文档库 最新最全的文档下载
当前位置:文档库 › 分形理论在无机材料中的应用

分形理论在无机材料中的应用

分形理论在无机材料中的应用
分形理论在无机材料中的应用

分形理论在材料中的应用

1 分形理论简介

Fractal 一词,源于拉丁文Fractus。原译为“不规则的”或“破碎的”,但通常把它译为“分形”。近年来,分形一直是国内外有关学者们的研究热点,它的应用性研究逐渐被渗透至物理、数学、化学、生物、医药、地震、冶金,甚至哲学、音乐与绘画等各个领域。

1. 1 分形理论的提出

众所周知,普通的几何对象具有整数维数。例如:点为零维,线为一维,面为二维,立方体为三维。然而,自然界中真实的线、面并不总是光滑的,许多物体的形状也是极不规则的,例如连绵起伏的山脉轮廓线、曲折蜿蜒的江河川流、变幻无常的浮云,以及令人眼花缭乱的繁星等等。同样,这种现象在材料科学中也很普遍,如:高分子的凝聚体结构、材料固体裂纹、电化学沉积等等,这些都是难于用欧氏几何学加以描述的。对于诸如具有此类几何结构的体系,如何进行定量表征呢? 随着人类对客观世界认识的逐步深入,以及科学技术的不断进步,象传统数学那样把不规则的物体形状加以规则化,然后进行处理的做法已不能再令人满意了。于是,在七十年代中期,分数维几何学应运而生[1 ] 。

整数与分数维集合的几何测度理论,早在本世纪初已由纯数学家们发展起来。但谈到分数维几何学的创始人,则首先当推法国数学家曼德尔布罗,他在总结了自然界中的非规整几何图形后[2 ] ,于1975 年第一次提出分形这个概念。此后,分形在不同学科领域中被广泛地应用起来; 直至1982 年德尔布罗出版了他的专著《The Fractal Geomet ry of Nature》则表明分形理论已初步形成[3 ] 。

1. 2 自相似性

分形结构的本质特征是自相似性或自仿射性。自相似性是指:把考察的对象的一部分沿各个方向以相同比例放大后,其形态与整体相同或相似。简单地说,就是局部是整体成比例缩小的性质。形象地说,就是当用不同倍数的照相机拍摄研究对象时,无论放大倍数如何改变,看到的照片都是相似的(统计意义) ,而从相片上也无法断定所用相机的倍数,故又称标度不变性或全息性。自仿射性则是指:把考察的对象的一部分沿各个方向以不同比例放大后,其形态与整体相同或相似。而具有自相似性或自仿射性结构的体系就是分形体[4 ,5 ] 。

例如: Sierpinski三角形是一个比较经典的例子, 取三边的中点并相互连接---产生四个全等的小三角形。(如下图)事实上,自然界中的许多复杂现象和复杂图形背后,时常隐藏着一种无标度性,即从不同的尺度范围来看,局部与整体是自相似的。这种体系到处可见,大到天体星系、变换不定的云彩,小到材料的裂纹、构件的断裂面、空气中的灰尘微粒,以及凝聚态物质的微观凝聚体等等,都具有尺度不同的多层次的形状和结构。当你放大或缩小观察和测量的尺度时,形状和结构几乎不变。可见,分形理论应用性研究的领域十分广阔,具有巨大的潜力。

1. 3 分形体的数学构造

分形体是个其维数介于点、线、面之间的客体,具有分形特征的物体的维数往往是分数。分形体不具

有晶体几何的旋转对称和平移对称性,但具有其特有的标度对称、伸缩

对称与自相似性。分形体之间的差别在于标度的不同,而形状在不同尺

度上是相同的[6 ] 。

分形体的数学构造通常可分为以下四类: (1) Cantor 棒分形; (2)

Sierpinski 四面体分形;(3) 随机分形如:渗流集团[7 ,8 ] ; (4) 多重

分形。其中,多重分形[9 ]是定义在分形上的由多个标度指数的奇异测

度所组成的无限集合,是为处理复杂而非均匀系统与过程而由Halsey

等人发展起来的。这是因为简单分形不能完整而生动地刻画大自然的

复杂性与多样性,它仅是一种近似的手段;用一个参数不足以描述它,

需要引入一系列参数用以更详细地描述复杂分形及其生长过程的特

点。

1. 4 欧氏空间与非欧氏空间

从数学的观点来看,在分形中产生了从欧氏测度到豪斯道夫测度的转变,即产生了测度观的转变;在物理上则表现为量纲数的转变,而这正是分形理论的主要特征。可以说,分形理论带来了一场由平直的欧氏时空观转变到弯曲的非欧氏时空观的革命浪潮。表一列出了两者之间的差异

经典几何学是以古希腊的欧几里得几何学为基础的逻辑体系,它是以规整几何图形作为研究对象的。由其定义不难看出:对于欧氏空间,其维数只能是整数。而所谓几何测量是指长度、面积与体积的测量。欧氏几何中的测量问题可用如下的公式加以描述:

长度= l ; 面积A = al2 ; 体积V = bl3 ;

其中, a 与b 均为常数,称为形状因子。显然,长度、面积与体积的量纲数恰与其欧氏空间维数相等,并且均为整数;可以证明微积分的基本思想正是以欧氏几何作为基础的。然而,对于象海岸线、断口表面、粒子表面等不规则图形,怎样计算其空间维数呢? 是否仍可按上述方法进行测量呢? 广义上讲,这类曲线都存在如下特征:曲线在全区间上连续,但是并不满足可微或逐段可微的条件。显然,上述的测量方法已不适用,传统数学对此无能为力;而分形理论则给出分形维数,并给出下述的计算原则:

(1) 仍以正四方形或正六面体作为标准;

(2) 改用如下的量纲:长度L = l D1 ; 面积A = l D2 ; 体积V = l D3 ; 式中,1 < D1 < 2 ,2 <

D2 < 3 ,3 < D3 ;

(3) 对每个小标准几何图形的几何量按上式进行构造后迭加,并取下确界。不难看出:分形几何学的一个明显特征就是其维数不再是整数,即改变了长度、面积与体积的量纲数。分形曲线共同的特点是:处处连续,但处处不光滑。这与经典几何学把曲线均视为处处连续,或至少是分段分块光滑的情况形成了两个极端。这是对客观物体的形状从两个相反的方向进行抽象的结果。而现实世界中的物体形状则是介于这两个极端之间。

2 分形维数的求算

分形维数是描述物体形态及物理现象的重要参数,它包含着深刻的物理意义,可以用它来表示不同的分形结构[9 ] 。分形维数有多种不同的定义,例如:豪斯道夫维数、信息维数、关联维数、广义维数、相似维数等等。而较为常用的是豪斯道夫维数的定义:即对于一个D维的物体,若将它每一维的尺寸放大L 倍,会得到N 个原来的物体,则豪斯道夫(Hausdorff )维数D = ln N/ ln L ,可见D 不一定是整数。例如:把一个立方体的每一个面等分成九块,挖掉位于中间的一个小方块,再对剩下的小立方体作同样的操作( 。最后剩下的几何体,称谢尔宾斯基(Sierpinski) 海棉。其分形维数D = ln N/ ln L = ln20/ ln3 = 2. 7768 。该全息体的特点是:体积趋近于零,而其表面却趋于无穷大,故其维数介于2 与3 之间。它内部有无穷多个自相似体,任何一个分割后的图形都是原来图形的翻版。

