文档库 最新最全的文档下载
当前位置:文档库 › 二次函数与一元二次方程间的关系

二次函数与一元二次方程间的关系

二次函数与一元二次方程间的关系
二次函数与一元二次方程间的关系

二次函数与一元二次方程间的关系

一,证明二次函数的图象与X 轴有无交点,只要证明相应的一元二次方程有无实数根

例1, 求证:不论m 取什么失数,二次函数22

-+-=m mx x y 的图象与x 轴相急哦啊于两个不同的

交点。

例2, 设二次函数a x x y -+==222

的图象与X 轴只有一个公共点,求a 。

二,求二次函数的图象与X 轴交点的横坐标,就是求相应的一元二次方程的根

例3, 已知:抛物线)6(2)4(2

+-++=m x m x y ,当m 为何值时,抛物线X 轴的两个交点都位于点

(1,0)的右侧?

例4, 二次函数32)1(22

-+-+=m x m x y ,如果函数图象与X 轴负半轴有两个不同的交点,求m

的取值范围。

三,利用一元二次方程根与系数的关系,求相应的二次函数的解析式

例5, 如图:二次函数3)5(2

1

22-+-+-=m x m x y 的图象与X 轴有两个交点A 、B ,点A 在X 轴

的正半轴上,点B 在X 轴的负半轴上,且OA=OB ,求该二次函数的解析式。

Y C

B

O A

X

例6, 如图:已知:抛物线c bx x y ++=2

经过点(2,-4),与X 轴交于P 、Q 两点,且

3

2

=QO PO ,求此抛物线的解析式。

四.二次函数图象与X 轴两个交点之间的距离d ,就是相应的一元二次方程两根之差的 绝对值

例7, 设A 、B 为二次函数m x x y +--=232

的图象与X 轴的两个相异交点,P 为抛物线的顶点,当

△ABC 为等腰直角三角形时,求m 的值。

五,有关二次函数和一元二次方程的综合题

例8, 如图:直线L 与x 轴交于点P (1,0),与x 轴所夹的锐角为θ,且tg θ=

2

3

,直线L 与抛物线c bx x a

y ++=

2

1)0(>a 相交于点B (m ,-3)与D (3,n ), (1) 求B 、D 两点的坐标,并用含a 的代数式表示b 和c ; (2)①若关于X 的方程04

1

21322=+-++a a ax x 有实数根,求此抛物线的解析式; θ ②若抛物线c bx x a

y ++=

2

1)0(>a 与X 轴相交于A 、C 两点,顺次连结A 、B 、C 、D 得凸四边形ABCD ,问:四边形ABCD 的面积S 有无最大值或最小值?若有,求S 的最大值或最小值;若没有,请说明理由。

Y

P O Q

X

L D

C

P O B

A

Y X

θ

一元二次方程及根的定义

一元二次方程及根的定 义 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

一元二次方程及根的定义 1.已知关于的方程的一个根为2,求另一个根及 的值. 思路点拨:从一元二次方程的解的概念入手,将根代入原方程解的值,再代回原方程,解方程求出另一个根即可. 解:将代入原方程,得 即 解方程,得 当时,原方程都可化为 解方程,得. 所以方程的另一个根为4,或-1. 总结升华:以方程的根为载点.综合考查解方程的问题是一个常考问题,解这类问题关键是要抓住“根”的概念,并以此为突破口. 举一反三: 【变式1】已知一元二次方程的一个根是,求代数式 的值. 思路点拨:抓住为方程的一个根这一关键,运用根的概念解题. 解:因为是方程的一个根, 所以, 故, , 所以.

. 总结升华:“方程”即是一个“等式”,在“等式”中,根据题目的需要,合理地变形,是一种对代数运算综合要求较高的能力,在这一方面注意丰富自己的经验. 类型二、一元二次方程的解法 2.用直接开平方法解下列方程: (1)3-27x2=0; (2)4(1-x)2-9=0. 解:(1)27x2=3 . (2)4(1-x)2=9 3.用配方法解下列方程: (1);(2). 解:(1)由, 得, ,

, 所以, 故. (2)由, 得, , , 所以 故 4.用公式法解下列方程: (1);(2);(3). 解:(1)这里 并且 所以, 所以,. (2)将原方程变形为, 则 , 所以,

所以. (3)将原方程展开并整理得, 这里, 并且, 所以. 所以. 总结升华:公式法解一元二次方程是解一元二次方程的一个重点,要求熟练掌握,它对我们的运算能力有较高要求,也是提高我们运算能力训练的好素材. 5.用因式分解法解下列方程: (1);(2); (3). 解:(1)将原方程变形为, 提取公因式,得, 因为,所以 所以或, 故 (2)直接提取公因式,得 所以或,(即 故. (3)直接用平方差公式因式分解得

