文档库 最新最全的文档下载
当前位置:文档库 › 钾长石选矿设备(附:钾长石钾离子提取方法)

钾长石选矿设备(附:钾长石钾离子提取方法)

钾长石选矿设备(附:钾长石钾离子提取方法)
钾长石选矿设备(附:钾长石钾离子提取方法)

钾长石选矿设备(附:钾长石钾离子提取方法)

钾长石选矿生产线都需要哪些选矿设备?钾长石选矿设备如何配置和选型?我国可溶性钾资源贫乏,为了相应国家加大对钾矿资源开发利用的攻关力度,荥矿机械以先进的钾长石选矿工艺和钾长石选矿设备为支撑,提高钾长石矿资源的开发利用价值。

钾长石选矿设备:

要实现从钾长石原矿中游离出钾离子,首先要把钾矿石从钾长石中分离出来。钾长石选矿工艺根据矿石性质的不同可分为磁选工艺和浮选工艺。磁选工艺是为了除掉伴生磁性矿物质,浮选工艺是为了分离钛、云母等共生矿物质。

钾长石破碎磨矿设备:

选钾长石生产线,无论哪种选矿工艺,都需将钾长石进行破碎、研磨,破碎工艺选用两段一闭路,磨矿选用一段闭路,保证钾长石选矿生产线磁选或浮选工艺的粒度要求,提高选矿效率和质量。破碎设备有粗、细鄂式破碎机,圆锥破碎机;磨矿设备有格子球磨机,棒磨机等。

钾长石磁选设备:

磁选工艺流程比较简单,可与重选工艺相结合,先使钾矿石富集;还可配置洗矿脱泥设备,提高磁选效率和质量。磁选设备有干式、湿式磁选机,强磁选、弱磁选等多种型号,需根据生产需求进行配置。

钾长石浮选工艺流程:

为了更好满足浮选工艺的需求,钾长石破碎工艺往往采用两段一闭路破碎方法,通过双层振动筛,为使钾长石矿料粒度达到合理要求反复破碎,粗、细鄂式破碎机在破碎工艺中应用最为广泛,破碎比大,破碎效率高,操作、维修简单方

便。破碎矿料输送到高效节能格子球磨机(新型球磨机)再次研磨,输出矿浆经分级机分级,合格矿浆进入浮选机浮选,为了进一步提高浮选纯度和浮选效率,还可在浮选工艺前布置磁选工艺。湿式强磁选机筒表平均磁感应强度为100~600mT,根据用户需要,可提供顺流、半逆流、逆流型等多种不同表强的磁选。本磁选机具有结构简单、处理量大、操作方便、易于维护等优点。

附:钾长石钾离子提取方法

难溶性钾矿中的钾常以离子形式存在于钾长石矿物中,一般酸碱条件下很难将钾离子游离出来。利用湿化学法、微生物法破坏钾长石矿物的晶格结构,使钾离子从难溶性钾矿中游离出来再提取是从难溶性钾矿中提取钾的基本思路。1、焙烧-熔融法

焙烧-熔融法是将难溶性钾矿石与某些配料混合后在高温条件下焙烧,破坏其结构,从而使钾元素从钾长石晶格中游离出来,钾长石选矿设备厂家荥矿机械以钾长石为原料,经配料、粉碎、制粒、焙烧、熟料浸取、分离、碳酸化分解和碳酸钾的提纯、氢氧化铝的制取,提出了利用钾长石提取碳酸钾的工艺流程。

2、碱加压-水热法

以CaO为助剂,在一定条件下采用动态水热法进行钾长石精矿粉分解反应,制得碳酸钾产品,K2O的溶出率达82%以上。基于低温水热反应理论,以无水氯化钙和钾长石为反应物,在一定温度和磷酸体系中进行钾长石溶出反应,钾长石中K2O溶出率达75%以上。在水热条件下,荥矿机械厂家进行了钾长石-NaOH 体系水热法提钾工艺研究,在最优条件下钾的溶出率高达90%以上。通过原矿和滤渣的XRD物相分析表明,NaOH添加剂破坏了钾长石的晶体结构,形成了新物相。

3、含氟助剂-酸法

采用氟硅酸在低温常压条件下将钾长石分解,产生固液混合的反应物,并使已分解的钾长石中90%以上的钾以K2SiF6沉淀形式存在于固态中,再利用浓硫酸在500℃左右条件下实现K2SiF6到K2SO4的转化,液体经去氟、中和,得到含一定硅酸的硫酸铝铁产品,作为一种高效的絮凝沉降剂用于水处理工业中,从而实现钾长石资源的综合利用,本工艺具有简洁、原料易得、设备简单、节能环保等特点,有较高的工业推广价值。

4、微生物法

微生物法就是利用微生物破坏难溶性钾矿晶格,使其中的钾转化为能被植物吸收的游离钾离子的方法。该法既可弥补农作物前期供钾欠缺又能避免农作物后期供钾不足,从而增强作物抗灾、抗病能力。

硅酸盐细菌有解钾作用,但未驯化的自然界中的硅酸盐细菌解钾能力很低,经过驯化后解钾能力可提高2倍多。以平菇栽培废料为主要基质研究了烟曲霉TH003细菌对低品位含钾矿物的生物转化作用,试验结果表明,微生物对含钾矿物的转化作用明显。在含钾矿粉添加量为60%、培养时间为20d、培养温度为40℃条件下,微生物作用矿粉的释钾量高达1965ug/g。利用BM03细菌对难溶性家矿物进行微生物浸出,钾释出量高达616ug/g。

近年来,国家大力加强对钾矿资源的开发,显著提高了我国钾肥的自给率,但还远远不能满足国内农业生产的需求。因此,开发先进的难溶性钾矿提钾工艺技术对缓解钾肥紧缺局面,改善我国土壤肥力状况,保障农业高产、稳产,国民经济稳定健康发展等具有重大意义。

