文档库 最新最全的文档下载
当前位置:文档库 › 地应力检测(1)

地应力检测(1)

地应力检测(1)
地应力检测(1)

1、地质雷达检测隧道支护情况

包括隧道衬砌厚度是否满足设计要求、钢筋保护层厚度是否满足设计要求、隧道衬砌钢筋布臵是否满足设计要求、隧道衬砌钢架布臵是否满足设计要求、隧道衬砌的密实情况(包括二衬背后脱空及初支背后空洞、不密实)。

评判标准:《公路工程质量检验评定标准》(GTG F80/1-2004);参考《铁路隧道衬砌质量无损检测规程》(TB10233-2004)。

2、地应力检测

我国地应力测量试验和研究开始于20世纪50年代后期,迄今为止,地应力测量的主要方法虽然很多,但尚未形成统一的分类标准.根据测量数据特点的不同,地应力测量大体分为绝对应力测量和相对应力测量.前者主要是确定地壳应力背景值,即主应力的大小和方向;后者则是观测应力随时间变化的动态变化规律,通常也称为地应力监测.根据测量基本原理的不同,绝对应力测量方法又可分为直接测量法和间接测量法.所谓直接测量法就是利用测量仪器直接测量和记录各种应力量,并由这些应力量和原岩应力的相互关系直接换算得到原岩应力值.间接测量法则是借助某些传感元件或媒介,测量和记录与岩体相关物理量的变化(如密度、泊松比、弹性波速等变化),然后通过相应的公式换算间接得到原岩应力值.目前,较为常用的绝对应力测量方法主要有水压致裂法、声发射法、钻孔崩落法、套芯应力解除法、应变恢复法等.其中,前3种方法属于直接测量方法,后2种方法属于间接测量方法.相对应力测量方法包括压磁法、压容法、体应变法、分量应变法及差应变法等.我们采用水压致裂法

地应力测量存在的问题与展望:随着我国工程建设不断向深部发展,地应力测量及监测正面临着严峻的考验.与发达国家相比,尚存在许多问题与不足.首先,在宏观层面上存在的问题与挑战有:第一,测量和监测深度不足。目前,国际上最大地应力测量深度已达5100m.在德国的KTB深钻及美国的SAFOD计划中,应力测量深度一般达到2000~3000m;日本也建立了数10座深度为1000~3800m的深井观测台站.我国的绝大部分应力测量深度仅数百米,超过1000m的深井观测极为稀少,这严重制约了测量数据在空间上的代表性.第二,缺乏合理系统的地应力监测网络.我国虽然积累了大量的地应力测量数据,但数据分布不均且质量参差不齐,地应力监测台站少、布局不合理,

大部分监测台站数据网络传输、数据分析处理能力也亟待加强,这些问题制约了地学领域的创新性发现.第三,统一的地应力测量规范和标准亟待解决.ISRM 早在1987年即发布了“确定岩石应力的建议方法”.2003年,结合地应力测量方法的最新进展,又发布了新的建议规范.然而,在这些权威的地应力测量方法技术规范起草和编写过程中,没有我国相关领域科学家的参与.其次,在技术与操作层面上存在的问题与挑战有:第一,测量深度引起的仪器设备性能问题.深部岩体的苛刻环境要求钻探设备和监测仪器具备足够的耐高压、耐高温、抗干扰、防水能力,而仪器在这种环境下,长期工作的稳定性以及与孔壁的耦合性不容忽视.第二,测量仪器和方法的精度与可重复性问题.测量的精度是确保数据可靠的关键,对此,除了改进已有仪器,更需要新技术、新材料的研发.测量过程和结果的可重复性既是测量工作科学、严谨的体现,又是测量仪器与方法广泛应用的保障,具有重要意义.第三,测量仪器及测量平台的现代化程度问题.提高测量与数据采集的质量与效率、推进测量成果网络传输与共享、建立测量方法标定平台,既需要增强地应力测量体系的现代化水平,又需要地应力测量系统向自动化、集成化、智能化方向发展.

展望

近年来,人们逐渐认识到,由于地壳结构的高度复杂性和非均质性,加之地形等因素的影响,基于浅部及孤立测点所获得的地应力测量数据的代表性十分有限.因此,只有提高地应力测量深度,加大监测密度,才可能比较准确地认识和把握某一构造单元地质构造活动的动力学成因和内在机制.有鉴于此,在绝对应力测量方面,深部乃至超深部应力测量已成为必然趋势.同时,考虑到目前尚没有哪一种地应力测量方法能够适应和胜任所有目的和环境的测试,采用多种方法联合观测,实现不同观测方法之间的优势互补已成为提高测量结果可信度的必然举措.此外,在相对应力测量方面,高密度深井综合监测已成为未来的发展方向.这不仅是深部地质研究的客观需要,也是消除气压、温度、地下水以及地面噪音等自然和人为因素干扰的现实需要.有鉴于此,钻孔分量应力和应变监测方法无疑将成为重点发展方向.目前,地应力相对测量正朝着多元化方向迈进,钻孔地应力(应变)监测以及其他物理参数检测技术将一起作为地球物理观测的重要手段在未来深部地壳研究中发挥重要的作用。

3以揭示开的围岩变形监测

洞内观察、水平净空收敛量测、拱顶下沉量测

支护、衬砌内应力、表面应力及裂缝量测

围岩体内位移量测

围岩压力及两层支护间压力

钢支撑内力及外力测量

锚杆内力监测

围岩弹性波测试

拱顶下沉

拱顶下沉断面宜布设在紧随开挖面2m以内,在拱顶部位左、中、右各3个观测点,观测点用钢筋挂钩,其埋设必须深入围岩50cm,不得将观测点设置在初期支护内或者表面。水准观测基点应设置在已施工二次衬砌顶部,以免与施工干扰或者破坏。

隧道周边收敛位移

应根据不同的围岩条件、洞室跨度和施工方法,选择不同的布点方法,测点设置在拱腰、拱脚、墙中位置,并做到以下几点:由位移变化速率和测线到开挖面的距离决定监控量测频率,原则上应采用监控量测次数多的值;测线或测点位置不同,位移变化速率也不同,因此要以产生最大位移变化速率的测线或测点位置来确定监控量测频率,在同一监控量测断面的各测线或测点,应采用相同的监控量测频率;位移基本稳定后,仍应以每两天一次的频率监控量测一至三周,以确认位移是否最终稳定;在膨胀性围岩中,位移长期(开挖后两个月以上)不能收敛时,监控量测要一直继续下去,直至修建二次模筑衬砌,使位移变化速率小于等于1mm/月时为止;位移变化速率过大时,在对初期支护加强的同时,也应加强监控量测频率,尤其要重视开挖前后(放炮前后)的监控量测,并观测开挖前后的动态影响规律。