一元二次方程根的分布情况归纳总结

一元二次方程02 =++c bx ax 根的分布情况 设方程()2 00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) 分 布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >> 一正根一负根即一个根小于0,一个大于0()120x x << 大致图象( >a ) 得出的结论 ()00200b a f ?>??? -?? ()0 0200 b a f ?>??? ->??>?? ()00??? -??? ->??f 综 合结论(不讨论 a ) ()00200b a a f ?>???-?? ()0 0200 b a a f ?>???->???>?? ()00

分 布情况 两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即 21x k x << 大致图象( >a ) 得出的结论 ()020b k a f k ?>??? -?? ()0 20 b k a f k ?>??? ->??>?? ()0??? -??? ->??k f 综 合结论(不讨论 a ) ()020b k a a f k ?>??? - ?? ()0 20 b k a a f k ?>??? - >???>?? ()0

初三数学一元二次方程与二次函数测试题

初三数学第二次月考 班级 姓名 学号 一.选择题(每小题3分,共24分) 1.下列关系式中,属于二次函数的是(x 为自变量)( ) A. B. C. D. 2. 函数y=x 2-2x+3的图象的顶点坐标是( ) A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 3.抛物线3)2(2+-=x y 的对称轴是( ) 4.关于的一元二次方程有实数根,则( ) (A)<0 (B)>0 (C)≥0 (D)≤0 1. A. 直线3-=x B. 直线3=x C. 直线2-=x D. 直线2 =x 5.已知二次函数y=ax 2+bx+c 的图象如图所示,则下列结论中,正确的是( ) A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<0 6.把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位, 所得图象的解析式是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 7. 二次函数y=ax 2+bx+c 的图象如图所示,则点在第___ 象限( ) A. 一 B. 二 C. 三 D. 四 8. 若一次函数y=ax+b 的图象经过第二、三、四象限,则二次 函数y=ax 2+bx 的图象只可能是( )

二.填空题(每小题4分,共32分) 2. 9.若将二次函数y=x 2-2x+3配方为y=(x-h)2+k 的形式,则y=________. 10. 若抛物线y=x 2-2x-3与x 轴分别交于A 、B 两点,则AB 的长为_________. 11. 抛物线y=x 2+bx+c ,经过A(-1,0),B(3,0)两点,则这条抛物线的解析 式为_____________. 12.已知抛物线c bx ax y ++=2与x 轴有两个交点,那么一元二次方程02=++c bx ax 的 根的情况是______________________. 13..若关于的方程 的根是整数,则k 的值可以是______.(只要求写出一个) 14.已知抛物线c x ax y ++=2与x 轴交点的横坐标为1-,则c a +=_________. 15.已知二次函数的图象开口向上,且与y 轴的正半轴相交,请你写出一个满足条件的二次 函数的解析式:_____________________. 16.如图,抛物线的对称轴是1=x ,与x 轴交于A 、B 两点,若B 点坐标是)0,3(,则A 点 的坐标是________________. O x y A B 1 1 三.解答题 1.用适当的方法解方程: (1)(2x-1)2-7=3(x+1); (2)(2x+1)(x-4)=5;

二次函数与方程的关系

淇滨区第一中学教案 九年级班执课教师:执课时间:年月日课题二次函数与方程的关系课时安排第课时 教学课型新授课□实(试)验课□复习课□实践课□其他□ 教学目标1理解一元二次函数与一元二次方程的关系,并会求有关字母的值。 2. 会用一次函数与二次函数的图象的交点求方程组的解及由方程组的解求交点坐标 教学重点 利用一元二次函数与一元二次方程的关系,并会求有关字母的值教学难点 抛物线图象与x轴交点的位置来判断方程的根. 课前准备二次函数的解析式中的一般式是: y = a x2+ bx +c (a≠0) 顶点式:y = a(x-h) 2+ k 交点式:y = a(x-x1)(x-x2) 教学环 节 内容设计意图 教学构架 一、知识梳理二、错题再现三、知识新授四、小结与 预习 一、一元二次函数与一元二次方程的关系 1、从形式上看: 二次函数:y=ax2+bx+c (a≠0) 一元二次方程:ax2+bx+c=0 (a≠0) 2、从内容上看: 二次函数表示的是一对(x,y)之间的关系,它有无数对解; 一元二次方程表示的是未知数x的值,最多只有2个值 3、相互关系: 二次函数与x轴交点的横坐标就是相应的一元二次方程的 根。 如:y=x2-4x+3与x轴的交点是(1,0)、(3,0),则一元二 次方程x2-4x+3=0的根是x=1或x=3 (1)二次函数y=a x2+bx+c的图象和x轴交点有三种情况: a、有两个交点, b、有一个交点, c、没有交点. (2)当二次函数y=a x2+bx+c的图象和x轴有交点时,交点的横 坐标就是当y=0时自变量x的值, 即 一元二次方程a x2+bx+c=0的根.