长石选矿-产品质量-工艺流程

一、概述 长石是由钾、钠、钙、钡的铝硅酸盐组成的一族矿物。主要化学成分为SiO2,Al2O3,CaO,K2O,Na2O。 长石族矿物是自然界最主要的造岩矿物,占地壳矿物组成的50%~60~左右。长石族矿物广泛产于各种成因类型的岩石中,为岩浆岩和变质岩的主要造岩矿物。 由于长石作为造岩矿物,在大多数情况下难与其它矿物分离,因而具有工业意义的长石矿床,只有结晶巨大而易于分离的伟晶岩矿床。 1. 长石的种类 按其化学成份和结晶特征,可以分为两个亚族:钾钠长石和斜长石亚族。 (1)钾钠长石亚族 系由钾长石分子和钠长石分子组成。自然界产出的钾长石都混有钠长石,所以常称的钾长石,都属于钾钠长石,常见的钾钠长石种类: 透长石,(K,Na)[AlSi3O8],含钠长石的 分子可达50%,K︰Na=1︰1 正长石,(K,Na)[AlSi3O8],含钠长石的 分子可达30%,K︰Na=2︰1 微斜长石,(K,Na)[AlSi3O8],含钠长石的 分子可达20%,K︰Na=4︰1 (2)斜长石亚族 系由钠长石分子与钙长石分子组成,两者可以任何比例混合组成连续的类质类象系列。可分为钠长石、更长石、中长石、拉长石、培长石、钙长石等六种。其中: 钠长石,含钙长石分子0~10%,产于伟晶岩、细晶岩、片晶岩中。 钙长石,含钙长石分子90~100%,产于辉长岩及相关岩石中。 2.长石的化学成分 在玻璃、陶瓷工业中有使用价值的长石种属主要为微斜长石、正长石和钠长石。 钾长石的理论化学成分为:K2O 16.90%,Al2O3 18.40%,SiO2,64.70% (其中:正长石常含有钠长石,多者可达30%;微斜长石是较纯的钾长石,但它含有钠长石,多者可达20%)钠长石的理论化学成分为:Na2O 11.80%,Al2O3 19.50%,SiO2,68.70% 但纯的钠长石少见,Na2O的含量常低于理论值,并含有K2O、CaO 等。 二、长石的物化性能 长石族矿物一般为白、灰白、浅肉红色,玻璃光泽,解理发育,硬度为6~6.5,密度为2.5~2.7g/cm3。 作为重要的工业原料,长石的熔点、熔融间隔、熔体的粘度等具有重要的应用意义。 1. 熔点和熔融间隔 钾长石的熔点为1290℃,钠长石为1215 ℃, 钙长石为1552 ℃,钡长石为1715 ℃。 熔融间隔比较宽也是长石的优良工艺性能之一,长石组分含量不同,熔融间隔也不一样。钾微斜长石在1160~1180 ℃时呈液态,至1210~1280 ℃时才完全熔融。 2.熔融液粘度 长石熔融时,熔融粘度取决于矿石的矿物组成、化学成分及熔融温度。 在同一温度下钾长石熔融液比钠长石熔融液粘度大,而且随着温度增高,钠长石熔融液迅速成为粘度小而易稀释的流体,使陶瓷坯体变形。 由于钾长石熔点不高,熔融间隔时间长,熔融液粘度高等优点,故在工业上利用较之其它长石更广 3.化学稳定性 钾长石玻璃和钠长石玻璃均具有高度的化学稳定性,除高浓度的硫酸和氢氟酸外,不受其它任何酸、碱的腐蚀。 4.助熔性 长石熔融体对其它物质有助熔作用,其助熔能力与温度及长石种类有关。钠长石熔融体对石英的助熔作用大于钾长石熔融体。 5.易磨性和可碾性 长石的解理发育,有较好的易磨性和可碾性。 三、长石的用途 长石主要用于玻璃和陶瓷行业。长石在玻璃工业中的用量占长石的50%~60%,陶瓷工业中的用量占30%,其余用在填料和其它部门。 1.玻璃熔剂 长石是玻璃混合料的成分之一。主要用来提高玻璃配料中的氧化铝含量,降低玻璃生产中的熔融温度和增加碱含量,以减少碱的用量。 长石熔融后变成玻璃过程比较慢,结晶能力小,可防止在玻璃形成过程中析出晶体而破坏制品。调节玻璃粘度。 一般作玻璃的混合料等用钾长石和钠长石。长石还可作玻璃纤维原料。 2.陶瓷坯体原料 烧成前起瘠性原料作用,减少坯体干燥收缩变形,改善干燥性能,缩短干燥时间。 烧成时作为熔剂降低烧成温度,促使石英和高岭土熔融,加速莫来石的形成,使坯体致密而减少空隙,提高其机械强度和介电性能,提高坯体的透光性。掺入量一般在20%左右。 3.陶瓷釉料 釉料主要由长石、石英和粘土原料组成,其中长

钾钠长石选矿试验报告

选矿试验报告 技术中心 2016年07月26日

选矿试验人员 刘国华王爱明陈东训李安李旺代明

目录 1、前言 2、样品的采集及制备 3、原矿性质 3.1原矿x-衍射分析 3.2原矿化学多项分析 3.3原矿石主要物理指标测试 4、选矿试验 4.1、强磁选除铁试验 4.2、酸洗除铁试验 4.2.1 酸洗浓度条件试验 4.2.2酸洗浸出时间条件试验 5、产品考查 6、结语

1、前言 受委托方的委托,技术中心对其所送钾、钠长石矿样品进行选矿试验。 经原矿粉晶X-衍射分析、化学多元素分析,矿石主要矿物以长石、石英为主,长石含量65%-75%,石英含量25-30%,次要矿物有白云母占2-3%、其它为微量。 通过强磁脱铁试验,最终得到长石精矿K2O含量为4.86%,Na2O 含量为3.44%,回收率为93.67%,Fe2O3含量0.35%。 通过洗矿+强磁脱铁试验,最终得到长石精矿K2O含量为4.73%,Na2O含量3.39%,回收率为76.82%,Fe2O3含量0.24%。 通过高温酸洗除铁试验,最终长石精矿K2O含量为4.62%,Na2O 含量3.20%,回收率为98.91%,Fe2O3含量0.17%。 本试验自2014年07月25日开始,2014年08月15日结束,历时20天。本试验结果仅对委托方所送样品负责。 2、样品的采集及制 试验样品由委托方自行采集后送到技术中心。样品重量约为150Kg。 将样品进行破碎加工至-1mm,作为试验样品,并缩分出1kg样品,作为化学分析样品。试样的破碎缩分流程如图2.1。

原矿(d<50mm) 化学分析样选矿试验样图2.1 原矿破碎缩分流程图

家兔高钾血症及抢救

家兔高钾血症及抢救 【实验目的】 掌握家兔高钾血症模型的复制及抢救的方法。 观察高钾血症及抢救后的心电图变化。 分析高血钾引起心电异常的机制 【实验原理】 钾离子是人体内重要的电解质之一,是维持细胞内外酸碱平衡、渗透压平衡和神经肌肉电生理特性的重要离子。正常血清钾离子浓度保持在3.5mmol/L~5.5mmol/L的范围内,当家离子浓度大于5.5mmol/L时称为高钾血症。以下是高血钾对心肌功能的影响及其基本机制: 心急兴奋性降低:当血钾浓度迅速轻度升高时,心肌细胞静息电位也轻度减小,引起兴奋所需的阈刺激也较小,即心肌兴奋性增高。当血钾浓度迅速显著升高时,由于静息电位过小,心急兴奋性也将降低甚至消失。 高钾血症时心肌细胞膜的钾通透性明显增高,故钾外流速加快,复极化(3期)加速。因此,动作电位时间和有效不应期均缩短,但由于细胞外高钾抑制钙离子在复极化2期内流,故2期有所延长,心电图上显示T波狭窄高尖,Q-T间期缩短。 心肌传导性降低:高钾血症时,由于静息电位减小,故动作电位0期,即去极化的幅度变小,速度减慢,因而兴奋的扩布减慢,即传导性降低。心房内、房室间或心室内均可发生传导延缓或阻滞。心电图上显示P波压低、增宽或消失;P-R间期延长,ST段压低,QRS综合波增宽’S波加深。 心肌自律性降低:高钾血症时心肌细胞膜的钾通透性增高,故在到达最大复极电位后,细胞内钾的外流比正常时加快而钠内流相对减慢,因而自动去极化减慢,自律性降低。 心肌收缩性降低:高钾血症抑制钙内流,使心肌收缩性降低。 综上,高钾血症时,心电图显示特点为:T波高尖,Q-T间期缩短,P-R间期延长,ST段压低,QRS波增宽,S波加深。 应用钙剂可拮抗高钾血症的心急毒性作用,期机制为:Ca2+一方面能促使阈电位上移,使Em-Et间距离增加,回复心肌的兴奋性‘另一方面使复极化2期Ca2+竞争性内流增加,提高心肌的收缩性。本实验通过静脉注射氯化钙溶液可纠正家兔高钾血症,心电图恢复正常。 【实验材料】 家兔1只,兔手术台,婴儿秤,手术器械,BL-420生物信号采集系统,心电记录电极,5ml、10ml注射器各一个、静脉输液装置一套,小儿头皮针,静脉导管、气管插管各1套,3%戊巴比妥钠溶液,4%氯化钾溶液,10%氯化钙溶液。【实验步骤】 1.麻醉 取家兔称重,耳缘静脉注射3%戊巴比妥钠1.0ml/kg麻醉,仰卧位固定于手术台,分离气管和右侧颈外静脉并进行插管,颈外静脉导管用三通管连接静脉输液装置,以备滴注氯化钾溶液用。 2.将针形电极分别插图家兔四至皮下,并连接BL=420生物机能实验系统,红色连右前肢,黑色连右后,绿色连左后,描述正常心电图。 3.耳缘静脉插入头皮针固定以备抢救注射氯化钙用。

