文档库 最新最全的文档下载
当前位置:文档库 › 半导体物理实验——半导体霍尔效应

半导体物理实验——半导体霍尔效应

半导体物理实验——半导体霍尔效应
半导体物理实验——半导体霍尔效应

实验报告

一、实验目的和任务

1.理解霍尔效应的物理意义;

2.了解霍尔元件的实际应用;

3.掌握判断半导体导电类型,学会测量半导体材料的霍尔系数、电导率、载流子浓度、漂移迁移率及霍

尔迁移率的实验方法。

二、实验原理

将一块宽为2a,厚为d,长为b的半导体样品,在X方向通以均匀电流I X,Z方向上加有均匀的磁场B z 时(见图1.1所示),则在Y方向上使产生一个电势差,这个电势差为霍尔电势差,用U H表示,这种现象就称为霍尔效应。

图 2.1

与霍尔电势对应的电场,叫做霍尔电场,用E Y表示,其大小与电流密度J X和所加磁场强度B z成正比,可以定义如下形式:

E Y = R H·B Z·J X (1)

上式中,R H为比例系数,称为霍尔系数。

霍尔效应的物理意义可做如下解释:半导体中的电流是载流子(电子或空穴)的定向动动引起的,一人以速度υx运动的载流子,将受到沦仑兹力f B = e υx B Z的作用,使载流子沿虚线方向偏转,如图1.2所示,并最后堆积在与Y轴垂直的两个面上,因而产生静电场E Y,此电场对载流子的静电作用力f E=e E Y,它与磁场对运动载流子的沦仑兹力f B大小相等,电荷就能无偏离地通过半导体,因而在Y方向上就有一个恒定的电场E Y。

霍尔效应实验

霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普斯金大学研究生霍尔于1879年发现的,后被称为霍尔效应。随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。若能测量霍尔系数和电导率随温度变化的关系,还可以求出半导体材料的杂质电离能和材料的禁带宽度。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广阔的应用前景。了解这一富有实用性的实验,对日后的工作将有益处。 一、实验目的 1.了解霍尔效应实验原理以及有关霍尔元件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量并绘制试样的V H -I S 和V H -I M 曲线。 3.确定试样的导电类型、载流子浓度以及迁移率。 二、实验原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。对于图(1)(a )所示的N 型半导体试样,若在X 方向的电极D 、E 上通以电流Is ,在Z 方向加磁场B ,试样中载流子(电子)将受洛仑兹力 (1) 其中e 为载流子(电子)电量, 为载流子在电流方向上的平均定向漂移速率,B B v e F z V

大学物理仿真实验——霍尔效应

大学物理实验报告 姓名:wuming 1目的:(1)霍尔效应原理及霍尔元件有关参数的含义和作用 (2)测绘霍尔元件的V H—Is,V H—I M曲线,了解霍尔电势差V H与霍尔元件工作电流Is,磁场应强度B及励磁电流I M之间的关系。 (3)学习利用霍尔效应测量磁感应强度B及磁场分布。 (4)学习用“对称交换测量法”消除负效应产生的系统误差。 2简单的实验报告数据分析 (1)实验原理 霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。如下图(1)所示,磁场B 位于Z的正向,与之垂直的半导体薄片上沿X正向通以电流Is(称为工作电流),假设载流子为电子(N型半导体材料),它沿着与电流Is相反的X负向运动。由于洛仑兹力f L作用,电子即向图中虚线箭头所指的位于y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时,f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。设电子按平均速度V,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为: f L=-e V B 式中:e 为电子电量,V为电子漂移平均速度,B为磁感应强度。 同时,电场作用于电子的力为: f E H H eV eE- = - =l

霍尔效应实验报告98010

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v = 其中E H 称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。设试样的宽度为b , ? a

厚度为d ,载流子浓度为n ,则 bd ne t lbde n t q I S v =??=??= d B I R d B I ne b E V S H S H H =?= ?=1 比例系数R H =1/ne 称为霍尔系数。 1. 由R H 的符号(或霍尔电压的正负)判断样品的导电类型。 2. 由R H 求载流子浓度n ,即 e R n H ?= 1 (4) 3. 结合电导率的测量,求载流子的迁移率μ。 电导率σ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = (5) 即σμ?=H R ,测出σ值即可求μ。 电导率σ可以通过在零磁场下,测量B 、C 电极间的电位差为V BC ,由下式求得σ。 S L V I BC BC s ?= σ(6) 二、实验中的副效应及其消除方法: 在产生霍尔效应的同时,因伴随着多种副效应,以致实验测得的霍尔电极A 、A′之间的电压为V H 与各副效应电压的叠加值,因此必须设法消除。 (1)不等势电压降V 0 如图2所示,由于测量霍尔电压的A 、A′两电极不可能绝对对称地焊在霍尔片的两侧,位置不在一个理想的等势面上,Vo 可以通过改变Is 的方向予以消除。 (2)爱廷豪森效应—热电效应引起的附加电压V E 构成电流的载流子速度不同,又因速度大的载流子的能量大,所以速度大的粒子聚集的一侧温度高于另一侧。电极和半导体之间形成温差电偶,这一温差产生温差电动势V E ,如果采用交流电,则由于交流变化快使得爱延好森效应来不及建立,可以减小测量误差。 (3)能斯托效应—热磁效应直接引起的附加电压V N

