文档库 最新最全的文档下载
当前位置:文档库 › 桥梁水中基础钢板桩计算书

桥梁水中基础钢板桩计算书

桥梁水中基础钢板桩计算书
桥梁水中基础钢板桩计算书

某大桥钢板桩围堰计算书

一、基本资料

1、工程概况

某大桥9~12#墩位于水中,13~15#墩位于岸边。9~12#墩承台底在枯水位以下6.7~7.6m,13~15#墩承台底位于枯水期稳定水位以下3.8~6.3m,承台拟采用钢板桩围堰施工。

1.1墩位地质情况

9~15#墩位地质主要为卵石层、强风化泥岩与砂岩互层层,墩位处地质各层标高如下表:

地层

墩台号

9 10 11 12 13 14 15

水深 3 2 1.2 2.2

卵石层 5.2 8.73 7.46 11.66 10 9.7 6.9 强风泥岩与

砂岩互层

8.87 6.4 11 11.24 14 14.9 18.1

1.2水文

枯水期水位高程为853m,设计水位为855m ,水流流速1~2m/s,最大流速3m/s。

2、土体参数

岩土名称饱和容重

(KN/m3)

浮容重

(KN/m3)

内摩擦力φ

(°)

黏聚力C(kpa)

卵石21 11.19 35 0 强风化砂岩22 17.1 30 40 强风化泥岩22 20 10 3、材料特性

型号

规格截面面积单重惯性距截面抗弯矩宽高厚单根单根每米宽每米宽每米宽

mm mm mm Cm2Kg/m Kg/m Cm4Cm3

Sp-Ⅳ(L) 400 170 15.5 96.99 76.1 190 38600 2270

4、计算公式

4.1静水压力公式

q=γh

4.2流水压力

作用在钢板桩围堰的流水压力,根据公路桥涵设计通用规范JTG D600-2004(4.3.8)公式计算:

P=kAγv2/2g

γ—水的容重,取值10KN/m3

v—设计流速,取值3m/s

A—阻水面积m2

G—重力加速度,取值9.81 m/s2

K—桥墩形状系数,钢板桩围堰为矩形K取值1.3

桥墩形状系数

4.3土压力

根据朗金土压力公式:

主动土压力:Pa=Kaγh-2c(Ka)1/2

被动土压力:P

p

= Pa=Kpγh+2c(Kp)1/2

h—计算土压力的点至地面的距离

γ

—基坑外侧土的的重度

K

a —主动土压力系数)

2

45

(

tan2外

?

-

?

=

a

K,

?为基坑外加权平均摩擦角

K

p —被动土压力系数)

2

45

(

tan2外

?

+

?

=

p

K,

?为基坑内加权平均摩擦角

c

—基坑内固块黏聚力

)2

45(tan 2

?-?=a K =)23545(tan 2

-?=0.27,)245(tan 2

外?+

?=p K =3.69 4.4围堰坑底涌砂隆起验算

根据《建筑基坑支护技术规程》(JGJ120-2012)4.2.4条,支撑式支挡结构,其嵌固深度应满足坑底隆起稳定性要求,抗隆起稳定性可按下列公式计算:

γm2DN Q +cN c /(γm1(h+D)+q 0)≥K he N Q =tg 2(45+?/2)e πtan ? N c =( N Q -1)/tan ?

K he —抗隆起安全系数;安全等级按一级考虑,取值1.8 γm1—基坑外挡墙构件底面以上土的重度 γm2—基坑内挡土构件底面以上土的重度 D —基坑底面至挡土构件底面的土层厚度 H —基坑深度

q —地面以上均布荷载

c —挡土构件地面以下土的黏聚力

?—挡土构件地面以下土的内摩擦角

二、计算依据及计算方法

1、计算方法

采用容许应力法,钢板桩设计为固定支承和自由支承两种,桩体按照竖向连续梁法计算。

2、计算依据

(1) 《公路桥涵设计通用规范》(JTG D60-2004) (2) 《钢板桩工程手册》(欧领特编)人民交通出版社 (3) 《建筑基坑支护技术规程》(JGJ120-2012) (4) 《路桥施工计算手则》 三、计算选取对象

钢板桩围堰采用封底与不封底两种方案施工承台,钢板桩插打至强风化砂岩或泥岩中最小锚固深度。根据9~15#墩地质柱状图地质情况、河床标高、承台标高及钢板桩插入度的不同,以最大开挖深度9#墩承台与卵石层最大厚度12#

墩计算。9#墩承台钢板桩插打深度满足坑底隆起要求控制,12#墩承台以钢板桩在吸泥到封底混凝土底工况满足固端支撑最小锚固深度要求控制。

9#、12#墩承台

墩号河床标高(m) 卵石层底标高(m) 强风化砂岩底标高(m) 承台底标高(m)

9 850 845.08 836.21 845.014

12 850.8 839.14 827.9 845.87

四、9#墩计算

1、围堰坑底隆起验算

根据《建筑基坑支护技术规程》(JGJ120-2012)4.2.4条,支撑式支挡结构,其嵌固深度应满足坑底隆起稳定性要求,抗隆起稳定性可按下列公式计算:

γ

m2DN

Q

+cN

c

/(γ

m1

(h+D)+q

)≥K

he

N Q =tg2(45+?/2)eπtan

?

N c =( N

Q

-1)/tan?

9#墩钢板桩插到强风化泥岩与砂岩互层顶面以下1m,基坑开挖深度按5m计,钢板桩入土深度1.5m。施工水位855m,基坑采取抽干水施工承台,取水头差10m,则q

=10×9.81=981KN/m2。容重取、内摩擦角强风化砂岩与强风化泥岩平均值:容重22KN/ m3,内摩擦角25°,黏聚力取泥岩黏聚力10Kpa,卵石土浮容重11.19KN/ m3。

代入以上各项数据有:

N q =tg2(45+?/2)*eπtan

?

= tg2(45+25/2)*eπtan25=10.66

N c =( N

Q

-1)tan?=(10.66-1)/tan25°=22.86

γ

m2DN

Q

+cN

c

/(γ

m1

(h+D)+q

)=(22×1×10.66+10×22.86)/(11.19×(5+1)

+98.1)=2.8>1.8

经计算钢板桩满足坑底隆起稳定性要求。

图1 钢板桩围堰布置图

3、计算工况

钢板桩围堰采用无封底施工,钢板桩桩底按自由支撑设计。工况一:第一层内支撑下放完毕,抽水至河床标高。

图2 工况一示意图

工况二:安装第二层内撑后,开挖至第三层内撑以下0.5m。

图3 工况二示意图

工况三:第临时内支撑安装后,开挖至第三层内撑以下3.5m处。

图4 工况三示意图

4、钢板桩计算

围堰结构计算分为迎河面、顺水面及河流方向斜交面对围檩的作用力。迎水面:

4.1工况一计算

4.1.1流水压力计算

根据计算公式5.2流水压力计算公式得:

P=kA γv 2/2g=1.3×5×1×9.81×32/2/9.81=29.25 KN 4.1.2静水压力

河床处钢板桩外侧静水压力:P 外=γh=9.81KN/m 3×5m=49.05 kpa 4.1.3土压力计算

钢板桩位于卵石层中,卵石层内摩擦角为?=35°,根据主动和被动土压力系数计算公式得:

卵石层中主动和被动土压力系数为:

