文档库 最新最全的文档下载
当前位置:文档库 › SPC总结报告

SPC总结报告

SPC总结报告
SPC总结报告

SPC技术总结报告

1前言

20世纪80年代后期,随着元器件质量和可靠性水平提高到一个新的阶段,传统的评价方法已经越来越不能满足当代高可靠元器件产品的质量水平评价,这就驱使人们寻找新的评价技术。SPC(统计过程控制)技术就是在此时产生的,它以C PK 技术、SPC技术和PPM技术为基础,将传统的事后检测为主的评价方法更改成事前预防为主,监控生产线各道工序的运行状态,从而有效地保证生产的元器件具有较高的内在质量和可靠性。因此它的出现迅速得到了普及,得到国际上元器件生产厂家的广泛应用。

1998年我国颁布了“GJB3014-97 电子元器件统计过程控制体系”军用标准以及“GJB 2823-97电子元器件产品出厂平均质量水平评定方法”军用标准。总装备部也从2005年开始选择部分试点单位实施SPC技术,我公司有幸作为2006年的试点单位之一参入其中。

我公司生产线总体上处于受控状态,但是由于混合集成电路制造过程中的影响因素繁多,参数漂移现象复杂,传统的参数测试和可靠性试验方法已经不能完全适应现代产品质量和可靠性评价的要求。为了保证高水平的生产线能够在过程稳定受控的条件下持续稳定地生产出质量好、可靠性高的产品,工艺能力评价(C PK)技术和统计过程控制(SPC)技术在我公司生产线上得到逐步应用。将统计分析方法应用于制造过程控制,将数据转换成过程状态的信息,作为评定、改进和优化过程的依据。从而实现过程控制和降低过程或其输出的波动,达到持续改进过程能力的目的,使质量管理从质量检验阶段进入到质量控制阶段,对产品质量进行主动的预防控制,它与事后的被动检验相比,可大量降低质量损失,提高产品的质量一致性。

2004年我公司购买了C PK软件,对金丝键合工序中的金丝键合强度实施了C PK 工序能力指数控制技术,金丝键合强度工序能力指数C PK>1.33,达到了预期目标。工序能力指数(C PK)高代表生产线具备生产质量好、可靠性高的元器件所要求的工艺水平。但要生产出高质量水平的产品,不但要求生产线具有很高的工艺能力,而且要求在日常生产过程中生产线能够一直保持这种高水平的生产状态,为此要

求采用统计过程控制技术。

7 存在的技术问题

7.1 部分工序C PK偏低

由于我公司产品的特点是多品种小批量,不同品种的产品之间相差又较大,使计算的C PK值偏低。如金导体印刷工序,我们以金导体的烧结厚度作为关键参数,工艺规范是≥8μm。每批产品随机抽取一只产品,在产品的中间及四个角各取一个测试点共5个数据组成一批数据。由于烧结厚度受导体宽度影响较大,而每种产品在各个测试点的导体宽度往往不一样,各种产品之间的导体宽度也不一样,这样就导致测试的金导体烧结厚度同批数据之间数据较分散,不同批数据之间数据也较分散。虽然控制图是受控的,但工序能力指数C PK却比较低,金导体印刷工序C PK只有0.62,按照工序能力指数与工艺成品率的对应关系,合格率应该只有95%左右,而金导体印刷工序实际合格率可以达到99%以上。我们认为这种差异是由于导体宽度的差异造成的,而目前还找不到比较好的解决办法。

7.2 激光调阻工序C PK值的计算数据选择

我公司的激光调阻工序是对厚膜基片进行精确调阻,调阻的目标值非常多,很少有相同的目标值出现,回归条件也多达9个,这样就给我们激光调阻工序的C PK值计算造成了很大的困惑。选C PK值的计算数据时,得先选择具有相同回归条件的,再选择具有相同目标值的,最后往往仅剩下20个或30个左右的数据来计算C PK值,而一般100个以上数据计算的C PK值才比较准确。如果按照此要求,激光调阻工序计算C PK值的数据量就过少,可实际生产中很难选择出这么多的数据。

7.3 控制图失控原因分析能力不够

我们目前对均值-标准偏差控制图失控原因分析有比较清晰的理解,可以很快找到原因。由于产品多品种小批量的特点,我们的控制图基本以嵌套控制图和回归控制图为主,此类控制图都是数据经过预处理后制作的,尤其是回归控制图,目前对其控制图制作原理还不太了解,如果控制图出现失控,不知道如何进行分析比较合理。

7.4 控制图计算方式的选择

我公司使用SPC软件绘制控制图,在制作分析用控制图阶段,有两种方式计算控制限,一种是延用已有控制限,另一种是重新计算控制限。按照培训老师和教科书上的说法,这两种方式都是合理的,而且数据量越大,计算出来的控制限越接近实际情况。但是随着数据量的不断增大,这两种方式计算出来的控制限有一定的差别。如选择延用已有控制限方式绘制的控制图处于受控状态,但再次选择重新计算控制限方式绘制的控制图,中间有部分数据可能会违反规则二或规则五。由于之前选择延用已有控制限时是受控的,我们不会对其进行分析。过了一段时间后,由于选择的控制限计算方式不同而导致那部分数据失控,我们也无法再对其进行分析。这两种计算方式的差异有没有办法解决,如何解决,是我们一直在考虑的问题。