用霍尔效应测量螺线管磁场 物理实验报告

华南师范大学实验报告 学生姓名 学 号 专 业 化学 年级、班级 课程名称 物理实验 实验项目 用霍尔效应测量螺线管磁场 实验类型 □验证 □设计 □综合 实验时间 2012 年 3 月 07 实验指导老师 实验评分 一、 实验目的: 1.了解霍尔效应现象,掌握其测量磁场的原理。 2.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。 二、 实验原理: 根据电磁学毕奥-萨伐尔定律,通电长直螺线管线上中心点的磁感应强度为: 2 2 M D L I N B +??μ= 中心 (1) 理论计算可得,长直螺线管轴线上两个端面上的磁感应强度为内腔中部磁 感应强度的1/2: 2 2M D L I N 21B 21B +??μ? ==中心端面 (2) 式中,μ为磁介质的磁导率,真空中的磁导率μ0=4π×10-7 (T ·m/A),N 为螺线管的总匝数,I M 为螺线管的励磁电流,L 为螺线管的长度,D 为螺线管的平均直径。 三、 实验仪器: 1.FB510型霍尔效应实验仪 2.FB510型霍尔效应组合实验仪(螺线管) 四、 实验内容和步骤: 1. 把FB510型霍尔效应实验仪与FB510型霍尔效应组合实验仪(螺线管)正确连接。把励磁电流接到螺线 管I M 输入端。把测量探头调节到螺线管轴线中心,即刻度尺读数为13.0cm 处,调节恒流源2,使I s =4.00mA ,按下(V H /V s )(即测V H ),依次调节励磁电流为I M =0~±500mA ,每次改变±50mA, 依此测量相应的霍尔电压,并通过作图证明霍尔电势差与螺线管内磁感应强度成正比。 2. 放置测量探头于螺线管轴线中心,即1 3.0cm 刻度处,固定励磁电流±500mA ,调节霍尔工作电流为:I s =0~ ±4.00mA ,每次改变±0.50mA ,测量对应的霍尔电压V H ,通过作图证明霍尔电势差与霍尔电流成正比。 3. 调节励磁电流为500mA ,调节霍尔电流为 4.00mA ,测量螺线管轴线上刻度为X =0.0cm~13.0cm ,每次移动 1cm ,测各位置对应的霍尔电势差。(注意,根据仪器设计,这时候对应的二维尺水平移动刻度读数为:13.0cm 处为螺线管轴线中心,0.0cm 处为螺线管轴线的端面,找出霍尔电势差为螺线管中央一半的数值的刻度位置。与理论值比较,计算相对误差。按给出的霍尔灵敏度作磁场分布B ~X 图。) 五、 注意事项: 图1

霍尔效应实验方法

实验: 霍尔效应与应用设计 [教学目标] 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 [实验仪器] 1.TH -H 型霍尔效应实验仪,主要由规格为>2500GS/A 电磁铁、N 型半导体硅单晶切薄片式样、样品架、I S 和I M 换向开关、V H 和V σ(即V AC )测量选择开关组成。 2.TH -H 型霍尔效应测试仪,主要由样品工作电流源、励磁电流源和直流数字毫伏表组成。 [教学重点] 1. 霍尔效应基本原理; 2. 测量半导体材料的霍尔系数的实验方法; 3. “对称测量法”消除副效应所产生的系统误差的实验方法。 [教学难点] 1. 霍尔效应基本原理及霍尔电压结论的电磁学解释与推导; 2. 各种副效应来源、性质及消除或减小的实验方法; 3. 用最小二乘法处理相关数据得出结论。 [教学过程] (一)讲授内容: (1)霍尔效应的发现: 1879,霍尔在研究关于载流导体在磁场中的受力性质时发现: “电流通过金属,在磁场作用下产生横向电动势” 。这种效应被称为霍尔效应。 结论:d B I ne V S H ?=1 (2)霍尔效应的解释: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。当载

流子所受的横电场力H e eE f =与洛仑兹力evB f m =相等时,样品两侧电荷的积累就达到平衡, B e eE H v = (1) bd ne I S v = (2) 由 (1)、(2)两式可得: d B I R d B I ne b E V S H S H H =?= ?=1 (3) 比例系数ne R H 1=称为霍尔系数,它是反映材料霍尔效应强弱的重要参数, (3) 霍尔效应在理论研究方面的进展 1、量子霍尔效应(Quantum Hall Effect) 1980年,德国物理学家冯?克利青观察到在超强磁场(18T )和极低 温(1.5K )条件下,霍尔电压 UH 与B 之间的关系不再是线性的,出现一 系列量子化平台。 量子霍尔电阻 获1985年诺贝尔物理学奖! 2、分数量子霍尔效应 1、1982年,美国AT&T 贝尔实验室的崔琦和 斯特默发现:“极纯的半导体材料在超低温(0.5K) 和超强磁场(25T)下,一种以分数形态出现的量子电 阻平台”。 2、1983 年,同实验室的劳克林提出准粒子理 论模型,解释这一现象。 获1998年诺贝尔物理学奖 i e h I U R H H H 1 2?==3,2,1=i

