文档库 最新最全的文档下载
当前位置:文档库 › 高压釜金属腐蚀测量

高压釜金属腐蚀测量

高压釜金属腐蚀测量
高压釜金属腐蚀测量

高压釜中极化曲线测量

武汉科思特仪器股份有限公司

一、研究背景

金属材料和周围介质接触时,由于发生化学或电化学作用而引起材料的破坏现象。金属腐蚀是一个热力学自发的过程。是高能量状态的金属单质向低能量状态的金属的化合物转化的过程,是普遍存在的自然现象。其中尤以石油石化工业的腐蚀现象较为复杂,包括盐水、H2S、CO2的电化学腐蚀破坏。

中国在2014年的腐蚀损失约2万亿元。据统计,2014年中国自然灾害经济损失为3378.8亿元。由此测算出腐蚀所造成的损失为台风、地震、干旱、洪水等各种自然灾害的4~6倍。

传统的腐蚀速率测量手段是腐蚀挂片,涵盖了实验室、工业领域的腐蚀评价、缓蚀剂评价等特殊领域的腐蚀监测和研究。其目的是通过测量表面积的腐蚀情况或者失重情况从而计算腐蚀率,并可以观察腐蚀形态等。应用方法主要是将腐蚀挂片悬挂于测试容器内或现场装置(包括管道)或测试管道上,悬挂一定时间后进行称重,通过悬挂前后重量差值来计算材料的腐蚀速率。

绝大多数腐蚀过程的本质是电化学性质的,在腐蚀机理研究、腐蚀试验及工业腐蚀监控中,广泛利用金属/电解质溶液界面(双电层)的电性质。电化学测试技术已成为重要的腐蚀研究方法,金属腐蚀研究常用的电化学方法主要有:极化曲线法(Tafel曲线)、电化学阻抗谱(EIS)等。

二、测量原理

2.1失重挂片测量原理

试片使用前用滤纸擦去油污后用无水乙醇浸泡约2分钟进一步除去油污;取出试件用脱脂棉擦拭,同时用冷风吹干;将擦拭吹干的挂片按照试片编号用滤纸包装,置于干燥器24小时后称重,称准至0.1mg待用。

挂片在高压釜内腐蚀介质中进行失重实验,24h后取出,用蒸馏水冲洗除去表面锈渣,放在干燥器内干燥后进行SEM表征,分析腐蚀产物膜形态。然后用

10%盐酸+0.5%六次甲基四胺配制的酸洗液清洗挂片,除去表面腐蚀产物;将酸洗后的挂片依次用蒸馏水和无水乙醇中冲洗,冷风吹干,用滤纸包好,置干燥器中,24小时后称重(称重精确至0.1mg),得出失重,按照下式(1.1)计算腐蚀速率。试验用平行样本数为3,最后的腐蚀速率取3个样本的平均值。

F=C×?m

S?t?ρ

(0.1)

式中:F为腐蚀速率,mm/a;

△m为试片实验前后质量差,g;

S为试片表面积:单位cm2;

t为腐蚀时间:24h;

ρ为试片材质密度,对Q235钢是7.85g/cm3;

C为换算常数,其值为8.76×104。

失重法测量操作简单,重量法求得的腐蚀速率是均匀腐蚀的平均腐蚀速率,它不适用局部腐蚀的情况,而且该公式中没有考虑金属的密度,不便于相同介质中不同金属的腐蚀情况的对比,这些是失重法的缺陷。

2.2极化曲线测量原理

通常,我们将有电流通过时电极电位偏离平衡电位的现象叫做极化。电化学体系中,发生电极极化时,电极电位偏离平衡电位向负移称为阴极极化,电极电位偏离平衡电位向正移称为阳极极化。

为了完整而直观地表达出一个电极过程的极化性能,通常需要通过实验测定过电位或电极电位随电流密度变化的关系曲线,这种曲线就叫做极化曲线。

可以基于Stern-Geary方程来计算金属材料的自腐蚀电流密度i corr。

i corr=βa×βc

βa+βc

×

1

R p

=

B

R p

B值叫做该材料的Stern-Geary系数,R p是金属材料的极化电阻。

图1.塔菲尔外推法求金属腐蚀电流密度的基本原理工作站软件可以自动对极化曲线进行拟合,计算出阳极段和阴极段的Tafel 斜率ba和bc,可以得到金属材料的自腐蚀电流密度i corr。根据法拉第定律,同时结合材料的电化学当量,可以将自腐蚀电流密度换算成金属腐蚀速率(mm/a)。

一般地,Stern-Geary系数(B值)取为18mV,当然也可以由用户在电解池参数中指定。则:

icorr= 18mV Rp

而腐蚀速率的计算根据:

MPY =I corr(A/cm2)*化学当量(g/mol)×393.7(mil/cm)÷密度(g/cm3)×365×24×3600(s/Y)÷96500(C/mol)

mm/a =MPY÷39.37(mil/mm)

对于碳钢,1mm/a=11.73×I corr(mA/cm2),1MPY=462.2×I corr(mA/cm2)

因此,只有在给定了电极参数后,才能计算金属的腐蚀速率。

三、实验体系搭建

现场试验条件:温度90°;介质:3%的NaCl水溶液;试验压力:0.5MPa (压缩空气);试验周期:24h。

实验装置:高压釜、CS350H电化学工作站。

采用三电极体系测试,工作电极:30MnSi低合金钢或者Q195L低碳钢;参比电极:银氯化银电极;辅助电极:钛丝对电极。

四、极化曲线测量

进行电化学测试时,直接将探头连接线接到电化学工作站前面板的四芯航插上,打开CS studio测试软件,依次点击“测试方法”-“稳态极化”-“动电位扫描”,进入极化曲线测试界面。

图4.极化曲线参数设置界面

设置“初始电位”及“终止电位”值及“扫描速率”,选择电位输出模式为“相对开路”。输入电极面积、材料密度、材料化学当量等参数,当开路电位逐渐稳定下来,即可以开始测试。