一元二次方程、二次函数知识点总结

一元二次方程重要知识点 1. 一元二次方程的定义及一般形式:)0(2≠++=a c bx ax y (1) 等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2(二次) 的方程,叫做一元二次方程。 (2) 一元二次方程的一般形式: 20(0)ax bx c a ++=≠。其中a 为二次项系数,b 为 一次项系数,c 为常数项。 注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。 2. 一元二次方程的解法 (1)配方法:将方程整理成(x+p)2 =q ,方程的根是x=-p ±q 注:x 2系数是1和不是1时配方注意事项;x 2系数是负数时配方注意事项。 (2)公式法:242b b ac x a -±-=(240b ac -≥) (3)因式分解:十字相乘法:0)(2=+++pq x q p x 0))((=++?q x p x 3.一元二次方程根的判别(2 4b ac ?=-) (1)△>0,方程有两个不相等的实数根 (2)△=0,方程有一个实数根或者两个相等的实数根 (3)△<0,方程没有实数根,方程无解 4.韦达定理(根与系数关系) 一元二次方程ax 2+bx+c =0,设它的两个根是1x 和2x ,则1x 和2x 与方程的系数a ,b ,c 之间有如下关系: 1x +2x =b a -; 1x .2x =c a 5.一元二次方程的应用 ①“审”,弄清楚已知量,未知量以及他们之间的等量关系; ②“设”指设元,即设未知数,可分为直接设元和间接设元; ③“列”指列方程,找出题目中的等量关系,再根据这个关系列出含有未知数的等式 ④“解”就是求出说列方程的解; ⑤“答”就是书写答案,检验得出的方程解,舍去不符合实际意义的方程 二次函数重要知识点 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。 注意 :和一元二次方程类似,二次项系数0a ≠,而b c , 可以为零. 2. 平移规律:

二次函数图像与系数的关系

二次函数图像与系数的关系 1. 如图,是二次函数图象的一部分,图象过点,对称轴为,给出四个结论:① ;②;③;④。其中正确结论的个数是()。 A. 个 B. 个 C. 个 D. 个 2. 小轩从如图所示的二次函数()的图象中,观察得出了下面五条信息:①;② ;③;④;⑤。你认为其中正确信息的个数有()。 A. 个 B. 个 C. 个 D. 个 3. 设二次函数,当时,,当时,,那么的取值范围是()。 A. B. C. D. 4. 如图,抛物线与轴交于点,顶点坐标为,与轴的交点在,之间 (包含端点),则下列结论:①当时,;②;③;④中,正确的是()。 A. ①② B. ③④ C. ①④ D. ①③ 5. 已知二次函数的图象如图所示。下列结论:①;②;③;④ ,其中正确的个数有()。 A. B. C. D.

6. 已知二次函数()的图象如图所示,有下列结论: ①;②;③;④。其中,正确结论的个数是()。 A. B. C. D. 7. 如图所示,二次函数的图象中,王刚同学观察得出了下面四条信息:(1) ;(2);(3);(4),其中错误的有()。 A. 个 B. 个 C. 个 D. 个 8. 二次函数()的图象如图所示,若,,。则 ,,中,值小于的数有()。 A. 个 B. 个 C. 个 D. 个 9. 如图,已知二次函数()的图象与轴交于点,对称轴为直线,与轴 的交点在和之间(包括这两点),下列结论:①当时,;②; ③;④。其中正确的结论是()。 A. ①③④ B. ①②③ C. ①②④ D. ①②③④ 10. 已知二次函数()的图象如图所示,下列结论错误的是()。 A. B. C. (为任意实数) D.

一元二次方程求根公式

一元二次方程求解 一、一周知识概述 1、一元二次方程的求根公式 将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为 . 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法. 说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0); (2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的; (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式. 2、一元二次方程的根的判别式 (1)当b2-4ac>0时,方程有两个不相等的实数根; (2)当b2-4ac=0时,方程有两个相等的实数根; (3)当b2-4ac<0时,方程没有实数根. 二、重难点知识 1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。 (1) “开平方法”一般解形如“”类型的题目,如果用“公式

法”就显得多余的了。 (2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。 (3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。 (4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方 程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。 2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点: (1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac; (2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c; (3)根的判别式是指b2-4ac,而不是 三、典型例题讲解 例1、解下列方程: (1); (2); (3). 分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,

二次函数与方程及不等式的关系(供参考)