钾长石提钾实验方案

钾长石提钾实验方案 方案一:NaCl熔盐浸取法 本实验方案先参考钾长石提钾中的氯化物法,因为钾长石中主要组成为:K2O约7~11%,SiO2约65~75%,Al2O3约18~20%,还有部分微量杂质,与本实验的原料矿组成类似,而且实验所需药品及仪器易得,方法简单,先采用此方法做探索性实验,此方法中,破坏钾长石中的晶体结构是是制取钾肥的关键,而热分解时添加的助剂是必不可少的,本实验方案的是助剂NaCl(也可以采用CaCl2等其它助剂),实验开展的步骤为:先将矿与助剂按一定比例混合放在马弗炉中焙烧,取出冷却一段时间,浸取,过滤,定容,再用四苯硼钠重量分析法分析滤液中的钾含量,计算钾的溶出率,最后将钾钠分离,分步结晶。 实验的具体步骤如下: 1.焙烧 实验药品:原料矿;NaCl粉末 实验仪器:分析天平;马弗炉;坩锅;烧杯;玻棒 实验步骤:称取20g原料矿和20gNaCl粉末放入同一烧杯中,用玻棒将它们均匀混合后放入坩锅中,将坩锅放入马弗炉中加热,温度设定为800℃,加热为2h;其它条件不变,改变加热温度分别为850℃,900℃,950℃做三组单因素实验。这个过程中,反应温度对熔出率有较大的影响,只有当温度高于氯化钠的熔点时,才能有较好的熔出率,NaCl的熔点是801℃,氯化钠与钾长石的配比和反应时间也有一定影响,最后根据钾的溶出率优化反应条件。 2.浸取分离 实验步骤:取一定量水于烧杯中,将焙烧物放入水中,使可溶性组分转为液相,成为浸出液,然后抽滤,使浸出液与不溶性固体残渣分离。 3.钾离子的分析 实验方法:分析方法为四苯硼酸钠重量法,四苯硼酸钠重量法是测钾的国标方法,也是目前土壤、肥料中钾含量测试应用最为广泛的一种分析方法。其分析原理为:在碱性较弱的介质中,四苯硼酸钠溶液作为沉淀剂与待测溶液中的K+反应,形成白色的沉淀四苯硼钾,然后将所得沉淀进行过滤、洗漆、干燥并称重,根据沉淀的质量测得溶液中所含的钾含量。其反应式为:

钾长石选矿设备(附:钾长石钾离子提取方法)

钾长石选矿设备(附:钾长石钾离子提取方法) 钾长石选矿生产线都需要哪些选矿设备?钾长石选矿设备如何配置和选型?我国可溶性钾资源贫乏,为了相应国家加大对钾矿资源开发利用的攻关力度,荥矿机械以先进的钾长石选矿工艺和钾长石选矿设备为支撑,提高钾长石矿资源的开发利用价值。 钾长石选矿设备: 要实现从钾长石原矿中游离出钾离子,首先要把钾矿石从钾长石中分离出来。钾长石选矿工艺根据矿石性质的不同可分为磁选工艺和浮选工艺。磁选工艺是为了除掉伴生磁性矿物质,浮选工艺是为了分离钛、云母等共生矿物质。 钾长石破碎磨矿设备: 选钾长石生产线,无论哪种选矿工艺,都需将钾长石进行破碎、研磨,破碎工艺选用两段一闭路,磨矿选用一段闭路,保证钾长石选矿生产线磁选或浮选工艺的粒度要求,提高选矿效率和质量。破碎设备有粗、细鄂式破碎机,圆锥破碎机;磨矿设备有格子球磨机,棒磨机等。 钾长石磁选设备: 磁选工艺流程比较简单,可与重选工艺相结合,先使钾矿石富集;还可配置洗矿脱泥设备,提高磁选效率和质量。磁选设备有干式、湿式磁选机,强磁选、弱磁选等多种型号,需根据生产需求进行配置。 钾长石浮选工艺流程: 为了更好满足浮选工艺的需求,钾长石破碎工艺往往采用两段一闭路破碎方法,通过双层振动筛,为使钾长石矿料粒度达到合理要求反复破碎,粗、细鄂式破碎机在破碎工艺中应用最为广泛,破碎比大,破碎效率高,操作、维修简单方

便。破碎矿料输送到高效节能格子球磨机(新型球磨机)再次研磨,输出矿浆经分级机分级,合格矿浆进入浮选机浮选,为了进一步提高浮选纯度和浮选效率,还可在浮选工艺前布置磁选工艺。湿式强磁选机筒表平均磁感应强度为100~600mT,根据用户需要,可提供顺流、半逆流、逆流型等多种不同表强的磁选。本磁选机具有结构简单、处理量大、操作方便、易于维护等优点。 附:钾长石钾离子提取方法 难溶性钾矿中的钾常以离子形式存在于钾长石矿物中,一般酸碱条件下很难将钾离子游离出来。利用湿化学法、微生物法破坏钾长石矿物的晶格结构,使钾离子从难溶性钾矿中游离出来再提取是从难溶性钾矿中提取钾的基本思路。1、焙烧-熔融法 焙烧-熔融法是将难溶性钾矿石与某些配料混合后在高温条件下焙烧,破坏其结构,从而使钾元素从钾长石晶格中游离出来,钾长石选矿设备厂家荥矿机械以钾长石为原料,经配料、粉碎、制粒、焙烧、熟料浸取、分离、碳酸化分解和碳酸钾的提纯、氢氧化铝的制取,提出了利用钾长石提取碳酸钾的工艺流程。 2、碱加压-水热法 以CaO为助剂,在一定条件下采用动态水热法进行钾长石精矿粉分解反应,制得碳酸钾产品,K2O的溶出率达82%以上。基于低温水热反应理论,以无水氯化钙和钾长石为反应物,在一定温度和磷酸体系中进行钾长石溶出反应,钾长石中K2O溶出率达75%以上。在水热条件下,荥矿机械厂家进行了钾长石-NaOH 体系水热法提钾工艺研究,在最优条件下钾的溶出率高达90%以上。通过原矿和滤渣的XRD物相分析表明,NaOH添加剂破坏了钾长石的晶体结构,形成了新物相。