五、测试结果、

5.1失重挂片测量结果

以某采油厂某一站点模拟水腐蚀挂片失重结果为例,挂片在高压釜内放置24h后取出,失重试验结果如表所示。

表2.某一站点模拟水腐蚀挂片失重结果

同样以某采油厂的某站点的模拟水中的极化曲线为例,通入的CO2浓度分别为0mg/L,30mg/L,90mg/L,270mg/L时,这一站点模拟水极化曲线及其拟合结果如图5和表所示。

图5.某站点模拟水极化曲线图

我们可以将测得的极化曲线,通过工作站自带的拟合软件进行计算,得到材料的腐蚀电流密度i corr,再结合材料的表面积、密度、电化学当量等参数,换算成腐蚀速率。

具体操作步骤如下:

1、点击软件界面的极化曲线分析图标。

图6.选择极化曲线分析

2、打开需要分析的数据文件,点击曲线拟合图标

图7.选择曲线拟合

3、点击“电解池信息”,根据实际测量情况输入材料的表面积、密度、化学当量、S-G系数等值,随后点击“应用”。如果测试之前已经修改了电解池信息,则不需要再次修改。

图8.修改电解池信息

4、点击“Tafel”,进入Tafel拟合界面,选择自动拟合tafel斜率或手动选择阳极段/阴极段数据进行拟合,即可直接得到腐蚀电流密度、自腐蚀电位、腐蚀速率等数据。可以将拟合的结果鼠标左键选中拖拽到图形曲线上。

图9.拟合结果显示界面

以图5为例,进行Tafel拟合,得到的结果如下表1.

表1.某站点模拟水极化曲线拟合结果

CO2/(mg/L)B a/(mV)B c/(mV)I/(10-6A/cm2)E/(10-4V)腐蚀速率/(mm/a) 031.649119.03 4.479 3.800.053 3041.33886.988 1.772-74.050.021 9045.712189.2 4.569-0.820.054 27026.942143.4511.85-7.760.139

以上极化曲线数据和挂片失重数据仅作为数据拟合等用途,不作为实际高

压釜样品测量数据的参考。

失重法测金属腐蚀速度

失重法测金属腐蚀速度 1. 实验目的 (1)掌握失重法测量金属腐蚀速度的原理和操作过程 (2)加强对金属腐蚀与环境条件密切相关的认识 (3)初步了解缓蚀剂对金属腐蚀的抑制作用 2. 基本原理 重量法是其中一种较为经典的方法,它适用于实验室和现场试验,是测定金属腐蚀速率最可靠的方法之一,是其它金属腐蚀速率测定方法的基础。 重量法是根据腐蚀前、后金属试件重量的变化来测定金属腐蚀速率的。重量法又可分为失重法和增重法两种。当金属表面上的腐蚀产物较容易除净,且不会因为清除腐蚀产物而损坏金属本体时常用失重法;当腐蚀产物牢固地附着在试件表面时则采用增重法。 把金属做成一定形状和大小的试件,放在腐蚀环境中(如大气、海水、土壤、各种实验介质等),经过一定的时间后,取出并测量其重量和尺寸的变化,即可计算其腐蚀速率。 对于失重法,可通过下式计算金属的腐蚀速率: 式中,v-为金属的腐蚀速率,g/(m2?h);m 0为腐蚀前试件的质量,g;m 1 为经过一 定时间的腐蚀、并除去表面腐蚀产物后试件的质量,g;S 为试件暴露在腐蚀环境中的表面积,m2;t为试件腐蚀的时间,h 。 对于增重法,即当金属表面的腐蚀产物全部附着在上面,或者腐蚀产物脱落下来可以全部被收集起来时,可由下式计算腐蚀速率: 式中,v+ 为金属的腐蚀速率,g/(m2?h);m 2 为腐蚀后带有腐蚀产物的试件的重量,g;其余符号同 (1-1) 式。 对于密度相同或相近的金属,可以用上述方法比较其耐蚀性能。但是,对于密度不同的金属,尽管单位表面的重量变化相同,其腐蚀深度却不一样。此时,用单位时间内的腐蚀深度表示金属的腐蚀速率更为合适。其换算公式如下: 式中,v t 为年腐蚀深度,mm/a;ρ为实验金属材料的密度,g/cm3;v-为失重腐

金属腐蚀与防护

第一章绪论 腐蚀:由于材料与其介质相互作用(化学与电化学)而导致的变质和破坏。 腐蚀控制的方法: 1)、改换材料 2)、表面涂漆/覆盖层 3)、改变腐蚀介质和环境 4)、合理的结构设计 5)、电化学保护 均匀腐蚀速率的评定方法: 失重法和增重法;深度法; 容量法(析氢腐蚀);电流密度; 机械性能(晶间腐蚀);电阻性. 第二章电化学腐蚀热力学 热力学第零定律状态函数(温度) 热力学第一定律(能量守恒定律) 状态函数(内能) 热力学第二定律状态函数(熵) 热力学第三定律绝对零度不可能达到 2.1、腐蚀的倾向性的热力学原理 腐蚀反应自发性及倾向性的判据: ?G:反应自发进行 < ?G:反应达到平衡 = ?G:反应不能自发进行 > 注:ΔG的负值的绝对值越大,该腐蚀的自发倾向性越大. 热力学上不稳定金属,也有许多在适当条件下能发生钝化而变得耐蚀. 2.2、腐蚀电池 2.2.1、电化学腐蚀现象与腐蚀电池 电化学腐蚀:即金属材料与电解质接触时,由于腐蚀电池作用而引起金属材料腐蚀破坏. 腐蚀电池(或腐蚀原电池):即只能导致金属材料破坏而不能对外做工的短路原电 池. 注:1)、通过直接接触也能形成原电池而不一定要有导线的连接; 2)、一块金属不与其他金属接触,在电解质溶液中也会产生腐蚀电池. 丹尼尔电池:(只要有电势差存在) a)、电极反应具有热力学上的可逆性; b)、电极反应在无限接近电化学平衡条件下进行; c)、电池中进行的其它过程也必须是可逆的. 电极电势略高者为阴极 电极电势略低者为阳极 电化学不均匀性微观阴、阳极微观、亚微观腐蚀电池均匀腐蚀