二次函数与方程及不等式的关系 6、如图,将二次函数y=x 2 -m(其中m >0)图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,形成新的图象记为y 1,另有一次函数y=x+b 的图象记为y 2,则以下说法:(1)当m=1,且y 1与y 2恰好有三个交点时,b 有唯一值为1; (2)当b=2,且y 1与y 2恰有两个交点时,m>4或<0m<7 4 ; (3)当m=b 时,y 1与y 2至少有2个交点,且其中一个(0,m); (4)当m=-b 时,y 1与y 2一定有交点. 其中正确说法的序号为 9. (2014·浙江杭州江干一模,16,4分)如图,等腰梯形ABCD 的底边AD 在x 轴上,顶点C 在y 轴正半轴上,B (4,2),一次函数y =kx -1的图象平分它的面积.若关于x 的函数y =mx 2-(3m +k )x +2m +k 的图象与坐标轴只有两个交点,则m 的值为________. 解析 过B 作BE ⊥AD 于E ,连结OB ,CE 交于点P ,∵P 为矩形OCBE 的对称中心,则过点P 的直线平分矩形OCBE 的面积.∵P 为OB 的中点,而B (4,2),∴P 点坐标为(2,1),∵P 点坐标为(2,1),点P 在直线y =kx -1上,∴2k -1=1,k =1.∵关于x 的函数y =mx 2-(3m +1)x +2m +1的图象与坐标轴只有两个交点,∴①当m =0时,y =-x +1,其图象与坐标轴有两个交点(0,1),(1,0);②当m ≠0时,函数y =mx 2-(3m +1)x +2m +1的图象为抛物线,且与y 轴总有一个交点(0,2m +1),若抛物线过原点时,2m +1=0,即m =-12,此时,Δ=(3m +1)2-4m (2m +1)=(m +1)2>0,故抛物线与x 轴有两个交点且过原点,符合题意.若抛物线不过原点,且与x 轴只有一个交点,也符合题意,此时Δ=(m +1)2=0,m =-1.综上所述,m 的值为:m =0或-1或-12. 答案 m =0或-1或-1 2 1.(原创题)函数y =kx 2-6x +3的图象与x 轴有交点,则k 的取值范围是( ) A .k <3 B .k <3且k ≠0 C .k ≤3且k ≠0 D .k ≤3 18.已知二次函数2y x bx =+的对称轴为直线1x =,若关于x 的一元二次方程

一元二次方程与二次函数专题

二次函数与一元二次方程专题 一、知识要点: 二次函数图象与x 轴交点情况: 二、经典例题: 1.y=(m-2)22-m x +x -3=0是关于x 的二次函数,则m 的值是 2.(1)关于x 的二次函数y=22(1)1a x x a -++-经过坐标原点,则=a (2)二次函数y=2 (0)ax bx c a ++≠与x 轴两交点的横坐标分别为1和1-,则=++c b a ,=+-c b a (3)等腰ABC △三边的长都是二次函数y=x 2-5x+6与x 轴两交点的横坐标,则周长是 . 3.求下列二次函数与x 轴交点坐标. (1)2222y x mx m n =-+- (2)2()2y m n x nx m n =++-+ (0≠+n m ) 4.已知:关于x 的二次函数y=269kx x -+与x 轴有两个交点,则k . 5.已知关于x 的二次函数2 3y x m x m =-+()- 求证:该函数与x 轴必有两个交点.

6.若关于x 的二次函数y=x 2-x+m 和y=(m-1)x 2-2x+1都与x 轴有两个交点,求m 的整数值. 7.当k 为何整数时,关于x 的二次函数y=kx 2-4x +4和y=x 2-4kx +4k 2-4k -5都与x 轴交于整数点. 8.已知:m 为整数,且二次函数y=x 2-3x +m +2与x 轴正半轴有两个交点,求m 值. 9.已知:抛物线21y (32)22mx m x m =-+++开口向上. (1)求证:该二次函数与x 轴必有两个交点; (2)设抛物线与x 轴交点为A (1x ,0),B (2x ,0)(A 在B 左侧).若2y 是关于m 的函数,且2212y x x =-, 求这个函数的解析式; (3)若AB=3,求抛物线的解析式.

二次函数的图像与系数的关系

二次函数的图像与系数的关系 1.已知二次函数y=ax 2 +bx+c (a ≠0)的图象如图,有下列5个结论:①abc <0;②3a+c >0;③4a+2b+c >0;④2a+b=0;⑤b 2 >4ac.其中正确的结论的有( ) A. 1个 B. 2个 C. 3个 D. 4个 2.如图,二次函数y =ax 2 +bx +c (a ≠0)的大致图象,关于该二次函数下列说确的是( ) A. a >0,b <0,c >0 B. b 2 ﹣4ac <0 C. 当﹣1<x <2时,y >0 D. 当x >2时,y 随x 的增大而增大 3.如图,二次函数 图象,过点A (3,0),二次函数图象的对称轴是直线 x=1,下列结论正确的是( ) A. 2a+b=0 B. ac>0 C. D. 4.已知函数y=mx 2 -6x+1(m 是常数),若该函数的图象与x 轴只有一个交点,则m 的值为( ) A. 9 B. 0 C. 9或0 D. 9或1 5.如图,二次函数2 y ax bx c =++的图象的对称轴是直线1x =,则下列理论:①0a <, 0b <②20a b ->,③0a b c ++>,④0a b c -+<,⑤当1x >时, y 随x 的增大

而减小,其中正确的是(). A. ①②③ B. ②③④ C. ③④⑤ D. ①③④ 6.已知y=ax+b的图象如图所示,则y=ax2+bx的图象有可能是() A. B. C. D. 7.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论: ①4a+b=0; ②9a+c<3b; ③25a+5b+c=0; ④当x>2时,y随x的增大而减小. 其中正确的结论有() A. 1个 B. 2个 C. 3个 D. 4个 8.如下图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=-1,下列结论中①ab>0,②a+b+c>0,?③当-2<x<0时,y<0.正确的个数是()