)2

45(tan 2

?-?=a K =)23545(tan 2

-?=0.27,)245(tan 2

外?+

?=p K =3.69 强风化砂岩与泥岩互层中主动和被动土压力系数为: 内摩擦角、黏聚力取强风化砂岩与强风化泥岩平均值:

)2

45(tan 2外

?-

?=a K =tan 2(45°-25°/2)=0.406

)2

45(tan 2外

?+

?=p K = tan 2(45°+25°/2)=2.464

卵石层底部钢板桩主动土压力:

P a = Ka γh-2c(Ka)1/2+γw h w =0.27×11.19×5+10×9.81=113.21kpa 强风化砂岩泥岩互层主动与被动土压力按水土合算。 钢板桩主动土压力:

强风化层顶面:Pa=Ka γh-2c(Ka)1/2 =(5m ×21+5m ×9.81)×0.406-2×10×√0.406=49.8kpa

钢板桩底面:Pa=Ka γh-2c(Ka)1/2 =(5m ×21KN/m 3+1m ×22 KN/m 3+5m ×9.81)×0.406-2×10 kpa ×√0.406=58.7kpa

钢板桩被动土压力:

卵石土底面:Pp=Ka γh+2c(Ka)1/2+γw h w =5×11.19×3.69+2×0×√3.69+5×9.81=255.51kpa

强风化层顶面:Pp=Ka γh+2c(Ka)1/2 =5×21×2.464+2×10×√

2.464=290.1kpa

钢板桩底:P

p

= Pa=Kpγh+2c(Kp)1/2=(5×21+1×22)×2.464+2×10×√

2.464=344.32kpa

3.1.4主动、被动土压力平衡临界点

图5 钢板桩围堰工况一受力图

该工况中,由于钢板桩入土深度大,对钢板桩约束大,可以认为桩端固定支撑,当被动土压力与主动土压力相等时,设距离河床下距离为y,

49.05+(113.2-49.05)/5×y=255.51/5×y

解得:y=1.28m

4.2工况二

工况二时,安装第二层内撑后,承台吸泥至第三层内撑以下0.5m处。钢板桩外侧主动土压力与工况一相同,本工况仅计算钢板桩内侧被动土压力。

4.2.1被动土压力计算

钢板桩内侧被动土压力采用水土分算法:

卵石层底面:

P a = Kaγh-2c(Ka)1/2+γ

w

h

w

=3.69×11.19×2.2-2×0×0.271/2+9.81×

2.2=112.42kpa

强风化层顶面:Pp=Kaγh+2c(Ka)1/2=2.464×21×2.2+2×10×√2.464=145.23kpa

钢板桩底:P

p

= Pa=Kpγh+2c(Kp)1/2=(2.2×21+1×22)×2.464+2×10×√2.464=199.44kpa

图6 钢板桩围堰工况二受力图

4.3工况三

工况三安装第三层内撑后,开挖至承台底处。工况三钢板桩外侧主动土压力与工况一相同。只计算钢板状内侧被动土压力,作出钢板桩土压力受力图。

4.3.1钢板桩内侧被动土压力

强风化层顶面:

Pp=Kaγh+2c(Ka)1/2+γ

w h

w

=2.464×22×0+2×10×√2.464=31.39kpa

钢板桩底端:

Pp=Kaγh+2c(Ka)1/2+γ

w h

w

=2.464×22×1+2×10×√2.464=85.6kpa

图7 钢板桩围堰工况三受力图5、迎水面计算各支撑点的反力、钢板桩弯矩

5.1各工况荷载

(1)工况一

图8 工况一受力图(2)工况二

图9 工况二受力图 (3)工况三

图10 工况三受力图 5.2各工况支点反力图

(1)工况一

图11 工况一反力图(2)工况二

图12 工况二反力图(3)工况三

图13 工况三反力图5.3各工况弯矩图

(1)工况一

图14 工况一弯矩图 (2)工况二

图15 工况二弯矩图(3)工况三

图16 工况三弯矩图5.4各工况剪力

(1) 工况一

图17 工况一剪力图 (2)工况二

图18 工况二剪力图

(3)工况三

图19 工况三剪力图

迎水面围堰侧各工况围檩下及钢板桩受力统计表

工况

围檩受力(KN/m)钢板桩最

大剪力

(KN)

钢板桩最大

弯矩(KN.m)第一层第二层第三层第四层临时

工况一111.9 103.6 128.8 工况二38 277.8 0 195.8 256.1 工况三77.9 -4.5 479.9 0 254.6 353.2

5.5钢板桩应力计算

通过以上五种工况计算,钢板桩最大剪力254.6KN,最大弯矩353.2KN.m,则钢板桩的应力为:

?=M/W=353.2KN.m/2270 Cm3=353.2×106/2270×103=155.6Mpa<[?]=210 Mpa

σ=254.6KN/(96.99/0.4) Cm2=254.6×103/242.5×102=10.51Mpa<[?]=120 Mpa

5.6钢板桩锚固深度验算

根据工矿况一反弯点反力为80.9KN,设工况一弯矩为零点位于反弯点以下距离为x,根据反弯点反力与被动土压力建立弯距平衡方程:

80.9x=(3.69-0.27)×11.19×x×x/2×x/3

解得:x=3.56m

锚固长度位于钢板桩入土深度范围内,工况一假定钢板桩为固端支撑设计合理。

6、顺水面计算

钢板桩围堰所受主动土压力与被动土压力未变化,只是顺水面无流水压力作用,根据迎水面主动土压力与被动土压力作受力计算。

6.1各工况荷载

(1)工况一

图20 工况一受力图

(2)工况二

图21 工况二受力图

(3)工况三

图22 工况三受力图6.2各工况反力图

(1)工况一

图23 工况一反力图(2)工况二

图24 工况二反力图(3)工况三

图25 工况三反力图

6.3各工况弯矩

图25 工况一弯矩图(2)工况二

图26 工况二弯矩图(3)工况三

图27 工况三弯矩图6.3 各工况剪力图

(1)工况一

图28 工况一剪力图

图29 工况二剪力图

(3)工况三

图30 工况三剪力图

顺水面侧围堰各工况围檩下及钢板桩受力统计表

工况

围檩受力(KN/m)钢板桩最

大剪力

(KN)

钢板桩最大

弯矩(KN.m)第一层第二层第三层第四层临时

工况一84.6 78.8 123.6 工况二12.3 274.1 0 195.8 256.1 工况三53 -9.9 480.7 0 254.6 353.2

6.4钢板桩应力计算

通过以上五种工况计算,钢板桩顺水面最大弯矩、剪力均小于迎水面的最大弯矩、剪力值,此处不再计算。

7、围堰与河流斜交计算

围堰与河流斜交按45度考虑,根据力的分配求出作用在围堰上的流水压力。

F=P

〃sin45°=29.25〃sin45°=20.7KN

钢板桩围堰受的主动土压力与被动土压力各工况不变的,根据前面计算的数据作围堰的受力计算。

7.1各工况荷载

图31 工况一受力图(2)工况二

图32 工况二受力图

(3)工况三

图33 工况三受力图

7.2各工况反力图

(1)工况一

图34 工况一反力图

(2)工况二

图35 工况二反力图(3)工况三

图36 工况三反力图

7.3各工况弯矩

(1)工况一

图37 工况一弯矩图

(2)工况二

图38 工况二弯矩图(3)工况三

图39 工况三弯矩图

7.4 各工况剪力图

(1)工况一

图37 工况一剪力图(2)工况二

桩基础设计计算书

课程设计(论文) 题目名称钢筋混凝土预制桩基础设计 课程名称基础工程 学生姓名李宇康 学号124100161 系、专业城市建设系土木工程 指导教师周卫 2015年5 月