2.2.2、金属腐蚀的电化学历程 腐蚀电池: 四个部分:阴极、阳极、电解质溶液、连接两极的电子导体(即电路) 三个环节:阴极过程、阳极过程、电荷转移过程(即电子流动) 1)、阳极过程氧化反应 ++ - M n M →ne 金属变为金属离子进入电解液,电子通过电路向阴极转移. 2)、阴极过程还原反应 []- -? D D ne +ne → 电解液中能接受电子的物质捕获电子生成新物质. (即去极化剂) 3)、金属的腐蚀将集中出现在阳极区,阴极区不发生可察觉的金属损失,只起到了传递电荷的作用 金属电化学腐蚀能够持续进行的条件是溶液中存在可使金属氧化的去极化剂,而且这些去极化剂的阳极还原反应的电极电位比金属阴极氧化反应的电位高2.2.3、电化学腐蚀的次生过程 难溶性产物称二次产物或次生物质由于扩散作用形成,且形成于一次产物相遇的地方 阳极——[]+n M(金属阳离子浓度) (形成致密对金属起保护作用) 阴极——pH高 2.3、腐蚀电池类型 宏观腐蚀电池、微观腐蚀电池、超微观腐蚀电池 2.3.1、宏观腐蚀电池 特点:a)、阴、阳极用肉眼可看到; b)、阴、阳极区能长时间保持稳定; c)、产生明显的局部腐蚀 1)、异金属(电偶)腐蚀电池——保护电位低的阴极区域 2)浓差电池由于同一金属的不同部位所接触的介质浓度不同所致 a、氧浓差电池——与富氧溶液接触的金属表面电位高而成为阳极区 eg:水线腐蚀——靠近水线的下部区域极易腐蚀 b、盐浓差电池——稀溶液中的金属电位低成为阴极区 c、温差电池——不同材料在不同温度下电位不同 eg:碳钢——高温阳极低温阴极 铜——高温阴极低温阳极 2.3.2、微观腐蚀电池 特点:a)、电极尺寸与晶粒尺寸相近(0.1mm-0.1μm); b)、阴、阳极区能长时间保持稳定; c)、引起微观局部腐蚀(如孔蚀、晶间腐蚀)

介质的毒性和金属材料的耐腐蚀性

介质的毒性和金属材料的耐腐蚀性

介质的毒性和金属材料的耐腐蚀性 《职业性接触毒物危险程度分级》GB5044分级原则是什么? 答:(1)职业性接触毒物危险程度分级,是以急性毒性、急性中毒发病状况、慢性中毒患病状况、慢性中毒后果、致癌性和最高容许浓度等六项指标为基础的定级标准。 (2)分级原则是依据六项分级指标综合分析,全面权衡,以多数指标的归属定出危害程度的级别,但对某些特殊毒物,可按其急性、慢性或致癌性等突出危害程度定出级别。 《职业性接触毒物危险程度分级》GB5044分级依据是什么? 答:(1)急性毒性 以动物试验得出的呼吸道吸入半数致死浓度(LC )或经口、经皮半数致死量(LD50) 50 或LD50最低值作为急性毒性指标。 的资料为准,选择其中LC 50 (2)急性中毒发病状况 是一项以急性中毒发病率与中毒后果为依据的定性指标:可分为易发生、可发生、偶而发生中毒及不发生急性中毒四级。将易发生致死性中毒或致残定为中毒后果严重;易恢复的定为预后良好。 (3)慢性中毒患病状况 一般以接触毒物的主要行业中,工人的中毒患病率为依据,但在缺乏患病率资料时,可取中毒症状或中毒指标的发生率。 (4)慢性中毒后果 依据慢性中毒的结局,分为脱离接触后,继续进展或不能治愈、基本治愈、自行恢复四级。并可依据动物试验结果的受损病变性质(进行性、不可逆性、可逆性)、靶器官病理生理特性(修复、再生、功能储备能力),确定其慢性中毒后果。 (5)致癌性 主要依据国际肿瘤研究中心公布的或其他公认的有关该毒物的致癌性资料,确定为人体致癌物、可疑人体致癌物、动物致癌物及无致癌性。 (6)最高容许浓度 主要以《工业企业设计卫生标准》TJ36-70中表4车间空气中有害物质最高容许浓度值为准。

腐蚀速率如何计算

腐蚀速率如何计算 金属材料的腐蚀速度常用金属腐蚀速度的重要指标、深度指标和电流指标表示。金属腐蚀速度表示法是在要评价的土壤中埋设金属材料试样,经过一定时间后,测试出试样的重量变化或深度变化或电流变化,以此来评价土壤腐蚀性。 重量指标就是把金属因腐蚀而发生的重量变化,换算成相当于单位金属面积与单位时间内的重量变化的数值。它又分为失重法和增重法两种。用公式表示为: 式中v-—失重时的腐蚀速度,克/米2.小时; v+—增重时的腐蚀速度,克/米2.小时; Wo-—金属的初始重量,克; W1—消除了腐蚀产物后金属的重量,克; W2—带有腐蚀产物的金属的重量,克; S—金属的面积,米2; T—腐蚀进行的时间,小时。 金属腐蚀速度的深度指标是把金属的厚度因腐蚀而减少的量,以线量单位表示,并换算成相当于单位时间的数值。用公式表示为: 式中vL—腐蚀的深度指标,毫米/年; p—金属的密度,克/厘米3。 金属腐蚀速度的电流指标是以金属电化学腐蚀过程的阳极电流密度的大小来衡量金属的电化学腐蚀速度的程度。可由法拉第(Faraday)定律把电流指标和重量指标联系起来。可用公式表示为: 式中ia—腐蚀的电流指标,即阳极电流密度,安培/厘米2; A——原子量; N——化合价; 列举几个常用的腐蚀速率计算方法: 1、失重法 失重法直接表示由于腐蚀而损失的材料重量,其过程为:对预先制备的试样测量尺寸,净准确称重后置于腐蚀介质中,实验结束后取出,清除产物后清洗、干燥、再称重。试样的失重直接表征材料的腐蚀程度。 其腐蚀速率的计算方法:通常采用单位时间内单位面积上的重量变化表征平均腐蚀速率g*(m^-2)*(h^-1)。v=(w0-w1)/(At); 其中,W0:试样原始重量(g);w1:试样清除产物后的重量(g); A:试样面积(m^2);t:试验周期(h) 但是这种表征方式仍然不能表示出浮士德损耗深度,为此可将腐蚀速度换算成单位时间内的平均腐蚀深度(如:mm/a),其换算关系为: B=(1/ρ)*v*[(365*24*10)/(100*100)]=8.76*v/ρ=8.76*(w0-w1)/(ρ*A*t) B:腐蚀速率(mm/a)