钢支撑内力

钢拱架应力监控量测的测点一般沿钢拱架外缘或主筋弧长,每间隔一定距离布设。在拱顶、拱腰、拱脚、墙中、墙脚、仰拱中部等关键部位都应布点,测点布置。

采用钢筋应力计监控量测网构钢供架应力时,首先要将应力计焊接在网构钢供架的受力主筋上,通常是在需要布设测点的地方将原主筋隔断,然后将钢筋应力计的两端分别与钢筋对接或搭接焊接,焊接强度应达到要求。焊接时应注意防止焊接高温对钢筋应力计的破坏,为此可在钢筋应力计两侧一边浇水、一边焊接。为使测试结果更接近实际情况,应在钢拱架的内、外缘主筋上各焊接一个钢筋应力计,读取两者的监控量测平均值。在钢拱架安装前读取初始读数,并在施工过程中根据工程需要,选择一定的监控量测间隔时间,随着工程施工的进度,随时监测钢拱架受力的变化情况,这对指导施工是非常有效的。

接触应力

接触应力的主要难点是必须保证土压力盒发挥作用,避免以下问题:压力盒的刚度和地层的刚度不一致;压力盒在有介质的情况下进行室内标定时会出现不同斜率的标定直线,标定值的不准确性和标定的周边条件不同于埋设的周边条件,必然会带来测量的不准确性;压力盒埋设的位置不同,会出现不同的测量结果,如压力盒一般沿钢拱架的外侧布设,当钢拱架受力后,会产生整体下移或拱部变形,局部向下、向外变形时,会引起压力盒的压力卸载或增大,往往在拱顶处的压力盒所测压力较小,甚至测不到,而拱腰处则很大,这种埋置压力盒的方法,必然会出现压力盒的数字忽大、忽小、量不到等不规律的现象;压力的变化过程与施工方法、地层特征有密切关系,地层的应力调整是一个缓慢的长期过程,在开挖面处荷载只下来一部分,1倍洞径处的荷载和后部2倍、3倍洞径处都不一样,这些压力的变化又随着二次模筑衬砌的修筑而发生大的变化,压力监控量测的环境已不具备,所以测量的必要性、指导性就显得微弱了;地下工程衬砌的厚度确定不是由强度控制的,而是由施工工艺、刚度和结构的安全可靠性来确定。二次模筑衬砌按脱模要求必须大于25cm,造成隧道的塌方、开裂的原因大多因为结构的选择不合理,比如不设防水隔离层、衬砌背后有较大空洞等,就是引起裂缝和失稳的主要原因。

用土压力盒监控量测围岩接触应力时,首先应将土压力盒埋设在初期支护与围岩之间,为保证监控量测精度,应埋设牢靠。有钢拱架时,土压力盒应牢牢固定在钢拱架与围岩之间;无钢拱架时,压力盒应使用钢钉固定,以防喷射混凝土时压力盒移动和转向。土压力盒埋好后应立即读取初始数据,并在施工过程中根

据工程需要,按一定的频率进行监控量测。值得注意的是,必须根据以往的经验预估压力值,并选择相应的压力盒,以提高测试精度。

《岩石力学》地应力及其测量

1. 地壳是静止不动的还是变动的?怎样理解岩体的自然平衡状态? 答:地壳是变动的。 自然平衡状态是指:岩体中初始应力保持不变的状态。 2. 初始应力、二次应力和应力场的概念。 答:未受影响的应力称为初始应力 工程开挖时,受工程开挖影响而形成的应力称为二次应力 地应力是关于时间和空间的函数,可以用“场”的概念来描述,称之为地应力场。 3. 何谓海姆假说和金尼克假说? 答:海姆首次提出了地应力的概念,并假定地应力是一种静水应力状态,即地壳中 任意一点的应力在各个方向上均相等,且等于单位面积上覆岩层的重量,即???= ????=???? 金尼克认为地壳中各点的垂直应力等于上覆岩层的重量,而侧向应力(水平应力)是泊松效应的结果,其值应为乘以一个修正系数K。他根据弹性力学理论,认 为这个系数等于?? 1-??,即????=????,???=?? 1-?? ???? 4. 地应力是如何形成的? 答:地应力的形成主要与地球的各种动力运动过程有关,其中包括:板块边界受压、地幔热对流、地球内应力、地心引力、地球旋转、岩浆侵入和地壳非均匀扩容等。 另外,温度不均、水压梯度、地表剥蚀或其他物理化学变化等也可引起相应的应力 场。 5. 什么是岩体的构造应力?构造应力是怎样产生的?土中有无构造应力?为什么?答:岩体中由于地质构造运动引起的应力称为构造应力。 关于构造应力的形成有两种观点:地质力学观点认为是地球自转速度变比的结果;大地构造学说则认为是出于地球冷却收缩、扩张、脉动、对流等引起的,如板 块边界作用力。 土中没有构造应力,由于土本身是各向同性介质,不存在地质构造。 6. 试述自重应力场与构造应力场的区别和特点。 答:由地心引力引起的应力场称为重力应力场,重力应力场是各种应力场中惟一能 够计算的应力场。地壳中任一点的自重应力等于单位面积的上覆岩层的重量,即????=????。 重力应力为垂直方向应力,它是地壳中所有各点垂直应力的主要组成部分,但 是垂直应力一般并不完全等于自重应力,因为板块移动,岩浆对流和侵入,岩体非 均匀扩容、温度不均和水压梯度均会引起垂直方向应力变化。 构造应力是由地质构造运动形成的。当前的构造应力状态主要由最近一次的构 造运动所控制,但也与历史上的构造运动有关。构造应力主要表现为以水平应力为 主,“在构造应力的作用仅影响地壳上层一定厚度的情况下,水平应力分量的重要性远远超过垂直应力分量。” 7. 岩体原始应力状态与哪些因素有关? 答:地形地貌;岩体结构;岩石力学性质;地下水。 8. 简述地应力场的分布规律 答:1)地应力场的特性 (1)地应力场是一个以水平应力为主的三向不等压应力场 (2)地应力场是一个具有相对稳定性的非稳定应力场 2)垂直应力的分布规律 在深度为25~~2700m的范围内,????呈线性增长,大致相当于按平均容量??γ等于273kN???-3?计算出来的重力????。 3)水平应力的分布规律