北京大学物理实验报告:霍尔效应测量磁场(pdf版)

霍尔效应测量磁场 【实验目的】 (1) 了解霍尔效应的基本原理 (2) 学习用霍尔效应测量磁场 【仪器用具】 仪器名参数 电阻箱? 霍尔元件? 导线? SXG-1B毫特斯拉仪±(1% +0.2mT) PF66B型数字多用表200 mV档±(0.03%+2) DH1718D-2型双路跟踪稳压稳流电源0~32V 0~2A Fluke 15B数字万用表电流档±(1.5%+3) Victor VC9806+数字万用表200 mA档±(0.5%+4) 【实验原理】 (1)霍尔效应法测量磁场原理 若将通有电流的导体至于磁场B之中,磁场B(沿着z轴)垂直于电流I S(沿着x轴)的方向,如图1所示则在导体中垂直于B和I S方向将出现一个横向电位差U H,这个现象称之为霍尔效应。 图 1 霍尔效应示意图 若在x方向通以电流I S,在z方向加磁场B,则在y方向A、A′两侧就开始聚积异号电荷而产生相应的附加电场.当载流子所受的横向电场力F E洛伦兹力F B相等时: q(v×B)=qE 此时电荷在样品中不再偏转,霍尔电势差就有这个电场建立起来。 N型样品和P型样品中建立起的电场相反,如图1所示,所以霍尔电势差有不同的符号,由此可以判断霍尔元件的导电类型。

设P型样品的载流子浓度为p,宽度为w,厚度为的d。通过样品电流I S=pqvwd,则空穴速率v=I S/pqwd,有 U H=Ew=I H B =R H I H B =K H I H B 其中R H=1/pq称为霍尔系数,K H=R H/d=1/pqd称为霍尔元件灵敏度。(2)霍尔元件的副效应及其消除方法 在实际测量过程中,会伴随一些热磁副效应,这些热磁效应有: 埃廷斯豪森效应:由于霍尔片两端的温度差形成的温差电动势U E 能斯特效应:热流通过霍尔片在其端会产生电动势U N 里吉—勒迪克效应:热流通过霍尔片时两侧会有温度差产生,从而又产生温差电动势U R 除此之外还有由于电极不在同一等势面上引起的不等位电势差U0 为了消除副效应,在操作时我们需要分别改变IH和B的方向,记录4组电势差的数据 当I H正向,B正向时:U1=U H+U0+U E+U N+U R 当I H负向,B正向时:U2=?U H?U0?U E+U N+U R 当I H负向,B负向时:U3=U H?U0+U E?U N?U R 当I H正向,B负向时:U4=?U H+U0?U E?U N?U R 取平均值有 1 (U1?U2+U3?U4)=U H+U E≈U H (3)测量电路 图 2 霍尔效应测量磁场电路图 霍尔效应的实验电路图如图所示。I M是励磁电流,由直流稳流电源E1提供电流,用数字万用表安培档测量I M。I S是霍尔电流,由直流稳压电源E2提供电流,用数字万用表毫安档测量I S,为了保证I S的稳定,电路中加入电阻箱R进行微调。U H是要测的霍尔电压,接入高精度的数字多用表进行测量。 根据原理(2)的说明,在实验中需要消除副效应。实际操作中,依次将I S、 I M的开关K1、K2置于(+,+)、(?,+)、(?,?)、(+,?)状态并记录U i即可,其 中+表示正向接入,?表示反向接入。

霍尔效应实验数据及曲线

表1 测绘Vh-Is实验曲线数据记录表(Im=0.500A) Is(mA)V1(Mv)V2(Mv)V3(Mv)V4(Mv) Vh=(|V1|+|V2|+|V3|+|V4|)/4 +B,+Is-B,+Is-B,-Is+B,-Is 0.50.64-0.370.37-0.630.5025 1 1.28-0.740.75-1.271 1.5 1.91-1.11 1.12-1.9 1.53 2 2.53-1.48 1.49-2.52 2.005 2.5 3.16-1.86 1.87-3.15 2.51 3 3.79-2.2 4 2.25-3.77 3.0125 3.5 4.42-2.61 2.62-4.39 3.51 4 5.03-2.99 3.01-5.01 4.01 Vh-Is实验曲线 表2 测绘Vh-Im实验曲线数据记录表 Im(mA)V1(Mv)V2(Mv)V3(Mv)V4(Mv) Vh=(|V1|+|V2|+|V3|+|V4|)/4 +B,+Is-B,+Is-B,-Is+B,-Is