金属腐蚀与防护考试试卷(附实验)及答案

金属腐蚀与防护试卷1 一、解释概念:(共8分,每个2分) 钝性,碱脆、SCC、缝隙腐蚀 二、填空题:(共30分,每空1分) 1.称为好氧腐蚀,中性溶液中阴极反应为,好氧腐蚀主要为控制,其过电位与电流密度的关系为。 2.在水的电位-pH图上,线?表示关系,线?表示关系,线?下方是的稳定存在区,线?上方是的稳定存在区,线?与线?之间是的稳定存在区。 3.热力系统中发生游离CO2腐蚀较严重的部位是,其腐蚀特征是,防止游离CO2腐蚀的措施是,运行中将给水的pH值控制在范围为宜。 4.凝汽器铜管在冷却水中的脱锌腐蚀有和形式。淡水作冷却水时易发生脱锌,海水作冷却水时易发生脱锌。 5.过电位越大,金属的腐蚀速度越,活化极化控制的腐蚀体系,当极化电位偏离E corr足够远时,电极电位与极化电密呈关系,活化极化控制下决定金属腐蚀速度的主要因素为、。 ) 6.为了防止热力设备发生氧腐蚀,向给水中加入,使水中氧含量达到以下,其含量应控制在,与氧的反应式为,加药点常在。 7.在腐蚀极化图上,若P c>>P a,极极化曲线比极极化曲线陡,这时E corr值偏向电位值,是控制。 三、问答题:(共24分,每小题4分) 1.说明协调磷酸盐处理原理。 2.自然界中最常见的阴极去极化剂及其反应是什么 3.锅炉发生苛性脆化的条件是什么 4.凝汽器铜管内用硫酸亚铁造膜的原理是什么 5.说明热力设备氧腐蚀的机理。 6.说明腐蚀电池的电化学历程,并说明其四个组成部分。 /

四、计算:(共24分, 每小题8分) 1.在中性溶液中,Fe +2=106-mol/L ,温度为25℃,此条件下碳钢是否发生析氢腐蚀并求出碳钢在此条件下不发生析氢腐蚀的最小pH 值。(E 0Fe 2+/Fe = - ) 2.写出V -与i corr 的关系式及V t 与i corr 的关系式,并说明式中各项的物理意义。 3.已知铜在含氧酸中和无氧酸中的电极反应及其标准电极电位: Cu = Cu 2+ + 2e E 0Cu 2+/Cu = + H 2 = 2H + + 2e E 02H +/H = 2H 2O = O 2 + 4H + + 4e E 0O 2/H 2O = + 问铜在含氧酸和无氧酸中是否发生腐蚀 五、分析:(共14分,每小题7分) 1.试用腐蚀极化图分析铁在浓HNO 3中的腐蚀速度为何比在稀HNO 3中的腐蚀速度低 { 2. 炉水协调磷酸盐-pH 控制图如图1,如何根据此图实施炉水水质控制,试分析之。 (25 15 20 pH o C) 9.809.609.409.209.008.80 2 3 4 5 6 7 8 9 10 R =2.8R =2.6 R =2.4R =2.3R =2.2R =2.1

金属腐蚀理论及腐蚀控制答案汇总

《金属腐蚀理论及腐蚀控制》 (跟着剑哥走,有肉吃。) 习题解答 第一章 1.根据表1中所列数据分别计算碳钢和铝两种材料在试验介质中的失重腐蚀速度V- 和年腐蚀深度V p,并进行比较,说明两种腐蚀速度表示方法的差别。 解:由题意得: (1)对碳钢在30%HNO3( 25℃)中有: Vˉ=△Wˉ/st =(18.7153-18.6739)/45×2×(20×40+20×3+40×30)×0.000001 =0.4694g/ m?h 又有d=m/v=18.7154/20×40×0.003=7.798g/cm2?h Vp=8.76Vˉ/d=8.76×0.4694/7.798=0.53mm/y 对铝在30%HNO3(25℃)中有: Vˉ=△Wˉ铝/st

=(16.1820-16.1347)/2×(30×40+30×5+40×5)×45×10-6 =0.3391g/㎡?h d=m铝/v=16.1820/30×40×5×0.001=2.697g/cm3 说明:碳钢的Vˉ比铝大,而Vp比铝小,因为铝的密度比碳钢小。 (2)对不锈钢在20%HNO 3( 25℃)有: 表面积S=2π×2 .0+2π×0.015×0.004=0.00179 m2 015 Vˉ=△Wˉ/st=(22.3367-22.2743)/0.00179×400=0.08715 g/ m2?h 试样体积为:V=π×1.52×0.4=2.827 cm3 d=W/V=22.3367/2.827=7.901 g/cm3 Vp=8.76Vˉ/d=8.76×0.08715/7.901=0.097mm/y 对铝有:表面积S=2π×2 .0+2π×0.02×0.005=0.00314 m2 02 Vˉ=△Wˉ/st=(16.9646-16.9151)/0.00314×20=0.7882 g/ m2?h 试样体积为:V=π×2 2×0.5=6.28 cm3 d=W/V=16.9646/6.28=2.701 g/cm3 Vp=8.76Vˉ/d=8.76×0.7882/2.701=2.56mm/y 试样在98% HNO3(85℃)时有: 对不锈钢:Vˉ=△Wˉ/st =(22.3367-22.2906)/0.00179×2=12.8771 g/ m2?h Vp=8.76Vˉ/d=8.76×12.8771/7.901=14.28mm/y 对铝:Vˉ=△Wˉ/st=(16.9646-16.9250)/0.00314×40=0.3153g/ m2?h Vp=8.76Vˉ/d=8.76×0.3153/2.701=1.02mm/y