一元二次方程根的差别式

典型例题一 例 求证:如果关于x 的方程922+=+m x x 没有实数根,那么,关于y 的方程0522=+-+m my y 一定有两个不相等的实数根. 分析:由已知,可根据一元二次方程的根的判别式证之. 证明 设方程922+=+m x x 即0922=--+m x x 的根的判别式为1?,方程 0522=+-+m my y 的根的判别式为2?,则 . 36)4( 208)25(4. 440)9(42222221-+=-+=--=?+=++=?m m m m m m m ∵方程922+=+m x x 无实数根, 01+∴m ,即036)4(2>-+m . 故方程0522=+-+m my y 有两个不相等的实数根. 说明:上述证明中,判定02>?用到了01

分析:运用根的判别式判定根的情况时,要首先把方程变形为一元二次方程的一般形式,然后从求出的判别式的值来判定根的判别式的符号,尤其是当方程系数中含有字母时,一般利用配方法将“?”化成完全平方式或完全平方式加上(或减去)一个常数,再根据完全平方式的非负性判断“?”的符号,从而判定方程的根的情况,有时还需要对字母进行讨论.这是不解方程判别根的情况的关键. 解:(1)),1(4,2,1-=-==k c k b a )1(414)2(422-??--=-=?∴k k ac b )2(4)44(416 16422 2≥-=+-=+-=k k k k k ∴方程有两个实数根. (2)0≠a , ∴方程02=+bx ax 是一元二次方程,此方程是缺少常数项的不完全的一元二次方程,将常数项,将常数项看作零. ∴2204b a b =?-=?. ∴不论b 取任何实数,2b 均为非负数, 02≥=?b 恒成立. ∴方程有两个实数根. (3)0≠a , ∴方程02=+c ax 是缺少一次项的不完全的一元二次方程,它的一次项系数0=b . ac a 40402-=?-=?, ∴需要讨论a 、c 的符号,才能确定?的符号. 当0=c 时,0=?,方程有两个相等的实数根; 当a 、c 异号时,0>?,方程有两个不相等的实数根; 当a 、c 同号时,0

二次函数与方程不等式的关系

二次函数与方程不等式的关系 一、知识点梳理 1、二次函数表达式的几种常见方法 (1)三点式(或一般式):)0,,(2≠++=a c b a c bx ax y 为常数且,表达式的右边是二次三项式 的一般形式,当已知抛物线上不共线的三点坐标时,通常把三点坐标代入表达式,然后列出关于c b a ,,的三元一次方程组求解. (2)顶点式:k h x a y +-=2)()0,,(≠a k h a 为常数且由抛物线的表达式右边可知,抛物线的顶 点坐标为),(k h ,当已知抛物线的顶点和抛物线上另一点时,通常设函数表达式为顶点式,然后代入另一个点的坐标,解关于a 的一次方程来求。当已知两点的坐标和对称轴时,亦可将其 代入k h x a y +-=2)(中求解. 2、二次函数 c bx ax y ++=2与一元二次方程02=++c bx ax 的关系 抛物线:c bx ax y ++=2与x 轴交点的横坐标,恰为一元二次方程02=++c bx ax 的实根. 因为x 轴上的点的纵坐标都为0,所以求抛物线c bx ax y ++=2与x 轴交点的横坐标,可利用函数表达式c bx ax y ++=2来求,只需令0=y ,得一元二次方程02=++c bx ax ,方程的解即为交点的横坐标. 抛物线c bx ax y ++=2与x 轴的交点有三种情况: (1)当042>ac b -时,方程02=++c bx ax 有两个不相等的实数根21,x x ,拋物线c bx ax y ++=2与x 轴有两个交点)0,(),0,(21x x ; (2)当042=-ac b 时,方程02=++c bx ax 有两个相等的实数根2a - 21b x x ==, 抛物线c bx ax y ++=2与x 轴有一个交点,恰好就是抛物线的顶点)0,2(a b -; (3)当042<a c b -时,方程02=++c bx ax 没有实数根,抛物线与x 轴没有交点. 3、二次函数的图像与一次函数图像的交点 一次函数()0≠+=k n kx y 的图像L 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程

