文档库 最新最全的文档下载
当前位置:文档库 › 乙苯制苯乙烯

乙苯制苯乙烯

乙苯制苯乙烯
乙苯制苯乙烯

南京工业大学

化学化工学院

《化工过程与工艺设计》设计题目乙苯脱氢制苯乙烯装置工艺设计

学生姓名吴美妍班级、学号化工100704 指导教师姓名林陵

设计时间2013年 6 月27日-2013 年7月12日

课程设计成绩:

指导教师签字

目录

第一部分设计说明书

前言···························································································错误!未定义书签。第一章概述·············································································错误!未定义书签。

1.1工艺路线与产品·························································错误!未定义书签。

1.1.1 ···································································错误!未定义书签。

1.1.2 ····································································错误!未定义书签。

1.1.3 ·································································错误!未定义书签。第二章原料与产品的性质·····················································错误!未定义书签。

2.1原料性质·····································································错误!未定义书签。

2.2产品性质·····································································错误!未定义书签。第四章安全和工业卫生·························································错误!未定义书签。

第五章三废排放及治理方案·················································错误!未定义书签。

第七章主要设备一览表·························································错误!未定义书签。

7.1表一非定型设备一览表(一)······························错误!未定义书签。

7.2 表二非定型设备一览表(二)·····························错误!未定义书签。第八章原料、动力消耗及排出一览表·································错误!未定义书签。

第二部分设计计算书

第一章物料衡算·····································································错误!未定义书签。

第二章主要设备物料衡算、热量衡算和设备计算·············错误!未定义书签。

2.1进料泵········································································错误!未定义书签。

2.2液体汽化器H1···························································错误!未定义书签。

2.3反应器R1···································································错误!未定义书签。

2.4气气换热器H2···························································错误!未定义书签。

第三章设备计算程序及说明·················································错误!未定义书签。

3.1反应器计算程序························································错误!未定义书签。

3.2 回流比与塔板数作图···············································错误!未定义书签。

第三部分附录

附录1 符号说明······································································错误!未定义书签。附录2 参考文献······································································错误!未定义书签。附录3 ASPEN PLUS模拟计算结果 ······································错误!未定义书签。附录4 PFD图

附录5 PID图

附录5 平面布置图

附录6 立面布置图(可选)

第一部分设计说明书

前言

苯乙烯是一种重要的石油化工基本原料,是除聚乙烯(PE)、聚氯乙烯(PVC)、环氧乙烷(EO)以外的第四大乙烯衍生产品。其主要用于生产和制备聚苯乙烯(PS)、丁苯橡胶(SBR)、丙二烯—丁二烯—苯乙烯(ABS)树脂、苯乙烯—顺丁烯—苯乙烯嵌段共聚物(SBS)、苯乙烯—丙烯腈(SAN)树脂和不饱和聚酯等,并广泛用在电子、汽车、建筑、包装、日用轻工等领域中。

在世界上,苯乙烯的主要生产方法为乙苯脱氢法、乙苯共氧化法、甲苯为原料合成苯乙烯法、乙烯和苯直接合成苯乙烯法和乙苯氧化脱氢法等。其中,工业化的生产方法为乙苯催化脱氢法和乙苯共氧化法,两种方法所生产的苯乙烯分别占苯乙烯总产量的85%和15%。目前,国内外生产苯乙烯的主要方法是乙苯脱氢法,它又包括Lummus/UOP乙苯脱氢工艺、Fina/Badger乙苯脱氢工艺和乙苯脱氢选择性氧化工艺(Smart工艺)3种工艺。

化工流程模拟(过程模拟)技术是以工艺过程的机理模型为基础,采用数学方法来描述化工过程,通过应用计算机辅助计算手段,进行过程物料衡算、热量衡算、设备尺寸估算和能量分析并做出环境和经济评价的一门新兴技术。它是化学工程、化工热力学、系统工程、计算方法以及计算机应用技术等学科相互结合的产物,在近几十年中发展迅速,并广泛应用于化工过程的设计、测试、优化和过程的整合领域。

Aspen Plus是一个生产装置设计、稳态模拟和优化的大型通用流程模拟系统。Aspen Plus是大型通用流程模拟系统,源于美国能源部七十年代后期在麻省理工学院(MIT)组织的会战,开发新型第三代流程模拟软件。该项目被命名为“过程工程的先进系统”(Advanced System for Process Engineering,简称ASPEN),并于1981年底完成。1982年为了将其商品化,成立了Aspen Tech公司,并称之为Aspen Plus。该软件经过20多年来不断地改进、扩充和提高,已先后推出了十多个版本,成为举世公认的标准大型流程模拟软件,应用案例数以百万计。

第一章概述

1.1生产方法

苯乙烯的工业生产方法有:

①烯和苯烷基化生成乙苯,乙苯经催化脱氢制苯乙烯;

②乙苯氧化生成生成乙苯过氧化氢,然后与丙烯反应生成α—甲基苯甲醇和环氧丙烷,α—甲基苯甲醇脱水生成苯乙烯;

目前,乙苯催化脱氢法制苯乙烯约占世界苯乙烯总产量的90%;乙苯过氧化氢法是70年代后越来越多采用的新工艺,其优点是联产环氧丙烷。

本设计计算采用乙苯脱氢法生产工艺。

1.2工艺流程

生产流程示意如下:

图1-2 乙苯脱氢制苯乙烯流程图

1.3乙苯脱氢生产方法

乙苯催化脱氢采用氧化铁(Fe2O3)作为催化剂,这种催化剂一般含有Cr2O3,并以KOH或K2O3为助催化剂,脱氢反应温度600℃左右。巴斯夫法(等温过程)催化剂装在列管式反应器中,由外部可燃气体为反应器供热;绝热反应过程则直接加入过热水蒸汽于反应器中,为脱氢反应提供所需的热量。为了减少副反应,用掺入水蒸汽的方法来降低乙苯分压,以增加乙苯转化率。副产物是甲苯、苯和少量的焦油状物等,为了防止苯乙烯聚合,在反应产物中加入少量阻聚剂。反应产物经精馏分离出轻组分得到苯乙烯产品,未转化的乙苯循环回反应继续反应。

第二章原料与产品性质

2.1原料

化学名称:乙苯

主要性质:

乙苯是无色液体,具有芳香气味,可溶于乙醇、苯、四氯化碳和乙醚,几乎不溶于水,易燃易爆,对皮肤、眼睛、粘膜有刺激性,在空气中最大允许浓度为

100PPM。乙苯侧链易被氧化,氧化产物随氧化剂的强弱剂(如高锰酸钾)或催化剂作用下,用空气或氧气氧化,生成苯甲酸;若用缓和氧化剂或温和的反应条件氧化,则生成苯乙酮。

2.2产品

化学名称:苯乙烯英文名称:styrol

规格:含量≥99.8% 分子量:104.15

沸点:145.2℃熔点:-30.6℃

折光率:1.5439(25℃)结构式:CH=CH

2主要性质:

苯乙烯(SM)是含有饱和侧链的一种简单芳烃,是基本有机化工的重要产品之一。苯乙烯为无色透明液体,常温下具有辛辣香味,易燃。苯乙烯难溶于水,25℃时其溶解度为0.066%。苯乙烯溶于甲醇、乙醇、乙醚等溶剂中。