0.1 1.380.16-0.15-1.360.7625 0.2 1.980.44-0.43-1.96 1.2025 0.3 2.59 1.04-1.03-2.57 1.8075 0.4 3.18 1.64-1.63-3.16 2.4025 0.5 3.79 2.25-2.23-3.77 3.01 表3 测绘Vh-X实验曲线数据记录表 X V1(Mv)V2(Mv)V3(Mv)V4(Mv)Vh=(|V1|+|V2|+|V3|+|V4|)/4 Vh 0 2.12-0.570.59-2.09 1.3425 1 2.92-1.37 1.39-2.89 2.1425 2 3.38-1.82 1.85-3.35 2.6 3 3.58-2.03 2.06-3.56 2.8075 4 3.68-2.12 2.06-3.6 5 2.8775 5 3.73-2.17 2.2-3.7 2.95 6 3.76-2.2 2.23-3.73 2.98 8 3.77-2.21 2.24-3.74 2.99

实验三半导体的霍尔效应

实验三半导体的霍尔效应 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产 生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于 1879年发现的,后被称为霍 尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段, 而且利用该效应制成的 霍尔器件已广泛用于非电量的电测量、 自动控制和信息处理等方面。 在工业生产要求自动检 测和控制的今天,作为敏感元件之一的霍尔器件, 将有更广泛的应用前景。掌握这一富有实 用性的实验,对日后的工作将有益处。 、实验目的 1?了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 .学习用“对称测量法”消除副效应的影响,测量试样的 .确定载流子浓度以及迁移率。 实验仪器 霍尔效应实验组合仪。 实验原理 图1.1霍尔效应实验原理示意图 a )载流子为电子(N 型) b )载流子为空穴(P 型) 1.霍尔效应 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。 当带电 粒子(电子或空穴)被约束在固体材料中, 这种偏转就导致在垂直电流和磁场方向上产生正 若在X 方向通以电流Is ,在Z 方向加磁场B ,则在丫方向即试样A-A / 电极两侧就开始聚 集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图 1.1 (a )所 V H-I S > V H I M 曲线。 负电荷的聚积,从而形成附加的横向电场,即霍尔电场 E H 。如图1.1所示的半导体试样, b a

V H I 1°8 R H = |S B 8 上式中的1°是由于磁感应强度 B 用电磁单位(高斯)而其它各量均采用 CGS 实用单位而 引入。 率之间有如下关系: (1-5) 示的N 型试样,霍尔电场逆 丫方向,(b )的P 型试样则沿丫方向。即有 (N 型) (P 型) E H (Y) 0 E H (Y) 0 显然,霍尔电场 洛仑兹力 evB 相等, E H 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力 eE H 与 样品两侧电荷的积累就达到动态平衡,故 eE H eVB (1-1) E H 为霍尔电场, b,厚度为d ,载流子浓度为 I S nevbd 其中 设试样的宽为 v 是载流子在电流方向上的平均漂移速度。 n ,则 (1-2) 由(1-1 )、( 1-2 ) 两式可得: V H E H b 丄上B ne d (1-3) 即霍尔电压 V H (A 、A 电极之间的电压) 'S B 乘积成正比与试样厚度 d 成反比。 比例系数 R H 丄 ne 称为霍尔系数,它是反映材料霍尔效应强弱的重要参数。 只要测出 V H (伏)以及知道 I S (安)、B (高斯)和d (厘米)可按下式计算 R H (厘米2 3 /库仑): (1-4) V A 'A °,即点A 点电位高于点 A'的电位,则R H n (2)由F H 求载流子浓度n 。即 1 R H ?。应该指出,这个关系式是假定所有载流子 都具有相同的漂移速度得到的,严格一点,如果考虑载流子的速度统计分布,需引入 修正因子(可参阅黄昆、谢希德著《半导体物理学》 (3)结合电导率的测量,求载流子的迁移率 。电导率 与载流子浓度 3 8的 n 以及迁移 ne

大学物理实验报告系列之霍尔效应-大物霍尔效应实验报告Word版

【实验名称】霍尔效应 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除付效应的影响,测量试样的VH—IS;和VH—IM 曲线。 3.确定试样的导电类型、载流子浓度以及迁移率。 【实验仪器】 霍尔效应实验仪 【实验原理】霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。 对于图1(a)所示的N型半导体试样,若在X方向通以电流1s,在Z方向加磁场B,试样中载流子(电子)将受洛仑兹力 F B = e v B (1) 则在Y方向即试样A、A'电极两侧就开始聚积异号电荷而产生相应的附加电场一霍尔电场。电场的指向取决于试样的导电类型。对N型试样,霍尔电场逆Y方向,P型试样则沿Y方向,有: Is (X)、 B (Z) E H (Y) <0 (N型) E H (Y) >0 (P型) 显然,该电场是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H eE与 洛仑兹力eVB相等时,样品两侧电荷的积累就达到平衡,故有 H eE= B v e(2) 其中 H E为霍尔电场,v是载流子在电流方向上的平均漂移速度。 设试样的宽为b,厚度为d,载流子浓度为n,则 bd v ne Is=(3)由(2)、(3)两式可得 d B I R d B I ne b E V S H S H H = = = 1 (4) 即霍尔电压 H V(A、A'电极之间的电压)与IsB乘积成正比与试样厚度成反比。 比例系数 ne R H 1 =称为霍尔系数,它是反映材料霍尔效应强弱的重要参数, 整理为word格式