一元二次方程与二次函数的应用题精选题

一、一元二次方程的应用题 1.(2010年长沙)长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售. (1)求平均每次下调的百分率; (2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费是每平方米每月1.5元.请问哪种方案更优惠? 解:(1)设平均每次降价的百分率是x ,依题意得 ………………………1分 5000(1-x )2= 4050 ………………………………………3分 解得:x 1=10% x 2= 19 10 (不合题意,舍去) …………………………4分 答:平均每次降价的百分率为10%. …………………………………5分 (2)方案①的房款是:4050×100×0.98=(元) ……………………6分 方案②的房款是:4050×100-1.5×100×12×2=(元) ……7分 ∵< ∴选方案①更优惠. ……………………………………………8分 2.(2010年成都)随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点.据某市交通部门统计,2007年底全市汽车拥有量为180万辆,而截止到2009年底,全市的汽车拥有量已达216万辆. (1)求2007年底至2009年底该市汽车拥有量的年平均增长率; (2)为保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2011年底全市汽车拥有量不超过231.96万辆;另据估计,从2010年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.假定每年新增汽车数量相同,请你计算出该市每年新增汽车数量最多不能超过多少万辆. 答案:26.. 解:(1)设该市汽车拥有量的年平均增长率为x 。根据题意,得 2 150(1)216 x += 解得10.220%x ==,2 2.2x =-(不合题意,舍去)。 答:该市汽车拥有量的年平均增长率为20%。 (2)设全市每年新增汽车数量为y 万辆,则2010年底全市的汽车拥有量为21690%y ?+万辆,2011年底全市的汽车拥有量为(21690%)90%y y ?+?+万辆。根据题意得 (21690%)90%231.96y y ?+?+≤ 解得30y ≤ 答:该市每年新增汽车数量最多不能超过30万辆。

二次函数系数a、b、c与图像的关系89058

二次函数系数a、b、c与图象的关系知识归纳: 1.a的作用:决定开口方向和开口大小 2.a与b的作用:左同右异(对称轴的位置) 3.c的作用:与y轴交点的位置。 4.b2-4ac的作用:与x轴交点的个数。 5.几个特殊点:顶点,与x轴交点,与y轴交点,(1,a+b+c), (-1,a-b+c) (2,4a+2b+c), (-2,4a-2b+c)。 针对训练: 1.判断下列各图中的a、b、c及△的符号。 (1)a___0;b___0;c___0;△__0. (2)a___0;b___0;c___0;△__0. (3)a___0;b___0;c___0;△__0. (4)a___0;b___0;c___0;△__0. (5)a___0;b___0;c___0;△__0. 2.二次函数y=ax2+bx+c的图象如图, 用(>,<,=)填空: a___0;b___0;c___0;a+b+c__0;a-b+c__0.

3.二次函数y=ax2+bx+c的图象如图1所示,则下列关于a、b、c间的 关系判断正确的是() A.ab<0 B.bc<0 C.a+b+c>0 D.a-b+c<0 4.二次函数y=ax2+bx+c图象如图,则点A(b2-4ac,-b a )在第象限. 4题图6题图 图6题图 5.已知a<0,b>0,c>0,那么抛物线y=ax2+bx+c的顶点在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 6.已知二次函数y=ax2+bx+c的图像如图所示,判断下列各式的符号: (1)a;(2)b;(3)c;(4)a+b+c;(5)a-b+c;(6)b2-4ac; (7)4ac-b2;(8)2a+b;(9)2a-b 7.练习:填空 (1)函数y=ax2+bx+c(a≠0)的函数值恒为正的条件:,恒 为负的条件:. (2)已知抛物线y=ax2+bx+c的图象在x轴的下方,则方程ax2+bx+c=0 的解得情况为:. (3)二次函数y=ax2+bx+c中,ac<0,则抛物线与x轴有交点。

一元二次方程根的分布情况归纳(完整版)

二次方程根的分布与二次函数在闭区间上的最值归纳 1、一元二次方程02 =++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) a

根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧 12,x m x n <>,(图形分别如下)需满足的条件是 (1)0a >时,()()00f m f n ???>?? 对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况: 若()0f m =或()0f n =,则此时()()0f m f n

二次函数与一元二次方程的关系

二次函数与一元二次方程的关系 青白江区人和学校彭足琼 凡是学过初中数学的学生,你问他们初中数学中,最难的知识是什么?他们会不约而同地说:“二次函数”。没错,不仅仅是学生觉得二次函数难,包括所有从事初中数学教学的一线教师也会有同样的感受。所以,怎样才能学好二次函数,成为了初中学生和老师最最苦恼的问题。二次函数之所以难,我认为二次函数难就难在函数本身就是一个比较抽象的知识,再加上二次函数有三个参数,比一次函数和反比例函数都多,还有就是二次函数的题目不仅仅考它本身的知识,它还可以把初中所有的代数和几何知识放入其中,可见,二次函数成为各个地区中考的压轴题变成了理所当然的事。 既然二次函数题可以把初中所有的代数和几何知识放入其中,因此,把二次函数与其它知识紧密联系起来,是我们老师和学生必须掌握的本领。这里,我就浅谈一下二次函数和一元二次方程的关系及怎样运用一元二次方程的知识来解决一些二次函数的题目,希望能给同学们和老师一点点启示和收获。 1、二次函数与一元二次方程形式上的联系与区别。我们清楚的明白,形如:ax2+bx+c=0(a、b、c为常数,且a≠0)的方程是一元二次方程,而形如:y= ax2+bx+c(a、b、c为常数,a≠0)是二次函数。认真观察一元二次方程:ax2+bx+c=0(a、b、c为常数,且a ≠0)和二次函数:y= ax2+bx+c(a、b、c为常数,a≠0),不难发现,它们在形式上几乎相同,差别也只是一元二次方程的表达式等于