苯乙烯在空气中允许浓度为0.1ml/l。浓度过高、接触时间过长则对人体有一定的危害。苯乙烯在高温下容易裂解和燃烧。苯乙烯蒸汽与空气混合能形成爆炸性混合物,其爆炸范围为1.1~6.01%(体积分数)。

苯乙烯(SM)具有乙烯基烯烃的性质,反应性能极强,苯乙烯暴露于空气中,易被氧化而成为醛及酮类。苯乙烯从结构上看是不对称取代物,乙烯基因带有极性而易于聚合。在高于100℃时即进行聚合,甚至在室温下也可产生缓慢的聚合。因此,苯乙烯单体在贮存和运输中都必须加入阻聚剂,并注意用惰性气体密封,不使其与空气接触。

第三章主要设备选型

生产苯乙烯需要的设备及其规格如表1所示:

表1 主要生产设备一览表

注:另需配套管道阀门若干;100~150吨风冷水塔2个,作为冷却水循环使用装置。

第四章安全措施与劳动保护

4.1安全标准

根据生产所用原料,中间产品和成品性质,对生产的各部分防爆、防火标准规定为甲级防火,Q-2级防爆。

本生产的卫生标准为一级,电气负荷类别为二级,厂房避雷等级为二级。主要物料参数见表8-3

表4-1 主要介质性质

Table 4-1 of the major media properties

乙烯氢气苯甲苯乙苯苯乙烯沸点℃-103.9 -252.7 80.1 110.8 136.3 145.3 闪点℃无7 -10.11 4 15 34.4

自燃点℃425 无562.22 535 432 490

3.7-36.0 5-20 8-12 1.27-6.75 1.0-6.7 1.1-6.1

爆炸范

围%(V)

最大允许

2.73 100 1.5 0.7 1.0 8.6

浓度ppm

4.2安全管理规定和劳动保护

(1)安全规定

中华人民共和国国家职业卫生标准GBZ2.1-2007工作场所有害因素职业接触限制化学有害因素。苯乙烯的时间加权平均容许浓度PC-TWA50 mg/m3,短时间接触容许浓度PC-SETL100 mg/m3。

中华人民共和国国家标准恶臭污染物排放标准GB14554-93恶臭污染物厂界标准值是对无组织排放源的限制,1994年6月1日起立项的新、扩、改建设项目及其建成后投产的企业执行二级、三级标准中相应的标准值。化工生产中必须防燃烧防爆炸。

(2)劳动保护

该项目生产属于甲级防火,注意跑、冒、漏、滴等现象发生,在生产区内动火要先做好安全防护工作,酸、碱乃至强腐蚀物,操作时要有防护面具。苯是有毒物质,要注意作好贮存及其污染治理工作。化工生产中,须严格按照《石油化工企业设计防火规范》GB50160-92(1999年版)和《建筑设计防火规范》GBJ16-87(2001年版)及《石油化工静电接地设计规范》SH3097-2000之规定进行设计。

按照劳动法必须给员工购买保险,以保障员工的利益。同时规定进厂的员工必须佩带劳保用品,如工作服,安全头盔等。

第五章三废排放与治理方案

5.1.1化工“三废”的处理

化工设计中必须依照《化工建设项目环境保护规定》HG/T20667-2005和《石油化工污水处理设计规定》SH3095-200、《石油化工噪声控制设计规定》SH/T3146-2004,使排放物达到国家《污水综合排放标准》GB8978-1996和《大气污染物综合排放标准》GB16297-1997的规定要求。

5.1.2废气

化学工业中大气污染物的特点是:有的是有毒物质,有的是对人类有威胁的致癌物质,有的是有强腐蚀性的,有的是易燃易爆气态物。本工艺生产过程中主要是氢气,可以作补充填料使用。

5.1.3废渣

化学工业固体工业废弃物属工业固体废弃物的一种,主要指硫酸烧渣、铬渣、制碱废渣和磷肥工业废渣。本工艺主要是焦油,残渣,残渣可以掩埋处理,焦油作为涂料原料出厂。

5.1.4废液

化工废水是指化学工业生产中产生的废水,其中含有随水流失的化工原料,中间产物,产品以及生产过程中产生的污染物。本工艺生产过程中的工业废水主要来源式缩合反应中生成的水,经多次中和洗涤后的水,脱酮、脱苯时气体蒸汽的冷却水,废水中含有钠盐,苯等。治理办法首先从工艺上减少废水的排放量,用沉降法分离废水中的悬浮物质,苯为有毒物质可以考虑用活性分离或膜分离等处理方法将其分离,也可用连续萃取的方法将其做回收处理,经处理的废水达标后方可排放或做循环利用。油水分离污水符合国家标准后排入下水道。

5.1.5副产品处理一览表

表5.1 副产品处理一览表

Table 5.1 byproduct List

名称处理方法

苯、甲苯作为有机溶剂出厂

焦油作为涂料原料出厂

5.1.6 废物处理一览表

表5.2 废物处理一览表

Table 5.2 Waste Disposal List

名称状态毒性处理方法

触媒残渣固体有挖坑掩埋

脱氢尾气气体微作补充燃料油水分离器污水液体微符合国家标准排入下水道

第六章原料、中间产品和产品分析方法及频率

粗苯乙烯用折光法,采用4 位数字折光仪;中间产物及精苯乙烯应用色谱法。中间控制建议采用下列分析频率:

第七章生产班制定员

本工艺采用连续操作,每天三班,劳动定员配置参照国家有关企业劳动定员,定额标准进行编制。对于混合整套工艺,公司定员32名,生产装置工人为三班倒,维修及行政岗位为长白班,具体定员如下:

行政岗位3人,过热3人,脱氢3人,冷凝3人气体压缩3人,油水分离3人,多塔分离5人,三废处理3人,分析实验2人,销售人员2人,车间维修2人,仓库管理1人。

第二部分设计计算书

第一章物料衡算

1.1计算依据

乙苯脱氢制苯乙烯装置包括脱氢和精馏两个单元,是具有循环物流的复杂化工过程,其流程框图见图1-2。

乙苯脱氢反应在装有铁系催化剂的列管反应器中进行,反应方程式为:

主反应:C

6H

5

C

2

H

5

→C

6

H

5

CHCH

2

+H

2

副反应:C

6H

5

C

2

H

5

→C

6

H

6

+CH

2

CH

2

C6H5C2H5+H2→C6H5CH3+CH4

物衡数据见表一:

表一各物流的已知及未知条件

表中“?”为待求量;“/”为不考虑的量。

设计条件及任务:

1.2 物料衡算

F9=18000*1000/8000=1500kg/h

F1=2222.22*1.17*1.10=1930.5kg/h

设F7=x,则F3=F2=F1+F7=2832+x

F13=0.03%F3,则F4=100.03%F3

由苯乙烯守恒:F5X s,5=F7X s,7,F5=2.6/2.52F7=1.032x

F8=F4-F5=100.03%(2832+x)-1.032x=2832.850-0.0317x

F4X s,4=F5X s,5+F8X s,8解得x=2598.79

则F2=F3=4529.29

F4=4530.64kg/h,F5=2681.95kg/h,F6=F5-F7=83.16kg/h

F8=F4-F5=1848.7kg/h

F12=F8-F9=348.7kg/h

根据物料平衡守则,F i X j,i=F k X j,k计算得各段各组分的质量百分含量及各段总流量(kg/h):