超贫白钨矿选矿试验研究

Ser i a l N o .497Septe m be r .2010 现 代 矿 业 M ORDEN M IN I NG 总第497期 2010年9月第9期 杜淑华,在读博士,工程师,230001安徽省合肥市。 超贫白钨矿选矿试验研究 杜淑华 (安徽省地质实验研究所) 摘 要:某超贫斑岩型白钨矿储量大,WO 3含量仅为0.1%左右,采用预先脱硫,常温粗选白钨 矿,白钨粗精经三次空白精选脱除脉石矿物,然后加入水玻璃在高温、高浓度、高搅拌强度下解析 稀释后三次精选,最终可获得钨精矿品位60.31%、回收率83.91%的选矿技术指标,结果表明,此选矿工艺可有效处理该大型超贫斑岩型白钨矿。 关键词:白钨矿;常温粗选;加温精选 中图分类号:TD954 文献标识码:B 文章编号:1674 6082(2010)09 0078 03 某白钨矿属超贫斑岩型白钨矿床,其中含有微 量的钼矿物,开发这种极贫矿物资源要立足于多种元素综合回收,这既是建设资源节约型矿山的需要,同时也有利于提升矿山的经济效益。1 矿石性质 原矿化学多元素分析结果见表1,钨物相分析结果见表2。 表1 原矿化学多元素分析结果 (%)W O 3M o Cu S P Pb Zn 0.130.00830.009 1.770.0540.00530.013 CaO C aF 2Fe S i O 2A l 2O 3A s 2.50 0.64 2.37 67.44 9.58 3.65 表2 原矿钨物相分析结果 (%) 钨相钨华白钨矿黑钨矿合计含量0.00880.0960.0260.13分布率 6.73 73.39 19.88 100.00 工艺矿物学研究表明,白钨矿是矿石中最主要的回收对象,次为黑钨矿、辉钼矿、黄铁矿、黄铜矿等,脉石矿物种类多、含量高,主要有石英、绢云母、 钾长石等。白钨矿的构造主要有浸染型、细脉型和团块状构造,其中以细粒浸染状构造为主。 2 试验结果与讨论 试验采用先浮硫化矿,再浮白钨矿的原则流程。为了加强浮选过程中白钨矿与含钙脉石矿物的选择性浮选,采用碳酸钠作调整剂,水玻璃作抑制剂,731氧化石蜡皂作捕收剂。试验发现,脉石矿物种类多、含量高是影响白钨矿富集的主要因素,因此在粗选作业阶段对脉石矿物进行有效抑制是重要的,这样 可获得较高品位的浮选粗精矿,粗精矿经过三次空 白精选脱除脉石矿物,使进入解析作业的粗精矿WO 3品位得以提高,是得到高质量的钨精矿的关键所在。另外,在精选作业中对脉石矿物再进行抑制, 也是一项提高精矿产品质量的有效措施[1,4~7] 。2.1 磨矿细度的影响 磨矿细度试验流程如图1所示,结果见图2。 从图2可知,随着磨矿细度的增加,钨粗精矿品位逐渐降低。但是,提高磨矿细度,有利于白钨矿与脉石矿物解离,明显提高钨回收率。基于该作业为钨的粗选作业,以提高钨回收率为主,综合考虑,试 78

钾长石概况

河南卢氏县钾长石矿基本情况介绍 一、钾长石矿产资源概况 (1)卢氏县黄家湾钾长石矿 1978年3月16日原河南省地质四队曾进行过地质普查,并提交《河南省卢氏县黄家湾钾长石脉地质普查简报》。钾长石脉位于卢氏县西部十公里处的黄家湾附近,属沙河乡管辖,卢氏至潘河公路途经矿区,交通方便。该区分布地层主要为蓟县系官道口群,龙家园组隧石条纹白云岩,隧石条带白云岩,东西走向、北倾。南部为绢云绿泥千枚岩和含碳质千枚岩。钾长石脉产于白云岩系中,为顺层侵入。岩脉厚度30-40米,最厚60米左右,岩脉走向90°,北倾、倾角35-40°。大部分出露地表,少数黄土覆盖层厚度小,一般2-3米,最厚4-5米岩石自然风化。蚀变主要为高岭土化,蒙脱石化。粒状结构,地表疏松,有的呈砂粒状,易开采。 该矿脉部分进行槽探工程揭露,控制长度1500米左右。 矿石主要由钾长石组成,含有少量白云母、石英;微量矿物有榍石、白太石、磷灰石、黄铁矿、褐铁矿等。钾长石为肉红-灰白色,局部呈青灰色,自形晶粒状结构,块状构造。钾长石呈长柱状晶体杂乱分布。粒径在0.15×0.8mm-0.4×4.5mm之间,可见卡氏双晶,钾长石含量90-95%,在槽探工程取样分析结果中矿石化学成分主要为氧化钾(K2O)平均12.34%,最高为13.80%,最低为9.28%。

二氧化硅: (SiO 2) 平均57.49%; 氧 化 镁: (MgO ) 平均0.55%; 氧 化 钙: (CaO ) 平均0.43%; 氧 化 钠: (Na 2O ) 平均0.49%; 三氧化二铁: (Fe 3O 2) 平均4.68%。 样品 分 析 结 果(%) K 2O SiO 2 烧失 MnO Fe 2O 3 P 2O 5 MgO NaO CaO k -1 13.50 58.41 2.08 0.14 3.65 0.16 0.43 0.28 0.48 2 12.40 57.80 2.66 0.07 5.00 0.16 0.48 0.28 0.42 3 12.40 57.60 2.40 0.10 4.85 0.14 0.39 0.37 0.54 4 12.76 57.44 2.32 0.28 5.40 0.26 0.17 0.28 0.48

机能实验报告 高血钾

机能学实验报告 实验日期:2015年6月10日 带教教师: 小组成员: 专业班级:预防医学一大班 家兔正常心电图及高钾血症的实验治疗 一、实验目的 1、掌握家兔正常心电图波形的生理意义 2、掌握家兔高钾血症模型的复制方法 3、观察家兔高钾血症心电图波形变化特征 4、掌握高钾血症治疗的方法(4%碳酸氢钠或极化液) 二、实验原理 血清钾高于5.5mmol/L为高钾血症(正常值:3.5~5.5mmol/L)。高钾血症对机体的危害主要表现在心脏,可使心肌动作电位和有效不应期缩短,传导性、自律性、收缩性降低,兴奋性则呈双相变化:轻度高钾血症使心肌兴奋性增高,急性重度高钾血症可使心肌兴奋性降低甚至消失,心脏停搏。高钾血症时的心电图表现为:①P波和QRS波波幅降低,间期增宽,可出现宽而深的S波;②T波高尖:高钾血症早期即可出现,严重高钾血症时可出现正弦波,此时,已迫近室颤或心室停搏;③多种类型的心律失常。高钾血症的抢救可采用:①注射Na+,Ca2+溶液

对抗高血钾的心肌毒性;