目前,常用的测定分形维数的实验方法,主要有: (1) 分形曲线长度公式法; (2) 周长2面积关系法;

(3) 表面积- 体积关系法; (4) Sandbox 法。此外,测定二维随机分形的分形维数,还有(5) 面积2回转半径法; (6) 密度2密度相关函数法。事实上,在测定分形结构的分形维数时,其实验方法的取定是分形结构的特点来决定的。也就是说,不同的实验方法适用于不同的对象。作者在对群青微胶囊进行分形研究中,曾根据颜料粒子分形结构的具体特点而进一步发展了常规Sandbox 法,暂称为“放大图象法”[10 ] 。

3 分形在无机材料中应用

3.1 分形理论在材料烧结和界面氧化中的应用

材料的烧结和氧化过程非常复杂,采用一般的分析方法很难有效地研究材料的烧结和氧化过程。可以采用有限元法分析梯度功能材料(FGM)内部的热应力和温度场等,但是对于FGM的烧结界面扩散现象,很难用有

限元方法模拟研究[11]。李文超[12 ]州采用分形法,通过电镜(SEM)图片,对材料学中的分形图形提取过程进行研究,探索出一条行之有效的分形图形提取流程。用Visual C++可视化编辑语言设计了分形维数计算程序,提取Mo/B’一Sialon与Ta/B’一Sialon系FGM界面的分形,并利用分维计算程序对其分形维数进行计算,计算出Mo/B’一Sialon与Ta/l3’~Sialon系FGM界面分形维数分别为1.518和1.521,而实验也证实了Mo,J3’一Sialon与Ta,』3’一Sialon系FGM的界面存在扩散现象,而且烧结过程为扩散所控制,分形维数的计算结果与实验结果相一致。丁保华等[13]还应用分形理论研究了Oc—Sialon—ZrO2复合材料的抗氧化过程。利用扫描电镜观察其氧化界面,并将其输入至计算机中,从中提取出界面分形图形,利用FDCP对分形维数进行了计算。研究发现Oc—Sialon—ZrO,氧化过程分为3期,即前期0~0.3 h,中期0.3~0.5 h,后期0.5~1.0 h。随着氧化时间的延长,氧化界面复杂程度加剧,分形维数随之增大。在氧化初期,分形维数增长较快;在氧化中后期,分形维数增长速率逐渐减小。

2.3 分形理论在材料断裂表面中的应用

在对固体材料断裂所产生的断口(或断纹)研究中,人们发现其具有分形特性。近年来研究者一直关注着应用分形理论研究材料断裂表面形貌与其宏观力学性能之间的关系O无论是纳米复合陶瓷仿生结构陶瓷,还是岩石材料,其断裂均可用分形维数来表征。计算材料断裂分维值有以下3种方法 14]:①传统的计算方法;

②二次电子线扫描法;③岛湖分割法。大多数材料的断裂研究结果表明,断裂表面的分维值越大,材料的断裂面越粗糙,材料的断裂韧性越好。

3.2 分形理论在材料磨损表面中的应用

陶瓷材料的冲蚀磨损是一个复杂的动态力学过程,它涉及到诸多因素。冲蚀磨损后,陶瓷材料的表面属于非规整的几何表面,蕴藏着关于冲蚀损伤表面的丰富信息,在统计意义上遵从分形的基本规律。因此,可用分形维数对这种非规整的几何表面进行描述[15 ]。在对ZAT复相陶瓷磨损表面形貌特征进行定量研究和分析中发现[16 ]材料的冲蚀表面具有较明显的分形特征。由于ZAT复相陶瓷材料本身为脆性材料,随着粒子冲击速率的增加,材料表面的负载相应增加,从而

材料表面的分形维数也随之提高,其分形维数实际上反映了横向裂纹的扩展速度。

3.3 分形理论在陶瓷粉体中的应用

陶瓷粉体的主要性能取决其内部的微观结构,对于微观结构中不规则的晶界和位错等,采用传统欧几里得几何学不易处理,但可采用具有自相似性几何形状的分形理论来处理[18 ]熊兆贤[19 ]对采用热压烧结工艺制备Pb (ScTa)O 铁电陶瓷和采用传统固相反应法制备的Ba0,Sr0 Ti。 Nb0圳06热敏陶瓷材料的晶界进行分形处理,为了得到这些陶瓷样品中大量晶界的分形维数值,采用图象自动处理的方法,获得了大量晶界的周长P和相应晶粒的面积A,利用logP~logA的关系进行线性拟合。结果发现样品的分形维数值都趋近于1,这表明晶界都相当规则,证明采用热压烧结工

艺可以获得均匀规则的陶瓷材料显微结构。

3.4 分形理论在玻璃搪瓷材料中的应用

在玻璃搪瓷材料研究中,许多看似无规律的现象实际上存在统计学的分形规律。例如,玻璃搪瓷的表面形貌、搪瓷的密着面结构、玻璃的断裂面、玻璃搪瓷材料微观的无规则网络结构以及涂敷玻璃搪瓷材料设备的微观腐蚀等。对于这些问题,目前大都只能进行定性或间接的研究。如果能够有效的使用分形理论,建立分维数和材料宏观性能的对应关系,从而定量的指导工艺或确定准确的工艺参数。黄剑锋等¨副认为可以利用分形理论来分析抗菌玻璃的抗菌效果和使用寿命的关系。尽管抗菌玻璃表面非常复杂,但从分形理论的角度考虑,它存在统计上的分形规律。因此,可以利用扫描电子显微镜等分析手段获取玻璃的表面形貌,再利用计算机图象处理技术提取分形图形并编程计算分形维数,从而可以用分形维数来刻画玻璃表面的粗糙程度,分形维数越高则表面越粗糙。通过对采用不同表面处理工艺处理后的

表面分维值的计算,可以建立“表面处理工艺一分维值一抗菌效果和使用寿命”的关系图表,从而寻找出具有

最佳抗菌效果和使用寿命的玻璃分维值,这一分维值则为表面处理工艺提供了准确的控制参数。

4 展望

分形理论及其分形方法论的提出有着极其重要的科学方法论意义,它导致了科学思想、科学思维方式和科

学方法论等的深刻变革,为人们认识世界提供了新的视角和新的思路。自20世纪80年代以来,在计算机图形学和应用科学的推动下,分形的基础理论及其在多种学科的应用发展迅速。当前分形理论的研究主要分3种类型[20]:①分形的基础理论研究;②分形理论在实际应用中的研究;③分形图形的生成方法研究。第一类问题的研究者较少,出成果的速度缓慢,尤其是在分形集维数的估算及本质认识,分形集结构的深入认识,分形函数的“导数”等方面进展迟缓。后两类问题的研究者较多,出现成果的速度也较快,尤其是分形理论在物理学、化学、材料科学、计算机图形学等多个学科的应用取得了令人瞩目的成绩。当然,分形学还有不完善的地方,对于实际问题中出现的分形图象的判断,仍是一个尚待解决的问题,至今仍缺乏一种公认的客观判断标准和判定方法。目前国内外学者所采用的方法大致有 ]:①人工判定法;②相关系数检验法;③强化系数法;④拟合误差法;⑤分维值误差法;⑥总体拟合法等。但现有的这些方法都不同程度地存在缺陷,仍有必要探索一种更好的方法。