地应力与地应力测量方法简介

地应力与地应力测量方法简介地应力,又称原岩应力,也称岩体初始应力或绝对应力,是在漫长的地质年代里,由于地质构造运动等原因产生的。在一定时间和一定地区内,地壳中的应力状态是各种起源应力的总和。主要由重力应力、构造应力、孔隙压力、热应力和残余应力等耦合而成,重力应力和构造应力是地应力的主要来源。地应力的形成主要与地球的各种动力运动过程有关,其中包括:板块边界受压、地幔热对流、地球内应力、地心引力、地球旋转、岩浆侵入和地壳非均匀扩容等。另外,温度不均、水压梯度、地表剥蚀或其他物理化学变化等也可引起相应的应力场。而重力作用和构造运动是引起地应力的主要原因,其中尤以水平方向的构造运动对地应力的形成影响最大。 地应力测量,就是确定拟开挖岩体及其周围区域的未受扰动的三维应力状态,这种测量通常是通过多个点的量测来完成的。地应力测量是确定工程岩体力学属性、进行围岩稳定性分析、实现岩土工程开挖设计和决策科学化的前提。地应力对矿山开采、地下工程和能源开发等生产实践均起着至关重要的作用,所以地应力研究是当前国际采矿界上的一个前沿性课题,近几十年来,世界上许多国家均开展了地应力的测量及应用研究工作,取得了众多的成果。 随着矿区开采现代化进程的不断提高和开采深度的不断增加,对矿区所处的地质条件和应力环境提出了更进一步的要求。查明矿区深部煤炭资源的开采地质条件和应力环境,为深部矿井的设计、建设和生产提供更加精细可靠的地质资料和数据,以便采取有效技术手段和措施,避免和减少灾害的发生,是实现矿井安全高效生产的重要保障。 地应力是引起采矿工程围岩、支架变形和破坏、产生矿井动力现象的根本作用力,在诸多的影响采矿工程稳定性因素中,地应力是最重要和最根本的因素之一。准确的地应力资料是确定工程岩体力学属性,进行围岩稳定性分析和计算,矿井动力现象区域预测,实现采矿决策和设计科学化的必要前提条件。 采矿规模的不断扩大和开采深度的纵深发展,地应力的影响越加严重,不考虑地应力的影响进行设计和施工往往造成露天边坡的失稳、地下巷道和采场的坍塌破坏、冲击地压等矿井动力现象的发生,致使矿井生产无法进行,并经常引起

障碍物检测方法和设备的生产技术

本公开涉及自动驾驶技术领域。本公开的实施例公开了障碍物检测方法和装置。该方法包括:获取第一车载激光雷达采集到的第一点云数据和第二车载激光雷达采集到的第二点云数据;其中,第一车载激光雷达和所述第二车载激光雷达装载在同一辆自动驾驶车辆上,所述第一车载激光雷达距离地面的高度大于第二车载激光雷达距离地面的高度且所述第一车载激光雷达的线束数大于所述第二车载激光雷达的线束数;基于所述第一点云数据进行地面估计;根据所述第一点云数据的地面估计结果,滤除所述第二点云数据中的地面点;基于滤除地面点之后的第二点云数据进行障碍物检测。该方法实现了更加全面、准确的障碍物检测。 权利要求书 1.一种障碍物检测方法,包括: 获取第一车载激光雷达采集到的第一点云数据和第二车载激光雷达采集到的第二点云数据;其中,所述第一车载激光雷达和所述第二车载激光雷达装载在同一辆自动驾驶车辆上,所述第一车载激光雷达距离地面的高度大于第二车载激光雷达距离地面的高度且所述第一车载激光雷达的线束数大于所述第二车载激光雷达的线束数;

基于所述第一点云数据进行地面估计; 根据所述第一点云数据的地面估计结果,滤除所述第二点云数据中的地面点; 基于滤除地面点之后的第二点云数据进行障碍物检测。 2.根据权利要求1所述的方法,其中,所述基于所述第一点云数据进行地面估计,包括: 将所述第一点云数据划分入预设的空间栅格,对每个栅格内的第一点云数据进行降采样,并在该栅格内拟合出地面; 基于各栅格内的地面拟合结果之间的差异、以及各栅格内拟合得出的地面与所述第一点云数据所在坐标系的坐标轴之间的夹角,修正地面拟合结果,得到所述第一点云数据的地面估计结果。 3.根据权利要求1所述的方法,其中,所述根据所述第一点云数据的地面估计结果,滤除所述第二点云数据中的地面点,包括: 计算所述第二点云数据中的数据点与基于第一点云数据估计出的地面之间的距离,将所述第二点云数据中与基于第一点云数据估计出的地面之间的距离小于预设距离阈值的数据点确定为地面点; 滤除所述第二点云数据中的地面点。 4.根据权利要求1所述的方法,其中,所述基于滤除地面点之后的第二点云数据进行障碍物检测,包括: 将所述第一点云数据与滤除地面点之后的第二点云数据融合后进行障碍物检测。 5.根据权利要求1-4任一项所述的方法,其中,所述第二激光雷达为单线激光雷达。

地应力测试步骤、所需仪器及注意事项总结——张念超

地应力测试步骤、所需仪器及注意事项总结从淮南到淮北,地应力测试做了五个孔了,成功率60%。虽然成功率刚刚过半,但这都是我们课题组在没有任何前辈莅临指导的情况下,经过多个井下不眠之夜,独立摸索完成的。虽然做地应力测试比较苦,但是虽苦犹乐,因为我们又掌握了一样新知识,新技术。 现根据我们在朱集矿和孙疃矿做地应力测试的情况,总结经验吸取教训,总结地应力测试步骤、所需仪器及注意事项如下: 1、地质钻打孔。 1.1步骤: (1) 地点选取。选取整体岩性较好区域的巷道,安设测点。测点巷道内应水电方便,地质钻工作时应不影响巷道运输。 (2) 打孔取芯。使用75/105型地质钻机,配直径为42mm/50mm的接长钻杆,并运用特制的取芯套筒(长度为2m和1m,直径为127 mm)及平钻头(直径为127 mm),在所测巷道岩壁上打直径为127 mm的水平钻孔,至巷道跨度的2~3倍深处,以保证应变计安装位置位于原岩应力区。当钻孔至预定长度时,取出岩芯,并编号套袋保护岩芯。 (3)打空心包体孔。利用自备的钻头(直径为127 mm),其上带有长370mm,直径36mm的小钻头,打同心小孔并取岩芯,同时将孔底磨平,并用锥形钻头打出7cm长的喇叭口,小孔深35~40cm。此小孔一杆打到底,钻孔过程中,必须利用2m长岩芯管定向。 (4) 冲洗钻孔。小孔成形后,抽出钻杆5cm,用钻机的水管冲洗。 1.2注意事项 (1) 钻孔要稍向上倾斜,并测量倾斜角度确切数值,一般控制在3°~5°,以便排水并易于清洗钻孔; (2) 打孔要一次用一种钻头,不要先打孔再扩孔,因为孔长度较大,容易导致两钻头轴向不在同一条直线上,进而产生台阶,安装时定位器会被卡住,孔就废掉了。 1.3仪器准备 (1) 矿方准备:75/105型地质钻机;42mm/50mm钻杆;长度2m和1m,直径127 mm 取芯套筒;直径127 mm平钻头,岩芯箱:1000mm×500mm×150mm。 (2) 矿大自备:记号笔;记录本;塑料袋;直径127 mm带有直径36mm的小钻头