金属腐蚀与防护课后答案

《金属腐蚀理论及腐蚀控制》 习题解答 第一章 1.根据表1中所列数据分别计算碳钢和铝两种材料在试验介质中的失重腐蚀速度V- 和年腐蚀深度V p,并进行比较,说明两种腐蚀速度表示方法的差别。 解:由题意得: (1)对碳钢在30%HNO3( 25℃)中有: Vˉ=△Wˉ/st =(18.7153-18.6739)/45×2×(20×40+20×3+40×30)×0.000001 =0.4694g/ m?h 又有d=m/v=18.7154/20×40×0.003=7.798g/cm2?h Vp=8.76Vˉ/d=8.76×0.4694/7.798=0.53mm/y 对铝在30%HNO3(25℃)中有: Vˉ=△Wˉ铝/st =(16.1820-16.1347)/2×(30×40+30×5+40×5)×45×10-6

=0.3391g/㎡?h d=m铝/v=16.1820/30×40×5×0.001=2.697g/cm3 说明:碳钢的Vˉ比铝大,而Vp比铝小,因为铝的密度比碳钢小。 (2)对不锈钢在20%HNO3( 25℃)有: 表面积S=2π×2 .0+2π×0.015×0.004=0.00179 m2 015 Vˉ=△Wˉ/st=(22.3367-22.2743)/0.00179×400=0.08715 g/ m2?h 试样体积为:V=π×1.52×0.4=2.827 cm3 d=W/V=22.3367/2.827=7.901 g/cm3 Vp=8.76Vˉ/d=8.76×0.08715/7.901=0.097mm/y 对铝有:表面积S=2π×2 .0+2π×0.02×0.005=0.00314 m2 02 Vˉ=△Wˉ/st=(16.9646-16.9151)/0.00314×20=0.7882 g/ m2?h 试样体积为:V=π×2 2×0.5=6.28 cm3 d=W/V=16.9646/6.28=2.701 g/cm3 Vp=8.76Vˉ/d=8.76×0.7882/2.701=2.56mm/y 试样在98% HNO3(85℃)时有: 对不锈钢:Vˉ=△Wˉ/st =(22.3367-22.2906)/0.00179×2=12.8771 g/ m2?h Vp=8.76Vˉ/d=8.76×12.8771/7.901=14.28mm/y 对铝:Vˉ=△Wˉ/st=(16.9646-16.9250)/0.00314×40=0.3153g/ m2?h Vp=8.76Vˉ/d=8.76×0.3153/2.701=1.02mm/y 说明:硝酸浓度温度对不锈钢和铝的腐蚀速度具有相反的影响。

金属材料的电化学腐蚀与防护

金属材料的电化学腐蚀与防护 一、实验目的 1.了解金属电化学腐蚀的基本原理。 2.了解防止金属腐蚀的基本原理和常用方法。 二、实验原理 1.金属的电化学腐蚀类型 (1)微电池腐蚀 ①差异充气腐蚀 同一种金属在中性条件下,如果不同部位溶解氧气浓度不同,则氧气浓度较小的部位作为腐蚀电池的阳极,金属失去电子受到腐蚀;而氧气浓度较大的部位作为阴极,氧气得电子生成氢氧根离子。如果也有K3[Fe(CN)6]和酚酞存在,则阳极金属亚铁离子进一步与K3[Fe(CN)6]反应,生成蓝色的Fe3[Fe(CN)6]2沉淀;在阴极,由于氢氧根离子的不断生成使得酚酞变红(亦属于吸氧腐蚀)。两极反应式如下: 阳极(氧气浓度小的部位)反应式: Fe = Fe2++2e- 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) 阴极(氧气浓度大的部位)反应式: O2+2H2O +4e-= 4OH- ②析氢腐蚀 金属铁浸在含有K3[Fe(CN)6]2的盐酸溶液中,铁作为阳极失去电子,受腐蚀,杂质作为阴极,在其表面H+得电子被还原析出氢气。两极反应式为: 阳极:Fe = Fe2++2e- 阴极:2H++2e-= H2↑ 在其中加入K3[Fe(CN)6],则阳极附近的Fe2+进一步反应: 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) (2)宏电池腐蚀 ①金属铁和铜直接接触,置于含有NaCl、K3[Fe(CN)6]、酚酞的混合溶液里,由于?O(Fe2+/Fe)< ?O(Cu2+/Cu),两者构成了宏电池,铁作为阳极,失去电子受到腐蚀(属于吸氧腐蚀)。两极的电极反应式分别如下: 阳极反应式: Fe = Fe2++2e- 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) 阴极(铜表面)反应式: O2+2H2O +4e-= 4OH- 在阴极由于有OH-生成,使c(OH-)增大,所以酚酞变红。