参考文献

1 Mandelbrot B B. Science ,1967 ,156 :636

2 Mandelbrot B B. Fractals :Form ,Chance and Dimension. Freeman , San Francisco , 1977 :1

3 Mandelbrot B B. The Fractal Geometry of Nature. New York :W. H. Freeman ,1982 :1~56

4 施德祥,王建国. 自然杂志,198

5 , (11) :799

5 徐满才,史作清,何炳林. 化学通报,1994 , (3) :10

6 董连科. 分形理论及其应用. 沈阳:辽宁科技出版社,1990 :109~126

7 Shiragasawa T , et al. Proc. IRPS , 1984 :63

8 Haberer J R , Bart J J . Proc. IRPS , 1972 :106

10 郝柏林. 科学,1986 , (1) :9

11 崔建中等. 天津大学学报,1996 ,29 (5) :815

12 黄剑峰,曹丽云.分形论在无机材料研究中的应用.玻璃与搪瓷,2002,30(1):53—55

13 李文超.Mo/Bc—SiMon梯度功能材料的显微结构及分形计算.现代技术陶瓷增刊(第九届全国特种陶瓷学术年会论文专辑),1996,17(3):344—347

14 丁保华,李文超,王福明,等.分形理论及其在无机材料烧结与氧化过程中的应用.硅酸盐通报,1999(3):64~68

15 Mandelbort B B,Passoja D E,Paullay A J.Fractal characterof fracture surface of metals.Nature,1984,308(18):721

16 王慧,曾令可.分形理论及其在材料科学中的应用.材料开发与应用,2ooo(10):187~191

17 辛厚文.分形理论及其应用.合肥:中国科技大学出版社.1993

18 蒲永平,陈寿田,朱振峰.分形理论在陶瓷材料研究中的应用.中国陶瓷工业,2002,9(6):60—62

19 熊兆贤.陶瓷材料的分形研究.北京:科学出版社,2000

20 齐东旭.分形及其计算机生成.北京:科学出版社,1996

无机材料科学基础试题及答案

1螺位错:柏格斯矢量与位错线平行的位错。 2同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。 3晶胞:指晶体结构中的平行六面体单位,其形状大小与对应的空间格子中的单位平行六面体一致。 4肖特基缺陷:如果正常格点上的原子,热起伏过程中获得能量离开平衡位置,迁移到晶体的表面,在晶格内正常格点上留下空位,即为肖特基缺陷。肖特基缺陷:如果正常格点上的原子,热起伏过程中获得能量离开平衡位置,迁移到晶体的表面,在晶格内正常格点上留下空位,即为肖特基缺陷。 5聚合:由分化过程产生的低聚合物,相互作用,形成级次较高的聚合物,同时释放出部分Na2O,这个过程称为缩聚,也即聚合。 6非均匀成核:借助于表面、界面、微粒裂纹、器壁以及各种催化位置而形成晶核的过程。7稳定扩散:扩散质点浓度分布不随时间变化。 8玻璃分相:一个均匀的玻璃相在一定的温度和组成范围内有可能分成两个互不溶解或部分溶解的玻璃相(或液相),并相互共存的现象称为玻璃的分相(或称液相不混溶现象)。 9不一致熔融化合物:是一种不稳定的化合物。加热这种化合物到某一温度便发生分解,分解产物是一种液相和一种晶相,两者组成与化合物组成皆不相同,故称不一致熔融化合物。10晶粒生长:无应变的材料在热处理时,平均晶粒尺寸在不改变其分布的情况下,连续增大的过程。 11非本征扩散:受固溶引入的杂质离子的电价和浓度等外界因素所控制的扩散。或由不等价杂质离子取代造成晶格空位,由此而引起的质点迁移。(2.5)本征扩散:空位来源于晶体结构中本征热缺陷,由此而引起的质点迁移。 12稳定扩散:若扩散物质在扩散层dx内各处的浓度不随时间而变化,即dc/dt=0。不稳定扩散:扩散物质在扩散层dx内的浓度随时间而变化,即dc/dt≠0。这种扩散称为不稳定扩散。(2.5分) (2.5分) 13可塑性:粘土与适当比例的水混合均匀制成泥团,该泥团受到高于某一个数值剪应力作用后,可以塑造成任何形状,当去除应力泥团能保持其形状,这种性质称为可塑性。(2.5晶胞参数:表示晶胞的形状和大小可用六个参数即三条边棱的长度a、b、c和三条边棱的夹角α、β、γ即为晶胞参数。 14一级相变:体系由一相变为另一相时,如两相的化学势相等但化学势的一级偏微商(一级导数)不相等的称为一级相变。 15二次再结晶:是液相独立析晶:是在转熔过程中发生的,由于冷却速度较快,被回收的晶相有可能会被新析出的固相包裹起来,使转熔过程不能继续进行,从而使液相进行另一个单独的析晶过程,就是液相独立析晶。(2.5) 16泰曼温度:反应物开始呈现显著扩散作用的温度。(2.5) 17晶子假说:苏联学者列别捷夫提出晶子假说,他认为玻璃是高分散晶体(晶子)的结合体,硅酸盐玻璃的晶子的化学性质取决于玻璃的化学组成,玻璃的结构特征为微不均匀性和近程有序性。无规则网络假说:凡是成为玻璃态的物质和相应的晶体结构一样,也是由一个三度空间网络所构成。这种网络是由离子多面体(三角体或四面体)构筑起来的。晶体结构网是由多面体无数次有规律重复构成,而玻璃中结构多面体的重复没有规律性。 18正尖晶石;二价阳离子分布在1/8四面体空隙中,三价阳离子分布在l/2八面体空隙的尖晶石。 19液相独立析晶:是在转熔过程中发生的,由于冷却速度较快,被回收的晶相有可能会被

材料物理性能课后习题答案

材料物理性能习题与解答

目录 1 材料的力学性能 (2) 2 材料的热学性能 (12) 3 材料的光学性能 (17) 4 材料的电导性能 (20) 5 材料的磁学性能 (29) 6 材料的功能转换性能 (37)

1材料的力学性能 1-1一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至 2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解:根据题意可得下表 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-2一试样长40cm,宽10cm,厚1cm,受到应力为1000N拉力,其氏模量为3.5×109 N/m2,能伸长多少厘米? 解: 拉伸前后圆杆相关参数表 ) ( 0114 .0 10 5.3 10 10 1 40 1000 9 4 0cm E A l F l E l l= ? ? ? ? ? = ? ? = ? = ? = ? - σ ε 10 909 .4 0? 0851 .0 1 = - = ? = A A l l ε 名义应变