查的各组分分子量:

B 78.113 T 92.14 EB 106.167 S 104.151 二聚物208 阻聚物184

各段组分的摩尔百分含量及总流量kmol/h:

第二章乙苯塔的热量衡算及塔板数计算

通过简捷法,利用DSTWU模块,由已知的物料关系进行模拟,根据计算机模拟的结果,确定工艺参数。

乙苯塔模拟流程如图所示:

图2-1 乙苯塔模拟流程图设定全局特性

输入化学组分信息

化学组分为苯、乙苯、甲苯和苯乙烯。

选用物性计算方法和模型为“PENG-ROB”

输入进料流股信息

苯12.68kg/h,乙苯3509.84 kg/h,甲苯192.92 kg/h,苯乙烯2700.23 kg/h。

进料温度30℃,泡点进料。

确定DSTWU模型参数:回流比为最小回流比的 1.2,塔顶冷凝器的压力0.10MPa,塔底再沸器压力0.12MPa,塔顶轻关键组分为乙苯(0.9445,w%),塔底重关键组分为苯乙烯(0.0252,w%)。

模拟结果(乙苯塔概况)

有模拟结果可知:

塔顶温度为132.7℃,塔底温度为151.4℃。最小回流比为6.1,最小理论板数为29.6块。塔顶冷凝器的热负荷为2808.3kW,塔釜再沸器的热负荷为3202.2 kW。

乙苯、苯乙烯装置简介和重点部位及设备通用版

安全管理编号:YTO-FS-PD858 乙苯、苯乙烯装置简介和重点部位及 设备通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

乙苯、苯乙烯装置简介和重点部位 及设备通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 一、装置简介 (一)装置发展及其类型 1.装置发展 自1937年美国陶氏化学公司和德国巴斯夫公司同时实现乙苯脱氢制苯乙烯的工业化生产以来,苯乙烯已有50多年的工业化生产历史。 苯乙烯是重要的有机化工原料。它作为重要的合成单体与其他烯烃单体发生共聚反应,可生产丁苯橡胶、聚苯乙烯树脂、ABS和SAN树脂、离子交换树脂及不饱和聚酯树脂;此外还用于制药,染料行业,或制取农药乳化剂及选矿剂等。 苯乙烯的主要生产方法为乙苯脱氢法和环氧丙烷共氧化法,前者约占苯乙烯生产能力的90%,乙苯催化脱氢制苯乙烯的工艺有孟山都/鲁姆斯法、巴斯夫法、Fina/Badger法、Cdf法和三菱油化/环球化学法。而共氧化法步骤多,流程长,又存在环氧丙烷的联产问题,因此国内

年产20万吨乙苯脱氢制苯乙烯装置工艺设计毕业论文设计

(此文档为word格式,下载后您可任意编辑修改!) 毕业设计 20万吨年乙苯脱氢制苯乙烯装置工艺设计 摘要 苯乙烯是最重要的基本有机化工原料之一。本文介绍了国内外苯乙烯的现状及发展概况,苯乙烯反应的工艺条件,乙苯脱氢制苯乙烯催化剂,苯乙烯的生产方法和生产工艺。 本设计以年处理量20万吨乙苯为生产目标,采用乙苯三段催化脱氢制苯乙烯的工艺方法,对整个工段进行工艺设计和设备选型。根据设计任务书的要求对整个工艺流程进行了物料衡算,并利用流程设计模拟软件Aspen Plus对整个工艺流程进行了全流程模拟计算,选用适宜的操作单元模块和热力学方法,建立过程模型进行稳态模拟计算并绘制了带控制点的工艺流程图。在设计过程中对整个工艺流程进行了简化计算,将整个流程分为了反应和精馏分离两个部分,利用计算机模拟计算结果对整个工艺流程进行了模拟优化,并确定了整套装置的主要工艺尺寸。 由于本设计方案使用计算机过程模拟软件Aspen Plus进行仿真设计,减少了实际设计中的大量费用,对现有工艺进行改进及最优综合具有重要的实际意义。 关键词:乙苯,苯乙烯,脱氢,Aspen Plus,模拟优化

Abstract Styrene Monomer(SM)is one of the most important organic chemicals. This article describes the present situation and development of styrene at conditions, catalyst for ethylbenzene dehydrogenation to styrene, styrene production methods and production processes. This design is based on the annual targets, ethylbenzene three-stage dehydrogenation using styrene in the process, the entire section in the process design and equipment selection. According to the requirements of the design of the mission statement of the entire process the material balance, process design simulation software Aspen Plus simulation of the whole process of the entire process, choose the appropriate operating unit module and thermodynamic methods, process model for steady-state simulation and draw the P&ID diagram. The entire process in the design process, simplify the calculation, the whole process is divided into reaction and distillation to separate the two parts, the use of computer simulation results on the entire process flow simulation and optimization, and determine the size of the main process of the entire device . This design using computer simulation software Aspen Plus simulation designed to reduce the substantial costs of the actual design, to improve the existing process and optimal synthesis ,Aspen Plus,Simulation and optimization

乙苯制苯乙烯

南京工业大学 化学化工学院 《化工过程与工艺设计》 设计题目乙苯脱氢制苯乙烯装置工艺设计 学生姓名吴美妍班级、学号化工100704 指导教师姓名林陵 设计时间 2013年 6 月27日-2013 年7月12日 课程设计成绩:

指导教师签字 目录 第一部分设计说明书 前言·······················错误!未定义书签。第一章概述····················错误!未定义书签。 工艺路线与产品················错误!未定义书签。 ···················错误!未定义书签。 ···················错误!未定义书签。 ···················错误!未定义书签。第二章原料与产品的性质··············错误!未定义书签。 原料性质···················错误!未定义书签。 产品性质···················错误!未定义书签。第四章安全和工业卫生···············错误!未定义书签。 第五章三废排放及治理方案·············错误!未定义书签。 第七章主要设备一览表···············错误!未定义书签。 表一非定型设备一览表(一)··········错误!未定义书签。 表二非定型设备一览表(二)·········错误!未定义书签。第八章原料、动力消耗及排出一览表·········错误!未定义书签。 第二部分设计计算书 第一章物料衡算··················错误!未定义书签。 第二章主要设备物料衡算、热量衡算和设备计算····错误!未定义书签。 进料泵····················错误!未定义书签。

乙苯、苯乙烯装置简介和重点部位及设备(正式版)

文件编号:TP-AR-L4790 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 乙苯、苯乙烯装置简介和重点部位及设备(正式 版)