实验三 半导体的霍尔效应

实验三 半导体的霍尔效应 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 一、实验目的 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的V H -I S 、曲线。 3.确定载流子浓度以及迁移率。 二、实验仪器 霍尔效应实验组合仪。 三、实验原理 1.霍尔效应 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。如图1.1所示的半导体试样, 若在X 方向通以电流 ,在Z 方向加磁场,则在Y 方向即试样 A-A / 电极两侧就开始聚 集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图 1.1(a )所 M H I V -H E S I B X Y Z

示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 显然,霍尔电场是阻止载流子继续向侧面偏移,当载流子所受的横向电场力与洛仑兹力相等,样品两侧电荷的积累就达到动态平衡,故 (1-1) 其中为霍尔电场,是载流子在电流方向上的平均漂移速度。 设试样的宽为b ,厚度为d ,载流子浓度为n ,则 (1-2) 由(1-1)、(1-2)两式可得: (1-3) 即霍尔电压(A 、A / 电极之间的电压)与乘积成正比与试样厚度成反比。 比例系数 称为霍尔系数,它是反映材料霍尔效应强弱的重要参数。只要测出(伏)以及知道 (安)、(高斯)和(厘米)可按下式计算(厘米3 /库仑): R H = (1-4) 上式中的10是由于磁感应强度用电磁单位(高斯)而其它各量均采用CGS 实用单位而 引入。 2.霍尔系数与其它参数间的关系 根据 可进一步确定以下参数: (1)由的符号(或霍尔电压的正负)判断样品的导电类型。判别的方法是按图1.1所示的I 和B 的方向,若测得的即点点电位高于点的电位,则为负,样品属N 型;反之则为P 型。 (2)由R H 求载流子浓度n 。即 。应该指出,这个关系式是假定所有载流子 都具有相同的漂移速度得到的,严格一点,如果考虑载流子的速度统计分布,需引入的 修正因子(可参阅黄昆、谢希德著《半导体物理学》)。 (3)结合电导率的测量,求载流子的迁移率。电导率与载流子浓度n 以及迁移 率 之间有如下关系: (1-5) )(P 0)() (N 0)(型型?>?

大学物理实验教案-霍尔效应 (1)

大学物理实验教案

实验名称:霍尔效应 实验目的: 1、了解霍尔效应原理。 2、了解霍尔电势差V H 与霍尔元件工作电流s I 之间的关系,了解霍尔电势差V H 与励磁电流m I 之 间的关系。 3、学习用“对称交换测量法”消除负效应产生的系统误差。 4、学习利用霍尔效应测量磁感应强度B 的原理和方法。 实验仪器: TH-H 霍尔效应实验仪 TH-H 霍尔效应测试 实验原理: 一、霍尔效应原理 若将通有电流的导体置于磁场B 之中,磁场B (沿z 轴)垂直于电流S I (沿x 轴)的方向,如图所示,则在导体中垂直于B 和S I 的方向上出现一个横向电势差H U ,这个现象称为霍尔效应。 这一效应对金属来说并不显著,但对半导体非常显著。利用霍尔效应可以测定载流子浓度、载流子迁移率等重要参数,是判断材料的导电类型和研究半导体材料的重要手段。还可以用霍尔效应测量直流或交流电路中的电流强度和功率,以及把直流电流转成交流电流并对它进行调制、放大。用霍尔效应制作的传感器广泛用于磁场、位置、位移、转速的测量。 霍尔电势差产生的本质,是当电流S I 通过霍尔元件(假设为P 型,即导电的载流子是空穴。)时,空穴有一定的漂移速度v ,垂直磁场对运动电荷产生一个洛仑兹力

()B q =?F v B (1) 式中q 为载流子电荷。洛沦兹力使载流子产生横向的偏转,由于样品有边界,所以有些偏转的载流子将在边界积累起来,产生一个横向电场E ,直到电场对载流子的作用力F E =q E 与磁场作用的洛沦兹力相抵消为止,即 ()q q ?=v B E (2) 这时载流子在样品中流动时将不偏转地通过霍尔元件,霍尔电势差就是由这个电场建立起来的。 如果是N 型样品,即导电的载流子是电子,则横向电场与前者相反,所以N 型样品和P 型样品的霍尔电势差有不同的符号,据此可以判断霍尔元件的导电类型。 设P 型样品的载流子浓度为n ,宽度为b ,厚度为d 。通过样品电流nevbd I S =,则空穴的速度nebd I v S = ,代入(2)式有 nebd B I S = ?=B v E (3) 上式两边各乘以b ,便得到 S S H H I B I B V Eb R ned d == = (4) 霍尔电压H V ( A 、A '之间电压)与S I 、B 的乘积成正比,与霍尔元件的厚度d 成反比,比例系数H R ,称为霍尔系数。它是反映材料霍尔效应强弱的重要参数。 H H S V d 1 R I B ne = = (5) 在应用中一般写成 H H S V K I B = (6) 比例系数ned 1 I R K S H H = = ,称为霍尔元件灵敏度,单位为mV/(mA ·T)。一般要求H K 愈大愈好。H K 与载流子浓度n 成反比,半导体内载流子浓度远比金属载流子浓度小,所以选用半导体材料作为霍尔元件。H K 与片厚d 成反比,所以霍尔元件都做的很薄,一般只有0.2mm 厚。 由(4)式可以看出,知道了磁感应强度B ,只要分别测出传导电流S I 及霍尔电势差H V ,就可算出霍尔系数H R 和霍尔元件灵敏度H K 。