1-3一材料在室温时的氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。 解:根据 可知: 1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。 证: 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: Voigt 模型可以较好地模拟应变蠕变过程: )21(3)1(2μμ-=+=B G E ) (130)(103.1)35.01(2105.3)1(288MPa Pa E G ≈?=+?=+=μ剪切模量) (390)(109.3) 7.01(3105.3)21(388 MPa Pa E B ≈?=-?=-=μ体积模量. ,.,1 1 2 1 212 12 1 2 1 21 S W VS d V ld A Fdl W W S W V Fdl V l dl A F d S l l l l l l ∝====∝= ===???? ? ?亦即做功或者: 亦即面积εεεεεεεσεσεσ)(2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量). 1()()(0)0() 1)(()1()(10 //0 ----= = ∞=-∞=-=e e e E t t t στεσεεεσεττ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为

无机材料科学基础答案

1、熔体的概念:不同聚合程度的各种聚合物的混合物 硅酸盐熔体的粘度与组成的关系(决定硅酸盐熔体粘度大小的主要因素就是硅氧四面体网络连接程度) 在熔体中加入LiO2、Na2O 、K2O 与BaO 、PbO 等,随加入量增加,粘度显著下降。 在含碱金属的硅酸盐熔体中,当Al2O3/Na2O ≤1时,用Al2O3代替SiO2可以起“补网”作用,从而提高粘度。一般加入Al2O3、SiO2与ZrO2有类似的效果。 流动度为粘度的倒数,Φ= 粘度的理论解释:绝对速度理论η=η0exp(ΔE/kT) 自由体积理论η=B exp [ ]=Aexp( ) 过剩熵理论η = Cexp [ = Cexp( ) 2、非晶态物质的特点 :近程有序,远程无序 3、玻璃的通性 (1)各向同性(若有应力,为各向异性) (2)介稳性 (3)熔融态向玻璃态转化的可逆与渐变性 (4)、熔融态向玻璃态转化时其物化性质随温度变化的连续性 4、 Tg 、Tf , 相对应的粘度与特点 钠钙硅酸盐熔体粘度与温度关系表明:熔融温度范围内,粘度为50~500dPa·s 。工作温度范围粘度较高,约103~107dPa·s 。退火温度范围粘度更高,约1012、5~1013、5 dPa·s 。 Tg-脆性温度、退火温度,Tf-软化温度、可拉丝的最低温度 5、 单键强度 > 335 kJ/mol(或80 kcal/mol)的氧化物——网络形成体。 单键强度 < 250 kJ/mol(或60 kcal/mol)的氧化物——网络变性体。 在250~335 kJ/mol 为——中间体,其作用介于玻璃的网络形成体与网络变性体之间。 6、玻璃形成的热力学观点: 熔体就是物质在TM 以上存在的一种高能状态。据随温度降低,熔体释放能量大小不同,冷却途径分为结晶化,玻璃化,分相 ΔGv 越大析晶动力越大,越不容易形成玻璃。 ΔGv 越小析晶动力越小,越容易形成玻璃。 玻璃形成的动力学观点: 过冷度增大,熔体质点动能降低,有利于质点相互吸引而聚结与吸附在晶核表面,有利于成核。 过冷度增大,熔体粘度增加,使质点移动困难,难于从熔体中扩散到晶核表面,不利于晶核长大。 过冷度与成核速率Iv 与晶体生长速率u 必有一个极值。 玻璃形成的结晶化学观点: (1)、键强(孙光汉理论) 熔点低的氧化物易于形成玻璃 (2)、键型 三种纯键型在一定条件下都不能形成玻璃。 )(00T T KV -α0T T B -)(0T T C D P -?0T T B -η1

无机纳米材料简介

无机纳米材料简介 无机纳米材料是纳米材料从物质的类别来划分出的一种纳米材料。指其组成的主体是无机物质。 无机纳米材料主要包括:纳米氧化物、纳米复合氧化物、纳米金属及合金,以及其他无机纳米材料。 一、纳米氧化物: 纳米氧化物指的是粒径达到纳米级的氧化物,比如纳米二氧化钛 (T25),纳米二氧化硅(SP30),纳米氧化锌(JE01),纳米氧化铝(L30),纳米氧化锆,纳米氧化铈,纳米氧化铁等等。 纳米氧化物的基本技术指标包含:粒径,含量,比表面积,pH, 以及一些金属成分的含量。 纳米氧化物在催化领域的应用 纳米催化剂具有表面效应,吸附特性及表面反应等特性,因此纳米催化剂在催化领域的应用十分广泛。实际上,国际上已把纳米粒子催化剂称为第四代催化剂。我国目前在纳米材料的研究应用水平在某些方面处于世界领先地位,已实现产业化的SiO2(如VK-SP30)、CaCO3、TiO2(如VK-T25)、ZnO等少数几个品种,这些制备出来的纳米材料在催化领域中主要用于两个方面:一是直接用作主催化剂,二是作为纳米催化剂载体制成负载型催化剂使用。国际现在企业主要有杜邦,德固赛,国内的有杭州万景等企业生产纳米氧化物系列的产品。 2.1 石油化工催化领域 由于纳米材料颗粒的大小可以人工控制,又由于尺寸小,比表面积大,表面的键态和颗粒内部不同及表面原子配位不全等,从而导致表面的活性部位增加。另外,随着粒径的减小,表面光滑程度变差,形成了凹凸不平的原子台阶,这样就增加了化学反应的接触面。利用纳米微粒的高比表面积和高活性这些特性,可以显著提高催化效率。例如,纳米Ni粉可将有机化学加氢和脱氢反应速度提高15倍;超细Pt粉、碳化钨粉是高效的加氢催化剂;在甲醛氧化制甲醇反应中,使用纳米SiO2,选择性可提高5倍,利用纳米Pt催化剂,放在TiO2担体上,通过光照,使甲醇水溶液制氢产率

《材料物理性能》课后习题答案

1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程: ) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量 ) (1.323)84 05.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量 ). 1()()(0)0() 1)(()1()(1 //0 ----= = ∞=-∞=-=e E E e e E t t t στεσεεεσετ τ ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ ==∞==则有::其应力松弛曲线方程为1.0 1.0 0816.04.25 .2ln ln ln 2 2 001====A A l l T ε真应变)(91710 909.44500 60MPa A F =?==-σ名义应力0851 .0100 =-=?=A A l l ε名义应变)(99510 524.445006MPa A F T =?==-σ真应力

无机材料科学基础答案第六,七,九,十章习题答案

6-1 略。 6-2 什么是吉布斯相律?它有什么实际意义? 解:相律是吉布斯根据热力学原理得出的相平衡基本定律,又称吉布斯相律,用于描述达到相平衡时系统中自由度数与组分数和相数之间的关系。一般形式的数学表达式为F=C-P+2。其中F为自由度数,C为组分数,P为相数,2代表温度和压力两个变量。应用相率可以很方便地确定平衡体系的自由度数。 6-3 固体硫有两种晶型,即单斜硫、斜方硫,因此,硫系统可能有四个相,如果某人实验得到这四个相平衡共存,试判断这个实验有无问题? 解:有问题,根据相律,F=C-P+2=1-P+2=3-P,系统平衡时,F=0 ,则P=3 ,硫系统只能是三相平衡系统。 图 6-1 图6-2 6-4 如图6-1是钙长石(CaAl2Si2O)的单元系统相图,请根据相图回解:(1)六方、正交和三斜钙长石的熔点各是多少?(2)三斜和六方晶型的转变是可逆的还是不可逆的?你是如何判断出来的?(3)正交晶型是热力学稳定态?还是介稳态? 解:(1)六方钙长石熔点约1300℃(B点),正钙长石熔点约1180℃(C点),三斜钙长石的熔点约为1750℃(A点)。 (2)三斜与六方晶型的转变是可逆的。因为六方晶型加热到转变温度会转变成三斜晶型,而高温稳定的三斜晶型冷却到转变温度又会转变成六方晶型。 (3)正交晶型是介稳态。