回采工作面支护专项设计

150102回采工作面支护专项设计 矿长: 总工程师: 编制人: 编制时间:二O一三年七月四日

一、概况

山西长治联盛首阳山煤业有限公司位于长治县西南15km 处八义镇石窝沟村一带,行政区划属八义镇管辖。 地理坐标为东经112°57″32′—112°59″12′,北纬35°55″25′—35°58″01′。 山西省煤炭工业厅文件晋煤办基发[2010]654号“关于山西长治联盛首阳山煤业有限公司矿井兼并重组整合项目初步设计的批复”,生产能力为90万t/a。井田保有资源/储量为34.12Mt,设计可采储量18.34 Mt,矿井设计开采服务年限14.6年。 2012年10月23日,山西省国土资源厅为山西长治联盛首阳山煤业有限公司换发的第C1400002009121220051251号《采矿许可证》,批准山西长治联盛首阳山煤业有限公司矿井井田面积为6.6898km2,开采3号~15号煤层,现开采15号煤层。 二、150102工作面位置 井下位置及相邻关系:150102回采工作面位于井田南部,南为井田南边界采空区,北为石窝沟村和原3#煤坑口工业广场(现养猪场)保安煤柱,东为设计150103运输顺槽,西为150101工作面采空区。

地面相对位置:150101回采工作面相对应的地面位置为 长治县八义镇石窝沟村向南的山脊地带,范围内有少量的农田,无民房。 工作面地面标高+1170m- +1266m, 井下标高+920m—+ 968m 三、含煤特征 150102采煤工作面开采煤层为15#煤层位于太原组下部,3号煤层之下107.36m,可采煤层平均厚度4.2m,含1层炭质泥岩夹矸,结构简单,属全区发育,全区可采之稳定煤层,为一型,顶板为石灰岩,底板为泥岩。 四、瓦斯、煤尘和煤的自燃 1、煤层瓦斯 据山西省煤炭工业厅文件晋煤瓦发[2013]391号文件,本 矿15号煤层瓦斯绝对涌出量为0.65m3/min,相对涌出量为 0.56m3/t,为瓦斯矿井。 2、煤尘爆炸性 综上表所述,本矿15#煤具有爆炸性,在生产过程中应加强洒

地应力测量

地应力测量的国内外研究现状 0 引言 地应力(in-situ stress),又称原岩应力,也称岩体初始应力或绝对应力,是在漫长的地质年代里,由于地质构造运动等原因产生的。在一定时间和一定地区内,地壳中的应力状态是各种起源应力的总和。主要由重力应力、构造应力、孔隙压力、热应力和残余应力等耦合而成,重力应力和构造应力是地应力的主要来源。地应力的形成主要与地球的各种动力运动过程有关,其中包括:板块边界受压、地幔热对流、地球内应力、地心引力、地球旋转、岩浆侵入和地壳非均匀扩容等。另外,温度不均、水压梯度、地表剥蚀或其他物理化学变化等也可引起相应的应力场(雷化南,等译.1976)。而重力作用和构造运动是引起地应力的主要原因,其中尤以水平方向的构造运动对地应力的形成影响最大。因此,岩石中的原地应力是由主动施加的力和积蓄的残余应变两者引起的。 地应力测量(In situ stress measurement),就是确定拟开挖岩体及其周围区域的未受扰动的三维应力状态,这种测量通常是通过多个点的量测来完成的。地应力测量是一项综合性的测试,可以说任何一种单一的方法都不能很好地完成,往往需要几种方法结合起来对比使用,才可以保证结果的可靠性。即使如此,地应力测量中也往往会出现同一测点测量值分散的情况。 地应力测量是确定工程岩体力学属性、进行围岩稳定性分析、实现岩土工程开挖设计和决策科学化的前提。地应力对矿山开采、地下工程和能源开发等生产实践均起着至关重要的作用,所以地应力研究是当前国际采矿界上的一个前沿性课题,近几十年来,世界上许多国家均开展了地应力的测量及应用研究工作,取得了众多的成果。 1 地应力测量在国外发展概况及研究现状 人们最初对地应力概念的认识以及地应力测量技术的发展都源于早期的矿山工程建设,最早的原位地应力测量起始于20世纪30年代。1932年,美国人劳伦斯(Lieurace)在胡佛坝(HooverDam)下面的一个隧道中采用岩体表面应力解除法首次成功地进行了原岩应力的测量。此后,地应力测试技术一直停留在岩体表面应力测量上,发展十分缓慢,在20世纪50年代,哈斯特(Hast)采用应力解

矿山地应力测试方案

- 矿山地应力测试工作方案 省XXXXXX勘察院 2015年4月

目录 1 前言 (2) 2 地应力的基本原理 (2) 2.1 地应力的基本概念 (2) 2.2 地应力的组成部分和影响因素 (3) 2.3 地应力场的变化规律 (5) 2.4 我国地应力场的区域划分 (8) 3 水压致裂法试验介绍 (9) 3.1 水压致裂法基本原理 (9) 3.2 水压致裂法地应力测量的主要设备 (14) 3.3 水压致裂法测试步骤 (15) 4 测试结果 (17) 4.1 参数确定 (17) 4.2 现场实测 (18) 5 测试成果综合分析 (21) 5.1 试验结果的可靠性分析 (21) 5.2 最大水平主应力的量级 (21) 5.3 最大水平主应力的方向 (21) 5.4 侧压系数及应力构成分析 (21) 5.5 分析最大、最小水平主应力与岩层深度的关系 (22) 6 地应力场反演分析 (23) 6.1 有限元数学模型多元回归分析法基本原理 (24) 6.2回归结果分析 (25)

1 前 言 地应力是引起采矿和其他各种地下或露天岩土开挖工程变形和破坏的根本作用力,是确定工程岩体力学属性,进行围岩稳定性分析,实现岩土工程开挖设计和决策科学化的必要前提。 地应力是所有地下工程,包括地下采场、巷道地压显现的根本来源。地应力是存在于地层中的天然应力,也称原岩应力。在没有开挖工程扰动的情况下,岩体处于原始平衡状态。地下巷道或采场的开挖,打破了原始平衡状态,导致地应力的释放,从而引起岩体的变形和向自由面的位移,引起围岩应力的重新分布。围岩的过量位移和应力集中将导致围岩局部的或整体的失稳和破坏,这就是地压形成的过程和机理。因此,从本质上来定义,地压就是岩体因受开挖扰动而产生的力学效应。它与岩体的受力状态、岩体结构和重量、岩体物理力学性质、工程地质条件以及时间等因素有关。 2 地应力的基本原理 2.1 地应力的基本概念 蓄存在岩体部未受扰动的应力,称之为地应力(Insitu stress 或Geostress),它是岩体中存在的一种固有力学状态,是岩体区别于其它固体如土体的最基本特征。 地应力的概念最早是由瑞士地质学家海姆(Heim ,1905-1912)提出。他认为,岩体中有应力存在,并处于近似静水压力状态。应力的大小等于上覆岩体的自重,即岩体中各个方向的应力均等于H γ(γ为岩体的重度,H 为研究点的深度)。此后,金尼克(1926)又根据弹性理论分析,假定岩体是均匀、连续的弹性介质,提出岩体的铅垂应力为H γ,而水平应力应等于H γμμ -1的假说(μ为岩石的泊松比,μ μ-1为侧压系数)。按照金尼克的理论,海姆假说只是金尼克假说在5.0=μ时的一个特例。 然而,随着地应力现场实测资料的积累,表明在浅层的地应力并不

