的空间闭区域. 解: 是关于x 的奇函数,且Ω关于 yoz 面对称 故其积分为零。 2x 2 y 是关于y 的奇函数,且关于 zox 面对称 ???Ω++dxdydz z y x x 2)(2 )(z y x x ++ 22222222)(zx xyz y x z y x x +++++=xyz z y x x 2)(222+++ ,022???Ω=∴ydv x ???Ω++=∴dxdydz z y x x I 2)(,22???Ω=zdxdydz x ???Ωθρρ??θρ=dz d d z 22cos 2????θρρθ=zdz d d 23cos 2 ??πρρ-ρ-θρθ=20104 223)2(cos d d 245π=222ρ-ρπ20

二重积分计算方法

这里讨论的计算方法指的是利用现有的MATLAB函数来求解,而不是根据具体的数值计算方法来编写相应程序。目前最新版的2009a有关于一般区域二重积分的计算函数quad2d(详 细介绍见https://www.wendangku.net/doc/802392187.html,/viewthread.php?tid=873479),但没有一般区域三重 积分的计算函数,而NIT工具箱似乎也没有一般区域三重积分的计算函数。 本贴的目的是介绍一种在7.X版本MATLAB(不一定是2009a)里求解一般区域二重三重积 分的思路方法。需要说明的是,上述链接里已经讨论了一种求解一般区域二重三重积分的 思路方法,就是将被积函数“延拓”到矩形或者长方体区域,但是这种方法不可避免引入 很多乘0运算浪费时间。因此,新的思路将避免这些。由于是调用已有的MATLAB函数求解,在求一般区域二重积分时,效率和2009a的quad2d相比有一些差距,但是相对于"延拓"函数的做法,效率大大提高了。下面结合一些简单例子说明下计算方法。 譬如二元函数f(x,y) = x*y,y从sin(x)积分到cos(x),x从1积分到2,这个积分可以 很容易用符号积分算出结果 1.syms x y 2.int(int(x*y,y,sin(x),cos(x)),1,2) ] 3.结果是 -1/2*cos(1)*sin(1)-1/4*cos(1)^2+cos(2)*sin(2)+1/4*cos(2)^2 = -0.635412702399943 复制代码 如果你用的是2009a,你可以用 1.quad2d(@(x,y) x.*y,1,2,@(x)sin(x),@(x)cos(x),'AbsTol',1e-12) 复制代码 得到上述结果。 如果用的不是2009a,那么你可以利用NIT工具箱里的quad2dggen函数。 那么我们如果既没有NIT工具箱用的也不是2009a,怎么办呢? 答案是我们可以利用两次quadl函数,注意到quadl函数要求积分表达式必须写成向量化 形式,所以我们构造的函数必须能接受向量输入。见如下代码 1.function IntDemo 2.function f1 = myfun1(x) 3.f1 = zeros(size(x)); 4.for k = 1:length(x) 5.f1(k) = quadl(@(y) x(k)*y,sin(x(k)),cos(x(k))); 6.end 7.end 8.y = quadl(@myfun1,1,2) 9.end

三重积分概念及其计算

§ 5三重积分 教学目的掌握三重积分的定义和性质. 教学内容三重积分的定义和性质;三重积分的积分换元法;柱面坐标变换;球面坐标变换. 基本要求掌握三重积分的定义和性质,熟练掌握化三重积分为累次积分,及用柱面坐标变 换和球面坐标变换计算三重积分的方法. 教学建议⑴要求学生必须掌握三重积分的定义和性质,知道有界闭区域上的连续函数必可积?由于三重积分的定义与性质及充要条件与二重积分类似,可作扼要叙述与比较. (2)对较好学生可布置这节的广义极坐标的习题. 、三重积分的概念 背景:求某非均匀密度的曲顶柱体的质量时,通过“分割、近似,求和、取极限”的步骤, 利用求柱体的质量方法来得到结果?一类大量的“非均匀”问题都采用类似的方法,从而归结出下面一类积分的定义. 定义1设f x, y,z是定义在三维空间可求体积的有界闭区域V上的函数,J是一个确定的数,若对任给 的正数「总存在某个正数:,使对于V 的任何分割T , 当它的细度T ::: '?时,属于T的所有积分和都有 N 瓦f Gl,q)眄-J o \=1 f x,y,z在V上的三重积分,记作 ill f x,y,z dvdydz J = V 其中f x,y,z称为三重积分的被积函数,x,y,z称为积则称f x,y,z在V上可积,数J称为函数 分变量,称为V积分区域. 可积函数类 (i) 有界闭区域V上的连续函数必可积. (ii) 有界闭区域V上的有界函数f x,y,z的间断点集中在有限多个零体积的曲面上, 则f x, y, Z必在v上可积? 二、化三重积分为累次积分