6-5 图6-2是具有多晶转变的某物质的相图,其中DEF线是熔体的蒸发曲线。 KE是晶型 I的升华曲线;GF是晶型II的升华曲线;JG是晶型III的升华曲线,回答下列问题:(1)在图中标明各相的相区,并写出图中各无变量点的相平衡关系;(2)系统中哪种晶型为稳定相?哪种晶型为介稳相?(3)各晶型之间的转变是可逆转变还是不可逆转变? 解:(1)KEC为晶型Ⅰ的相区,EFBC 过冷液体的介稳区,AGFB晶型Ⅱ的介稳区, JGA晶型Ⅲ的介稳区,CED是液相区,KED是气相区; (2)晶型Ⅰ为稳定相,晶型Ⅱ、Ⅲ为介稳相;因为晶型Ⅱ、Ⅲ的蒸汽压高于晶型Ⅰ的,即它们的自由能较高,有自发转变为自由能较低的晶型Ⅰ的趋势; (3)晶型Ⅰ转变为晶型Ⅱ、Ⅲ是单向的,不可逆的,多晶转变点的温度高于两种晶型的熔点;晶型Ⅱ、Ⅲ之间的转变是可逆的,双向的,多晶转变点温度低于Ⅱ、Ⅲ的熔点。 6-6 在SiO2系统相图中,找出两个可逆多晶转变和两个不可逆多晶转变的例子。 解:可逆多晶转变:β-石英←→α-石英α-石英←→α-鳞石英 不可逆多晶转变:β-方石英←→β-石英γ-鳞石英←→β-石英 6-7 C2S有哪几种晶型?在加热和冷却过程中它们如何转变?β-C2S为什么能自发地转变成γ-C2S?在生产中如何防止β-C2S 转变为γ-C2S? 解:C2S有、、、四种晶型,它们之间的转变如右图所示。由于β-C2S 是一种热力学非平衡态,没有能稳定存在的温度区间,因而在相图上没有出现β-C2S的相区。C3S和β-C2S 是硅酸盐水泥中含量最高的两种水硬性矿物,但当水泥熟料缓慢冷却时,C3S将会分解,β-C2S将转变为无水硬活性的γ-C2S。为了避免这种情况的发生,生产上采取急冷措施,将C3S和β-C2S迅速越过分解温度或晶型转变温度,在低温下以介稳态保存下来。

《材料物理性能》课后习题答案

《材料物理性能》 第一章材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2) 可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和 0816 .04.25.2ln ln ln 22 001====A A l l T ε真应变) (91710909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.445006MPa A F T =?== -σ真应力) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量

无机材料科学基础 陆佩文 课后答案

2-1 名词解释(a )弗伦克尔缺陷与肖特基缺陷;(b )刃型位错和螺型位错 (c )类质同象与同质多晶 解:(a )当晶体热振动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗伦克尔缺陷。如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,在原正常格点上留下空位,这种缺陷称为肖特基缺陷。(b )滑移方向与位错线垂直的位错称为刃型位错。位错线与滑移方向相互平行的位错称为螺型位错。(c )类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。 2-6(1)在CaF 2晶体中,弗仑克尔缺陷形成能为2.8eV ,肖特基缺陷的生成能为5.5eV ,计算在25℃和1600℃时热缺陷的浓度?(k =1.38×10-23J/K ) (2)如果CaF 2晶体中,含有百万分之一的YF 3杂质,则在1600℃时,CaF 2晶体中时热缺陷占优势还是杂质缺陷占优势?说明原因。 解:(1)弗仑克尔缺陷形成能为2.8eV ,小于肖特基缺陷形成能5.5eV ,所以CaF 2晶体中主要是弗仑克尔缺陷,肖特基缺陷可忽略不计。-----------1分 当T =25℃=298K 时,热缺陷浓度为: 242319298 1006.2)2981038.1210602.18.2exp()2exp(---?=?????-=?-=??? ??kT G N n f ----2分 当T =1600℃=1873K 时,热缺陷浓度为: 423191873 107.1)18731038.1210602.18.2exp()2exp(---?=?????-=?-=??? ??kT G N n f -----2分 (2)CaF 2中含百万分之一(10- 6)的YF 3时的杂质缺陷反应为: Ca F Ca CaF V F Y YF ''++??→??62223 由此可知:[YF3]=2[Ca V ''],所以当加入10- 6YF3时,杂质缺陷的浓度为: 73105][2 1][-?==''YF V Ca 杂--------------------1分 此时,在1600℃下的热缺陷计算为: Ca i Ca V Ca Ca ''+→?? x x +5×10- 7 则:8241089.2)107.1()exp(][]][[--???=?=?-==''kT G k Ca V Ca f Ca Ca i 即:871089.21 )105(--?=?+x x ,x ≈8.1×10-4 热缺陷浓度: 4101.8][-?=≈''x V Ca 热------------------1分