金属腐蚀研究报告方法

金属腐蚀研究方法 院(系):材料科学与工程学院专业班级:金材1101班 学生姓名:卢阳 学号:9 完成日期:2014年11月16日

金属腐蚀研究方法 ——缝隙腐蚀的研究 缝隙腐蚀是在电解质溶液(特别是含有卤族离子的介质)中,在金属与金属或金属与非金属表面之间狭窄的缝隙内,溶液的移动受到阻滞,当缝隙内溶液中的氧耗竭后,氯离子从缝隙外向缝隙内迁移,金属氯化物的水解酸化过程发生,导致钝化膜的破裂而产生与自催化点腐蚀相类似的局部腐蚀。缝隙腐蚀现象非常普遍,对一些耐蚀金属材料的危害尤其明显[1]。 1、缝隙腐蚀的机理[2] 缝隙腐蚀可分为初期阶段和后期阶段。在初期阶段,发生金属的溶解和阴极的氧还原为氢氧离子的反应: 阳极:M→M++e 阴极:O2+2H2O+4e→4OH- 阳极阴极此时金属和溶液之间电荷是守恒的,金属溶解产生的电子立即被氧还原消耗掉。在经过一段时间后,缝内的氧消耗完后,氧的还原反应不再进行。这时缝内缺氧,缝外富氧,形成了氧浓差电池,金属M在缝内继续溶解,缝内溶液中M+过剩,为了保持电荷平衡,缝隙外部迁移性大的阴离子(如氯离子)迁移到缝内,同时阴极过程转到缝外。缝内已形成金属的盐类(包括氯化物和硫酸盐)发生水解: M+CI+H2O→MOH↓+H+CI- 结果使缝内pH值下降,可达2至3,这就促使缝内金属溶解速度增加,相应缝外邻近表面的阴极过程,即氧的还原速度也增加,使外部表面得到阴极保护,而加速了缝内金属的腐蚀。 而Myer等人认为,至少还有氢离子、中性盐和缓蚀剂的浓差电池存在于缝隙腐蚀过程中,Brown以水解后局部酸化引起局部腐蚀的依据,提出了闭塞腐蚀电池(occluded corrosion cell)的概念。另外,Fontana和Rosefeld等人,指出了蚀孔或缝隙闭塞电池的自催化理论。 缝内外溶液的对流和扩散受阻,导致闭塞区贫氧,缝隙外仍然富氧,造成的氧浓差电池使缝隙内金属的电位低于缝隙外金属的电位,pH值的降低以及H+和Cl-的作用(HCl)使金属处于活化状态,促进闭塞区内金属的溶解,形成二次腐蚀产物Fe(OH)3在缝口,造成正电荷过剩,Cl-迁入。而氯化物在水中发生水解,使缝隙内介质(H+离浓度增加)酸化,pH值下降,因此,加速了阳极的溶解。阳极的加速溶解,又引起更多的Cl-离子迁入,氯化物浓度又增加,氯化物的水解又使介质进一步酸化,如此反复循环,形成了一个闭塞电池内的自催化效应。 2、缝隙腐蚀试验方法 在相对闭塞的狭小缝隙中存留的溶液容量甚微,因此必须设计一些特殊的研究方法

金属材料的点腐蚀和缝隙腐蚀

金属材料的点腐蚀和缝 隙腐蚀 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

金属材料的点腐蚀和缝隙腐蚀 点腐蚀和缝隙腐蚀(pitting and crevice corrosion)金属材料接触某些溶液,表面上产生点状局部腐蚀,蚀孔随时间的延续不断地加深,甚至穿孔,称为点腐蚀(点蚀),也称孔蚀。通常点蚀的蚀孔很小,直径比深度小得多。蚀孔的最大深度与平均腐蚀深度的比值称为点蚀系数。此值越大,点蚀越严重。一般蚀孔常被腐蚀产物覆盖,不易发现,因此往往由于腐蚀穿孔,造成突然性事故(见金属腐蚀)。 缝隙腐蚀是两个连接物之间的缝隙处发生的腐蚀,金属和金属间的连接(如铆接、螺栓连接)缝隙、金属和非金属间的连接缝隙,以及金属表面上的沉积物和金属表面之间构成的缝隙,都会出现这种局部腐蚀。 许多金属材料都能产生点蚀和缝隙腐蚀。不锈钢、铝合金等靠钝化来增强耐蚀性的金属材料,也易产生点蚀和缝隙腐蚀。许多环境介质都能引起金属材料的点蚀和缝隙腐蚀,尤其是含氯离子的溶液。 点腐蚀 金属表面的电化学不均匀性是导致点蚀的重要原因。金属材料的表面或钝化膜等保护层中常显露出某些缺陷或薄弱点(如夹杂物、晶界、位错等处),这些地方容易形成点蚀核心。金属浸入含有某些活化阴离子(特别是氯离子)的溶液中,只要腐蚀电位达到或超过点蚀电位(或称击穿电位),就能产生点蚀。这是由于钝化膜在溶液中处于溶解以及可再度形成的动平衡状态,而溶液中的活化阴离子(氯离子)会破坏这种平衡,导致金属的局部表面形成微小蚀点,并发展为点蚀源。例如不锈钢表面的硫化物夹杂的溶解,暴露出钢的新鲜表面,就会形成点蚀源。 点蚀的发展是一个在闭塞区内的自催化过程。在有一定闭塞性的蚀孔内,溶解的金属离子浓度大大增加,为保持电荷平衡,氯离子不断迁入蚀孔,导致氯离子富集。高浓