②注射胰岛素、葡萄糖,以促进K+移入细胞。本实验通过静脉滴注氯化钾,使血钾浓度短时间内快速升高造成急性高钾血症,观察心电图变化,测定血钾浓度,了解高钾血症对心脏的毒性作用以及对高钾血症的抢救治疗措施。 三、实验仪器设备 生物信号采集处理系统、离子分析仪、大动物手术器械、气管插管、动脉套管、注射器、头皮针、取血器、电解质测定仪 四、实验方法与步骤 1.称重、麻醉和固定动物:家兔称重后,用3%注射用戊巴比妥钠,按1ml/kg从 耳缘静脉缓慢注入。麻醉时密切注意兔子的状态,当兔子角膜反射敏感度,肌肉紧张性明显降低,立即停止给药。麻醉后,将动物仰卧位固定在实验台上, 2手术与血管插管:颈部剪毛,在喉头下缘沿颈中线切开皮肤4-5cm,分离颈前肌肉暴露气管,做气管插管,并用丝线固定。在右侧按家兔血管常规分离方法分离颈外静脉,插入连接三通管的颈静脉插管以备输液,缓慢注入生理盐水(5-10滴/min)以保持管道通畅。在左侧肌肉深部分离出颈总动脉,插入连接三通管的总动脉插管。 3. 测正常血钾浓度:用EP管通过颈总动脉取血0.5ml,用电解质测量仪测量动物给予钾溶液前的血浆钾度。 4.描记心电图:将针型电极分别插入家兔四肢皮下。导联线按右前肢(红),左前肢(黄),左后肢(绿) ,右后肢(黑)的顺序连接,依生物机能实验系统使用方法描记实验前兔子的正常心电图波形。 5.复制高钾血症动物模型:通过输液装置,经颈外动脉从慢到快调滴速滴注3%的KCl溶液6滴/第1min,10滴/第2min,16滴/第3min及以后(不超20滴/min),密切观察和记录出现高钾时典型的心电图变化,一旦心电图出现正弦波时或QRS波群与T波发生融合时,立即调慢静脉滴注Kcl的速度,维持在6滴/minde,等待,当心电图出现典型高钾血症表现是,经颈外动脉取血0.5ml 作血钾测定。 6.高钾血症的抢救:在心电图出现典型高钾血症改变时,立即对家兔实施抢救。通过颈外静脉快速滴注极化液(20—30滴/秒)30min,待心电图基本恢复正常时,再次记录心电图改变,并由颈总动脉采血0.5ml,测定救治后的血钾浓度。

钾长石的利用及相关工艺

钾长石的利用及相关工艺 国外从钾长石提取钾盐的研究约有一百年的历史,第一次世界大战期间钾肥供需紧张,美国、加拿大、英国、日本等国兴起研究热潮,加热钾长石和石灰石来制备钾肥。二十世纪中叶,前苏联、保加利亚、罗马尼亚、匈牙利、芬兰及印度先后做不溶性含钾矿物质中提取钾盐制取钾肥,但进展缓慢,多数方法限于修修改改,提高不甚显著,少有崭新的方法涌现,理论探讨既不系统又欠深入。分解钾长石的方法繁多。按分解试剂可分为盐溶法、酸法、碱法、氟化物法。按分解方式可分为挥发法、焙烧浸取法、湿法等几类。其中以含钙化合物焙烧浸取法为主流。 国内七十年代主要是利用烧水泥过程中副产钾肥,八十年代以后焙烧浸取法研究较多,九十年代中叶国内出现低温湿法分解钾长石。 进入二十一世纪,山东科技大学化工学院薛彦辉教授在前人研究的基础上我们提出一种用催化剂低温分解钾长石的方法,利用原料生产硫酸铵钾复合肥,同时副产物可制得白炭黑和氢氧化铝,小试已通过国家鉴定(鉴定结论:“国际先进”。 简单效益分析: 1)对含钾9—10%钾长石产品为3(NH4)2SO4·K2SO4。耗硫酸0.26份,1:4产出比。+4NH4OH=6SiO2 +2Al(OH) 3+2(NH4)2SO4·K2SO4+2H2O 2)成本计算:(产品:硫酸铵钾、氢氧化铝、白炭黑;原料:钾长石、硫酸、氨水、催化剂) 投入产出=(1835+728+1435)×90%-200-288-331=2779元/日吨 3)煤耗: 14×(22.8+154.2)/75%=2478kg/75%=3304kg 3304×400×0.001=1321元 4)总电耗:155kw×1h×0.6元/度=93元(日吨平均每一设备运转1小时以内)5)人工:8人×30元/人日=240元 总结:每日处理一吨钾长石:利润=2779-1321-93-240=1125元 磷矿石和钾长石生产磷酸及可溶性钾盐的方法 本发明是一种利用磷矿石与钾长石直接生产磷酸及可溶性钾盐的方法。其特征在于该方法包括下述步骤:选用含P2O5为15-30%的磷矿石,钾长石以K2O计含量为10-18%,与焦炭一起经破碎、球磨、加水成球、干燥,在温度1100-1400℃下煅烧10-30分钟,之后,将煅烧产物在1~5%柠檬酸溶液中浸泡12小时,浸泡温度为室温至60℃,分离出的滤液经结晶提纯,得到可溶性钾盐;磷矿石中的P2O5被还原成磷蒸气并挥发,在料层的上方磷蒸气被引入炉内的空气氧化成P2O5气体,在水化装置中P2O5气体被吸收得到磷酸。本发明解决了磷酸生产的废渣、废气排放问题,还缓解了我国可溶性钾资源依赖进口的现状,经济环保。

低品位铜矿选矿试验探究

低品位铜矿选矿试验探究 摘要:随着国民经济的高速发展,我国对铜矿资源的需求量在大幅度增加。而我国铜矿山采选能力和冶炼生产能力则与之极不对称;自产铜矿不能满足国内生产需求。多年来,我国大量进口铜精矿。根据海关统计,2005年的进口量为406万t,占世界铜精矿贸易量的1/4。而到2008年进口量达到519万t,占世界铜精矿贸易量的1/3。因此本文对低品位铜矿选矿试验进行了探究。 关键词:低品位;铜矿选矿;试验 矿产资源作为一种基础产业,由于其广泛应用、不可替代性等原因,不仅在国民经济中占据着不可替代的重要地位,同时对我国的外交事务也有所影响。探月计划的工作之一就是探索月球上的矿物资源。从小我们就知道,我国幅员辽阔,地大物博,矿藏丰富;但是同时人口众多,因此人均资源占有量远远落后于世界平均水平。因此针对石油、钢铁、铜矿产而言,储量甚至称得上单薄稀少,尤其是铜矿产资源,有权威部门研究称我国在这方面的储量仅能保证几年到十几年的需求,因此勘查寻找新的铜矿产资源迫在眉睫,除了传统的找矿方法之外,也有一些新的技术被应用于勘查过程中。本文对铜矿产资源的主要特点、传统勘查方法和近年来提出的新方法进行了总结和分析。 1我国铜矿产资源现状 我国有色金属储量和质量最高的省份都当属云南省。如今有色金属及其合金更是广泛应用于各种机械器材的制造中,在科技进步中占据重要作用,是不可或缺的原材料,在国家内政外交中均占有一席之地。 我国铜矿产目前的基本情况是:(1)矿藏丰富,矿产总量多,锌、锡、钛等已知储量均为世界第一,但是从地域上和种类上都比较分散,集中情况较差,缺少大型单一矿藏地带,开采难度较大;(2)矿藏品味低,开发使用成本高,经济效益不高,因此除了提高采矿技术,新矿的寻找也成为大家最关注的话题;(3)在工业生产中需求量比较高的矿产较少(如铜矿和铝土矿等),且矿产本身规模大多比较小(铜矿中小型矿占到80%以上);(4)铜矿产本身利用率仍有一定的提升空间。 广东省有色金属储量不多,主要是铅锌、稀土、铝、铜等,省内主要矿山包括信宜银岩锡矿、茂名钛矿、凡口铅锌矿等,但有色金属行业资产比重(资产规模、销售收入等)排在全国前五的行列;广东省地质部门参与众多国内外矿山的勘查工作,勘查水平和效果在我国名列前茅。 2传统的铜矿产资源勘查方法 目前矿产勘查是指对矿产预查、普查、详查和勘探的总称。具体来说,是在区域地质调查和成矿预测的基础上,同时根据国内外矿产品市场的需求,运用成矿理论作指导,通过采用有关的勘查技术手段和方法,对有关的矿产资源所进行的专门性的地质调查研究工作[1]。 矿产勘查工作本身是一项充满挑战的工作,需要从业人员始终保持饱满的工作热情、扎实的基础、过人的耐心和抗打击能力以及细致入微、多思考多观察。一般来讲,由于矿床本身的层次特点和勘查工作的高消耗性,勘查过程应该分阶段进行,在逐步深入的同时能够防止投资的浪费。矿产多是分布相对集中的,因此通常新矿的寻找是在已知矿山、成矿区探测并逐渐向外围扩展。 目前,我国由于多年的积累和对于矿床的勘查工作的逐渐深入,已经基本形成了“矿产地图”,对于各类铜矿产资源的大致分布及储藏地矿床本身的地质特点都已经有了比较深入的了解,在矿产勘查理论和方法上也都有不少的积累。例如数学方法在其中的应用:数学广泛应用于铜矿产资源勘查中的多个方面,如特征分布规律的分析,数量、品