无机纳米材料在聚合物改性中的作用

无机纳米材料在聚合物改性中的作用摘要:通过添加填料、组分对聚合物改性,能使聚合物的的刚性、耐热性、耐候行及化学特性得到一定程度的改善。随着高新技术的飞速发展,对材料的要求越来越高,特别是对聚合物材料的强度、韧性、耐热性等方面的要求更是愈来愈苛刻,愈来愈趋于综合化,但是大量研究及生产实践证实,在相同的填充条件下,超细填充体系的力学性能高于普通填料填充体系,即超细体系的填充改性效果更好,改性效率更高,因此超细填料获得了广泛的应用。纳米粒子的出现是制造技术的一大突破它的出现对高性能陶瓷、合金、塑料等复合材料的研制和开发产生了重大影响。由于纳米材料的纳米尺寸效应、大的比表面积、表面原子处于高度活化状态、与聚合物强的界面相互作用产生声、光、电、磁等性质,将其应用于聚合物的改性,开发新型的功能复合材料具有十分重要的意义。 1 纳米SiO2: 1.1 纳束SiO2/UP 玻璃钢虽具有质量轻、强度高、耐腐蚀等特点,但其耐磨性、硬度、耐热性、耐水性等性能仍需进一步改善。因此,人们开始研究利用纳米材料卓越的特殊功能来改善玻璃钢材料的性能缺陷。 未明等通过在UP中加入纳米SiO2,得到了耐磨性、硬度、强度、耐热、耐水等性能得到大幅度提高的玻璃钢。通过实验发现:当向UP中添加3~5的纳米SiO2后,其耐磨性可提高1 ~2倍;奠氏硬度从原来的2级左右提高到2.8 ~2.9级,接近天然大理石的硬度;拉伸强度从133 k g/c m 增加至277 k g/c m ,即大大增加了材料的韧性;耐水性能也明显改善。此外研究者还对纳米SiO2改性UP的改性机理进行了探讨,认为:( 1 ) 由于纳米SiO2颗粒尺寸小、比表面积大、表面原子数多、表面能高、表面严重配位不足,因此表面活性极强,易于与树脂中的氧起键合作用,提高分子在高分子键的空隙中,而其又具有较高的流动性,故使添加纳米SiO2的树脂材料强度、韧性、延展性均大大提高,即表现在拉仲强度、抗冲击性能等方面的提高。( 2 ) 由于纳米SiO2其分子状态是三维链状态的羟基,与树脂中氧键结合或镶嵌在树脂键中,可增强树脂硬度。由于纳米SiO2的小尺寸效应,使材料表面光洁度大大改善,摩擦系数减少,加入纳米颗粒的高强性,因此使材料耐磨性大大提高,且表面光洁度好。( 3 ) 由于纳米SiO2颗粒小,在高温下仍具有高强度、高韧、稳定性好等特点,可使材料的表面细洁度增加,使材料更加致密,同时也增加材料的耐水性和热稳定性。 葛曷一等通过比较不同粒径粒料对不饱和树脂改性作用的差异,得出微米级粒料对不饱和树脂无增韧作用;纳米级粒料对UP具有一定的增韧教果,粒径相同,比表面积越大的粒料对UP的增韧作用越大,作者通过研究发现,加入3%的比表面积较大的纳米SiO2可使UP的冲击韧性提高60%,由此说明,比表面积大的纳米材料表面缺陷少,非配对原子多,表面活性高,与UP发生物理或化学结合的可能性大,增强粒子与UP的界面结合.因而可承担一定的载荷,吸收大量冲击能,具有增强增韧的功效。从纳米SiO2加入量超过3%后,UP冲击韧性开始下降可以推断复合材料的韧性受超微细粉粒料的加入量影响可能与UP基体层厚度L和UP/粒料的L1有关。当2L1

无机材料科学基础试卷资料

1. 不一致熔融化合物,连线规则 答:不一致熔化合物是一种不稳定的化合物,加热到一定温度会发生分解,分解产物是一种液相和一种固相,液相和固相的组成与化合物组成都不相同。(2.5分) 连线规则:将一界线(或其延长线)与相应的连线(或其延长线)相交,其交点是该界线上的温度最高点。(2.5分) 2. 非本征扩散,稳定扩散 非本征扩散:受固溶引入的杂质离子的电价和浓度等外界因素所控制的扩散。或由不等价杂质离子取代造成晶格空位,由此而引起的质点迁移。(2.5) 稳定扩散:若扩散物质在扩散层dx内各处的浓度不随时间而变化,即dc/dt=0。这种扩散称稳定扩散。(2.5分) 3. 非均匀成核, 一级相变 非均匀成核:是指借助于表面、界面、微粒裂纹器壁以及各种催化位置等而形成晶核的过程一级相变:体系由一相变为另一相时,如两相的化学势相等但化学势的一级偏微商(一级导数)不相等的称为一级相变。(2.5) 4. 晶粒生长,二次再结晶 晶粒生长:平衡晶粒尺寸在不改变其分布的情况下,连续增大的过程。(2.5分) 二次再结晶:是少数巨大晶粒在细晶消耗时成核长大的过程。(2.5分) 5. 一致熔融化合物,三角形规则 答:一致熔融化合物是一种稳定的化合物,与正常的纯物质一样具有固定的熔点,熔化时,产生的液相与化合物组成相同。(2.5分) 三角形规则:原始熔体组成点所在副三角形的三个顶点表示的物质即为其结晶产物;与这三个物质相应的初初晶区所包围的三元无变量点是其结晶结束点。(2.5分) 6. 晶粒生长,二次再结晶 晶粒生长:平衡晶粒尺寸在不改变其分布的情况下,连续增大的过程。(2.5分) 二次再结晶:是少数巨大晶粒在细晶消耗时成核长大的过程。(2.5分) 7.液相独立析晶,切线规则 答:液相独立析晶:是在转熔过程中发生的,由于冷却速度较快,被回收的晶相有可能会被新析出的固相包裹起来,使转熔过程不能继续进行,从而使液相进行另一个单独的析晶过程,就是液相独立析晶。(2.5) 切线规则:将界线上某一点所作的切线与相应的连线相交,如交点在连线上,则表示界线上该处具有共熔性质;如交点在连线的延长线上,则表示界线上该处具有转熔性质,远离交点的晶相被回吸。 8.本征扩散,不稳定扩散, .答:本征扩散:空位来源于晶体结构中本征热缺陷,由此而引起的质点迁移。(2.5)不稳定扩散:扩散物质在扩散层dx内的浓度随时间而变化,即dc/dt≠0。这种扩散称为不稳定扩散。(2.5分) 9.均匀成核,二级相变, 答:均匀成核是晶核从均匀的单相熔体中产生的过程。(2.5分) 相变时两相化学势相等,其一级偏微商也相等,但二级偏微商不等的相变。(2.5分)10.烧结,泰曼温度 答:烧结:由于固态中分子(或原子)的相互吸引,通过加热,使粉末体产生颗粒粘结,经过物质迁移使粉末体产生强度并导致致密化和再结晶的过程。(2.5) 泰曼温度:反应物开始呈现显著扩散作用的温度。(2.5)

无机纳米材料在生物医学的应用

无机纳米材料在生物医学的应用 班级:材料科学与工程(1)班 姓名:何丽莉 学号:201473030107

摘要:主要介绍了几种介绍了介孔二氧化硅、纳米碳等非金属类纳米材料,以及磁性铁、氧化铈、银纳米粒子、金纳米粒子、镍等金属类纳米材料,比较了不同来源无机纳米材料的发展、特点、优势,明确了无机纳米材料具有环境友好、成本低、生物相容性好及低毒性等特点,综述了无机纳米材料在生物医药、临床诊断、疾病预防等生物医学方面的研究与应用。 关键词:无机纳米材料生物医学 Abstract: This paper mainly introduces several kinds of the mesoporous silica, nano carbon and other non metal nano materials, and magnetic iron, cerium oxide, silver nanoparticles, gold nanoparticles, nickel and other metal nano materials, compared the development of different sources of inorganic nano materials, features, advantages, the inorganic nano material is environmentally friendly low cost, good biocompatibility and low toxicity characteristics, the application of inorganic nano materials in the biomedical, clinical diagnosis, disease prevention research and application in biomedicine. Keywords: inorganic nano materials biomedicine