煤矿巷道锚杆支护参数设计

巷道锚杆支护参数设计 一、锚杆支护理论研究 (一)锚杆支护综述 1、锚杆支护技术的发展 锚杆支护作为一种有效的、技术经济优越的采准巷道支护方式,自美国1912年在aberschlesin(阿伯施莱辛)的Friedens(弗里登斯)煤矿首次使用锚杆支护顶板至今已有90多年的历史。 1945~1950年,机械式锚杆研究与应用; 1950~1960年,采矿业广泛采用机械式锚杆,并开始对锚杆支护进行系统研究; 1960~1970年,树脂锚杆推出并在矿山得到了应用; 1970~1980年,发明管缝式锚杆、胀管式锚杆并得到了应用,同时研究新的设计方法,长锚索产生; 1980~1990年,混合锚头锚杆、组合锚杆、特种锚杆等得到了应用,树脂锚固材料得到改进。 美国、澳大利亚、加拿大等国由于煤层埋藏条件好,加之锚杆支护技术不断发展和日益成熟,因而锚杆支护使用很普遍,在煤矿巷道的支护中的比重几乎达到了100%。 澳大利亚锚杆支护技术已经形成比较完整的体系,处于国际领先水平。澳大利亚的煤矿巷道几乎全部采用W型钢带树脂全长锚固组合锚杆支护技术,尽管其巷道断面比较大,但支护效果非常好。对于复合顶板、破碎顶板及其巷道交叉点、大跨度硐室等难维护的地方,采用锚索注浆进行补强加固,控制了围岩的强烈变形。美国一直采用锚杆支护巷道,锚杆消耗量很大。锚杆种类也较多,有胀壳式、树脂式、复合锚杆等。组合件有钢带。具体应用时,根据岩层条件选择不同的支护方式和参数。 锚杆支护发展最快的是英国。在1987年以前,英国煤矿巷道支护90%以上采用金属支架,而且主要是矿用工字钢拱型刚性支架。由于回采工作面单产低、效率低、巷道支护成本高,

回采巷道锚网索支护设计决策系统的应用与研究(最新版)

回采巷道锚网索支护设计决策系统的应用与研究(最新版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0222

回采巷道锚网索支护设计决策系统的应用 与研究(最新版) 1、前言 锚杆支护作为一种新的巷道支护形式,与传统支护方式相比,在改善支护效果、降低支护成本、加快成巷速度、减轻劳动强度、提高巷道断面利用率、简化回采面端头区维护工艺等方面的优越性十分突出。因而受到了世界主要产煤国家的普遍重视,代表了煤矿巷道支护技术的发展方向。 目前,三河口矿在回采巷道支护中,普遍采用了“锚网索”联合支护形式。虽然取得了较为显著的经济效益和安全效果,但是,长期以来,锚网索支护参数一直以周边邻近矿区的经验为主,没有针对矿的具体地质条件和开采条件进行科学合理的锚网索支护设计。因此,带有较大的盲目性,导致支护设计参数缺乏科学依据,

给矿井的安全生产带来了隐患。为了解决上述何题,针对的主采煤层 ——3上煤层的地质条件和目前巷道支护状,能够通过计算机可视化手段,建立一套锚网索支护的力学模型,决定开发《3上煤层回采巷道锚网索支护设计系统》,为回采巷道支护设计提供依据。 2、3上煤层回采巷道支护现状 3上煤层回采巷道目前普遍采用矩形断面,巷道净高度一般为2.5m,巷道净宽度一般为3.2-3.5m。采用锚网带、锚索联合支护。顶板选用Ф18mm的螺纹树脂锚杆,锚杆长度1.8m。锚杆间排距为800mm ×800mm(700mm×800mm),排距0.8m(0.7m),每排锚杆的锚杆数为5根,两肩窝处锚杆的安装角度为70o,锚杆间距为0.8m。(见图1)金属网采用10#铁丝编制成菱形网,网格为30mm×30mm。为了加强顶板支护强度,每隔2.4m安装锚索2根。锚索长度5m,直径15.24mm,由低松弛预应力钢绞线绞合而成,与W钢带配合使用。W 钢带型号为WX180/3.0(辅助顺槽),WX180/3.2(运输顺槽)。锚索孔间距为1200mm。

主要巷道支护技术研究措施

神华宁煤集团清水营煤矿 主要巷道支护技术研究方案 神华宁煤集团 山东科技大学 二○○九年六月

1 工程的必要性1 1.1 现状分析1 1.2 国内外同类技术发展状况4 1.3 研究目的及意义5 2 研究开发内容6 3 主要经济技术指标、工程最终目标7 4 关键技术及创新点7 5 研究或研制开发的技术路线,实施的方式、方法、步骤7 5.1 课题的总体研究思路7 5.2 研究方法8 5.3 技术路线8 5.4 实施方式<具体方案)9 5.5 矿压观测18 6 技术、经济可行性及可靠性分析、论证19 7 现有基础、技术条件,保证体系20 7.1 实用矿山压力理论已经取得了系统的突破性成果20 7.2 岩石破坏与失稳理论20 7.3 深部巷道支护取得一些创新性研究成果21 7.4 实践基础22 8 经济、社会效益分析24 9 工程实施进度计划24 10 经费计划25

QSYK-1 神华宁煤集团清水营煤矿 主要巷道支护技术研究方案 1工程的必要性 1.1现状分析 1.1.1矿井地质情况 矿区钻孔揭露地层自下而上有三叠系、侏罗系、白垩系、古近系、第四系,含煤地层为侏罗系中统延安组,钻孔揭露厚度245.01~304.86m,平均276.50m,岩性由灰、灰白色长石石英砂岩、深灰色、灰黑色粉砂岩、泥岩、煤和少量含铝质泥岩组成。主要可采煤层顶板均为易冒落、不稳定—中等冒落、中等稳定岩层,底板为不稳定岩层。 矿井地层中含水层属弱~中等富水性,分别为第四系孔隙潜水含水层<Ⅰ)、白垩系砾岩裂隙孔隙层间承压含水层<Ⅱ)、侏罗系上统安定组~中统直罗组裂隙孔隙含水层<Ⅲ)、二~八煤间砂岩裂隙孔隙承压含水层<Ⅳ)、八~十八煤间砂岩裂隙孔隙承压含水层<Ⅴ)、十八煤以下至底部分界线砂岩含水层组<Ⅵ),隔水层以低阻、高密度的粉砂岩、泥岩为主,主要有四层,分别为安定~直罗组裂隙孔隙含水层顶板隔水层、二~八煤含水层顶板隔水层、八煤及其顶底板泥岩隔水层、十八煤及其顶底板泥岩隔水层。 1.1.2主要巷道设计布置层位 <1)主斜井、副斜井由六煤-五煤露头对应地面位置开口,由四上- 三煤间进入煤系地层,穿过三煤后进入二煤底板。主斜井坡度为22°~24°~25°,副斜井坡度为22°~25°,所处层位为四上- 二煤之间的砂岩层。该层位由灰、灰白、深灰色不同粒级的砂岩组成,属二煤- 八煤间砂岩含水层