桩基础设计计算书 一:设计资料 1、建筑场地土层按其成因土的特征和力学性质的不同自上而下划分为四层,物理力学指标见下表。勘查期间测得地下水混合水位深为2.0m,地下水水质分析结果表明,本场地下水无腐蚀性。 建筑安全等级为2级,已知上部框架结构由柱子传来的荷载: V=1765, M=169KN·m,H = 50kN; 柱的截面尺寸为:800×600mm; 承台底面埋深:D = 2.0m。 2、根据地质资料,以黄土粉质粘土为桩尖持力层, 钢筋混凝土预制桩断面尺寸为300×300,桩长为10.0m 3、桩身资料:混凝土为C30,轴心抗压强度设计值f c =15MPa,弯曲强度设计值为 f m =16.5MPa,主筋采用:4Φ16,强度设计值:f y =310MPa 4、承台设计资料:混凝土为C30,轴心抗压强度设计值为f c =15MPa,弯曲抗压强度设 计值为f m =1.5MPa。 、附:1):土层主要物理力学指标; 2):桩静载荷试验曲线。 附表一: 土层的主要物理力学指标表1-1 土 层代号名称 厚 度 m 含水 量w (%) 天然 重度 (kN/m3 ) 孔 隙 比 e 侧模 阻力 桩端 阻力液性 指数 I L 直剪试验 (直快) 压缩 模量 E s (MPa) 承载力 特征值 f k(kPa) q sk kPa q pk kPa 内摩 擦角 ?? 粘聚 力c (kPa) 1 杂填土 2.0 20 18.8 2 2 6.0 90 2 淤泥质土9 38.2 18.9 1.02 22 1.0 21 12 4.8 80 3 灰黄色粉 质粘土 5 26.7 19. 6 0.75 60 2000 0.60 20 16 7.0 220 4 粉砂夹粉 质粘土 >10 21.6 20.1 0.54 70 2200 0.4 25 15 8.2 260 附表二:

某桥梁桩基础设计计算

第一章桩基础设计 一、设计资料 1、地址及水文 河床土质:从地面(河床)至标高32.5m 为软塑粘土,以下为密实粗砂,深度达30m ;河床标高为40.5m ,一般冲刷线标高为38.5m ,最大冲刷线为35.2m ,常水位42.5m 。 2、土质指标 表一、土质指标 3、桩、承台尺寸与材料 承台尺寸:7.0m ×4.5m ×2.0m 。拟定采用四根桩,设计直径 1.0m 。桩身混凝土用20号,其受压弹性模量h E =2.6×104MPa 4、荷载情况 上部为等跨25m 的预应力梁桥,混凝土桥墩,承台顶面上纵桥向荷载为:恒载及一孔活载时: 5659.4N KN =∑、 298.8H KN =∑、 3847.7M KN m =∑ 恒载及二孔活载时: 6498.2N KN =∑。桩(直径 1.0m )自重每延米为: 2 1.01511.78/4 q KN m π?= ?= 故,作用在承台底面中心的荷载力为:

5659.4(7.0 4.5 2.025)7234.4298.83847.7298.8 2.04445.3N KN H KN M KN =+???===+?=∑∑∑ 恒载及二孔活载时: 6498.2(7.0 4.5 2.025)8073.4N KN =+???=∑ 桩基础采用冲抓锥钻孔灌注桩基础,为摩擦桩 二、单桩容许承载力的确定 根据《公路桥涵地基与基础设计规范》中确定单桩容许承载力的经验公式,初步反算桩的长度,设该桩埋入最大冲刷线以下深度为h ,一般冲刷线以下深度 为3h ,则:002221 []{[](3)}2 h i i N p U l m A k h τλσγ==++-∑ 当两跨活载时: 8073.213.311.7811.7842 h N h =+?+? 计算[P]时取以下数据: 桩的设计桩径1.0m ,冲抓锥成孔直径为1.15m ,桩周长 2 22 02021211.15 3.6,0.485,0.7 4 0.9, 6.0,[]550,12/40,120, a a a u m A m m K Kp KN m Kp Kp ππλσγττ?=?== ======== 1 [] 3.16[2.740( 2.7)120]0.700.90.7852 [550 6.012( 3.33)]2057.17 5.898.78k p h h N h m =??+-?+??? +??+-==+∴= 现取h=9m ,桩底标高为26.2m 。桩的轴向承载力符合要求。具体见如图1所示。

桥墩桩基础设计计算书

桥墩桩基础设计计算书 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

基础工程课程设计一.设计题目:00 某桥桥墩桩基础设计计算 二.设计资料: 某桥梁上部构造采用预应力箱梁。标准跨径30m,梁长,计算跨径,桥面宽13m (10+2×),墩上纵向设两排支座,一排固定,一排滑动,下部结构为桩柱式桥墩和钻孔灌注桩基础。 1、水文地质条件: 河面常水位标高,河床标高为,一般冲刷线标高,最大冲刷线标高处,一般冲刷线以下的地质情况如下: (1)地质情况c(城轨): 2、标准荷载: (1)恒载 桥面自重:N1=1500kN+8×10kN=1580KN; 箱梁自重:N2=5000kN+8×50Kn=5400KN;

墩帽自重:N3=800kN; 桥墩自重:N4=975kN;扣除浮重:10*2*3*=150KN (2)活载 一跨活载反力:N5=,在顺桥向引起的弯矩:M1= kN·m; 两跨活载反力:N6=+8×100kN; (3)水平力 制动力:H1=300kN,对承台顶力矩; 风力:H2= kN,对承台顶力矩 3、主要材料 承台采用C30混凝土,重度γ=25kN/m3、γ‘=15kN/m3(浮容重),桩基采用C30混凝土,HRB335级钢筋; 4、墩身、承台及桩的尺寸 墩身采用C30混凝土,尺寸:长×宽×高=3×2×。承台平面尺寸:长×宽=7×,厚度初定,承台底标高。拟采用4根钻孔灌注桩,设计直径,成孔直径,设计要求桩底沉渣厚度小于300mm。 5、其它参数 结构重要性系数γso=,荷载组合系数φ=,恒载分项系数γG=,活载分项系数γQ= 6、设计荷载 (1)桩、承台尺寸与材料 承台尺寸:××初步拟定采用四根桩,设计直径1m,成孔直径。桩身及承台