金属腐蚀性测定

2.2.4 消毒剂对金属腐蚀性的测定 2.2.4..1 目的 测定消毒剂对各种金属的腐蚀程度,以能注明在使用时是否需给予应有的注意。 2.2.4.2 常用器材 (1) 金属片 圆形,直径24.0 mm,厚1.0 mm,穿一直径为2.0mm 小孔,表面积总值约为9.80 cm2 (包括上、下、周边表面与小孔侧面)。光洁度为6。原料如下: 碳钢(规格见GB 700-65);铜(规格见GB 2060-80); 铝(规格见GB 1173-74);不锈钢(规格见GB 1220-75)。 碳钢易氧化生锈,应保存于油中。 (2) 浸泡容器(玻璃制,带盖,容积为800 ml~1000 ml)。 (3) 砂纸(120号粒度水砂纸,GB 2477)。 (4) 称量杯。 (5) 天平(感量0.1 mg)。 2.2.4.3 操作程序 (1)在有表面活性作用的清洁剂中浸泡10 min,充分去油,洗净;亦可用氧化镁糊剂涂抹除油后洗净;以120号粒度水砂纸磨去金属片两面和周边表面的氧化层,再用自来水冲净。测量片的直径、厚度、孔径(精确至0.1 mm)。用无水丙酮或无水乙醇再次脱脂。置50℃恒温箱中干燥1 h,待其温度降至室温后称重(每金属片待天平回零后称重3次,精确至0.1 mg,取其平均值作为试验前重量。称重时,应戴洁净手套,勿以手直接接触样片。 (2) 按消毒剂最高使用浓度配制试验用消毒液,用以浸泡试验样片。浸泡时,每一金属片需浸泡在200 ml 消毒液中。 (3) 金属样片用塑料线系以标签,编号和注明日期,悬挂于消毒液中。一次性浸泡72 h。易挥发性或有效成分不稳定的消毒剂,根据情况,酌情定时更换消毒液,直至浸泡72 h。 (4) 每种金属每次试验放置3片样片。浸泡时,若同种金属每一样片相隔1 cm以上,可在同一容器内(含600 ml消毒液) 进行。 (5) 浸泡到规定时间后,取出金属片,先用自来水冲洗,再用毛刷或其它软性器具去除腐蚀产物。如仍有清除不掉的腐蚀产物,可按GB 10124-88所介绍的下列方法清除: 铜片: 在室温下浸泡于盐酸溶液(500ml 36%~38% 盐酸加蒸馏水至1000ml,盐酸比重为1.19)中1min~3min。 碳钢片:置含锌粉200 g/L的氢氧化钠溶液中,煮沸5 min~30 min。 铝片:浸泡于三氧化铬磷酸溶液(三氧化铬20 g,磷酸500ml,加蒸馏水至1000ml。磷酸比重为1.69)中,升温至80℃,持续5min~10min。如还未清除干净,可在室温浸于硝酸(比重1.42)溶液中1min。 不锈钢:浸泡于60℃硝酸溶液(66%~68%硝酸100 ml加蒸馏水至1000 ml) 20 min。或浸于70℃柠檬酸铵溶液(柠檬酸铵150 g 加蒸馏水至1000 ml)中10 min~60 min。 (6) 金属样片除去腐蚀产物并清洗后,用粗滤纸吸干水分,置于垫有滤纸的平皿中,放入50℃温箱,干燥1h,用镊子夹取,待其温度降至室温后分别在天平上称重。天平回零后称3 次,以其平均值作为试验后重量。 称重时,与试验前相同,应戴洁净手套,勿以手直接接触样片(下同)。 (7) 样片在用化学法去除腐蚀物时,需设相应空白对照以校正误差。空白对照样片与试验组样片同样进行表面处理、洗净和称重,但不经消毒剂浸泡。事后随同试验组样片用相同

金属腐蚀与防护课后习题答案

腐蚀与防护试题 1化学腐蚀的概念、及特点 答案:化学腐蚀:介质与金属直接发生化学反应而引起的变质或损坏现象称为金属的化学腐蚀。 是一种纯氧化-还原反应过程,即腐蚀介质中的氧化剂直接与金属表面上的原子相互作用而形成腐蚀产物。在腐蚀过程中,电子的传递是在介质与金属之间直接进行的,没有腐蚀电流产生,反应速度受多项化学反应动力学控制。 归纳化学腐蚀的特点 在不电离、不导电的介质环境下 反应中没有电流产生,直接完成氧化还原反应 腐蚀速度与程度与外界电位变化无关 2、金属氧化膜具有保护作用条件,举例说明哪些金属氧化膜有保护作用,那些没有保护作用,为什么? 答案:氧化膜保护作用条件: ①氧化膜致密完整程度;②氧化膜本身化学与物理稳定性质;③氧化膜与基体结合能力;④氧化膜有足够的强度 氧化膜完整性的必要条件:PB原理:生成的氧化物的体积大于消耗掉的金属的体积,是形成致密氧化膜的前提。 PB原理的数学表示: 反应的金属体积:V M = m/ρ m-摩尔质量 氧化物的体积: V MO = m'/ ρ ' 用? = V MO/ V M = m' ρ /( m ρ ' ) 当? > 1 金属氧化膜具备完整性条件 部分金属的?值 氧化物?氧化物?氧化物? MoO3 3.4 WO3 3.4 V2O5 3.2 Nb2O5 2.7 Sb2O5 2.4 Bi2O5 2.3 Cr2O3 2.0 TiO2 1.9 MnO 1.8 FeO 1.8 Cu2O 1.7 ZnO 1.6 Ag2O 1.6 NiO 1.5 PbO2 1.4 SnO2 1.3 Al2O3 1.3 CdO 1.2 MgO 1.0 CaO 0.7 MoO3 WO3 V2O5这三种氧化物在高温下易挥发,在常温下由于?值太大会使体积膨胀,当超过金属膜的本身强度、塑性时,会发生氧化膜鼓泡、破裂、剥离、脱落。 Cr2O3 TiO2 MnO FeO Cu2O ZnO Ag2O NiO PbO2 SnO2 Al2O3 这些氧化物在一定温度范围内稳定存在,?值适中。这些金属的氧化膜致密、稳定,有较好的保护作用。 MgO CaO ?值较小,氧化膜不致密,不起保护作用。 3、电化学腐蚀的概念,与化学腐蚀的区别 答案:电化学腐蚀:金属与介质发生电化学反应而引起的变质与损坏。 与化学腐蚀比较: ①是“湿”腐蚀 ②氧化还原发生在不同部位 ③有电流产生 ④与环境电位密切相关