疾病学基础 实验六 高钾血症

实验六家兔高钾血症 一、实验目的 1.复制家兔高钾血症的动物模型。 2.了解动物高钾血症时心电图变化的特征,并设计抢救和治疗方案。 二、实验内容 1.家兔高钾血症动物模型的复制。 2.观察动物高钾血症时心电图变化的特征, 3.设计动物高钾血症的抢救和治疗方案。 三、实验准备 【实验动物】家兔 【仪器设备】计算机生物信号采集处理系统、心电电极输入线、兔手术台、哺乳类动物手术器械、三通管、双凹夹、铁支架、注射器(1ml,5ml,10ml)、输液装置、小儿头皮针等。 【药品试剂】1.5%戊巴比妥钠溶液、2%、5%、10%氯化钾生理盐水溶液、10%氯化钙溶液、5%碳酸氢钠溶液、葡萄糖-胰岛素溶液(50%葡萄糖4ml加1单位胰岛素)、生理盐水。 四、实验方法 1.动物称重、麻醉和固定家兔称重后,用1.5%戊巴比妥钠溶液(2ml/kg)从耳缘静脉缓慢注入。待动物自然倒下,将动物仰卧固定在实验台上,并保持耳缘静脉通畅。 2.心电图描记 (1)将心电电极输入端插头插入计算机生物信号处理系统插口。 (2)将针型电极分别插入动物四肢踝部皮下,心电导联线按右前支(红)、左前支(黄)、右后支(黑)、左后支(绿)的顺序联接。或变换心电输入线的三个端点可以测出标准I、II、III导联心电信号。 (3)用头胸导联可描记出比普通导联更为高大清晰的心电图波形,方法是选择心电图的I导联,将右前肢电极插在下颏部皮下,左前肢的电极插在胸壁,相当于心尖部位的皮下。这样高血钾的异常波形出现早而清楚。 (4)开机启动计算机生物信号采集处理系统,设置心电图描记参数:低通滤波:上限频率40HZ。在MedLab中依次选择“实验/常用生理学实验”→“心电图测量”。MedLab放大器和采样参数设置如下:

选钾长石工艺流程

随着人类生活水平不断提高以及科学技术的发展,能源需求也随之不断增加,对于能源的发展也由起初的不注重能源存量到重视能源结构调整的新阶段。 因此,近几年,能源替代品和新能源渐渐成为社会发展的主要角色,拿钾长石矿为例,钾长石的使用为现代工业的发展提供了强有力的动力。 钾长石虽然外表不及金属类矿石那样华美富贵。但他自身所产生的价值不十分巨大的,他可以运用到很多行业,化肥工业,显像管技术,陶瓷生产领域,等。给人们的生产生活做出了许多显而易见的成就。 如同一个人,在获得自身价值之初都要经历一个漫长的发展过程,诚然,钾长石矿本身也经历了一个十分漫长的发展阶段,几年前,钾长石还跟世界上大部分矿石一样不起眼,还不被人们所认知,直到钾长石选矿技术的发展和高纯度钾长石被提炼出来之后,钾长石才慢慢进入人们视眼,逐渐被诸多行业的人们所使用和熟悉,让钾长石的身价一路上涨。 那么,高纯度钾长石是如何被提取出来的,钾长石期间经历了哪些艰辛,下面,荥矿机械将为大家揭开钾长石工艺流程面纱。 钾长石的经历了重重关卡,最终修成正果,升级为高纯度的钾长石粉为大众开发利用,他先是经过给料机到达鄂破体内,经受住了一次破碎之后,落到皮带机上,紧接着被皮带机带到细破机体内,在经受住敲打之后再次落入第二段皮带机上面,被皮带机送往磁力滚筒,在洗涤过身上的污垢(铁元素)之后,进入料仓待命,再进入给料机,经皮带机到达球磨机体内,第三次进入磨合,接着继续闯关,进入到了螺旋分级机,合格的进入下一环节,不合规格的再次进入球磨机,进行循环敲打,直到合格,修炼合格之后,进入磁选机再次除污(铁),然后在矿浆搅拌桶中搅拌均匀,进入药剂搅拌桶,之后流入浮选机,紧接着再次去除污垢(铁),进行沉淀,过滤。在经受住沉淀和过滤之后,就意味着钾长石闭关修炼成功,合格的高纯度钾长石经最后一段皮带机运出山门。此时的钾长石已经百炼成钢。练就成了顶尖事物。 钾长石成功路上,说明一个道理,那就是,主要功夫深铁杵磨成针,只要坚持自己的信念,执着面对困难,就能够将自身的价值得以涌现,成为大写的人。

钾长石制钾肥

钾长石低温烧结法制钾肥 钾元素是农作物生长的必要元素之一。我国是含钾资源丰富的国家。但绝大部分是水不溶性的钾长石。水溶性钾矿床的分布很不均匀,且严重匮乏。钾长石含有Si-Al-O架状结构。其结构式为K[AlSi3O8],组成的网状结构极稳定,所含钾不能直接被作物吸收。如何经济合理地综合利用我国丰富的水不溶性钾资源,以弥补我国农业发展钾肥短缺的局面,有着重要的意义。 一、钾长石制取钾肥研究的进展 由于国外可溶性钾资源较丰富。因此,利用水不溶性钾矿制取钾肥的研究,国外进行的较少。我国从六十年代初起就有了利用钾长石制钾肥的研究。到七十年代,在钾长石中加人助溶剂烧结的方法已经成型。利用钾长石、石灰石和煤或焦炭,按1:1:0.2比例混合,经粉碎加工成球煤,在立窑煅烧(1200~1250℃).直接破坏钾长石的结构,使钾生成水溶性的铝酸钾成品含钾3.8%~5.4%,钾的溶出率在3%左右。燃烧法可以利用当地的石灰石和煤作原料,原料成本低,成为利用钾长石制取钾肥的一个途径。但生产过程中能耗大,且钾长石中钾的转化率较低(60%-90%),成为推广发展的主要障碍。七十年代后,高温熔融法制取复合肥取得一定的成果。该法在生产钙镁磷肥的基础上,配以