材料物理性能测试思考题答案

有效电子数:不是所有的自由电子都能参与导电,在外电场的作用下,只有能量接近费密能的少部分电子,方有可能被激发到空能级上去而参与导电。这种真正参加导电的自由电子数被称为有效电子数。 K状态:一般与纯金属一样,冷加工使固溶体电阻升高,退火则降低。但对某些成分中含有过渡族金属的合金,尽管金相分析和X射线分析的结果认为其组织仍是单相的,但在回火中发现合金电阻有反常升高,而在冷加工时发现合金的电阻明显降低,这种合金组织出现的反常状态称为K状态。X射线分析发现,组元原子在晶体中不均匀分布,使原子间距的大小显著波动,所以也把K状态称为“不均匀固溶体”。 能带:晶体中大量的原子集合在一起,而且原子之间距离很近,致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,从而使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。 禁带:允许被电子占据的能带称为允许带,允许带之间的范围是不允许电子占据的,此范围称为禁带。 价带:原子中最外层的电子称为价电子,与价电子能级相对应的能带称为价带。 导带:价带以上能量最低的允许带称为导带。 金属材料的基本电阻:理想金属的电阻只与电子散射和声子散射两种机制有关,可以看成为基本电阻,基本电阻在绝对零度时为零。 残余电阻(剩余电阻):电子在杂质和缺陷上的散射发生在有缺陷的晶体中,绝对零度下金属呈现剩余电阻。这个电阻反映了金属纯度和不完整性。 相对电阻率:ρ (300K)/ρ (4.2K)是衡量金属纯度的重要指标。 剩余电阻率ρ’:金属在绝对零度时的电阻率。实用中常把液氦温度(4.2K)下的电阻率视为剩余电阻率。 相对电导率:工程中用相对电导率( IACS%) 表征导体材料的导电性能。把国际标准软纯铜(在室温20 ℃下电阻率ρ= 0 .017 24Ω·mm2/ m)的电导率作为100% , 其他导体材料的电导率与之相比的百分数即为该导体材料的相对电导率。 马基申定则(马西森定则):ρ=ρ’+ρ(T)在一级近似下,不同散射机制对电阻率的贡献可以加法求和。ρ’:决定于化学缺陷和物理缺陷而与温度无关的剩余电阻率。ρ(T):取决于晶格热振动的电阻率(声子电阻率),反映了电子对热振动原子的碰撞。 晶格热振动:点阵中的质点(原子、离子)围绕其平衡位置附近的微小振动。 格波:晶格振动以弹性波的形式在晶格中传播,这种波称为格波,它是多频率振动的组合波。 热容:物体温度升高1K时所需要的热量(J/K)表征物体在变温过程中与外界热量交换特性的物理量,直接与物质内部原子和电子无规则热运动相联系。 比定压热容:压力不变时求出的比热容。 比定容热容:体积不变时求出的比热容。 热导率:表征物质热传导能力的物理量为热导率。 热阻率:定义热导率的倒数为热阻率ω,它可以分解为两部分,晶格热振动形成的热阻(ωp)和杂质缺陷形成的热阻(ω0)。导温系数或热扩散率:它表示在单位温度梯度下、单位时间内通过单位横截面积的热量。热导率的单位:W/(m·K) 热分析:通过热效应来研究物质内部物理和化学过程的实验技术。原理是金属材料发生相变时,伴随热函的突变。 反常膨胀:对于铁磁性金属和合金如铁、钴、镍及其某些合金,在正常的膨胀曲线上出现附加的膨胀峰,这些变化称为反常膨胀。其中镍和钴的热膨胀峰向上为正,称为正反常;而铁和铁镍合金具有负反常的膨胀特性。 交换能:交换能E ex=-2Aσ1σ2cosφA—交换积分常数。当A>0,φ=0时,E ex最小,自旋磁矩自发排列同一方向,即产生自发磁化。当A<0,φ=180°时,E ex也最小,自旋磁矩呈反向平行排列,即产生反铁磁性。交换能是近邻原子间静电相互作用能,各向同性,比其它各项磁自由能大102~104数量级。它使强磁性物质相邻原子磁矩有序排列,即自发磁化。 磁滞损耗:铁磁体在交变磁场作用下,磁场交变一周,B-H曲线所描绘的曲线称磁滞回线。磁滞回线所围成的面积为铁 =? 磁体所消耗的能量,称为磁滞损耗,通常以热的形式而释放。磁滞损耗Q HdB 技术磁化:技术磁化的本质是外加磁场对磁畴的作用过程即外加磁场把各个磁畴的磁矩方向转到外磁场方向(和)或近似外磁场方向的过程。技术磁化的两种实现方式是的磁畴壁迁移和磁矩的转动。 请画出纯金属无相变时电阻率—温度关系曲线,它们分为几个阶段,各阶段电阻产生的机制是什么?为什么高温下电阻率与温度成正比? 1—ρ电-声∝T( T > 2/ 3ΘD ) ; 2—ρ电-声∝T5 ( T< <ΘD );

无机材料科学基础习题答案

第一章晶体几何基础 1-1 解释概念: 等同点:晶体结构中,在同一取向上几何环境和物质环境皆相同的点。 空间点阵:概括地表示晶体结构中等同点排列规律的几何图形。 结点:空间点阵中的点称为结点。 晶体:内部质点在三维空间呈周期性重复排列的固体。 对称:物体相同部分作有规律的重复。 对称型:晶体结构中所有点对称要素(对称面、对称中心、对称轴和旋转反伸轴)的集合为对称型,也称点群。 晶类:将对称型相同的晶体归为一类,称为晶类。 晶体定向:为了用数字表示晶体中点、线、面的相对位置,在晶体中引入一个坐标系统的过程。 空间群:是指一个晶体结构中所有对称要素的集合。 布拉菲格子:是指法国学者 A.布拉菲根据晶体结构的最高点群和平移群对称及空间格子的平行六面体原则,将所有晶体结构的空间点阵划分成14种类型的空间格子。 晶胞:能够反应晶体结构特征的最小单位。 晶胞参数:表示晶胞的形状和大小的6个参数(a、b、c、α 、β、γ ). 1-2 晶体结构的两个基本特征是什么?哪种几何图形可表示晶体的基本特征? 解答:⑴晶体结构的基本特征: ①晶体是内部质点在三维空间作周期性重复排列的固体。 ②晶体的内部质点呈对称分布,即晶体具有对称性。 ⑵14种布拉菲格子的平行六面体单位格子可以表示晶体的基本特征。 1-3 晶体中有哪些对称要素,用国际符号表示。 解答:对称面—m,对称中心—1,n次对称轴—n,n次旋转反伸轴—n 螺旋轴—ns ,滑移面—a、b、c、d 1-5 一个四方晶系的晶面,其上的截距分别为3a、4a、6c,求该晶面的晶面指数。 解答:在X、Y、Z轴上的截距系数:3、4、6。 截距系数的倒数比为:1/3:1/4:1/6=4:3:2 晶面指数为:(432) 补充:晶体的基本性质是什么?与其内部结构有什么关系? 解答:①自限性:晶体的多面体形态是其格子构造在外形上的反映。 ②均一性和异向性:均一性是由于内部质点周期性重复排列,晶体中的任何一部分在结构上是相同的。异向性是由于同一晶体中的不同方向上,质点排列一般是不同的,因而表现出不同的性质。 ③对称性:是由于晶体内部质点排列的对称。 ④最小内能和最大稳定性:在相同的热力学条件下,较之同种化学成分的气体、液体及非晶质体,晶体的内能最小。这是规则排列质点间的引力和斥力达到平衡的原因。 晶体的稳定性是指对于化学组成相同,但处于不同物态下的物体而言,晶体最为稳定。自然界的非晶质体自发向晶体转变,但晶体不可能自发地转变为其他物态。