桩基础设计实例计算书说课材料

桩基础设计实例 某城市中心区旧城改造工程中,拟建一幢18层框剪结构住宅楼。场地地层稳定,典型地质剖面图及桩基计算指标见表8-5。柱的矩形截面边长为400mm ×500mm ,相应于荷载效应标准组合时作用于柱底的荷载为:5840=k F kN ,180=xk M kN ·m , 550=yk M kN ·m ,120=xk H kN 。承台混凝土强度等级取C30,配置HRB400级钢筋, 试设计柱下独立承台桩基础。 表8-5 地质剖面与桩基计算指标 解:(1)桩型的选择与桩长的确定 人工挖孔桩:卵石以上无合适的持力层。以卵石为持力层时,开挖深度达26m 以上,当地缺少施工经验,且地下水丰富,故不予采用。 沉管灌注桩:卵石层埋深超过26m ,现有施工机械难以沉管。以粉质粘土作为持力层,单桩承载力仅240~340 kN ,对16层建筑物而言,必然布桩密度过大,无法采用。 对钻(冲)孔灌注桩,按当地经验,单位承载力的造价必然很高,且质量控制困难,场地污染严重,故不予采用。 经论证,决定采用PHC400-95-A (直径400mm 、壁厚95mm 、A 型预应力高强混凝土管桩),十字型桩尖。由于该工程位于城市中心区,故采用静力法压桩。 初选承台埋深d =2m 。桩顶嵌入承台0.05m ,桩底进入卵石层≥1.0m ,则总桩长

L=0.05+1.0+10.4+3.5+9.3+1.0≈25.3m 。 (2)确定单桩竖向承载力 ①按地质报告参数预估 ∑+=i sia P p pa a L q u A q R ()4596910.1803.9105.3304.1061254.044.055002+=?+?+?+?+???+??? ? ????=ππ =1150kN ②按当地相同条件静载试验成果 u Q 的范围值为2600 ~3000kN 之间,则 1500~13002/==u a Q R kN , 经分析比较,确定采用13502/==u a Q R kN 。 (2)估算桩数与平面布桩 ①初选桩的根数 3.41350 5840==a k R F n > 根,暂取5根。 ②初选承台尺寸 桩距2.14.00.30.3=?==d s m ,并考虑到xk yk >M M ,故布桩如图8-29所示: (a) 平面 (b) 立面 图8-29 承台尺寸及荷载图

桩基础设计计算书

基础工程桩基础设计资料 ⑴上部结构资料某教学实验楼,上部结构为十层框架,其框架主梁、次梁、楼板均为现浇整体式,混凝土强度等级为C30,上部结构传至柱底的相应于荷载效应标准组合的荷载如下︰ 竖向力:4800 kN , 弯距:70 kN·m, 水平力:40 kN 拟采用预制桩基础,预制桩截面尺寸为 350mm * 350mm。 ⑵建筑物场地资料拟建建筑物场地位于市区内,地势平坦,建筑物场地位于非地震地区,不考虑地震影响.场地地下水类型为潜水,地下水位离地表 2.1 米,根据已有资料,该场地地下水对混凝土没有腐蚀性。建筑地基的土层分布情况及各土层物理,力学指标见下表: 表1 地基各土层物理、力学指标

基础工程桩基础设计计算 1. 选择桩端持力层 、承台埋深 ⑴.选择桩型 由资料给出,拟采用预制桩基础。 还根据资料知,建筑物拟建场地位于市区内,为避免对周围产生噪声污染和扰动地层,宜采用静压法沉桩,这样不仅可以不影响周围环境,还能较好地保证桩身质量和沉桩精度。 ⑵.确定桩的长度、埋深以及承台埋深 依据地基土的分布,第3层是粘土,压缩性较高,承载力中等,且比较厚,而第4层是粉土夹粉质粘土,不仅压缩性低,承载力也高,所以第4层是比较适合的桩端持力层。桩端全断面进入持力层1.0m (>2d ),工程桩入土深度为h ,h=1.5+8.3+12+1=22.8m 。 由于第1层厚1.5m ,地下水位离地表2.1m ,为使地下水对承台没有影响,所以选择承台底进入第2层土0.3m ,即承台埋深为1.8m 。 桩基的有效桩长即为22.8-1.8=21m 。 桩截面尺寸由资料已给出,取350mm ×350mm ,预制桩在工厂制作,桩分两节,每节长11m ,(不包括桩尖长度在内),实际桩长比有效桩长长1m ,是考虑持力层可能有一定起伏及桩需要嵌入承台一定长度而留有的余地。 桩基以及土层分布示意图如图1。 2.确定单桩竖向承载力标准值 按经验参数法确定单桩竖向极限承载力特征值公式为: uk sk pk sik i pk p Q Q Q u q l q A =+=+∑ 按照土层物理指标,查桩基规范JGJ94-2008表5.3.5-1和表5.3.5-2估算的极限桩侧,桩端阻力特征值列于下表:

桩基础工程计算实例详解

桩基础工程 1.某工程用打桩机,打如图4-1所示钢筋混凝土预制方桩,共50根,求其工程量,确定定额项目。 钢筋混凝土预制方桩 【解】工程量=0.5×0.5×(24+0.6)×50=307.50m3 钢筋混凝土预制方桩套2-6 定额基价=114.59元/m3 2.打桩机打孔钢筋混凝土灌注桩,桩长14m,钢管外径0.5m,桩根数为50根,求现场灌注桩工程量,确定定额项目。 【解】工程量=3.14÷4×0.52×(14+0.5)×50=142.28m3 打孔钢筋混凝土灌注桩(15m以内)套2-41 定额基价=508.3元/m3 3.如图所示,已知共有20根预制桩,二级土质。求用打桩机打桩工程量。 【解】工程量=0.45×0.45×(15+0.8)×20m3=63.99m3 4.如图所示,求履带式柴油打桩机打桩工程量。已知土质为二级土,混凝土预制桩28根。 【解】工程量=[×(0.32-0.22)×21.2+×0.32×O.8]×28m3=99.57m3 5.如图所示,求送桩工程量,并求综合基价。 【解】工程量=0.4×0.4×(0.8+0.5)×4=0.832m3 查定额,套(2-5)子目, 综合基价=0.832×(96.18+21×0.63×0.25+1033.82×0.060×0.25)=115.625元

6.打预制钢筋混凝土离心管桩,桩全长为12.50m,外径30cm,其截面面积如图所示, 求单桩体积。 【解】离心管桩V1=×3.1416×12m3 =0.0125×3.1416×12m3 =0.471m3 预制桩尖V2=0.32××3.1416×0.5m3=0.0255×3.1416×0.5m3=0.035m3 总体积∑V=(0.471+0.035)m3=0.506m3 7.求图示钢筋混凝土预制桩的打桩工程量,共有120根桩。 【解】V=[(L一h)×(A×B)+×(A×B)×h]×n =[(7-0.23)×(0.25×0.25)+ ×(0.25×0.25×0.23)]×120m3=51.35m3 8.图为预制钢筋混凝土桩,现浇承台基础示意图,计算桩基的制作、运输、打桩、打送桩以及承台的工程量。(30个) 【解】(1)预制桩图示工程量: V图=(8.0+0.3)×0.3×0.3m3×4根×30个=89.64m3 (2)制桩工程量:V制= V图×1.02=89.64m3×1.02=91.43m3 (3)运输工程量:V运= V图×1.019=89.64m3×1.019=91.34m3 (4)打桩工程量:V打= V图=89.64m3 (5)送桩工程量:V送=(1.8-0.3-0.15+0.5)×0.3×0.3×4×30m3=19.98m3