乙苯、苯乙烯装置简介和重点部位 及设备(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一、装置简介 (一)装置发展及其类型 1.装置发展 自1937年美国陶氏化学公司和德国巴斯夫公司 同时实现乙苯脱氢制苯乙烯的工业化生产以来,苯乙 烯已有50多年的工业化生产历史。 苯乙烯是重要的有机化工原料。它作为重要的合 成单体与其他烯烃单体发生共聚反应,可生产丁苯橡 胶、聚苯乙烯树脂、ABS和SAN树脂、离子交换树脂 及不饱和聚酯树脂;此外还用于制药,染料行业,或

制取农药乳化剂及选矿剂等。 苯乙烯的主要生产方法为乙苯脱氢法和环氧丙烷共氧化法,前者约占苯乙烯生产能力的90%,乙苯催化脱氢制苯乙烯的工艺有孟山都/鲁姆斯法、巴斯夫法、Fina/Badger法、Cdf法和三菱油化/环球化学法。而共氧化法步骤多,流程长,又存在环氧丙烷的联产问题,因此国内外生产和研究重点多放在乙苯脱氢法上。 近年来许多公司研究用甲苯代替苯制苯乙烯的方法,如孟山都公司和三菱油化公司的甲苯—甲醇、甲苯—甲烷直接合成苯乙烯方法,是一种全新的工艺路线。在1992年第10届国际催化剂会议的大会专题报告中,该工艺开发研究列为当代4大烃化技术之一,值得引起苯乙烯技术研究者的重视。 目前,我国苯乙烯生产方法多采用乙苯催化脱氢

乙苯脱氢制苯乙烯

乙苯脱氢制苯乙烯实验指导书 一、实验目的 1、了解以乙苯为原料,氧化铁系为催化剂,在固定床单管反应器中制备苯乙烯的过程。 2、学会稳定工艺操作条件的方法。 3、掌握乙苯脱氢制苯乙烯的转化率、选择性、收率与反应温度的关系;找出最适宜的反应温度区域。 4、了解气相色谱分析方法。 二、实验的综合知识点 完成本实验的测试和数据处理与分析需要综合应用以下知识: (1)《化工热力学》关于反应工艺参数对平衡常数的影响,工艺参数与平衡组成间的关系。 (2)《化学反应工程》关于反应转化率、收率、选择性等概念及其计算、绝热式固定床催化反应器的特点。 (3)《化工工艺学》关于加氢、脱氢反应的一般规律,乙苯脱氢制苯乙烯的基本原理、反应条件选择、工艺流程和反应器等。 (4)《催化剂工程导论》关于工业催化剂的失活原因及再生方法。 (5)《仪器分析》关于气相色谱分析的测试方法。 三、实验原理 1、本实验的主副反应 主反应: 副反应: 在水蒸气存在的条件下,还可能发生下列反应: 此外还有芳烃脱氢缩合及苯乙烯聚合生成焦油和焦等。这些连串副反应的发生不仅使反应的选择性下降,而且极易使催化剂表面结焦进而活性下降。 2、影响本反应的因素 (1)温度的影响 乙苯脱氢反应为吸热反应,?H o >0,从平衡常数与温度的关系式20ln RT H T K p p ?= ???? ????可知,

提高温度可增大平衡常数,从而提高脱氢反应的平衡转化率。但是温度过高副反应增加,使苯乙烯选择性下降,能耗增大,设备材质要求增加,故应控制适宜的反应温度。本实验的反应温度为:540~600℃。 (2)压力的影响 乙苯脱氢为体积增加的反应,从平衡常数与压力的关系式Kp=Kn= γ? ? ? ? ? ? ? ∑i n P 总可知,当?γ> 0时,降低总压P总可使Kn增大,从而增加了反应的平衡转化率,故降低压力有利于平衡向脱氢方向移动。本实验加水蒸气的目的是降低乙苯的分压,以提高乙苯的平衡转化率。较适宜的水蒸气用量为:水﹕乙苯=1.5﹕1(体积比)或8﹕1(摩尔比)。 (3)空速的影响 乙苯脱氢反应系统中有平行副反应和连串副反应,随着接触时间的增加,副反应也增加,苯乙烯的选择性可能下降,故需采用较高的空速,以提高选择性。适宜的空速与催化剂的活性及反应温度有关,本实验乙苯的液空速以0.6h-1为宜。 3、催化剂 本实验采用氧化铁系催化剂,其组成为:Fe2O3-CuO-K2O3-CeO2。 四、预习与思考 1、乙苯脱氢生成苯乙烯反应是吸热还是放热反应?如何判断?如果是吸热反应,则反应温度为多少?实验室是如何来实现的,工业上又是如何来实现的? 2、对本反应而言是体积增大还是减小?加压有利还是减压有利,工业上是如何来实现加减压操作的?本实验采用什么方法?为什么加入水蒸气可以降低烃分压? 3、在本实验中你认为有哪几种液体产物生成?有哪几种气体产物生成?如何分析? 4、进行反应物料衡算,需要—些什么数据?如何搜集并进行处理? 五、实验装置及流程 乙苯脱氢制苯乙烯实验装置及流程见图1。 六、实验步骤及方法 1、反应条件控制 汽化温度300℃,脱氢反应温度540~600℃,水﹕乙苯=1.5﹕1(体积比),相当于乙苯加料0.5mL/min,蒸馏水0.75 mL/min (50毫升催化剂)。 2、操作步骤 (1)了解并熟悉实验装置及流程,搞清物料走向及加料、出料方法。 (2)接通电源,使汽化器、反应器分别逐步升温至预定的温度,同时打开冷却水。 (3)分别校正蒸馏水和乙苯的流量(0.75mL/min和0.5mL/min) (4)当汽化器温度达到300℃后,反应器温度达400℃左右开始加入已校正好流量的蒸馏水。当反应温度升至500℃左右,加入已校正好流量的乙苯,继续升温至540℃使之稳定半小时。 (5)反应开始每隔10~20分钟取一次数据,每个温度至少取两个数据,粗产品从分离器中放入量筒内。然后用分液漏斗分去水层,称出烃层液重量。 (6)取少量烃层液样品,用气相色谱分析其组成,并计算出各组分的百分含量。 (7)反应结束后,停止加乙苯。反应温度维持在500℃左右,继续通水蒸气,进行催化剂的清焦再生,约半小时后停止通水,并降温。

乙苯脱氢制苯乙烯

实验报告 课程名称: 化工专业实验 指导老师: 成绩:__________________ 实验名称: 乙苯脱氢制苯乙烯 实验类型: 同组学生姓名: 一.实验目的 1.了解以乙苯为原料,氧化铁为催化剂,在固定床单管反应器种制备苯乙烯的过程。 2.学会稳定工艺操作条件的方法。 3.掌握乙苯脱氢制苯乙烯的转化率,选择性,收率及反应温度的关系,找出最适宜的反应温度区域。 4.学会使用温度控制和流量控制的一般仪表,仪器。 5.了解气相色谱分析及使用方法。 二.实验原理 1.本实验的主副反应 主反应: 副反应: 在水蒸气存在的条件下,还可能发生下列反应: 此外还有芳烃脱氢缩合及苯乙烯聚合生成焦油和焦等。这些连串副反应的发生不仅使反应的选择性下降,而且极易使催化剂表面结焦进而活性下降。 2.影响本反应的因素 (1)温度的影响