0,而二次函数的表达式等于y。为什么会这样?主要是因为当二次函数中的变量y取0时,二次函数就变成了一元二次方程。 2、二次函数与一元二次方程在二次函数图像上的关系。正是因为二次函数与一元二次方程在形式上的类似,使得二者在二次函数的图像上的关系格外密切。二次函数的图像是一条抛物线,在求抛物线:y= ax2+bx+c与x轴的交点坐标时,令y=0,即:ax2+bx+c=0,二次函数一下就变成了一元二次方程,再求出该方程的解,这个方程的解便是抛物线与x轴的交点坐标的横坐标。由于一元二次方程ax2+bx+c=0的根有三种情况①b2-4ac>0时有两个不等的实数根;②b2-4ac=0时有两个相等的实数根③b2-4ac<0时没有实数根,所以相应地:抛物线y= ax2+bx+c与x轴的交点情况有3种:①当b2-4ac>0时,抛物线与x轴有两个交点②当b2-4ac=0时,抛物线与x轴有一个交点③当b2-4ac<0时,抛物线与x轴有没有交点。因此,一元二次方程ax2+bx+c=0的解就是二次函数y= ax2+bx+c的图像与x轴的交点的横坐标;二次函数y= ax2+bx+c的图像与x轴的交点情况与一元二次方程:ax2+bx+c=0的根情况有关。可见二者在二次函数的图像上的关系格外密切。 3、应用一元二次方程解决二次函数问题。正是因为一元二次方程与二次函数无论在形式上,还是在图形上,关系都十分紧密,所以在解决很多二次函数题时,经常都要应用一元二次方程的知识。这里,我就列举几个典型题: 典型例题(1):求证:二次函数y=3x2+(2m+3)x+2m2+1的值

一元二次方程根的两个特性及简单运用

一元二次方程根的两个特性及简单运用 我们知道方程的解是由方程的系数(包括常数项)决定的。因此,一元二次方程的根与其系数有着密切的联系。教材中我们探索了一元二次方程的二次项系数为1的情况下的两根之和、两根之积与系数的关系。现在我们接着来探索一般形式下的一元二次方程20(0) ax bx c a ++=≠的两根之和、两根之积与系数的关系。 例1、先阅读,再填空解题: (1)方程:x2-4x-12=0 的根是:x 1=6, x 2 =-2,则x 1 +x 2 =4,x 1 ·x 2 =-12; (2)方程2x2-7x+3=0的根是:x 1= 1 2 , x 2 =3,则x 1 +x 2 = 7 2 ,x 1 ·x 2 = 3 2 ; (3)方程3x2+6x-2=0的根是:x 1= , x 2 = .则x 1 +x 2 = , x 1·x 2 = ; 根据以上(1)(2)(3)你能否猜出:如果关于x的一元二次方程ax2+bx+c=0 (a≠0且a、b、c为常数)的两根为x 1、x 2 ,那么x 1 +x 2 、x 1 x 2 与系数a、b、c有 什么关系?请写出来你的猜想并说明理由。 解析:方程3x2+5x-2=0的根是:x 1= 1 3 x 2 =-2。则x 1 +x 2 = 5 3 -,x1·x2= 2 3 -。 能猜出:如果关于x的一元二次方程ax2+bx+c=0(a≠0且a、b、c为常数) 的两根为x 1、x 2 ,那么x 1 +x 2 a b - =、x1x2 a c =。理由如下: 根据求根公式可知,关于x的一元二次方程ax2+bx+c=0(a≠0且a、b、c 为常数)的两根为: a ac b b x 2 4 2 1 - + - =, a ac b b x 2 4 2 2 - - - = 所以x 1+x 2 = a ac b b 2 4 2- + - + a ac b b 2 4 2- - - a b - = x 1x 2 = a ac b b 2 4 2- + - · a ac b b 2 4 2- - - a c = 也就是说,对于任何一个有实数根的一元二次方程,这个方程的两个根与系数的关系是:两根之和,等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积,等于常数项除以二次项系数所得的商.

二次函数抛物线,与方程关系,例题及解析

练习: 1、已知抛物线2y ax bx c =++(a <0)过A (2-,0)、O (0,0)、B (3-,1y )、C (3, 2y )四点,则1y 与2y 的大小关系是( A ) A .1y >2y B .1y 2y = C .1y <2y D .不能确定 2、二次函数y =ax 2+bx +c 的图象如图所示,下列结论错误.. 的是( B ) A. ab <0 B. ac <0 C. 当x <2时,函数值随x 增大而增大;当x >2时,函数值随x D. 二次函数y =ax 2+bx +c 的图象与x 轴交点的横坐标就是方程ax 2+bx +c =0的根. 3、如图是二次函数y =ax 2 +bx +c (a ≠0)在平面直角坐标系中的图象,根据图形判断 ①c >0;②a +b +c <0;③2a -b <0;④b 2+8a >4ac 中,正确的是(填写序号) ② 、④ . 4、二次函数221=++-y ax x a 的图象可能是( B ) 5、在反比例函数a y x = 中,当0x >时,y 随x 的增大而减小,则二次函数2y ax ax =-的图象大致是下图中的( A ) 6、在同一坐标系中一次函数y ax b =+和二次函数2y ax bx =+的图象可能为( A ) 7、已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:( D ) ①240b ac ->; ②0abc >; ③80a c +>;④930a b c ++<. 其中,正确结论的个数是 A. 1 B. 2 C. 3 D. 4 8、已知二次函数2y ax bx c =++(a ≠0)的图象开口向上,并经过点 A B A . B . C .