桩基础的设计计算

1 第四章桩基础的设计计算 1.本章的核心及分析方法 本节将介绍考虑桩与桩侧土共同抵抗外荷载作用时桩身的内力计算,从而解决桩的强度问题。重点是桩受横轴向力时的内力计算问题。 桩在横轴向荷载作用下桩身的内力和位移计算,国内外学者提出了许多方法。目前较为普遍的是桩侧土采用文克尔假定,通过求解挠曲微分方程,再结合力的平衡条件,求出桩各部位的内力和位移,该方法称为弹性地基梁法。 以文克尔假定为基础的弹性地基梁法从土力学观点看是不够严密的,但其基本概念明确,方法简单,所得结果一般较安全,在国内外工程界得到广泛应用。我国公路、铁路在桩基础的设计中常用的“m”法、就属此种方法,本节将主要介绍“m”法。 2.学习要求 本章应掌握桩单桩按桩身材料强度确定桩的承载力的方法,“m”法计算单桩内力的各种计算参数的使用方法,多排桩的主要计算参数及其各自的含义。掌握承台计算方法,群桩设计的要点及注意事项,了解桩基设计的一般程序及步骤。本专科生均应能独立完成单排桩和多排桩的课程设计。 第一节单排桩基桩内力和位移计算 一、基本概念 (一)土的弹性抗力及其分布规律 1.土抗力的概念及定义式 (1)概念 桩基础在荷载(包括轴向荷载、横轴向荷载和力矩)作用下产生位移及转角,

2 使桩挤压桩侧土体,桩侧土必然对桩产生一横向土抗力zx σ,它起抵抗外力和稳定桩基础的作用。土的这种作用力称为土的弹性抗力。 (2)定义式 z zx Cx =σ (4-1) 式中: zx σ——横向土抗力,kN/m 2; C ——地基系数,kN/m 3; z x ——深度Z 处桩的横向位移,m 。 2.影响土抗力的因素 (1)土体性质 (2)桩身刚度 (3)桩的入土深度 (4)桩的截面形状 (5)桩距及荷载等因素 3.地基系数的概念及确定方法 (1)概念 地基系数C 表示单位面积土在弹性限度内产生单位变形时所需施加的力,单位为kN/m 3或MN/m 3。 (2)确定方法 地基系数大小与地基土的类别、物理力学性质有关。 地基系数C 值是通过对试桩在不同类别土质及不同深度进行实测z x 及zx σ后反算得到。大量的试验表明,地基系数C 值不仅与土的类别及其性质有关,而且也随着深度而变化。由于实测的客观条件和分析方法不尽相同等原因,所采用的C 值随深度的分布规律也各有不同。常采用的地基系数分布规律有图下所示的几种形式,因此也就产生了与之相应的基桩内力和位移的计算方法。

桩基础实例设计计算书

桩基础设计计算书 一:建筑设计资料 1、建筑场地土层按其成因土的特征与力学性质的不同自上而下划分为四层,物理力学指标见下表。勘查期间测得地下水混合水位深为 2、0m,地下水水质分析结果表明,本场地下水无腐蚀性。 建筑安全等级为2级,已知上部框架结构由柱子传来的荷载: V = 3200kN, M=400kN m g,H = 50kN; 柱的截面尺寸为:400×400mm; 承台底面埋深:D =2、0m。 2、根据地质资料,以黄土粉质粘土为桩尖持力层, 钢筋混凝土预制桩断面尺寸为300×300,桩长为10、0m 3、桩身资料: 混凝土为C30,轴心抗压强度设计值f c =15MPa,弯曲强度设计值为 f m =16、5MPa,主筋采用:4Φ16,强度设计值:f y =310MPa 4、承台设计资料:混凝土为C30,轴心抗压强度设计值为f c =15MPa,弯曲抗压强度设计值 为f m =1、5MPa。 、附:1):土层主要物理力学指标; 2):桩静载荷试验曲线。

桩静载荷试验曲线 二:设计要求: 1、单桩竖向承载力标准值与设计值的计算; 2、确定桩数与桩的平面布置图; 3、群桩中基桩的受力验算 4、承台结构设计及验算; 5、桩及承台的施工图设计:包括桩的平面布置图,桩身配筋图, 承台配筋与必要的施工说明; 6、需要提交的报告:计算说明书与桩基础施工图。 三:桩基础设计 (一):必要资料准备 1、建筑物的类型机规模:住宅楼 2、岩土工程勘察报告:见上页附表 3、环境及检测条件:地下水无腐蚀性,Q —S 曲线见附表 (二):外部荷载及桩型确定 1、柱传来荷载:V = 3200kN 、M = 400kN ?m 、H = 50kN 2、桩型确定:1)、由题意选桩为钢筋混凝土预制桩; 2)、构造尺寸:桩长L =10、0m,截面尺寸:300×300mm 3)、桩身:混凝土强度 C30、 c f =15MPa 、 m f =16、5MPa 4φ16 y f =310MPa

土木5桥梁桩基础课程设计word文档

桥梁桩基础课程设计任务书

1、桥墩组成:该桥墩基础由两根钻孔灌注桩组成。桩径采用φ=1.2m ,墩柱直径采用φ=1.0m 。桩底沉淀土厚度t = (0.2~0.4)d 。局部冲刷线处设置横系梁。 2、地质资料:标高25m 以上桩侧土为软塑亚粘土,其各物理性质指标为:容量γ=18.5kN /m 3,土粒比重G=2.70g/3cm ,天然含水量%21=ω,液限 %7.22=l ω,塑限%3.16=p ω。标高25m 以下桩侧及桩底土均为硬塑性亚粘土,其物理性质指标为:容量γ=19.5kN /m 3,土粒比重G=2.70g/3cm ,天然含水量 %8.17=ω,液限%7.22=l ω,塑限%3.16=p ω。 3、桩身材料:桩身采用25号混凝土浇注,混凝土弹性模量 αMP E h 41085.2?=,所供钢筋有Ⅰ级钢和Ⅱ级纲。 4、计算荷载 ⑴ 一跨上部结构自重G=2350kN ; ⑵ 盖梁自重G 2=350kN ⑶ 局部冲刷线以上一根柱重G 3应分别考虑最低水位及常水位情况; ⑷公路Ⅱ级 : 双孔布载,以产生最大竖向力; 单孔布载,以产生最大偏心弯矩。 支座对桥墩的纵向偏心距为3.0=b m (见图2)。计算汽车荷载时考虑冲击力。 ⑸ 人群荷载: 双孔布载,以产生最大竖向力; 单孔布载,以产生最大偏心弯矩。 ⑹ 水平荷载(见图3) 制动力:H 1=22.5kN (4.5); 盖梁风力:W 1=8kN (5); 柱风力:W 2=10kN (8)。采用常水位并考虑波浪影响0.5m ,常水位按45m 计,以产生较大的桩身弯矩。W 2的力臂为11.25m 。

图4 5、设计要求 ⑴确定桩的长度,进行单桩承载力验算。 ⑵桩身强度验算:求出桩身弯矩图(用座标纸画),定出桩身最大弯矩值及其相应截面位置和相应轴力,配置钢筋,验算截面强度(采用最不利荷载组合及常水位)。 ⑶计算主筋长度、螺旋钢筋长度及钢筋总用量。 ⑷用A3纸绘出桩的钢筋布置图。 二、应交资料 1、桩基础计算书 2、桩基础配筋图 3、桩基础钢筋数量表