乙苯脱氢反应为吸热反应,?H 0>0,从平衡常数与温度的关系式 可知,提高温度可增大平衡 常数,从而提高脱氢反应的平衡转化率。但是温度过高副反应增加,使苯乙烯选择性下降,能耗增大,设备材质要求增加,故应控制适宜的反应温度。本实验的反应温度为:540~600℃。 (2)压力的影响 乙苯脱氢为体积增加的反应,从平衡常数与压力的关系式Kp =Kn=γ ???? ? ??∑i n P 总可知,当?γ>0时,降低总压P 总可使Kn 增大,从而增加了反应的平衡转化率,故降低压力(高温反应无法采用负压操作,可以通入惰性组分使分压下降)有利于平衡向脱氢方向移动。本实验加水蒸气的目的是降低乙苯的分压,以提高乙苯的平衡转化率。较适宜的水蒸气用量为:水﹕乙苯=1.5﹕1(体积比)或8﹕1(摩尔比)。 (3)空速的影响 乙苯脱氢反应系统中有平行副反应和连串副反应,随着接触时间的增加,副反应也增加,苯乙烯的选择性可能下降,故采用较高的空速,以提高选择性。适宜的空速与催化剂的活性及反应温度有关,本实验乙苯的液空速以0.6h-1为宜。 3.催化剂 本实验采用GS-08催化剂,以Fe ,K 为主要活性组分,添加少量的IA ,IIA ,IB 族以稀土氧化物为助剂。 三.实验装置及流程 乙苯脱氢制苯乙烯实验装置及流程,用Microsoft Visio 软件绘制见下图: 1 34 2 水

实验一 乙苯脱氢制苯乙烯

4.2 实验一 乙苯脱氢制苯乙烯 一 实验目的 (1)了解以乙苯为原料,氧化铁系为催化剂,在固定床单管反应器中制备苯乙烯的过程。 (2)学会稳定工艺操作条件的方法。 二 实验原理 1.本实验的主副反应 主反应: 副反应: 在水蒸气存在的条件下,还可能发生下列反应: 此外还有芳烃脱氢缩合苯乙烯聚合生成焦油和焦等。这些连串副反应的发生不仅使反应的选择性下降,而且极易使催化剂表面结焦进而活性下降。 (1)影响本反应的因素 1)温度的影响 乙苯脱氢反应为吸热反应,00 >?H ,从平衡常数与温度的关系式 20ln RT H T K p p ?=???? ????可知,提高温度可增大平衡常数,从而提高脱氢反应的平衡转化率。但是温度过高副反应增加,使苯乙烯选择性下降,能耗增大,设备材质要求增加,故应控制适宜的反应温度。本实验的反应温度为:540~600℃。 2)压力的影响 乙苯脱氢为体积增加的反应,从平衡常数与压力的关系式n p K K =γ ???? ? ??∑i n P 总 可知,当γ?>时,降低总压总P 可使n K 增大,从而增加了反应的平衡转化率,故降低压力有利于平衡向脱氢方向移动。本实验加水蒸气的目的是降低乙苯的分压,以提高平衡转化率。较适

宜的水蒸气用量为:水∶乙苯=1.5∶1(体积比)或8∶1(摩尔比)。 3)空速的影响 乙苯脱氢反应系统中有平衡副反应和连串副反应,随着接触时间的增加,副反应也增加,苯乙烯的选择性可能下降,适宜的空速与催化剂的活性及反应温度有关,本实验乙苯的液空速以0.6h-1为宜。 (2)催化剂 本实验采用氧化铁系催化剂其组成为:Fe2O3—CuO—K2O3—CeO2。 三预习与思考 (1)乙苯脱氢生成苯乙烯反应是吸热还是放热反应?如何判断?如果是吸热反应,则反应温度为多少?实验室是如何来实现的?工业上又是如何实现的? (2)对本反应而言是体积增大还是减小?加压有利还是减压有利?工业上是如何来实现加减压操作的?本实验采用什么方法?为什么加入水蒸气可以降低烃分压? (3)在本实验中你认为有哪几种液体产物生成?哪几种气体产物生成?如何分析? 四实验装置及流程 见图4.2-1。 五实验步骤及方法 (1)反应条件控制 汽化温度300℃,脱氢反应温度540~600℃,水∶乙苯=1.5∶1(体积比),相当于乙苯加料0.5ml/min,蒸馏水0.75mL/min(50毫升催化剂) (2)操作步骤 1)了解并熟悉实验装置及流程,搞清物料走向及加料、出料方法。 2)接通电源,使汽化器、反应器分别逐步升温至预定的温度,同时打开冷却水。 3)分别校正蒸馏水和乙苯的流量(0.75mL/min和0.5mL/min) 图4.2-1 乙苯脱氢制苯乙烯工艺实验流程图 1—乙苯计量管;2,4—加料泵;3—水计量管;5—混合器;6—汽化器;7—反应器; 8—电热夹套;9,11—冷凝器;10—分离器;12—热电偶 4)当汽化器温度达到300℃后,反应器温度达400℃左右开始加入已校正好流量的蒸馏

乙苯-苯乙烯工艺原理

第一章 乙苯装置工艺流程及生产原理 第一节 催化干气预处理部分 生产原理: 乙苯烃化催化剂最怕碱性物质,会造成催化剂失活。而催化干气多采用乙醇胺等碱性物质脱硫技术脱除硫化氢,因此为了防止碱性物质进入烃化反应系统,催化干气首先要经过水洗。干气中的丙烯会与苯生成丙苯,同时会增加甲苯的生成量,造成苯耗上升增加产品成本,所以需要通过吸收的办法尽可能降低干气中丙烯的含量。 工艺流程叙述: 催化干气进装置后进入催化干气水洗罐(D-101)。该罐具有两个作用,其一是将催化干气进装置时携带的液体除去,另一作用是用水将携带的MEA除去。罐内设填料一段,罐底设水洗循环泵(P-101A/B),水洗用水循环使用。 从催化干气水洗罐(D-101)顶部出来的气体依次进入催化干气换热器(E-101)、催化干气过冷器(E-102)与丙烯吸收塔(C-101)塔顶出来的低温催化干气、冷冻水换热,温度降至15℃,从底部进入丙烯吸收塔(C-101)。吸收剂从丙烯吸收塔顶部进入与催化干气逆向接触,将催化干气中的丙烯绝大部分除去,从丙烯吸收塔顶部出来的催化干气进入催化干气换热器(E-101)与进塔的催化干气换热回收部分冷量