材料物理性能王振廷课后答案106页

1、试说明下列磁学参量的定义和概念:磁化强度、矫顽力、饱和磁化强度、磁导率、磁化率、剩余磁感应强度、磁各向异性常数、饱和磁致伸缩系数。 a、磁化强度:一个物体在外磁场中被磁化的程度,用单位体积内磁矩的多少来衡量,成为磁化强度M b、矫顽力Hc:一个试样磁化至饱和,如果要μ=0或B=0,则必须加上一个反向磁场Hc,成为矫顽力。 c、饱和磁化强度:磁化曲线中随着磁化场的增加,磁化强度M或磁感强度B开始增加较缓慢,然后迅速增加,再转而缓慢地增加,最后磁化至饱和。Ms成为饱和磁化强度,Bs成为饱和磁感应强度。 d、磁导率:μ=B/H,表征磁性介质的物理量,μ称为磁导率。 e、磁化率:从宏观上来看,物体在磁场中被磁化的程度与磁化场的磁场强度有关。 M=χ·H,χ称为单位体积磁化率。 f、剩余磁感应强度:将一个试样磁化至饱和,然后慢慢地减少H,则M也将减少,但M并不按照磁化曲线反方向进行,而是按另一条曲线改变,当H减少到零时,M=Mr或Br=4πMr。(Mr、Br分别为剩余磁化强度和剩余磁感应强度) g、磁滞消耗:磁滞回线所包围的面积表征磁化一周时所消耗的功,称为磁滞损耗Q( J/m3) h、磁晶各向异性常数:磁化强度矢量沿不同晶轴方向的能量差代表磁晶各向异性能,用Ek表示。磁晶各向异性能是磁化矢量方向的函数。 i、饱和磁致伸缩系数:随着外磁场的增强,致磁体的磁化强度增强,这时|λ|也随之增大。当H=Hs时,磁化强度M达到饱和值,此时λ=λs,称为饱和磁致伸缩所致。 2、计算Gd3+和Cr3+的自由离子磁矩Gd3+的离子磁矩比Cr3+离子磁矩高的原因是什么 Gd3+有7个未成对电子,Cr3+ 3个未成对电子. 所以, Gd3+的离子磁矩为7μB, Cr3+的离子磁矩为3μB. 3、过渡族金属晶体中的原子(或离子)磁矩比它们各自的自由离子 磁矩低的原因是什么 4、试绘图说明抗磁性、顺磁性、铁磁性物质在外场B=0的磁行为。

无机材料科学基础课后习题答案(6)

6-1 说明熔体中聚合物形成过程? 答:聚合物的形成是以硅氧四面体为基础单位,组成大小不同的聚合体。 可分为三个阶段初期:石英的分化; 中期:缩聚并伴随变形; 后期:在一定时间和一定温度下,聚合和解聚达到平衡。6-2 简述影响熔体粘度的因素? 答:影响熔体粘度的主要因素:温度和熔体的组成。 碱性氧化物含量增加,剧烈降低粘度。 随温度降低,熔体粘度按指数关系递增。 6-3 名词解释(并比较其异同) ⑴晶子学说和无规则网络学说 ⑵单键强 ⑶分化和缩聚 ⑷网络形成剂和网络变性剂

答:⑴晶子学说:玻璃内部是由无数“晶子”组成,微晶子是带有晶格变形的有序区域。它们分散在无定形介中质,晶子向无 定形部分过渡是逐渐完成时,二者没有明显界限。 无规则网络学说:凡是成为玻璃态的物质和相应的晶体结构一样,也是由一个三度空间网络所构成。这种网络是由离子 多面体(三角体或四面体)构筑起来的。晶体结构网 是由多面体无数次有规律重复构成,而玻璃中结构多 面体的重复没有规律性。 ⑵单键强:单键强即为各种化合物分解能与该种化合物配位数的商。 ⑶分化过程:架状[SiO4]断裂称为熔融石英的分化过程。 缩聚过程:分化过程产生的低聚化合物相互发生作用,形成级次较高的聚合物,次过程为缩聚过程。 ⑷网络形成剂:正离子是网络形成离子,对应氧化物能单独形成玻 璃。即凡氧化物的单键能/熔点﹥0.74kJ/mol.k 者称为网 络形成剂。 网络变性剂:这类氧化物不能形成玻璃,但能改变网络结构,从而使玻璃性质改变,即单键强/熔点﹤0.125kJ/mol.k者称 为网络变形剂。

6-4 试用实验方法鉴别晶体SiO2、SiO2玻璃、硅胶和SiO2熔体。它们的结构有什么不同? 答:利用X—射线检测。 晶体SiO2—质点在三维空间做有规律的排列,各向异性。 SiO2熔体—内部结构为架状,近程有序,远程无序。 SiO2玻璃—各向同性。 硅胶—疏松多孔。 6-5 玻璃的组成是13wt%Na2O、13wt%CaO、74wt%SiO2,计算桥氧分数? 解: Na2O CaO SiO2 wt% 13 13 74 mol 0.21 0.23 1.23 mol% 12.6 13.8 73.6 R=(12.6+13.8+73.6 ×2)/ 73.6=2.39 ∵Z=4 ∴X=2R﹣Z=2.39×2﹣4=0.72 Y=Z﹣X= 4﹣0.72=3.28 氧桥%=3.28/(3.28×0.5+0.72) =69.5%

材料物理性能课后习题答案-北航出版社-田莳主编

材料物理习题集 第一章 固体中电子能量结构和状态(量子力学基础) 1. 一电子通过5400V 电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3) 计算它对Ni 晶体(111)面(面间距d =2.04×10-10m )的布拉格衍射角。(P5) 12 34 131 192 1111 o ' (2) 6.610 = (29.110 5400 1.610 ) =1.67102K 3.7610sin sin 2182h h p mE m d d λπ λ θλ λ θθ----=???????=?==?=解:(1)= (2)波数= (3)2 2. 有两种原子,基态电子壳层是这样填充的 ; ; s s s s s s s 226232 2 6 2 6 10 2 6 10 (1)1、22p 、33p (2)1、22p 、33p 3d 、44p 4d ,请分别写出n=3的所有电子的四个量 子数的可能组态。(非书上内容)

3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级 的能量比费米能级高出多少k T ?(P15) 1()exp[]1 1 ln[1] ()()1/4ln 3()3/4ln 3F F F F f E E E kT E E kT f E f E E E kT f E E E kT = -+?-=-=-=?=-=-?解:由将代入得将代入得 4. 已知Cu 的密度为8.5×103kg/m 3,计算其E 0F 。 (P16) 2 2 03 23426 23 3 31 18(3/8)2(6.6310)8.510 =(3 6.0210/8)291063.5 =1.0910 6.83F h E n m J eV ππ---=????????=解: 由 5. 计算Na 在0K 时自由电子的平均动能。(Na 的摩尔质量M=22.99, .0ρ?33 =11310kg/m )(P16)

相关文档
相关文档 最新文档