实验三 半导体霍尔效应测量实验

实验三半导体材料的霍尔效应测量实验 1 实验原理 1)霍尔效应 霍尔效应指的是在外加磁场的作用下,给半导体通入电流,内部的载流子受到磁场引起的洛伦兹力的影响,空穴和电子向相反的方向偏转,这种偏转导致在垂直电流和磁场方向上产生正负电荷的积累,形成附加的横向电场 ,直至电场对载流子的作用力与洛伦兹力抵消,此时的电场强度乘以半导体样品的宽度后,可以得到霍尔电压V H 。 设磁感应强度为B ,电子浓度(假设为n 型半导体)为n ,则电流表达式为I H =nevbd ,而霍尔电压产生的电场为E H =vB 霍尔电压的表达式为: V H =E H b =vBb = I H nebd Bb =1ne I H B d =R H I H B d 其中R H 称为霍尔系数: R H = 1 可以通过V H ,B,I H 的方向可以判断样品的导电类型,通过V H 和I H 的关系曲线可以提取出R H ,进一步还可以得到电子(空穴)浓度。 在实际测量中,还会伴随一些热磁副效应,使得V H 还会附带另外一些电压,给测量带来误差。为了消除误差,需要取不同的I H 和B 的方向测量四组数据求平均值得到V H ,如下表 2) 范德堡法测量电阻率 由于实验使用的霍尔元件可视为厚度均匀、无空洞的薄片,故可使用范德堡法进行电阻率的测量。在样品四周制作四个极小的欧姆接触电极1,2,3,4。如图2所示。 图1霍尔效应原理示意图

先在1、2端通电流,3、4端测电压,可以定义一个电阻 R1=V34 12 然后在2、3端通电流,1、4端测电压,求 R2=V14 23 理论上证明样品的电阻率与R1、R2的关系为 ρ=πd ln2 R1+R2 2 f 可以通过查表可知范德堡因子f与R1/R2的关系,从而求得样品的电阻率。 2实验内容 本实验所用仪器为SH500-A霍尔效应实验仪、恒流电源、高斯计。 实验步骤如下: 1)连线 掌握仪器性能,连接恒流电源与霍尔效应试验仪之间的各组连线。 2)测量霍尔系数,判断样品的导电类型 测量半导体样品的霍尔系数。需要测不同档位组合下的霍尔电压,利用换向法消除霍尔元件的副效应。在励磁电流为400mA情况下,改变霍尔电流的大小,改变档位组合,记录霍尔电压。从5mA 开始,每隔1mA 测量一次U H,一直取到I H= 15mA。 判断样品的导电类型。根据左手定则,可以判断载流子在磁场中受到的洛伦兹力的方向,进而判断出载流子积累的情况,从而得到内建霍尔电场的方向,电场方向表现为霍尔电压的正负。对于P型样品,霍尔电压大于0;反之,对于N型样品,霍尔电压小于0。 3)范德堡法测量电阻率 ①对于1、2、3、4四点,取其相邻两点通入电流,取另外两点测得其电势差。 ②并分别求出其对应的电阻 ③再查表得到其范德堡因子f。 ④求得其电阻率并求平均。 实验建议通入的电流范围为10~15mA,实际操作时,发现超过电压表量程,故在实验过程中,实际通入电流I取低于此范围的值,这并不会对实验结果产生很大的影响。 3 实验数据及分析

霍尔效应及用其理论测量半导体材料的性能

本科毕业论文 题目:霍尔效应及用其理论测量 半导体材料的性能 学院:物理与电子科学院 班级: 09级物理二班 姓名:闫文斐 指导教师:付仁栋职称:讲师完成日期: 2013 年 5 月 15 日

霍尔效应及用其理论测量 半导体材料的性能 摘要:简述了霍尔效应的基本原理,测量判定半导体材料的霍尔系数,确定半导体材料的导电类型、载流子浓度及迁移率。因此,霍尔效应时研究半导体性质的重要实验方法。分析了利用霍尔效应测量半导体特性参数中影响的重要副效应,给出了减小或消除这些副效应的方法,并在实验中,对实验仪器进行了一定得改进,使实验更有利于操作。 关键字:霍尔效应;半导体;副效应;载流子;改进