后去反应部分。吸收了丙烯的吸收剂从塔底出来进入贫液-富液换热器(E- 103)与贫液换热后进入解吸塔(C-102)。 解吸塔进料进入解吸塔后,塔顶汽相进入解吸塔顶蒸汽发生器(E-106)冷凝冷却,然后进入解吸塔回流罐(D-102),冷凝下来的液体用解吸塔回流泵(P-103A/B)送至解吸塔顶部,未冷凝的气体从解吸塔回流罐顶部出来后依次进入解吸塔顶冷却器(E-107)解吸塔顶气过冷器(E-108)进一步冷凝冷却,然后进入解吸塔顶分液罐(D-103)进行气液分离,冷凝下来的液体用解吸塔顶凝液泵(P-104A/B)送入解吸塔回流罐(D-102),未冷凝的气体出装置。解吸塔塔底物料用吸收剂循环泵(P- 102A/B/C)加压后依次通过贫液-富液换热器(E-103)、贫液过冷器(E-104)冷却,返回丙烯吸收塔塔顶循环使用。解吸塔蒸汽发生器(E- 106)产0.21Mpa蒸汽,解吸塔底重沸器(E-109)热源为热载体。 第二节 烃化及反烃化部分 生产原理: 生成乙苯: C2H4+C6H6=C6H5C2H5

乙苯脱氢制取苯乙烯

一、实验目的 1、了解以乙苯为原料,氧化铁系为催化剂,在固定床单管反应器中制备苯乙烯的过程。 2、学会稳定工艺操作条件的方法。 二、实验原理 1、本实验的主副反应 主反应:氢气 ?117.8kJ/mol 苯乙烯 乙苯+ 副反应:乙烯 苯 ?105.0kJ/mol 乙苯+ ? +-31.5kJ/mol 乙苯+ 氢气 苯 乙烷 乙苯+ +-54.4kJ/mol ? 乙烯 甲苯 氢气 在水蒸汽存在的条件下,还可能发生下列反应: + ? 2 + + 氢气 乙苯3 二氧化碳 水 甲苯 此外,还有芳烃脱氢缩合及苯乙烯聚合生成焦油和焦等。这些连串反应的发生不仅使反应的选择性下降,而且极易使催化剂表面结焦进而活性下降。 2、影响反应的因素 (1)温度的影响 乙苯脱氢为吸热反应,提高温度可增大平衡常数,从而提高脱氢反应的平衡转化率。但是温度过高副反应增加,使苯乙烯的选择性下降,能耗增加,设备材质要求增加,故应控制适宜的反应温度。本实验的反应温度为540~600oC。 (2)压力的影响 乙苯脱氢为体积增大的反应,降低总压可使平衡常数增大,从而增加反应的平衡转化率,故降低压力有利于平衡向脱氢方向移动。本实验加水蒸汽的目的是降低乙苯的分压,以提高平衡转化率。较适宜的水蒸汽用量为:水/乙苯=1.5/1(体积比)。 (3)空速的影响

乙苯脱氢反应系统中有平衡副反应和连串副反应,随着接触时间的增加,副反应也增加,苯乙烯的选择性可能下降,适宜的空速与催化剂的活性及反应温度有关,本实验乙苯的液空速以0.6h-1为止。 3、本实验采用氧化铁系催化剂,其组成为:Fe2O3-CuO-K2O3-CeO2。 三、实验装置及流程 实验装置及流程如图1所示。 图1乙苯脱氢制苯乙烯工艺实验流程图 1-乙苯流量计;2、4-加料泵;3-水计量管;5-混合器;6-汽化器;7-反应器;8-电热夹套;9、11-冷凝器;10-分离器;12-热电偶 四、反应条件控制 汽化温度300oC,脱氢反应温度540~600oC,水:乙苯=1.5:1(体积比),相当于乙苯加料0.5ml/min,蒸馏水0.75ml/min(50ml催化剂)。

【完整版】10万吨年乙苯脱氢制苯乙烯装置工艺设计与实现可行性方案

10万吨/年乙苯脱氢制苯乙烯装置工艺设计方案 前言 本设计的内容为10万吨/年乙苯脱氢制苯乙烯装置,包括工艺设计,设备设计及平面布置图。

本设计的依据是采用低活性、高选择性催化剂,参照鲁姆斯(Lummus)公司生产苯乙烯的技术,以乙苯脱氢法生产苯乙烯。苯乙烯单体生产工艺技术:深度减压,绝热乙苯脱氢工艺乙苯脱氢反应在绝热式固定床反应器中进行,其特点是:转化率高,可达55%,选择性好,可达90%。特殊的脱氢反应器系统:在低压(深度真空下)下操作以达到最高的乙苯单程转化率和最高的苯乙烯选择性。该系统是由蒸汽过热器、过热蒸汽输送管线和反应产物换热器组成,设计为热联合机械联合装置。整个脱氢系统的压力降小,以维持压缩机入口尽可能高压,同时维持脱氢反应器尽可能低压,从而提高苯乙烯的选择性,同时不损失压缩能和投资费用。 所需要的催化剂用量和反应器体积较小,且催化剂不宜磨损,能在高温高压下操作,内部结构简单,选价便宜。在苯乙烯蒸馏中采用一种专用的不含硫的苯乙烯阻聚剂。它经济有效且能使苯乙烯焦油作为燃料清洁地燃烧。 工业设计的优化和设备的良好设计可使操作无故障,从而可减少生产波动. 本设计装置主要由脱氢反应和精馏两个工序系统所组成。原料来自乙苯生产装置或原料采购部门,循环水、冷冻水、电和蒸汽来由公用工程系统提供,生产出的苯乙烯产品到成品库。 此设计过程中,为了计算方便,忽略了一些计算过程,故有一定的误差,另由于计算时间比较仓促,有些问题不能够直接解决。设计中有不少错误之处,请指导老师予以批评指正,多提出宝贵意见。 苯乙烯设计任务书 一、设计题目:年产10万吨苯乙烯的生产工艺设计

乙苯、苯乙烯装置简介和重点部位及设备

安全管理编号:LX-FS-A17497 乙苯、苯乙烯装置简介和重点部位 及设备 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

乙苯、苯乙烯装置简介和重点部位 及设备 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 一、装置简介 (一)装置发展及其类型 1.装置发展 自1937年美国陶氏化学公司和德国巴斯夫公司同时实现乙苯脱氢制苯乙烯的工业化生产以来,苯乙烯已有50多年的工业化生产历史。 苯乙烯是重要的有机化工原料。它作为重要的合成单体与其他烯烃单体发生共聚反应,可生产丁苯橡胶、聚苯乙烯树脂、ABS和SAN树脂、离子交换树脂及不饱和聚酯树脂;此外还用于制药,染料行业,

乙苯脱氢制苯乙烯实验报告

乙苯脱氢制苯乙烯实验报告 一实验目的 (1)了解以乙苯为原料在铁系催化剂上进行固定床制备苯乙烯的过程,学会设计实验流程和操作; (2)掌握乙苯脱氢操作条件对产物收率的影响,学会获取稳定的工艺条件之方法。 (3)掌握催化剂的填装、活化、反应使用方法。 (4)掌握色谱分析方法。 二实验原理 主副反应 乙苯脱氢生成苯乙烯和氢气是一个可逆的强烈吸热反应,只有在催化剂存在的高温条件下才能提高产品收率,其反应如下: 主反应 C6H5C2H5C6H5C2H3 + H2 副反应 C6H5C2H5C6H6 + C2H4