实验报告-极化曲线测量金属的腐蚀速度

课程 实 验 者 名 称 页数( ) 专业 年级、班 同组者姓名 级别 姓 名 实验 日 期 年 月 日 一、目的和要求 1、 掌握恒电位法测定电极极化曲线的原理和实验技术。通过测定Fe 在NaCl 溶液中的极化曲线,求算Fe 的自腐蚀电位,自腐蚀电流 2、论极化曲线在金属腐蚀与防护中的应用 二、基本原理 当金属浸于腐蚀介质时,如果金属的平衡电极电位低于介质中去极化剂(如H +或氧分子)的平衡电极电位,则金属和介质构成一个腐蚀体系,称为共轭体系。此时,金属发生阳极溶解,去极化剂发生还原。在本实验中,镁合金和钢分别与0.5mol/L 的NaCl 溶液构成腐蚀体系。 镁合金与NaCl 溶液构成腐蚀体系的电化学反应式为: 阳极: Mg= Mg 2++2e 阴极: 2H 2O+2e=H 2+2OH - 钢与NaCl 溶液构成腐蚀体系的电化学反应式为: 阳极: Fe= Fe 2++2e 阴极: 2H 2O+2e=H 2+2OH - 腐蚀体系进行电化学反应时的阳极反应的电流密度以 i a 表示, 阴极反应的速度以 i k 表示, 当体系达到稳定时,即金属处于自腐蚀状态时,i a =i k =i corr (i corr 为腐蚀电流),体系不会有净的电流积累,体系处于一稳定电位c ?。根据法拉第定律,即在电解过程中,阴极上还原物质析出的量与所通过的电流强度和通电时间成正比,故可阴阳极反应的电流密度代表阴阳极反应的腐蚀速度。金属自腐蚀状态的腐蚀电流密度即代表了金属的腐蚀速度。因此求得金属腐蚀电流即代表了金属的腐蚀速度。金属处于自腐蚀状态时,外测电流为零。 极化电位与极化电流或极化电流密度之间的关系曲线称为极化曲线。测量腐蚀体系的阴阳极极化曲线可以揭示腐蚀的控制因素及缓蚀剂的作用机理。在腐蚀点位附近积弱极化区的举行集会测量可以可以快速求得腐蚀速度。在活化极化控制下,金属腐蚀速度的一般方程式为: 其中 I 为外测电流密度,i a 为金属阳极溶解的速度,i k 为去极化剂还原的速度,βa 、βk 分别 为金属阳极溶解的自然对数塔菲尔斜率和去极化剂还原的自然对数塔菲尔斜率。 令?E 称为腐蚀金属电极的极化值,?E =0时,I =0;?E>0时,是阳极极化,I>0,体系通过阳极电流。?E<0时,I<0, 体系通过的是阴极电流,此时是对腐蚀金属电极进行阴极极化。因此外测电流密度也称为极化电流密度 测定腐蚀速度的塔菲尔直线外推法:当对电极进行阳极极化,在强极化区,阴极分支电流i k =0, )]ex p()[ex p(k c a c corr k a i i i I β??β??---=-=c E ??-=?)]ex p()[ex p(k a corr E E i I ββ?--?=)ex p(a corr a E i i I β?==

ASTM G31——金属的实验室浸泡腐蚀标准

Designation:G31–72(Reapproved2004) Standard Practice for Laboratory Immersion Corrosion Testing of Metals1 This standard is issued under the?xed designation G31;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval. 1.Scope 1.1This practice2describes accepted procedures for and factors that in?uence laboratory immersion corrosion tests, particularly mass loss tests.These factors include specimen preparation,apparatus,test conditions,methods of cleaning specimens,evaluation of results,and calculation and reporting of corrosion rates.This practice also emphasizes the impor-tance of recording all pertinent data and provides a checklist for reporting test data.Other ASTM procedures for laboratory corrosion tests are tabulated in the Appendix.(Warning—In many cases the corrosion product on the reactive metals titanium and zirconium is a hard and tightly bonded oxide that de?es removal by chemical or ordinary mechanical means.In many such cases,corrosion rates are established by mass gain rather than mass loss.) 1.2The values stated in SI units are to be regarded as the standard.The values given in parentheses are for information only. 1.3This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. 2.Referenced Documents 2.1ASTM Standards:3 A262Practices for Detecting Susceptibility to Intergranu-lar Attack in Austenitic Stainless Steels E8Test Methods for Tension Testing of Metallic Materials G1Practice for Preparing,Cleaning,and Evaluating Cor-rosion Test Specimens G4Guide for Conducting Corrosion Coupon Tests in Field Applications G16Guide for Applying Statistics to Analysis of Corrosion Data G46Guide for Examination and Evaluation of Pitting Corrosion 3.Signi?cance and Use 3.1Corrosion testing by its very nature precludes complete standardization.This practice,rather than a standardized pro-cedure,is presented as a guide so that some of the pitfalls of such testing may be avoided. 3.2Experience has shown that all metals and alloys do not respond alike to the many factors that affect corrosion and that “accelerated”corrosion tests give indicative results only,or may even be entirely misleading.It is impractical to propose an in?exible standard laboratory corrosion testing procedure for general use,except for material quali?cation tests where standardization is obviously required. 3.3In designing any corrosion test,consideration must be given to the various factors discussed in this practice,because these factors have been found to affect greatly the results obtained. 4.Interferences 4.1The methods and procedures described herein represent the best current practices for conducting laboratory corrosion tests as developed by corrosion specialists in the process industries.For proper interpretation of the results obtained,the speci?c in?uence of certain variables must be considered. These include: 4.1.1Metal specimens immersed in a speci?c hot liquid may not corrode at the same rate or in the same manner as in equipment where the metal acts as a heat transfer medium in heating or cooling the liquid.If the in?uence of heat transfer effects is speci?cally of interest,specialized procedures(in which the corrosion specimen serves as a heat transfer agent) must be employed(1).4 4.1.2In laboratory tests,the velocity of the environment relative to the specimens will normally be determined by convection currents or the effects induced by aeration or boiling or both.If the speci?c effects of high velocity are to be studied,special techniques must be employed to transfer the 1This practice is under the jurisdiction of ASTM Committee G01on Corrosion of Metals and is the direct responsibility of Subcommittee G01.05on Laboratory Corrosion Tests. Current edition approved May1,2004.Published May2004.Originally approved https://www.wendangku.net/doc/8a2967082.html,st previous edition approved in1998as G31–72(1998). 2This practice is based upon NACE Standard TM-01-69,“Test Method-Laboratory Corrosion Testing of Metals for the Process Industries,”with modi?ca-tions to relate more directly to Practices G1and G31and Guide G4. 3For referenced ASTM standards,visit the ASTM website,https://www.wendangku.net/doc/8a2967082.html,,or contact ASTM Customer Service at service@https://www.wendangku.net/doc/8a2967082.html,.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website. 4The boldface numbers in parentheses refer to the list of references at the end of this practice. 1 Copyright?ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.

相关文档
相关文档 最新文档