(完整版)桩基础设计计算书

目录 1设计任务 (2) 1.1设计资料 (2) 1.2设计要求 (3) 2 桩基持力层,桩型,桩长的确定 (3) 3 单桩承载力确定 (3) 3.1单桩竖向承载力的确定 (3) 4 桩数布置及承台设计 (4) 5 复合桩基荷载验算 (6) 6 桩身和承台设计 (9) 7 沉降计算 (14) 8 构造要求及施工要求 (20) 8.1预制桩的施工 (20) 8.2混凝土预制桩的接桩 (21) 8.3凝土预制桩的沉桩 (22) 8.4预制桩沉桩对环境的影响分析及防治措施 (23) 8.5结论与建议 (25) 9 参考文献 (25)

一、设计任务书 (一)、设计资料 1、某地方建筑场地土层按其成因土的特征和力学性质的不同自上而下划分为5层,物理力学指标见下表。勘查期间测得地下水混合水位深为2.1m,本场地下水无腐蚀性。建筑安全等级为2级,已知上部框架结构由柱子传来的荷载。承台底面埋深:D =2.1m。

(二)、设计要求: 1、桩基持力层、桩型、承台埋深选择 2、确定单桩承载力 3、桩数布置及承台设计 4、群桩承载力验算 5、桩身结构设计和计算 6、承台设计计算 7、群桩沉降计算 8、绘制桩承台施工图 二、桩基持力层,桩型,桩长的确定 根据设计任务书所提供的资料,分析表明,在柱下荷载作用下,天然地基基础难以满足设计要求,故考虑选用桩基础。由地基勘查资料,确定选用第四土层黄褐色粉质粘土为桩端持力层。 根据工程请况承台埋深 2.1m,预选钢筋混凝土预制桩断面尺寸为450㎜×450㎜。桩长21.1m。 三、单桩承载力确定 (一)、单桩竖向承载力的确定: 1、根据地质条件选择持力层,确定桩的断面尺寸和长度。 根据地质条件以第四层黄褐色粉土夹粉质粘土为持力层, 采用截面为450×450mm的预置钢筋混凝土方桩,桩尖进入持力层 1.0m;镶入承台0.1m,桩长21.1 m。承台底部埋深 2.1 m。 2、确定单桩竖向承载力标准值Quk可根据经验公式估算: Quk= Qsk+ Qpk=μ∑qsikli+qpkAp Q——单桩极限摩阻力标准值(kN) sk Q——单桩极限端阻力标准值(kN) pk u——桩的横断面周长(m) A——桩的横断面底面积(2m) p L——桩周各层土的厚度(m) i q——桩周第i层土的单位极限摩阻力标准值(a kP)sik q——桩底土的单位极限端阻力标准值(a kP) pk 桩周长:μ=450×4=1800mm=1.8m

桥梁桩基础计算书

桥梁桩基础课程设计

桥梁桩基础课程设计 一、恒载计算(每根桩反力计算) 1、上部结构横载反力N1 N1= 1 2 ?2350=1175kN 2、盖梁自重反力N2 N2= 1 2 ?350=175kN 3、系梁自重反力N3 1 2 ?25 ?3.5 ?0.8 ?1=35kN 4、一根墩柱自重反力N4 KN N 94.222)1025(5.01.5255.0)1.54.13(224=-???+???-=ππ(低水位) KN N 47.195255.08.4155.06.8224=???+???=ππ (常水位) 5、桩每延米重N5(考虑浮力) m KN N /96.16152.14 25=??= π 二、活载反力计算 1、活载纵向布置时支座最大反力 ⑴、公路二级:7.875/k q kN m = 193.2k P kN =

Ⅰ、单孔布载 55.57822.1932 875 .74.24=?+?=)(R Ⅲ、双孔布载 24.427.875 (193.2)2766.3082R kN ??=+?= (2)、人群荷载 Ⅰ、单孔布载 11 3.52 4.442.72R kN =??=

1、计算墩柱顶最大垂直反力R 组合Ⅰ:R= 恒载 +(1+u ) 汽 ?∑i i y P + 人?ql = 1175+175+(1+0.2)?1.245?766.308+1.33?85.4 =2608.45kN (汽车、人群双孔布载) 2、计算桩顶最大弯矩 ⑴、计算桩顶最大弯矩时柱顶竖向力 R= 1N +2N +(1+u )汽 ?∑i i y P + 人 ?ql 2 1 = 1175+175+1.2?1.245?578.55+1.33?42.7 = 2271.14kN (汽车、人群单孔布载) ⑵、计算桩顶(最大冲刷线处)的竖向力0N 、水平力0Q 和弯矩0M 0N = max R +3N + 4N (常水位) = 2608.45+35+195.47=2838.92 kN 0Q = 1H + 1W + 2W = 22.5+8+10=40.5 kN 0M = 14.71H + 14.051W + 11.252W + 0.3活max R = 14.7?22.5+14.05?8+11.25?10+0.3?(2608.45-1175-175) = 933.185kN.m 活max R ——组合Ⅰ中活载产生的竖向力。 四、钻孔灌注桩单桩承载力及强度计算 1、单桩承载力计算 桩长计算:

桥墩桩基础设计计算书

基础工程课程设计 一.设计题目: 某桥桥墩桩基础设计计算 二.设计资料: 某桥梁上部构造采用预应力箱梁。标准跨径30m,梁长29.9m,计算跨径29.5m,桥面宽13m(10+2×1.5),墩上纵向设两排支座,一排固定,一排滑动,下部结构为桩柱式桥墩和钻孔灌注桩基础。 1、水文地质条件: 河面常水位标高25.000m,河床标高为22.000m,一般冲刷线标高20.000m,最大冲刷线标高18.000m处,一般冲刷线以下的地质情况如下: (1)地质情况c(城轨): 2、标准荷载: (1)恒载 桥面自重:N1=1500kN+8×10kN=1580KN; 箱梁自重:N2=5000kN+8×50Kn=5400KN; 墩帽自重:N3=800kN; 桥墩自重:N4=975kN;扣除浮重:10*2*3*2.5=150KN (2)活载 一跨活载反力:N5=2835.75kN,在顺桥向引起的弯矩:M1=3334.3 kN·m; 两跨活载反力:N6=5030.04kN+8×100kN; (3)水平力 制动力:H1=300kN,对承台顶力矩6.5m; 风力:H2=2.7 kN,对承台顶力矩4.75m 3、主要材料 承台采用C30混凝土,重度γ=25kN/m3、γ‘=15kN/m3(浮容重),桩基采用C30混凝土,HRB335级钢筋;