C 2H 4 + H 2 C 2H 6 C 6H 5C 2H 5 + H 2 C 6H 6+ C 2H 6 C 6H 5C 2H 5 C 6H 5-CH 3+ CH 4 此外,还有部分芳烃脱氢缩合、聚合物以及焦油和碳生成。 2.2 影响因素 温度的影响 乙苯脱氢反应为吸热反应,△H 0>0,从平衡常数与温度的关系式 2 0ln RT H T K P P ?=??? ????可知,提高温度可增大平衡常数,从而提高脱 氢 反应的平衡转化率。但是温度过高副 反应增加,使苯乙烯选择性下降,能耗增大,设备材质要求增加,故应控制适应的反应温度。 压力的影响 乙苯脱氢为体积增加的反应,从平衡常数与压力的关系式γ ??? ? ???∑=ni 总P K K n P 可 知,当△γ>0时,降低总压P 总可使K n 增大,从而增加了反应的平衡转化率,故降低压力有利于平衡向脱氢方向移动。实验中加入惰性气体或减压条件下进行,通常均使用水蒸气作稀释剂,它可降低乙苯的分压,以提高平衡转化率。水蒸气的加入还可向脱氢反应提供部分热量,使反应温度比较稳定,能使反应产物迅速脱离催化剂表面,有利于反应向苯乙烯方向进行;同时还可以有利于烧掉催化剂表面的积碳。但水蒸汽增大到一定程度后,转化率提高并不显著,因此适宜的用量为:水:乙苯=~:1(质量比)。 空速的影响 乙苯脱氢反应中的副反应和连串副反应,随着接触时间的增大而增大,产物苯乙烯的选择性会下降,催化剂的最佳活性与适宜的空速及反应温度有关,本实验乙苯的液空速以~1h -1为宜。 催化剂 乙苯脱氢技术的关键是选择催化剂。此反应的催化剂种类颇多,其中铁系 催化剂是应用最广的一种。以氧化铁为主,添加铬、钾助催化剂,可使乙苯的转化率达到40%,选择性90%。在应用中,催化剂的形状对反应收率有很大影响。小粒径、低表面积、星形、十字形截面等异形催化剂有利于提高选择性。 为提高转化率和收率,对工业规模的反应器的结构要进行精心设计。实用效果较好的有等温和绝热反应器。实验室常用等温反应器,它以外部供热方式控制反应温度,催化剂床层高度不宜过长。 三 实验装置及仪器 实验流程见图1。

乙苯苯乙烯安全生产要点 - 制度大全

乙苯苯乙烯安全生产要点-制度大全 乙苯苯乙烯安全生产要点之相关制度和职责,1工艺简述包括用苯烷基化制取乙苯和用乙苯脱氢法生产苯乙烯。工艺过程由烷基化、洗涤、乙苯精馏、脱氢、苯乙烯精馏等工序组成。简要工艺过程是将原料苯干燥使之含水小于10ppm,配入助催化剂... 1工艺简述 包括用苯烷基化制取乙苯和用乙苯脱氢法生产苯乙烯。工艺过程由烷基化、洗涤、乙苯精馏、脱氢、苯乙烯精馏等工序组成。 简要工艺过程是将原料苯干燥使之含水小于10ppm,配入助催化剂无水氯化氢,同乙烯和三氯化铝催化剂络合物进入烷基化/烷基转移反应器,在温度180℃、压力0.91MPa下进行烷基化/烷基转移反应。 反应的物料经闪蒸回收氯化氢,再进入串联的三级洗涤系统,除去三氯化铝和氯化氢。洗涤后的烷基化液送入精馏系统,烷基液被分离成苯、乙苯、多乙苯和残油。苯和多乙苯返回烷基化/烷基转移反应器,乙苯产品送贮罐。 将乙苯和初级蒸汽过热后与主蒸汽混合(蒸气:乙苯=1.3:1)进入第一级反应器。在入口温度628℃、出口压力0.0486MPa和催化剂作用下进行脱氢反应,然后于入口温度631℃、出口压力0.04MPa下在第二级反应器中继续脱氢生成苯乙烯,脱氢混合物经废热锅炉、过热蒸汽降温器、空调器降温、冷凝。分离器出来的脱氢液进精馏系统,分离苯乙烯、乙苯、苯、甲苯得到苯乙烯产品。乙苯、苯返回使用。付产品甲苯送罐区。 本装置生产过程的物料乙苯、苯、苯乙烯、多乙苯、氢气等都具有易燃、易爆、有毒、有害的特性,有些具有强腐蚀性,如氢化氢,催化剂络合物等。 2重点部位 2.1烷基化反应系统它是乙苯生产的核心部位。反应时温度、压力较高,反应条件较苛刻,物料易燃、易爆且有强腐蚀性。反应器需使用性能良好的防腐隔热衬砖为衬里。其它设备和阀门、管线均采用特殊防腐材料,但仍存在着跑、冒、滴、漏的危险。该类装置曾发生反应器被腐蚀而泄漏的事故。另外,一旦水进入反应器会使催化剂络合物中毒,并造成设备、管线堵塞。某厂苯乙烯装置因该反应器出料口堵塞而被迫停车。 2.2催化剂络合物配制系统该系统用苯、多乙苯、三氯化铝、无水氯化氢配制催化剂络合物供烷基化/烷基转移反应使用。物料具强腐蚀性;系统若进水会使催化剂失活并分解产生沉淀堵塞管线,威胁整个烷基化反应。某厂苯乙烯装置曾因配制系统反应器出口堵塞被迫停车清理。

乙苯、苯乙烯装置说明及危险因素、防范措施.docx

乙苯、苯乙烯装置说明及危险因素、防范措施 一、装置简介 (一)装置发展及其类型 1.装置发展 自1937年美国陶氏化学公司和德国巴斯夫公司同时实现乙苯脱氢制苯乙烯的工业化生产以来,苯乙烯已有50多年的工业化生产历史。 苯乙烯是重要的有机化工原料。它作为重要的合成单体与其他烯烃单体发生共聚反应,可生产丁苯橡胶、聚苯乙烯树脂、ABS和SAN树脂、离子交换树脂及不饱和聚酯树脂;此外还用于制药,染料行业,或制取农药乳化剂及选矿剂等。 苯乙烯的主要生产方法为乙苯脱氢法和环氧丙烷共氧化法,前者约占苯乙烯生产能力的90%,乙苯催化脱氢制苯乙烯的工艺有孟山都/鲁姆斯法、巴斯夫法、Fina/Badger法、Cdf法和三菱油化/环球化学法。而共氧化法步骤多,流程长,又存在环氧丙烷的联产问题,因此国内外生产和研究重点多放在乙苯脱氢法上。 近年来许多公司研究用甲苯代替苯制苯乙烯的方法,如孟山都公司和三菱油化公司的甲苯—甲醇、甲苯—甲烷直接合成苯乙烯方法,是一种全新的工艺路线。在1992年第10届国际催化剂会议的大会专题报告中,该工艺开发研究列为当代4大烃化技术之一,值得引起苯乙烯技术研究者的重视。 目前,我国苯乙烯生产方法多采用乙苯催化脱氢法。60年代和70年代建设的小型装置能耗和物耗较高,缺少市场竞争能力,随着国外技术的引进,大部分已停产,剩下的几套经多次技术改造,能耗和物耗有所下降,同时,利用地区差价和本企业下游产品的需求仍维持生产。 二、重点部位及设备