B050303 边角煤回采巷道的布置及支护方式

边角煤回采巷道的布置及支护方式 王永志 【晋城煤业(集团)公司凤凰山煤矿】 摘要以凤凰山矿2313小块段(上)工作面为例,介绍边角煤回采过程中巷道的布臵及支护方式,对老区三矿回收残留资源有重要的指导意义。 关键词边角煤巷道布臵支护形式 截止2004年6月,凤凰山矿3#煤正规工作面储量仅剩100万t,到2004年末即可采完,面临着井下优势煤资源枯竭的窘境。同时矿井仍有较大的9#煤储量,约1677万t,但因硫份较高而单独开采不经济。因此,为提高3#煤优势资源的回收率,延长矿井寿命,回收边角3#煤就成为矿山的一项重点工作。但边角煤周边都是已经回采过的采空区,其回采受到条件限制。煤(岩)体破碎、矿山压力显现剧烈,巷道经常在开掘后不久即顶底板、两帮移近量异常增大,致使巷道断面严重缩小,并容易发生顶板局部冒落、巷道片帮等现象,甚至整条巷道全部压垮。因此,合理进行巷道布臵和支护选型对边角煤柱回采具有很大影响。凤凰山矿2313东小段(上)工作面采用留小煤柱沿空掘巷,既达到回收煤柱的目的,又避开峰值压力区,有利于巷道的掘进和维护。在支护设计中,经多种方案比较,最终采用锚、棚联合支护。这种支护形式充分利用了棚式支护和锚杆支护的优点,保证了安全生产,为残留煤柱回采工作面巷道的布臵和支护设计开辟了一条新的途径。 1 工作面概况 1.1 工作面地质概况 2313东小块工作面回收的煤柱走向长435m,倾向宽54m。其内有一个背斜和一个向斜,背斜轴部距停采线50m,轴向NE,向NE倾斜,两翼倾角0~2°;向斜轴距停采线420~430m,轴向SN,向SN仰起,两翼倾角2~11°。煤层平均厚度5.6m,上分层开采平均厚度2.7m。老顶为细砂岩,厚3.36m,直接顶为砂质泥岩,厚3.58m;直接底为砂质泥岩,厚2.99m,老底为白砂岩,厚1.66m。 1.2 工作面四周采掘情况 2313小块工作面工作面东为2307工作面(已采)、南为2116巷道(已掘)、西为2313工作面(已采)、北为小窑拦截巷(已进行仓房开采),在工作面中部煤层下是2107大巷的后半段(已掘)。 2 回采巷道布置方式的选择 2.1 工作面矿压显现规律

地应力与地应力测量方法简介

地应力与地应力测量方法简介 地应力,又称原岩应力,也称岩体初始应力或绝对应力,是在漫长的地质年代里,由于地质构造运动等原因产生的。在一定时间和一定地区内,地壳中的应力状态是各种起源应力的总和。主要由重力应力、构造应力、孔隙压力、热应力和残余应力等耦合而成,重力应力和构造应力是地应力的主要来源。地应力的形成主要与地球的各种动力运动过程有关,其中包括:板块边界受压、地幔热对流、地球内应力、地心引力、地球旋转、岩浆侵入和地壳非均匀扩容等。另外,温度不均、水压梯度、地表剥蚀或其他物理化学变化等也可引起相应的应力场。而重力作用和构造运动是引起地应力的主要原因,其中尤以水平方向的构造运动对地应力的形成影响最大。 地应力测量,就是确定拟开挖岩体及其周围区域的未受扰动的三维应力状态,这种测量通常是通过多个点的量测来完成的。地应力测量是确定工程岩体力学属性、进行围岩稳定性分析、实现岩土工程开挖设计和决策科学化的前提。地应力对矿山开采、地下工程和能源开发等生产实践均起着至关重要的作用,所以地应力研究是当前国际采矿界上的一个前沿性课题,近几十年来,世界上许多国家均开展了地应力的测量及应用研究工作,取得了众多的成果。 随着矿区开采现代化进程的不断提高和开采深度的不断增加,对矿区所处的地质条件和应力环境提出了更进一步的要求。查明矿区深部煤炭资源的开采地质条件和应力环境,为深部矿井的设计、建设和生产提供更加精细可靠的地质资料和数据,以便采取有效技术手段和措施,避免和减少灾害的发生,是实现矿井安全高效生产的重要保障。 地应力是引起采矿工程围岩、支架变形和破坏、产生矿井动力现象的根本作用力,在诸多的影响采矿工程稳定性因素中,地应力是最重要和最根本的因素之一。准确的地应力资料是确定工程岩体力学属性,进行围岩稳定性分析和计算,矿井动力现象区域预测,实现采矿决策和设计科学化的必要前提条件。 采矿规模的不断扩大和开采深度的纵深发展,地应力的影响越加严重,不考虑地应力的影响进行设计和施工往往造成露天边坡的失稳、地下巷道和采场的坍塌破坏、冲击地压等矿井动力现象的发生,致使矿井生产无法进行,并经常引起

地应力知识

地应力知识 简介 地应力是存在于地层中的未受工程扰动的天然应力,也称岩体初始应力、绝对应力或原岩应力。 随着水利水电、矿山、交通与城建等边坡、洞室及深基坑等事故的明显增加从而使人们对地应力引起较为广泛的注意与重视,所以,地应力研究不但具有重要的实际意义,而且具有重要的理论意义。 一地应力的成因 产生地应力的原因是十分复杂的,也是至今尚不十分清楚的问题。30多年来的实测和理论分析表明,地应力形成主要与地球的各种动力运动过程有关,其中包括: 板块边界受压、地幔热对流、地球内应力、地心引力、地球旋转、岩浆侵入和地壳非均匀扩容等。另外,温度不均、水压梯度、地表剥蚀或其它物理化学等也可引起相应的应力场,其中,构造应力场和重力应力场是现今地应力场的主要组成部分。 1大陆板块边界受压引起的应力场 以中国大陆板块为例,由于受到印度板块和太平洋板块的推挤,推挤速度为每年数厘米,同时受到西伯利亚板块和菲律宾板块的约束。在这样的边界条件下,包括发生变形,产生水平受压应力场。2地幔热对流引起的应力场 由硅镁质组成的地幔因温度很高,具有可塑性,并可以上下对流和蠕动。地幔热对流引起地壳下面的水平切向应力,在亚洲形成由孟加拉湾一直延伸到贝加尔湖的最低重力槽。 3由地心引力引起的应力场(也称为重力场) 重力场,是各种应力场中唯一能够计算的应力场。重力应力为垂直方向应力,是地壳中所有各点垂直应力的主要组成部分,但是垂直应力一般并不完全