4、墩身、承台及桩的尺寸 墩身采用C30混凝土,尺寸:长×宽×高=3×2×6.5m 3 。承台平面尺寸:长×宽 =7×4.5m 2 ,厚度初定2.5m ,承台底标高20.000m 。拟采用4根钻孔灌注桩,设计直径1.0m ,成孔直径1.1m ,设计要求桩底沉渣厚度小于300mm 。 5、其它参数 结构重要性系数γso =1.1,荷载组合系数φ=1.0,恒载分项系数γG =1.2,活载分项系数γQ =1.4 6、 设计荷载 (1) 桩、承台尺寸与材料 承台尺寸:7.0m ×4.5m ×2.5m 初步拟定采用四根桩,设计直径1m ,成孔直径1.1m 。桩身及承台 混凝土用30号,其受压弹性模量h E =3×4 10MPa 。 (2) 荷载情况 上部为等跨30m 的预应力箱梁桥,混凝土桥墩,作用在承台底面中心的荷载为: 恒载及一孔活载时: 1.2(158054008009751507 4.5 2.515 1.42835.751571 3.55N KN =?+++-+???+?=∑) 1.4(300 2.7)42 3.78H KN =?+=∑ [3334.3300(2.5 6.5) 2.7 4.75 2.5 1.48475.425M KN =+?++? +?=∑()] 恒载及二孔活载时: 1.2(158054008009751507 4.5 2.515N =?+++-+????∑)+1.45830.04=19905.556KN 桩(直径1m )自重每延米为: q= 2 11511.781/4 KN m ??=π(已扣除浮力) 三、计算 1、根据《公路桥涵地基与基础设计规范》反算桩长 根据《公路桥涵地基与基础设计规范》中确定单桩容许承载力的经验公式,初步反算桩的长度, 设该桩埋入最大冲刷线以下深度为h ,一般冲刷线以下深度为h 2,则: [][]{} )3(2 1 22200-++==∑h k A m l U P N i i h γσλτ

桩基础实例设计计算书

桩基础设计计算书 一:建筑设计资料 1、建筑场地土层按其成因土的特征和力学性质的不同自上而下划分为四层,物理力学指标见下表。勘查期间测得地下水混合水位深为2.0m,地下水水质分析结果表明,本场地下水无腐蚀性。 建筑安全等级为2级,已知上部框架结构由柱子传来的荷载: V = 3200kN, M=400kN m,H = 50kN; 柱的截面尺寸为:400×400mm; 承台底面埋深:D =2.0m。 2、根据地质资料,以黄土粉质粘土为桩尖持力层, 钢筋混凝土预制桩断面尺寸为300×300,桩长为10.0m 3、桩身资料:混凝土为C30,轴心抗压强度设计值f c =15MPa,弯曲强度设计值为 f m =16.5MPa,主筋采用:4Φ16,强度设计值:f y =310MPa 4、承台设计资料:混凝土为C30,轴心抗压强度设计值为f c =15MPa,弯曲抗压强度 设计值为f m =1.5MPa。 、附:1):土层主要物理力学指标; 2):桩静载荷试验曲线。 附表二:

桩静载荷试验曲线 二:设计要求: 1、单桩竖向承载力标准值和设计值的计算; 2、确定桩数和桩的平面布置图; 3、群桩中基桩的受力验算 4、承台结构设计及验算; 5、桩及承台的施工图设计:包括桩的平面布置图,桩身配筋图, 承台配筋和必要的施工说明; 6、需要提交的报告:计算说明书和桩基础施工图。 三:桩基础设计 (一):必要资料准备 1、建筑物的类型机规模:住宅楼 2、岩土工程勘察报告:见上页附表 3、环境及检测条件:地下水无腐蚀性,Q—S曲线见附表(二):外部荷载及桩型确定

1、柱传来荷载:V = 3200kN 、M = 400kN ?m 、H = 50kN 2、桩型确定:1)、由题意选桩为钢筋混凝土预制桩; 2)、构造尺寸:桩长L =10.0m ,截面尺寸:300×300mm 3)、桩身:混凝土强度 C30、c f =15MPa 、m f =16.5MPa 4φ16 y f =310MPa 4)、承台材料:混凝土强度C30、c f =15MPa 、m f =16.5MPa t f =1.5MPa (三):单桩承载力确定 1、 单桩竖向承载力的确定: 1)、根据桩身材料强度(?=1.0按0.25折减,配筋 φ16) 2 ( ) 1.0(150.25300310803.8)586.7p S c y R kN f f A A ?''=+ =???+?= 2)、根据地基基础规公式计算: 1°、桩尖土端承载力计算: 粉质粘土,L I =0.60,入土深度为12.0m 100800(800)8805 pa kPa q -=?= 2°、桩侧土摩擦力: 粉质粘土层1: 1.0L I = , 17~24sa kPa q = 取18kPa 粉质粘土层2: 0.60L I = , 24~31sa kPa q = 取28kPa 2 8800.340.3(189281)307.2p i p pa sia Ra kPa q q l A μ=+=?+???+?=∑ 3)、根据静载荷试验数据计算: 根据静载荷单桩承载力试验Q s -曲线,按明显拐点法得单桩极限承载力 550u kN Q = 单桩承载力标准值: 550 2752 2 u k kN Q R = = = 根据以上各种条件下的计算结果,取单桩竖向承载力标准值

桥梁桩基础设计计算部分

一方案比选优化 公路桥涵结构设计应当考虑到结构上可能出现的多种作用,例如桥涵结构构件上除构件永久作用(如自重等)外,可能同时出现汽车荷载、人群荷载等可变作用。《公路桥规》要求这时应该按承载力极限状态和正常使用极限状态,结合相应的设计状况进行作用效应组合,并取其最不利组合进行计算。 1、按承载能力极限状态设计时,可采用以下两种作用效应组合。 (1)基本作用效应组合。基本组合是承载能力极限状态设计时,永久作用标准值效应与可变作用标准值效应的组合,基本组合表达式为 (1-1) 或(1-2) γ0-桥梁结构的重要性系数,按结构设计安全等级采用,对于公路桥梁,安全等级一级、二级、三级,分别为1.1、1.0和0.9; γGi-第i个永久荷载作用效应的分项系数。分项系数是指为保证所设计的结构具有结构的可靠度而在设计表达式中采用的系数,分为作用分项系数和抗力分项系数两类。当永久作用效应(结构重力和预应力作用)对结构承载力不利时,γGi=1.2; 对结构的承载能力有利时,γGi=10;其他永久作用效应的分项系数详见《公路桥规》; γQ1-汽车荷载效应(含汽车冲击力、离心力)的分项系数,取γQ1=1.4;当某个可变作用在效用组合中,其值超过汽车荷载效用时,则该作用取代汽车荷载,其分项系数应采用汽车荷载的分项系数;对专门为承受某种作用而设置的结构或装置,设计时该作用的分项系数取与汽车荷载同值;计算人行道板和人行道栏杆的局部荷载时,其分项系数也与汽车荷载取同值。 γQj-在作用效应组合中除汽车荷载效应(含汽车冲击力、离心力)、风荷载以外的其他第j个可变作用效应的分项系数,取γQ1=1.4,但风荷载的分项系数取γQ1= 1.1;

(整理)基础工程计算书 -

基础工程 课程设计 题目:铁路桥墩桩基础设计指导教师:郑国勇 姓名: 专业: 学号:

2014年9月28日 基础工程课程设计任务书 ——铁路桥墩桩基础设计一.设计资料 1. 线路:双线、直线、坡度4‰、线间距5m,双块式无碴轨道及双侧1.7m 宽人行道,其重量为44.4kN/m。 2. 桥跨:等跨L=31.1m无碴桥面单箱单室预应力混凝土梁,梁全长32.6m,梁端缝0.1m;梁高3m,梁宽1 3.4m,每孔梁重8530kN,简支箱梁支座中心距梁端距离0.75m,同一桥墩相邻梁支座间距1.6m。轨底至梁底高度为3.7m,采用盆式橡胶支座,支座高0.173m,梁底至支座铰中心0.09m。 3. 建筑材料:支承垫石、顶帽、托盘采用C40钢筋混凝土,墩身采用C30混凝土,桩身采用C30混凝土。 4. 地质及地下水位情况: 土层平均重度γ=20kN/m3,土层平均内摩擦角? =28°。地下水位标高:+30.5。 5. 标高:梁顶标高+53.483m,墩底+35.81。 6. 风力:w=800Pa (桥上有车)。 7. 桥墩尺寸:如图1。 二.设计荷载