目录 引言 (1) 1. 霍尔效应 (2) 1.1霍尔效应的基本原理 (2) 1 .2 霍尔电势差和磁场测量 (3) 2. 实验内容 (5) 2.1 确定霍尔元件的导电类型 (5) 2.2 霍尔灵敏度、霍尔系数、载流子浓度的测量 (6) 2.3实验数据的处理 (6) 3. 误差分析 (8) 3.1主要误差及原因 (8) 3.2 消除误差的方法 (9) 4. 实验的改进 (10) 4.2 霍尔元件载流子迁移率μ和电导率σ的测量 (11) 5. 结束语 (11) 致谢 (11) 参考文献 (11)

引言 霍尔效应是电磁效应在实验中的应用的一中,这是美国的一位伟大的物理学家霍尔(A.H.Hall,1855—1938)发现的,于1879年在探索金属的导电原理时偶然发明的。将载流霍尔元件置于与其垂直的磁场B中,板内出现的磁场会与电流方向垂直,同样的,板的两边就会出现一个横向电压(如图1)。在霍尔发现的100年后,1985年德国克利青( K laus von K litzing,1943-)等研究极低温度和强磁场中的半导体时发现量子霍尔效应获得诺贝尔奖。1998年华裔科学家崔琦(Daniel Chee Tsui,1939-)、斯坦福大学的美国物理学家劳克林(Robert https://www.wendangku.net/doc/821256832.html,ughlin,1950-)和哥伦比亚大学的施特默(Horst L.Stormer,1949-)在更强磁场下研究量子霍尔效应,因为发现分数量子霍尔效应而荣获诺贝尔奖。 霍尔效应原本的发现是在对金属的研究中, 但在科学发展到现在,却发现该效应在半导体中的应用更加突出, 所以在半导体的研究中一直以来提供非常重要的理论依据。本文通过霍尔效应测量,不仅判别了半导体材料的导电类型,霍尔系数、载流子浓度及迁移率和电导率等主要的半导体材料的特性参数。并在分析操作中因受各种副效应的影响,带来的测量准确度的影响,如何避免这些副效应的影响也是很必要的。因此,本文还对我们的实验元件做了很好的改进,可以通过实验测量的方法直接得到我们所需要的迁移率和电导率。

大学物理实验报告霍尔效应

大学物理实验报告霍尔效应 一、实验名称:霍尔效应原理及其应用二、实验目的:1、了解霍尔效应产生原理;2、测量霍尔元件的、曲线,了解霍尔电压与霍尔元件工作电流、直螺线管的励磁电流间的关系;3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度及分布;4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。 三、仪器用具:YX-04 型霍尔效应实验仪(仪器资产编号)四、实验原理:1、霍尔效应现象及物理解释霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1 所示。半导体样品,若在x 方向通以电流,在z 方向加磁场,则在y 方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力时电荷不断聚积,电场不断加强,直到样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压)。设为霍尔电场,是载流子在电流方向上的平均漂移速度;样品的宽度为,厚度为,载流子浓度为,则有:(1-1) 因为,,又根据,则(1-2)其中称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出、以及知道和,可按下式计算:(1-3)(1-4)为霍尔元件灵敏度。 根据RH 可进一步确定以下参数。(1)由的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1 所示的和的方向(即测量中的+,+),若测得的 <0(即A′的电位低于A 的电位),则样品属N 型,反之为P 型。(2)由求载流子浓度,即。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。(3)结合电导率的测量,求载流子的迁移率。电导率与载流子浓度以及迁移率之间有如下关系:(1-5)2、霍尔效应中的副效应及其消除方法上述推导是从理想情况出发的,实际情况要复杂得多。产生上述霍尔效应的同时还伴随产生四种副效应,使的测量产生系统误差,如图 2 所示。 (1)厄廷好森效应引起的电势差。由于电子实际上并非以同一速度v 沿y 轴负向运动,速度大的电子回转半径大,能较快地到达接点3 的侧面,从而导致3 侧面较4 侧面集中较多能量高的电子,结果3、4 侧面出现温差,产生温差电动势。 可以证明。的正负与和的方向有关。(2)能斯特效应引起的电势差。焊点1、2 间接触电阻可能不同,通电发热程度不同,故1、2 两点间温度可能不同,于是引起热扩散电流。与霍尔效应类似,该热扩散电流也会在 3、4 点间形成电势差。 若只考虑接触电阻的差异,则的方向仅与磁场的方向有关。(3)里纪-勒杜克效应产生的电势差。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4 点间形成温差电动势。的正负仅与的方向有关,而与的方向无关。(4)不等电势效应引起的电势差。由于制造上的困难及材料的不均匀性,3、4 两点实际上不可能在同一等势面上,只要有电流沿x 方向流过,即使没有磁场,3、4 两点间也会出现电势差。的正负只与电流的方向有关,而与的方向无关。综上所述,在确定的磁场和电流下,实际测出的电压是霍尔