7.5 仪器评价时的数据选择

数字万用表可以测量不同范围的阻值,而在进行仪器评价时,一般只选择一个阻值来测试。阻值的大小对仪器评价的G/T比值有很大的影响,如选择1kΩ和10kΩ两个不同的阻值来做同一个数字万用表的仪器评价,计算出来的G/T值会相差很大。在进行仪器评价时,是选择中间范围的阻值来评价更合适还是选择偏大或偏小的阻值来评价更合适,目前还不太确定。

8 下一步工作计划和思路

通过SPC体系的建立、不断完善和在生产过程中的应用将有效控制生产过程,保证工艺过程稳定受控,不断改进产品品质,降低不良品率,保证所提供的产品是由高水平的工艺线在受控的环境下生产的。确保生产质量更加稳定,可持续批量生产,满足可靠性要求,提升企业的效益和竞争力。

由于混合集成电路制造过程中的影响因素繁多,参数漂移现象复杂,研究混合集成电路生产制造中对产品品质有重要影响的关键因素(参数)对SPC运行的影响是一项庞大的工程。因此SPC作为一个新体系,在完善方面还有大量的工作需要做。

此次SPC技术的顺利实施使我公司批生产能力水平及质量控制能力水平又上了一个新的台阶,在今后的生产过程中我们将继续以提高产品质量、合格率和供货能力为关注点,持续改进,以保证巩固攻关成果,实现持续、稳定生产。在工

艺技术方面,我们将加强对每一个工艺环节,特别是关键工序的控制,通过对目前实施SPC技术的五个代表工序进行过程控制和分析,建立、健全SPC统计过程控制体系、推广到其它工序并有效实施,从而更好地保证产品在稳定受控的环境下生产,进一步提高产品的质量和可靠性。

SPC-过程能力分析

统计过程控制(SPC ) 一、 基本概念 1. 变差 1.1 定义:过程的单个输出之间不可避免的差别。 1.2 分类: 1.2.1 固有变差(普通变差):仅由普通原因造成的过程变差,由σR/d 2来估计。 1.2.2 特殊变差:由特殊原因造成的过程变差。 1.2.3 总变差:由于普通和特殊两个原因造成的变差,σS 估计。 2. 过程 2.1 定义:能产生输出—- 一种给定的产品或服务的人、设备、材料、方法 和环境的组合。过程可涉及到我们业务的各个方面,管理过程的一个有力工具,即为统计过程控制。 2.2 分类: 2.2.1 受控制的过程:只存在普通原因的过程。 2.2.2 不受控制的过程:同时存在普通原因及特殊原因的过程。又称不稳定过 程。 3. 过程均值: 一个特定过程的特性的测量值,分布的位置即为过程平均值,通常用X 来表示。 4. 过程能力:一个稳定过程的固有变差( 6σR/d 2)的总范围. 5. 过程性能:一个过程总变差的总范围( 6σ S ). 6. 正态分布: 一种用于计量型数据的、连续的、对称的钟型频率分布,它是计量型数据用控制图的基础,当一组测量数据服从正态分布时,有大约68.26%的测量值落在平均值处正负一个标准差的区间内,大约95.44%的测量值将落在平均值处正负二个标准的区间内。这些百分数是控制界限或控制图分析的基础,而且是许多过程能力确定的基础。 7. 统计过程控制:使用诸如控制图等统计技术来分析过程或其输出以便采取适当的措施来达到并保持统计控制状态,从而提高过程能力。 8. 措施 ? ? ? ?

8.1 定义:减小或消除变差的方法。 8.2 分类: 8.2.1 局部措施:用来消除变差的特殊原因,由与过程直接相关人员实施,大约 可纠正15%的过程问题。 8.2.2 对于系统采取措施:用来消除变差的普通原因,要求管理措施,以便纠正, 大约可纠正85%的过程问题。 9. 标准差: 过程输出的分布宽度或从过程中统计抽样值(如:子组均值)的分布宽度的量度,用希腊字母σ或字母S(用于样本标准差)表示。 10. 规范:某特定特性是否可接受的技术要求。 11. 控制图:用来表示一个过程特性的图像,图上标有根据那个特性收集到的一些统计数据,如一条中心线,一条或两条控制限,它能减少I 类错误和Ⅱ类错误的净经济损失.它有两个基本用途:一是用来判定一个过程是否一直受统计控制;二是用来帮助过程保持受控状态。 12. I 类错误:拒绝一个真实的假设;例如:采取了一个适用于特殊原因的措施而实际上过程还没有变化;过度控制。 13. Ⅱ类错误:没有拒绝一个错误的假设;例如:对实际受控特殊原因影响的过程没有采取适当的措施;控制不足。 14. 计量型数据:定量的数据,可用测量值来分析。 15. 计数型数据:可用来记录和分析的定性数据,通常以不合格品或不合格形式收集。 二、 控制图 1、 控制图的构成:以X 图为例: :上控制线 取样时间 CL :中心线 LCL :下控制线 特性值

相关文档