1. 承台底外力合计: 双线、纵向、二孔重载: N=18629.07kN,H=341.5kN,M= 4671.75kN·m 双线、纵向、一孔重载: N=17534.94kN,H=341.5kN,M=4762.57kN·m 2. 墩顶外力: 双线、纵向、一孔重载: H=253.44 kN,M =893.16 kN·m。 三.设计要求 1. 选定桩的类型和施工方法,确定桩的材料、桩长、桩数及桩的排列。 2. 检算下列项目 (1) 单桩承载力检算(双线、纵向、二孔重载); (2) 群桩承载力检算(双线、纵向、二孔重载); (3) 墩顶水平位移检算(双线、纵向、一孔重载); (4) 桩身截面配筋计算(双线、纵向、一孔重载); (5) 桩在土面处位移检算(双线、纵向、一孔重载)。 3. 设计成果: (1) 设计说明书和计算书一份 (2) 设计图(计算机绘图) 一张 四.附加说明 1. 如布桩需要,可变更图1中承台尺寸; 2. 任务书中荷载系按图1尺寸进行计算的结果,如承台尺寸变更,应对其竖向荷载进行相应调整。

桩基础设计计算书模板

桩基础设计计算书 设计资料: 拟建建筑物10层,地下室一层,设地下室层高3.2m,上部结构为框架剪力墙结构,层高3.3m,七度抗震设防,±0.00相当于黄海高程+6.60m,室内外高差0.6m。地下室水位±0.00。场地上部土层承载礼教低,不具备天然地基的条件,采用桩基。根据场地土的工程特征和当地的施工条件,拟采用PHC管桩或钻(冲)孔灌注桩基础方案。桩、承台、柱的混凝土强度取为C30。 PHC管桩可选择残积土或全风化花岗岩作为持力层;钻孔灌注桩可选择全风化岩或者中风化岩作为持力层。 地下水为地表滞水,对混凝土结构不具备腐蚀性。 建筑标准层平面示意图如下: 承台计算类型选择说明: 1、角桩作为一个类型; 2、中桩的中间两个承台受的力单独较大,应单独计算;边桩和其他中桩作为一个类别计算, 共三个类别。 一:建筑桩基方案的选择 1、PHC预应力圆桩 确定全风化花岗岩作为持力层,桩截面尺寸选择直径400的圆桩,桩长18m,桩顶嵌入承台0.1m,则桩端进入持力层最小值为1.15m,满足嵌入最小深度要求。根据工程地质剖面图,选择ZK6钻孔下土层分布情况作为单桩强度计算依据。估计需要四根,桩根据经验表,承台高度为1350mm,承台底至地面的高度为3.95m。

Q uk =Q sk +Q pk =u ∑q sik l i +q pk +A p =0.4п×(12×2.8+60×3.3+90×4.5×2/3+5.7×120+1.85×165)+0.04п×10000=3130kN Ra= Q uk /2=1565kN 确定桩数: 先不考虑承台质量,承台弯矩不大,按修改桩数考虑。 n=Fk/R=5262/1565=3.36 取桩数为4根。 此时桩造价125×18×4=9000元。 2、灌注桩选择锤击沉管(C25): 选择残积土为持力层,桩长19.4m ,桩直径为800mm ,桩径入持力层的最小深度为2.7m,满足最小深度要求选择,选择ZK6钻孔下土层分布情况作为单桩强度计算依据。同样估计需要四根桩根据经验表,承台高度为1350mm ,承台底至地面的高度为3.95m 。桩顶嵌入承台深度为0.1m 。 Q uk =Q sk +Q pk =u ∑q sik l i +q pk +A p =0.8п×(10×2.5+50 ×3.3+75×4.5×2/3+5.7×100+3.3×135)+0.16п ×13500=10381.1kN Ra= Q uk /2=5190.6kN>桩身强度设计值=2950kN ,Ra 取 为2950kN 。 确定桩数: 先不考虑承台质量,承台弯矩不大,按修改桩数考虑。 n=Fk/R=5262/2950=1.78 取桩数为2根。 此时桩造价为350×2×19.3=13510元 综合评价:预制桩的造价比灌注桩低,由于预制桩是

桩基础课程设计计算书

土 力 学 课 程 设 计 姓名: 学号: 班级: 二级学院: 指导老师:

地基基础课程设计任务书 [工程概况] 某城市新区拟建一栋10层钢筋混凝土框架结构的办公楼,长24.0m ,宽9.6m ,其1-5轴的柱底荷载效应标准组合值如下所示。建筑场地位于临街地块部·位,地势平坦,室外地坪标高同自然地面,室内外高差450mm 。柱截面尺寸均为500mm ×500mm ,横向承重,柱网布置图如图1所示。场地内地层层位稳定,场地地质剖面及桩基计算指标详见工程地质资料,如表1所示。勘察期间测得地下水水位埋深为2.5m 。地下水水质分析结果表明,本场地地下水无腐蚀性。试按乙级条件设计柱下独立承台桩基础。 柱底荷载效应标准组合值 1轴荷载:5417;85.m;60k k k F kN M kN V kN ===。 2轴荷载:5411;160.m;53k k k F kN M kN V kN ===。 3轴荷载:5120;88.m;63k k k F kN M kN V kN ===。 4轴荷载:5300;198.m;82k k k F kN M KN V kN ===。 5轴荷载:5268;140.m;60k k k F kN M kN V kN ===。 图1 框架结构柱网布置图

(预制桩基础)--12土木1班 工程概况 某市新区钢筋混凝土框架结构的办公楼,长24.0米,柱距6米,宽9.6米,室内外地面高差0.45米。柱截面500×500mm。建筑场地地质条件见表1。 表1 建筑场地地质条件 注:地下水位在天然地面下2.5米处

目录 地基基础课程设计任务书........................................................................................................ - 0 - 工程概况.................................................................................................................................... - 1 - 1.设计资料................................................................................................................................. - 3 - 2.选择桩型与桩端持力层、确定桩长和承台埋深................................................................. - 3 - 3.确定单桩极限承载力标准值................................................................................................. - 4 - 4.确定桩数和承台尺寸............................................................................................................. - 5 - 5.桩顶作用效应验算................................................................................................................. - 5 - 6.桩基础沉降验算..................................................................................................................... - 6 - 6.1 求基底压力和基底附加压力...................................................................................... - 6 - 6.2 确定沉降计算深度...................................................................................................... - 6 - 6.3 沉降计算...................................................................................................................... - 6 - 6.4 确定沉降经验系数...................................................................................................... - 7 - 8 承台设计计算........................................................................................................................ - 9 - 8.1承台受冲切承载力验算............................................................................................... - 9 - 8.1.1.柱边冲切............................................................................................................. - 9 - 8.1.2角桩向上冲切................................................................................................... - 10 - 8.2承台受剪承载力计算................................................................................................. - 10 - 8.3承台受弯承载力计算..................................................................................................- 11 - 参考文献...................................................................................................................................- 11 -

相关文档
相关文档 最新文档