定理21.15若函数fx,y,z在长方体v=a," c,dl e,fl上的三重积分存在,且对任何x a,b I二重积分 H f(x,y,z dydz I x = D 存在,其中D =C,d 1 e,f】,则积分 b dx f x, y,zd r a D b in f x,y, z dxdydz . dx f x,y,zd二 也存在,且V =a D . (1) 为了方便有时也可采用其他的计算顺序?若简单区域v由集合 V J;X y, z|z x, y

三重积分

§5.三重积分 数学分析中常用的曲面和它对应的方程(温馨提示:请大家务必记住常用结论!) 1.球面:()02222>=++a a z y x 表示以原点为球心,半径为a 的球面。 2.柱面:平行于定直线L 并沿定曲线C 移动的动直线所形成的曲面叫做柱面。定曲线C 叫做柱面的准线,动直线叫做柱面的母线。 一般地,方程0),(=y x f 表示以曲线? ??==00 ),(:z y x f C 为准线,母线平行于z 轴的柱面。 类似可以写出方程0),(0),(==x z f z y f 和表示的曲面。 注:当准线是直线时,柱面退化为平面。 几种常用的柱面(柱面名称与准线名称相对应) (1)122 22=+b y a x 表示母线平行于z 轴的椭圆柱面。特别地,当b a =时,它表示母线平行 于z 轴的圆柱面。这里的定直线L 就是z 轴。

(2)()022>=p px y 表示母线平行于z 轴的抛物柱面。 (3)1-22 22=+b z a x 表示母线平行y 轴的双曲柱面。

3.旋转曲面:平面曲线C 绕该平面上一条定直线L 旋转而形成的曲面,叫做旋转曲面。 其中平面曲线C 叫做旋转曲面的母线,定直线L 叫做旋转曲面的轴。 例如平面曲线,0 ),(:?? ?==x z y f C 绕z 轴旋转一周所得到的旋转曲面的方程为 0),(22=+±z y x f 。 记忆口诀:绕谁谁不变,用另外两个变量的平方和的正负算术平方根代替方程中另外一个变量。 如果取旋转曲面的母线为坐标面曲线,旋转轴为坐标轴,则可以得到以下几种常用的旋转曲面。(旋转曲面的名称与母线名称对应) (1) 旋转椭球面 椭圆?? ???==+, 0, 122 22z b y a x 绕y 轴旋转而成的曲面方程为1222 22=++b y a z x ,绕x 轴的旋转曲面方程请大家自行给出。

多元函数积分的计算方法技巧

第10章 多元函数积分的计算方法与技巧 一、二重积分的计算法 1、利用直角坐标计算二重积分 假定积分区域D 可用不等式 a x b x y x ≤≤≤≤??12()()表示, 其中?1()x , ?2()x 在[,]a b 上连续 这个先对 y , 后对x 的二次积分也常记作 f x y d dx f x y dy D a b x x (,)(,)() ()σ??????=12 如果积分区域D 可以用下述不等式 c y d y x y ≤≤≤≤,()()φφ12 表示,且函数φ1()y ,φ2()y 在[,]c d 上连续, f x y (,)在D 上连续,则 f x y d f x y dx dy dy f x y dx D y y c d c d y y (,)(,)(,)()()()()σφφφφ??????=????? ? ??=1212 (2)

显然,(2)式是先对x ,后对 y 的二次积分. 几何法.画出积分区域D 的图形(假设的图形如下 ) 在],[b a 上任取一点x ,过x 作平行于y 轴的直线,该直线穿过区域D ,与区域D 的边界有两个交点))(,(1x x ?与))(,(2x x ?,这里的)(1x ?、)(2x ?就是将x ,看作常数而对 y 积分时的下限和上限;又因x 是在区间[,] a b ,所以再将x 看作变量而对x 积分时,积分的下限为a 、上限为b . 例1计算xyd D ?? σ, 其中D 是由抛物线 y x 2=及直线y x =-2所围成 的区域.

D y y x y :,-≤≤≤≤+1222 xyd dy xydx x y dy D y y y y σ?????==???? ??-+-+12 2 212 2 2 212 [] =+-=-?12245 8 2512y y y dy () 2.利用极坐标计算二重积分 1、rdrd θ就是极坐标中的面积元素. x r →cos θ y r →sin θdxdy rdrd →θ f x y dxdy D (,)??f r r rdrd D (cos ,sin )θθθ?? 2、极坐标系中的二重积分, 可以化归为二次积分来计算. αθβ?θ?θ≤≤≤≤12()()r 其中函数?θ1(), ?θ2()在[,]αβ上连续. f r r rdrd d f r r rdr D (cos ,sin )(cos ,sin )() ()θθθθθθα β ?θ?θ????=12 注:本题不能利用直角坐标下二重积分计算法来求其精确值.

相关文档
相关文档 最新文档