苯乙烯生产装置中反应岗位是在高温、高压、易燃、易爆、物料有毒有害的环境下生产的,精馏岗位也存在类似的情况。因此在苯乙烯生产过程中要遵守安全技术规定。 1.炉区 (1)蒸汽过热炉点火前应打开风门通风,并对炉膛和操作环境做动火分析。有关联锁均应挂上,分析燃料气中氧含量小于2%,并严禁带液(冬季要保温并进行排凝,以防因带液引起爆燃损坏炉体)。停车期间燃料系统应加切断盲板,防止燃料漏人炉膛和周围环境引起事故。 (2)开停工时严格按温度曲线控制升温、恒温和降温。正常生产时,应严格控制各工艺参数在工艺指标范围内。(3)当蒸汽过热炉点火后(包括正常生产)应检查炉内燃烧状况是否正常。 (4)在蒸汽过热炉停炉检修时,必须对燃料、原料、蒸汽(包括灭火蒸汽)等加堵盲板,以防窜人检修场所引起事故。 (5)对急冷锅炉、汽包检查有无外漏,排污是否正常以保证炉水质量。同时要经常检查、校对汽包液面计是否准确,以防因假液面造成停车或事故。 (6)炉区周围严禁堆放可燃物,检修结束后要及时拆除脚手架。当装置烃类大量泄测时,炉区有可能成为其火源,应开启蒸汽过热炉水幕等进行保护,同时停炉。 (7)如发生炉管破裂,应立即停炉熄火(但炉管蒸汽切记不能停还需适当加大)开灭火蒸汽(应进行排凝,否则凝液将损坏炉管)整个装置各系统均应采取相应措施。 2.压缩区 该区内设有消防水设施,可燃气体自动检测、报警设施。 (1)消防水设施:每个压缩机分别设有两股消防水,同时供应压缩机上部消防喷淋,形成水幕。

最新乙苯脱氢制苯乙烯知识讲解

乙苯脱氢制苯乙烯 化工11-1 朱伦伦 工艺原理 以乙苯为原料,按1:3~1:8水比加入过热水蒸汽,在轴径向反应器内,于高温、负压条件下,通过催化剂床层进行乙苯脱氢反应,生成苯乙烯主产品;副反应生成苯、甲苯、甲烷、乙烷、丙烷、H2、CO和CO2。 主反应:Array 这是一个强吸热可逆增分子反应。 副反应是热裂解、氢化裂解和蒸汽裂解反应: C6H5CH2CH3→C6H6+C2H4 C6H5CH2CH3+H2→C6H5CH3+CH4 C6H5CH2CH3+H2→C6H6+C2H6 C+2H2O→2H2+CO2 CH4+H2O→3H2+CO C2H4+2H2O→2CO+4H2 水蒸汽变换反应:CO+H2O→H2+CO2 在水蒸汽浓度很高时,生成苯、甲苯的反应式可能被下列反应所代替: C6H5CH2CH3+2H2O→C6H5CH3+CO2+3H2 C6H5CH2CH3+2H2O→C6H6+CH4+CO2+2H2 在乙苯脱氢反应中,原料乙苯中的化学杂质也发生反应,生成物还会进一步发生反应,为此,最终生成物中还含有另一些副产物,如二甲苯、异丙苯、α-甲基苯乙烯、焦油等。 影响化学反应的因素主要有:反应温度、反应压力和水蒸汽/乙苯比(简称水比)。此外,该反应还受到反应物通过催化剂床层的液体体积时空速度(LHSV)、催化剂性能、原料乙苯中含杂质情况等影响。 反应温度:乙苯脱氢生成苯乙烯的反应为吸热反应,故乙苯转化率随着反应温度的升高而增加。当温度升高后,不但生成苯乙烯的正反应增加,而且消耗苯乙烯的逆反应以更高的速度增加。另外,当反应温度提高后,虽然乙苯转化率提高,但副反应(指吸热的副反应)也将加剧,故生成苯乙烯的选择性将降低,因而反应温度不宜过高。从降低能耗和延长催化剂寿命出发,希望在保证苯乙烯单程收率的前提下,尽量采用较低的反应温度。 反应压力:对于给定的反应温度和水比,乙苯的转化率随着反应压力的降低而显著增加。在相同的乙苯液体空速和水比下,随着反应压力降低,可相应降低反应温度,而苯乙烯的单程收率维持不变,苯乙烯选择性提高。这一特性是由乙苯脱氢生成苯乙烯系增分子反应所决定的。 此外,苯乙烯是容易聚合的物质。反应压力高,将有利于苯乙烯自聚,生成对装置正常运转十

年产20万吨乙苯脱氢制苯乙烯装置工艺设计毕业设计

毕业设计 20万吨/年乙苯脱氢制苯乙烯装置工艺设计 摘要 苯乙烯是最重要的基本有机化工原料之一。本文介绍了国内外苯乙烯的现状及发展概况,苯乙烯反应的工艺条件,乙苯脱氢制苯乙烯催化剂,苯乙烯的生产方法和生产工艺。 本设计以年处理量20万吨乙苯为生产目标,采用乙苯三段催化脱氢制苯乙烯的工艺方法,对整个工段进行工艺设计和设备选型。根据设计任务书的要求对整个工艺流程进行了物料衡算,并利用流程设计模拟软件Aspen Plus对整个工艺流程进行了全流程模拟计算,选用适宜的操作单元模块和热力学方法,建立过程模型进行稳态模拟计算并绘制了带控制点的工艺流程图。在设计过程中对整个工艺流程进行了简化计算,将整个流程分为了反应和精馏分离两个部分,利用计算机模拟计算结果对整个工艺流程进行了模拟优化,并确定了整套装置的主要工艺尺寸。 由于本设计方案使用计算机过程模拟软件Aspen Plus进行仿真设计,减少了实际设计中的大量费用,对现有工艺进行改进及最优综合具有重要的实际意义。 关键词:乙苯,苯乙烯,脱氢,Aspen Plus,模拟优化

Abstract Styrene Monomer(SM)is one of the most important organic chemicals. This article describes the present situation and development of styrene at home and abroad, styrene reaction conditions, catalyst for ethylbenzene dehydrogenation to styrene, styrene production methods and production processes. This design is based on the annual handling capacity of 200,000 tons of ethylbenzene production targets, ethylbenzene three-stage dehydrogenation using styrene in the process, the entire section in the process design and equipment selection. According to the requirements of the design of the mission statement of the entire process the material balance, process design simulation software Aspen Plus simulation of the whole process of the entire process, choose the appropriate operating unit module and thermodynamic methods, process model for steady-state simulation and draw the P&ID diagram. The entire process in the design process, simplify the calculation, the whole process is divided into reaction and distillation to separate the two parts, the use of computer simulation results on the entire process flow simulation and optimization, and determine the size of the main process of the entire device . This design using computer simulation software Aspen Plus simulation designed to reduce the substantial costs of the actual design, to improve the existing process and optimal synthesis has important practical significance. Keywords:Ethylbenzene,Styrene,dehydrogenation,Aspen Plus,Simulation and optimization

相关文档
相关文档 最新文档