霍尔效应实验报告

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v 其中E H 称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。设试样的宽度为b ,厚度为d ,载流子浓度为n ,则 图1. 霍尔效应原理示意图,a )为N 型(电子) b )为P 型(孔穴) f e f m v -e E H A / A B C I S V mA B a +e E H f e f m v I S B b l d b

霍尔效应实验报告

大学物理实验报告 课程名称:普通物理实验(2) 实验名称:霍尔效应 学院:专业班级: 学生:学号: 实验地点:座位号: 实验时间:

一、 实验目的: 1、了解霍尔效应法测磁感应强度S I 的原理和方法; 2、学会用霍尔元件测量通电螺线管轴向磁场分布的基本方法; 二、 实验仪器: 霍尔元件测螺线管轴向磁场装置、多量程电流表2只、电势差计、滑动变阻 器、双路直流稳压电源、双刀双掷开关、连接导线15根。 三、 实验原理: 1、霍尔效应 霍尔效应本质上是运动的带电粒子在磁场中受洛仑磁力作用而引起的偏转。 当带电粒子(电子或空穴)被约束在固体材料中,这种偏转导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横加电场,即霍尔电场H E . 如果H E <0,则说明载流子为电子,则为n 型试样;如果H E >0,则说明载流子为空穴,即为p 型试样。 显然霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场

力e H E 与洛仑磁力B v e 相等,样品两侧电荷的积累就达到动态平衡,故有: e H E =-B v e 其中E H 为霍尔电场,v 是载流子在电流方向上的平均速度。若试样的宽度为b ,厚度为d ,载流子浓度为n ,则 bd v ne I = 由上面两式可得: d B I R d B I ne b E V S H S H H == =1 (3) 即霍尔电压H V (上下两端之间的电压)与B I S 乘积成正比与试样厚度d 成反比。比列系数ne R H 1 = 称为霍尔系数,它是反应材料霍尔效应强弱的重要参量。只要测出H V 以及知道S I 、B 和d 可按下式计算H R : 410?= B I d V R S H H 2、霍尔系数H R 与其他参量间的关系 根据H R 可进一步确定以下参量: (1)由H R 的符号(或霍尔电压的正负)判断样品的导电类型。判别方法是电压为负,H R 为负,样品属于n 型;反之则为p 型。 (2)由H R 求载流子浓度n.即e R n H 1 = 这个关系式是假定所有载流子都具有相同的漂移速度得到的。 (3)结合电导率的测量,求载流子的迁移率μ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = 即μ=σH R ,测出σ值即可求μ。 3、霍尔效应与材料性能的关系

大学物理实验--霍尔效应实验报告

实验报告模板 实验题目:霍尔效应实验 学 号 姓名实验日期 实验目的1.了解霍尔效应的物理过程。 2.学习用对称测量法消除负效应的影响,测量试样的霍尔电压。 3.确定试样的导电类型,载流子浓度以及迁移率。 实验原理将一个半导体薄片放在垂直于它的磁场中(B的方向沿z轴方向),当沿y方向的电极 、 ′上施加电流I时,薄片内定向移动的载流子(设平均速率为u)受到洛伦兹力的作用。无论载流子是负电荷还是正电荷,均在洛伦兹力的作用下,载流子发生偏移,产生电荷积累,从而在薄片 、 ′两侧产生一个电位差,形成一个电场E。电场使载流子又受到一个与洛伦兹力方向相反的电场力。达到稳定状态时,两力相等。此时两侧的电压称为霍尔电压。

实验内容1.开机调零 2.正确接线 3.保存接线状态 4.零磁场条件下,测量不等位电压 5.保持励磁电流不变,改变工作电流的值,测量霍尔电压值 6.保持工作电流不变,改变励磁电流的值,测量霍尔电压值 7.计算霍尔效应系数,霍尔元件载流子浓度,霍尔元件电导率,霍尔元件载流子迁移率 8.关机整理仪器 数据处理

误 差 分 析 及 思 考 题思考题:霍尔元件为什么选用半导体薄片?答:霍尔效应,一般在半导体薄片的长度方向上施加磁感应强度为B 的磁场,则在宽度方向上会产生电动势UH,这种现象即称为霍尔效应。UH 称为霍尔电势,其大小可表示为:UH=RH/d*I*B,RH 称为霍尔系数,由导体材料的性质决定;d 为导体材料的厚度,I 为电流强度,B 为磁感应强度。设RH/d=K,则公式可写为:UH=K*I*B 可见,霍尔电压与控制电流及磁感应强度的度乘积成正比,K 值越大,灵敏度就越高,输出电压也越大,所以要选用薄片。霍尔系数:K=1/(n*q),n 为载流子密度,一般金属中载流子密度很大,所以金属材料的霍尔系数很小,霍尔效应不明显;而半导体中的载流子的密度比金属要小得多,所以半导体的霍尔系数比金属大得多,能产生较大的霍尔效应,所以用半导体。 教师 总 评 (教师填写,每个实验按10分记。 )分说明:实验报告最终以“学号-姓名-实验名称”为文件名,在实验当日内上传实验报告。

相关文档
相关文档 最新文档