25%-30%的钾长石作原料,高温熔融(1200—1300℃)制得成品钙镁磷钾肥,其成品中有效磷在10%~14%、可溶钾在4%~5%,钾长石中钾的转化率大于95%。本法在矿石的综合利用降低生产成本上,无疑开辟了道路。河北蓟县利用立窑生产水泥、副产K2CO3,又开辟了综合利用钾长石的一条新路。该法用生产水泥的方法,以钾长石代替原料粘土,按石灰石82.4%~82%、钾长石14.2%~15.6%、铁矿石2.6%~3.2%、萤石1.1%和焦炭3%的比例,将原料破碎后配料混匀入炉,并提高炉缸内温度到1450℃.使K2O挥发,随高温气流带出,与二氧化碳作用生成可溶性K2CO3,而炉渣经加工后则成白色水泥。其中氧化钾的挥发率达95%以上。此法也是利用现有条件生产钾肥的一种方法。以后出现了钾长石、磷矿石联产KPO3和白水泥的主法等,但这类方法仅限于水泥厂或磷肥厂作为副产物生产钾肥,且也存在能耗过大的问题,尚不能广泛推广利用钾长石生产钾肥。 二、低温分解法 近年来,开发出低温分解法。在硫酸介质中,有助溶剂的存在,利用低温分解钾长石生产硫酸钾铵三元复合肥、聚氯化铝和白炭黑,其中助溶剂回收率>90%,K2O、AlO3、SiO2的提取率>80%,年加工5000t钾长石(含K2O12%)可生产2900t硫酸钾铵复合肥、8000t聚氯化铝和3000t白炭黑,具有一定的开发前景。

家兔高钾血症实验报告

家兔高钾血症实验报告 正常家兔瞳孔大小 高钾血症时,心电图可见家兔心律失常,并且T波高耸,Q—T间期缩短;并且可见家兔呼吸缓慢,瞳孔放大,眼球突出,紫绀等现象。用葡萄糖、NaHCO3均抢救成功,而用胰岛素+葡萄糖、NaCL均抢救失败。 急性低钾血症和急性重度高钾血症时均可出现肌肉无力,其发生机制有何异同? 相同:骨骼肌兴奋性降低。 不同:低钾血症时出现超极化阻滞:即血清钾↓→细胞内外浓度差↑→静息电位负值增大→与阈电位差距增大→兴奋性降低。 严重高钾血症时出现除极化阻滞,即血清钾↑→细胞内外[K+]比值↓→静息电位太小(负值小)→钠通道失活→动作电位形成障碍→兴奋性降低。 高钾血症和低钾血症对心肌兴奋性各有何影响?阐明其机理? 钾对心肌是麻痹性离子。高钾血症时心肌的兴奋性先升高后降低,低钾血症时心肌的兴奋性升高。急性低钾血症时,尽管细胞内外液中钾离子浓度差变大,但由于此时心肌细胞膜的钾电导降低,细胞内钾外流反而减少,导致静息电位负值变小,静息电位与阈电位的距离亦变小,兴奋所需的阈刺激也变小,故心肌兴奋性增强。高钾血症时,虽然心肌细胞膜对钾的通透性增高,但细胞内外液中钾离子浓度差变小,细胞内钾外流减少而导致静息电位负值变小,静息电位与阈电位的距离变小,使心肌兴奋性增强;但当严重高钾血症时,由于静息电位太小,钠通道失活,发生去极化阻滞,导致心肌兴奋性降低或消失。 急性肾衰引起高钾血症的机制 急性肾衰竭时,肾小球滤过率的迅速下降导致钾离子的排泄减少 急性肾衰出现高钾血症应如何处理

钠型离子交换树脂15~30g口服,每日3~4次。此外,高钾血症病人禁用库存血,限制摄入含钾高的食物,停用含钾药物,并及时纠正酸中毒。 试述创伤性休克引起高钾血症的机制。 ⑴创伤性休克可引起急性肾功能衰竭,肾脏排钾障碍是引起高钾血症的主要原因。 ⑵休克时可发生乳酸性酸中毒及急性肾功能不全所致的酸中毒。酸中毒时,细胞外液 中的H+和细胞内液中的K+交换,同时肾小管泌H+增加而排K+减少。 ⑶休克时组织因血液灌流量严重而缺氧,细胞内ATP合成不足,细胞膜钠泵失灵,细胞外液中的K+不易进入缺氧严重不足引起细胞坏死时,细胞内K+释出。 急性轻度高钾血症时患者为什么会出现手足感觉异常? 急性轻度高钾血症时,由于细胞内外K+浓度差减少,细胞内K+外流减少,导致静息电位负值变小,与阈电位的距离变小而使神经肌肉兴奋性升高,故患者出现手足感觉异常或疼痛等神经肌肉兴奋性升高的表现。

花岗岩提取石英长石的选矿方法研究

从花岗岩中提取长石和石英的选矿方法研究 杨明星 (蚌埠玻璃工业设计研究院安徽蚌埠233018)摘要:针对国内某地一种典型的花岗岩矿,采用“破碎—筛分—分级—磁选—浮选—浮选”的选矿工艺,提纯得到石英和长石,其中石英产率γ=24.79%,SiO2=99.33%,Al2O3=0.17%,Fe2O3=0.018%,达到优质浮法汽车玻璃及超白器皿玻璃用硅质原料的质量要求;长石产率γ=48.49%,K2O +Na2O =12.55%,Fe2O3 =0.28%,Al2O3=18.42%,满足陶瓷、玻璃等行业的要求。本研究为花岗岩的开发提供一种新的选择。 Utilizing the process of “crushing, screening, classifying, magnetic separation, floatation, floatation”, this article could purify a domestic typical granite mineral into: quartz: productivityγ=24.79%,SiO2=99.33%,Al2O3=0.17%,Fe2O3=0.018%; The quartz quality could meet the material requirement of high quality floating glass for automobile and ultra-white glassware;feldspar: productivityγ=48.49%,K2O +Na2O =12.55%;Fe2O3 =0.28%;Al2O3 =18.42%. The feldspar quality could meet the requirement of glass and ceramic industry. 关键词:花岗岩;长石;石英;选矿提纯 1、前言 花岗岩是火成岩的一种,在地壳上分布广泛,是岩浆在地壳深处逐渐冷却凝结成的结晶岩体,主要成分是石英、长石和云母。一般呈黄色、肉红~粉红色,也有灰白色的,因质地坚硬,色泽美丽,主要用作建筑石材。根据花岗岩中富含长石和石英的特点,本文探讨选矿分离工艺,将石英和长石从中提取出来,应用于玻璃、陶瓷领域,使其具有一种新的工业价值,鉴于花岗岩资源分布的广泛性,将极大的降低传统建材行业对石英长石矿山资源的依赖程度,具有重要的科技意义和社会意义。 本文以国内某地一种典型的花岗岩矿为例,通过试验,最终得到石英和长石产品的质量如下: 石英:产率γ=24.79%, SiO2=99.33%,Al2O3=0.17%,Fe2O3=0.018%; 长石:产率γ=48.49%,