等于自重应力,因为板块移动、岩浆对流和侵入、岩体非均匀扩容、温度不均和水压梯度均会引起垂直方向应力变化。 4岩浆侵入引起的应力场 岩浆侵入挤压、冷凝收缩和成岩,均在周围底层中产生相应的应力场,其过程也是相当复杂。熔融状态的岩浆处于静水压力状态,对其周围施加的是各个方向相等均匀压力,但是热的岩浆侵入后逐渐冷凝收缩,并从接触面界面逐渐向内部发展,不同的热膨胀系数及热力学过程会使侵入岩浆自身及其周围岩体应力产生复杂的变化过程。 岩浆侵入引起的应力场是一种局部应力场。 5地温梯度引起的应力场 地层的温度随着深度增加而升高,一般为a=3℃/100m。由于地温梯度引起地层中不同深度不相同的膨胀,从而引起地层中的压应力,其值可达相同深度自重应力的数分之一。6地表剥蚀产生的应力场 地壳上升部分岩体因为风化、侵蚀和雨水冲刷搬运而产生剥蚀作用。剥蚀后,由于岩体内的颗粒结构的变化和应力松弛赶不上这种变化,导致岩体内仍然存在着比由地层厚度引起的自重应力还要大得多的水平应力值。因此,在某些地区,水平应力除与构造应力有关外,还和地表剥蚀有关。 二地应力的研究观点 对地应力的研究已有一百多年的历史了,但总的说来,现在主要有三种观点: 1“静水应力式”分布的观点 它最早是海姆(Heim)于1878年提出的“静水压力”假说。 以后(1905~1912年),又提出相应的应力计算公式。1925年,金尼克也提出了弹性理论计算法及相应的公式。但事实表明,它们只能适用于一定的环境条件下,如,埋深较大的未受到扰动的地层。

地应力与地应力测量方法简介

3.1 地应力与地应力测量方法简介 地应力,又称原岩应力,也称岩体初始应力或绝对应力,是在漫长的地质年代里,由于地质构造运动等原因产生的。在一定时间和一定地区,地壳中的应力状态是各种起源应力的总和。主要由重力应力、构造应力、孔隙压力、热应力和残余应力等耦合而成,重力应力和构造应力是地应力的主要来源。地应力的形成主要与地球的各种动力运动过程有关,其中包括:板块边界受压、地幔热对流、地球应力、地心引力、地球旋转、岩浆侵入和地壳非均匀扩容等。另外,温度不均、水压梯度、地表剥蚀或其他物理化学变化等也可引起相应的应力场。而重力作用和构造运动是引起地应力的主要原因,其中尤以水平方向的构造运动对地应力的形成影响最大。 地应力测量,就是确定拟开挖岩体及其周围区域的未受扰动的三维应力状态,这种测量通常是通过多个点的量测来完成的。地应力测量是确定工程岩体力学属性、进行围岩稳定性分析、实现岩土工程开挖设计和决策科学化的前提。地应力对矿山开采、地下工程和能源开发等生产实践均起着至关重要的作用,所以地应力研究是当前国际采矿界上的一个前沿性课题,近几十年来,世界上许多国家均开展了地应力的测量及应用研究工作,取得了众多的成果。 随着矿区开采现代化进程的不断提高和开采深度的不断增加,对矿区所处的地质条件和应力环境提出了更进一步的要求。查明矿区深部煤炭资源的开采地质条件和应力环境,为深部矿井的设计、建设和生产提供更加精细可靠的地质资料和数据,以便采取有效技术手段和措施,避免和减少灾害的发生,是实现矿井安全高效生产的重要保障。 地应力是引起采矿工程围岩、支架变形和破坏、产生矿井动力现象的根本作用力,在诸多的影响采矿工程稳定性因素中,地应力是最重要和最根本的因素之一。准确的地应力资料是确定工程岩体力学属性,进行围岩稳定性分析和计算,矿井动力现象区域预测,实现采矿决策和设计科学化的必要前提条件。 采矿规模的不断扩大和开采深度的纵深发展,地应力的影响越加严重,不考虑地应力的影响进行设计和施工往往造成露天边坡的失稳、地下巷道和采场的坍塌破坏、冲击地压等矿井动力现象的发生,致使矿井生产无法进行,并经常引起

回采巷道锚网支护设计

回采巷道锚网支护设计 ⑴巷道断面形状及尺寸 根据工作面煤层赋存情况、顶板岩层结构、围岩节理裂隙发育等具体地质情况,考虑到本巷道服务于未来综采工作面开采的需要,因此,在保证运输设备布置的前提下,为便于巷道施工和有利于顶板稳定,充分提高巷道断面利用率,巷道沿顶掘进,断面形状设计为不规则矩形(见图4-4)。 图4-4顺槽断面形状 考虑到工作面开采期间巷道变形缩小等因素影响,巷道掘进断面尺寸应保证在工作面生产期间满足设备布置、运输、行人、通风等生产系统要求为原则,同时兼顾到施工方便等,具体确定巷道断面尺寸为: 运输顺槽:巷宽4.0m,巷高2.2m。 回风顺槽:巷宽3.8m,巷高2.2m。 ⑵支护方案设计 ①支护方式选择 根据巷道支架与围岩相互作用和共同承载原理,围岩是一种天然承载结构,在开掘巷道、架设支架以后形成的“支架一围岩”力学平衡系统中,围岩通常承受着大部分岩层压力,而支架却只承担其中一小部分。这说明,地下巷道中架设的支架,与承受固定静载的地面结构不同,给支架施载的围岩同时又是承载体,可以把围岩看作是一种天然的承载结构。因此,要重视巷道围岩自身具有承载能力,即自承力这个事实,合理利用巷道围岩的自承力。 为了利用围岩的自承力,就要容许围岩产生某些变形。这种变形会使围岩中的能量得到一定释放,从而起到一定的“卸载作用”,这将有利于减轻支架受载。但应当注意的是,这种变形应是有限制的。合理利用围岩自承力的途径是使支架与围岩在相互约束的状态下共同承载,即在不导致围岩松动破坏的前提下,既充分利用围岩的自承力,又使支架提供的支护阻力最小。 提高围岩自承能力的途径:利用物理法和化学法加固围岩是提高其自承能力的有效措施。前者一般是将不同结构类型的锚杆打入煤或岩体内部,加固围岩;后者是将粘结剂注入煤或岩体内部,通过充填和固结煤或岩体中的裂隙和各种弱面,使之成为一个整体,达到增强围岩自承能力的目的。

地应力检测(1)