二次函数与一元二次方程的关系及解析式求法

1.一元二次方程ax 2 +bx+c=0(a ≠0)的解的情况等价于抛物线y=ax 2 +bx+c(c ≠0)与直线y=0(即x 轴)的公共点的个数。抛物线y=ax 2 +bx+c(a ≠0)与x 轴的公共点有三种情况:两个公共点(即有两个交点),一个公共点,没有公共点,因此有: (1)抛物线y=ax 2 +bx+c 与x 轴有两个公共点(x 1,0)(x 2,0)一元二次方程ax 2 +bx+c=0有两个不等实根 △ =b 2 -4ac>0。 (2)抛物线y=ax 2 +bx+c 与x 轴只有一个公共点时,此公共点即为顶点 一元二次方程ax 2 +bx+c=0有两 个相等实根, (3)抛物线y=ax 2 +bx+c 与x 轴没有公共点 一元二次方程ax 2 +bx+c=0没有实数根 △=b 2 -4ac<0. (4)事实上,抛物线y=ax 2 +bx+c 与直线y=h 的公共点情况方程ax 2 +bx+c=h 的根的情况。 抛物线y=ax 2 +bx+c 与直线y=mx+n 的公共点情况方程ax 2 +bx+c=mx+n 的根的情况。 2.二次函数解析式求法 例1、二次函数与一元二次方程 1、抛物线2 283y x x =--与x 轴有 个交点,因为其判别式2 4b ac -= 0,相应二次方程2 3280 x x -+=的根的情况为 . 2、函数2 2y mx x m =+-(m 是常数)的图像与x 轴的交点个数为( ) A .0个 B .1个 C .2个 D .1个或2个 3、关于二次函数2 y ax bx c =++的图像有下列命题:①当0c =时,函数的图像经过原点;②当0c >,且函数的图 像开口向下时,方程2 0ax bx c ++=必有两个不相等的实根;③函数图像最高点的纵坐标是244ac b a -;④当0b =时, 知识梳理 新课讲解

二次函数的图象与各项系数之间的关系

二次函数的图象与各项系数之间的关系 姓名________ 组号_____ 一、知识基础 1. 二次项系数a 二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠. ⑴ 当0a >时,抛物线开口向上, ⑵ 当0a <时,抛物线开口向下, a 的值越大,函数图象越靠近y 轴,开口越小,反之a 的值越小,函数图象越远离y 轴,开口越大;一次函数图象有类似特点。 总结:a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b 在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下, 当0b >时,02b a - <,即抛物线的对称轴在y 轴左侧; 当0b =时,02b a - =,即抛物线的对称轴就是y 轴; 当0b <时,02b a ->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02b a - >,即抛物线的对称轴在y 轴右侧; 当0b =时,02b a - =,即抛物线的对称轴就是y 轴; 当0b <时,02b a -<,即抛物线对称轴在y 轴的左侧. 总结:在a 确定的前提下,b 决定了抛物线对称轴的位置. ab 的符号的判定:对称轴a b x 2- =在y 轴左边则0>ab ,在y 轴的右侧则0时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;

⑵当0 c=时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0; ⑶当0 c<时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结:c决定了抛物线与y轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 4.当x=1时,可以求出a+b+c的值;若x=1时,y>0,则a+b+c>0; 若x=1时,y<0,则a+b+c<0; 若x=1时,y=0,则a+b+c=0; 当x=-1时,可以求出a-b+c的值;若x=-1时,y>0,则a-b+c>0; 若x=-1时,y<0,则a-b+c<0; 若x=-1时,y=0,则a-b+c=0; 思考:x=2时,可以通过函数图象得出哪些值? 5.根的别式b2-4ac,可以用来判断抛物线与x轴的交点个数,当b2-4ac>0时,方程 2 =++=0有两个根,也就是说y=0时,函数在x轴上可以找到2个对应的自变量值,y ax bx c 即断抛物线与x轴有2个交点;同理b2-4ac=0,二次函数图象与x轴有一个交点;b2-4ac <0时,抛物线与x轴没有交点。 二、精典练习 1.(烟台市中考题)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是() A.①②B.②③C.①②④D.②③④ 2、如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是() A.5个B.4个C.3个D.2个

相关文档
相关文档 最新文档