石英砂选矿提纯实验方案

钾长石的石英尾矿的选矿提纯实验报告 1试样的制备 该石英取自河北省某低品位钾长石的石英尾矿。矿样由钾长石原矿经弱磁选、强磁选、浮选后备用。石英的纯度99.5%,粒度为-0.074mm占75%左右。 2试验所用试剂与设备、仪器 试验所用化学试剂为化学纯或分析纯,试剂明细见表2.1,试验用水均为去离子水,pH值为6-7,电导率为2.0x10-5s/m,试验所用主要试验设备及仪器如表2.2所示 表2.1试验所用试剂明细 试剂名称分子式分子量纯度生产厂家 油酸钠C18H33NaO2304.45 化学纯国药集团化学试剂有限公司十二胺C12H27N 185.36 化学纯国药集团化学试剂有限公司盐酸HCI 36.46 分析纯北京兴青红化工厂氢氧化钠NaOH 40 分析纯北京化学试剂公司六偏磷酸钠(NaPO3)6611.77 分析纯北京化学试剂公司邻苯二甲酸C8H6O4166.13 分析纯国药集团化学试剂有限公司己二酸C6H10O4146.14 分析纯国药集团化学试剂有限公司十二烷基苯磺酸钠C l8H29NaO3S 348.48 分析纯国药集团化学试剂有限公司丙二酸C3H4O4104.06 分析纯国药集团化学试剂有限公司癸二酸C10H l8O4202.25 分析纯国药集团化学试剂有限公司柠檬酸C6O8O7H2O 210.14 分析纯北京化学试剂公司 酒石酸C4H6O6150.09 分析纯北京化学试剂公司 草酸H2C2O4H2O 126.07 分析纯北京化学试剂公司

表2.2试验所用主要设备及仪器 设备名称型号及规格生产厂家 浮选机XF型挂槽式长春探矿机械厂 球磨机XMCQ-180x200瓷衬吉林探矿机械厂 棒磨机- 长春远东理化仪器制造厂 抽滤机SHB真空循环式郑州 浮选机单槽南昌海风机械厂 强磁机XCQS型天津矿山仪器厂 电热套ZNHW500 巩义市予华仪器厂 pH计PHSJ-3F型上海精密科学仪器有限公司精密电子天平ARZ130型OHAUS pH复合电极E-201-C型上海精密科学仪器有限公司 Zeta电位仪NANO2590型英国马尔文公司 红外光谱仪PERIN-ELMER 683型日本岛津公司扫描电子显微镜S-3500型日本日立 X射线光电子能谱仪ESCALAB25O 美国ThermoVG 3研究方法 3.1磨矿试验 磨矿条件如下:球磨机为XMCQ-180x200瓷衬球磨机,有效容积5L,转数90转/分,介质为刚玉球,每次一份矿样100g,磨矿浓度:66.7%(液固比1:2),介质充填率:50.2% 矿样如含较多矿泥,则用棒磨机进行擦洗脱泥处理。 3.2磁选试验 由于破碎会给石英矿带来一部分次生铁以及本身也含有一些铁杂质,为此磨矿完后,接着进行了磁选,以除去这部分铁杂质,磁选条件为场强:1.3T ,湿式给矿,给矿浓度30%。 3.3浮选试验 浮选试验是在XFD-L0L型浮选机中进行,称取900g矿物与2700mL去离子水混合配置成浓度为25%的浮选溶液,浮选机转

实验性高钾血症及其治疗 实验报告 (2)

实验性高钾血症及其治疗 【实验目的】 1. 观察高钾血症时家兔心电图变化的特征。 2. 了解血钾进行性升高的不同阶段,高血钾对心肌细胞的毒性作用。 3. 了解高钾血症的基本治疗方法和抢救。 【实验原理】 血清钾高于5.5mmol/L为高钾血症(正常值:3.5~5.5mmol/L)。高钾血症对机体的危害主要表现在心脏,可使心肌动作电位和有效不应期缩短,传导性、自律性、收缩性降低,兴奋性则呈双相变化:轻度高钾血症使心肌兴奋性增高,急性重度高钾血症可使心肌兴奋性降低甚至消失,心脏停搏。高钾血症时的心电图表现为:①P波和QRS波波幅降低,间期增宽,可出现宽而深的S波;②T波高尖:高钾血症早期即可出现,严重高钾血症时可出现正弦波,此时,已迫近室颤或心室停搏;③多种类型的心律失常。高钾血症的抢救可采用:①注射Na+,Ca2+溶液对抗高血钾的心肌毒性;②注射胰岛素、葡萄糖,以促进K+移入细胞。 本实验通过静脉滴注氯化钾,使血钾浓度短时间内快速升高造成急性高钾血症,观察心电图变化,测定 血钾浓度,了解高钾血症对心脏的毒性作用以及对高钾血症的抢救治疗措施。 【实验对象】 家兔,体重2~3kg,雌雄不限。 【实验药品与器材】 20%氨基甲酸乙酯(或3%戊巴比妥钠),2%、10%氯化钾溶液、10%氯化钙溶液、4%碳酸氢钠溶液,葡萄糖-胰岛素溶液(50%葡萄糖4ml加1U胰岛素),肝素生理盐水溶液(125单位肝素/ml生理盐水),手术器械、注射器、头皮针、取血器、生物信号采集处理仪、电解质测定仪。 【实验观察指标】 血钾浓度、心电图变化、呼吸频率、幅度和节律。 【实验方法与步骤】 1. 称重、麻醉和固定动物家兔称重后,用20%氨基甲酸乙酯5ml/kg或3%戊巴比妥钠溶液1ml/kg 从耳缘静脉缓慢注入。麻醉后,将动物仰卧位固定在实验台上,颈前部备皮。 2. 分离颈总动脉按家兔血管常规分离方法分离颈总动脉,插入导管取血0.5~1ml测定实验前的血钾浓度。 3. 心电描记将针型电极分别插入家兔四肢皮下。导联线按左前肢(黄),右前肢(红),左后肢(绿) ,右后肢(黑)的顺序连接,依生物信号记录仪使用方法描记实验前的心电图波形存盘,待实验结束后打印分析。 用头胸导联可描记出比普通导联更为高大清晰的心电图波形。方法是将右前肢电极插在下颏部皮下,左前肢的电极插在胸壁上相当于心尖部位的皮下。这样可较早发现高血钾家兔的心电图异常波形。 4. 氯化钾溶液注入方法从耳缘静脉滴入2%氯化钾(15~20滴/min)。 5. 观察记录心电图在静脉滴注氯化钾的过程中,观察生物信号采集处理仪显示器上心电图波形的变化。出现P波低压增宽、QRS 波群低压变宽和高尖T波时,描记存盘。同时取血0.5~1ml测定血钾浓度。 6. 实施抢救当出现心室扑动或颤动波形后,立即停止滴注氯化钾,并迅速准确地由另外一侧耳缘静脉注入已预先准备好的抢救药物(10%氯化钙2m1/kg,或4%碳酸氢钠5m1/kg,或葡萄糖-胰岛素溶液7m1/kg)。如果短时间内无法快速输入抢救的药物,救治效果不佳。 待心室扑动或颤动波消失,心电图基本恢复正常时,再由颈总动脉采血测定救治后的血钾浓度。 7. 注入致死剂量的l0%氯化钾(8m1/kg),开胸观察心肌纤颤及心脏停搏时的状态。 【实验结果】

相关文档