1、地质雷达检测隧道支护情况 包括隧道衬砌厚度是否满足设计要求、钢筋保护层厚度是否满足设计要求、隧道衬砌钢筋布臵是否满足设计要求、隧道衬砌钢架布臵是否满足设计要求、隧道衬砌的密实情况(包括二衬背后脱空及初支背后空洞、不密实)。 评判标准:《公路工程质量检验评定标准》(GTG F80/1-2004);参考《铁路隧道衬砌质量无损检测规程》(TB10233-2004)。 2、地应力检测 我国地应力测量试验和研究开始于20世纪50年代后期,迄今为止,地应力测量的主要方法虽然很多,但尚未形成统一的分类标准.根据测量数据特点的不同,地应力测量大体分为绝对应力测量和相对应力测量.前者主要是确定地壳应力背景值,即主应力的大小和方向;后者则是观测应力随时间变化的动态变化规律,通常也称为地应力监测.根据测量基本原理的不同,绝对应力测量方法又可分为直接测量法和间接测量法.所谓直接测量法就是利用测量仪器直接测量和记录各种应力量,并由这些应力量和原岩应力的相互关系直接换算得到原岩应力值.间接测量法则是借助某些传感元件或媒介,测量和记录与岩体相关物理量的变化(如密度、泊松比、弹性波速等变化),然后通过相应的公式换算间接得到原岩应力值.目前,较为常用的绝对应力测量方法主要有水压致裂法、声发射法、钻孔崩落法、套芯应力解除法、应变恢复法等.其中,前3种方法属于直接测量方法,后2种方法属于间接测量方法.相对应力测量方法包括压磁法、压容法、体应变法、分量应变法及差应变法等.我们采用水压致裂法 地应力测量存在的问题与展望:随着我国工程建设不断向深部发展,地应力测量及监测正面临着严峻的考验.与发达国家相比,尚存在许多问题与不足.首先,在宏观层面上存在的问题与挑战有:第一,测量和监测深度不足。目前,国际上最大地应力测量深度已达5100m.在德国的KTB深钻及美国的SAFOD计划中,应力测量深度一般达到2000~3000m;日本也建立了数10座深度为1000~3800m的深井观测台站.我国的绝大部分应力测量深度仅数百米,超过1000m的深井观测极为稀少,这严重制约了测量数据在空间上的代表性.第二,缺乏合理系统的地应力监测网络.我国虽然积累了大量的地应力测量数据,但数据分布不均且质量参差不齐,地应力监测台站少、布局不合理,

回采巷道锚网索支护设计决策系统的应用与研究示范文本

文件编号:RHD-QB-K4151 (安全管理范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 回采巷道锚网索支护设计决策系统的应用与研 究示范文本

回采巷道锚网索支护设计决策系统的应用与研究示范文本 操作指导:该安全管理文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 1、前言 锚杆支护作为一种新的巷道支护形式,与传统支护方式相比,在改善支护效果、降低支护成本、加快成巷速度、减轻劳动强度、提高巷道断面利用率、简化回采面端头区维护工艺等方面的优越性十分突出。因而受到了世界主要产煤国家的普遍重视,代表了煤矿巷道支护技术的发展方向。 目前,三河口矿在回采巷道支护中,普遍采用了“锚网索”联合支护形式。虽然取得了较为显著的经济效益和安全效果,但是,长期以来,锚网索支护参

数一直以周边邻近矿区的经验为主,没有针对矿的具体地质条件和开采条件进行科学合理的锚网索支护设计。因此,带有较大的盲目性,导致支护设计参数缺乏科学依据,给矿井的安全生产带来了隐患。为了解决上述何题,针对的主采煤层 ——3上煤层的地质条件和目前巷道支护状,能够通过计算机可视化手段,建立一套锚网索支护的力学模型,决定开发《3上煤层回采巷道锚网索支护设计系统》,为回采巷道支护设计提供依据。 2、3上煤层回采巷道支护现状 3上煤层回采巷道目前普遍采用矩形断面,巷道净高度一般为2.5m,巷道净宽度一般为3.2-3.5m。采用锚网带、锚索联合支护。顶板选用Ф18mm的螺纹树脂锚杆,锚杆长度1. 8m。锚杆间排距为800mm ×800mm(700mm×800mm),排距0.

应力解除法测试地应力

应力解除法测试地应力 应力测试方法与原理 1测试方法 测试采用应力解除法,测试系统构成主要是YJ—H4静态电阻应变仪和36—2型四分向钢环式钻孔变形计(简称“变形计”),利用变形计测量岩体内某点的空间应变大小和方向。安装在钻孔内的探头上粘贴有4个薄壁钢环(电阻应变片),变形计是通过感应元件的触头与钻孔岩壁紧密接触来接受孔径变形讯号,由应变计 测量变形变化量,然后根据率定曲线换算为孔径变形。此种测量法的突出特点是感应元件安装在变形计的内部,不与钻孔岩壁直接接触,因此变形计可在室内预先安装、设定,不仅在现场操作简便,可以重复使用,而且测量元件具有良好的线性、稳定性及防水性能。 2测试原理 套钻孔径应力解除法的应力测量是建立在弹性理论的基础上,而岩体为裂隙介质,并非理想的弹性体,如果岩体完整或比较完整而应力又不太高时,岩体介质可作线弹性体假设。测量时根据被钻进切割的岩芯的弹性恢复(应变或变形)来计算地应力大小和方向。变形计的结构元件主要是贴有电阻片应变计的圆钢环,4个圆钢环放置在钢环特制架上,4个钢环分别呈45。夹角。试验时每对钢柱塞触头,一端压在钢环上,另一端伸出元件的外套与小孔径钻孔孔壁紧密接触,钢环 受力变形,通过解除岩芯前后的变形或应变差值获取文、晚、是、盈四个变形量,由此可以计算出岩体中钻孔横截面上平面主应力大小和方向。 3现场试验 1主要测试仪器设备及材料的配备 (1)每个测量断面配置不少于5支936~2型变形计; (2)YJ--H4静态电阻应变仪(附预调平衡箱)1套,16芯屏蔽电缆1500m; (3)惠斯登电桥1台; (4)钻孔定向器1套; (5)应变计率定架1套; (6)钻机1部(含若干万36mm、万130ram钻具及钻头); (7)水泵1台; (8)钻孔弹模率定器l套。 在进驻测试现场前,除测试仪器、设备及材料配备齐全外,有关的测试仪器必须进行计量鉴定,鉴定合格后才能进行测试;同时要对各个变形计上的钢环进行位移与应变关系曲线率定。 4 测点布置及要求 测点的位置如图1所示。左洞掌子面里程ZK41+545,右洞掌子面里程 YK41+567。

地应力测量方法共6页

地应力测量方法 1.水压至裂法 水压致裂法地应力测试是通过在钻孔中封隔一小段钻孔,然后向封隔段注入高压流体,从而确定原位地应力的一种方法。水压致裂法的2种方法试验设备相同,都有封隔器、印模器,使用高压泵泵入高压液体使围岩产生新裂隙或使原生裂隙重张。 常规水压致裂法(HF法) HF法是从射井方法移植而来,假定钻孔轴向为1个主应力方向,岩石均质、各向同性、连续、线弹性,采用抗拉破坏准则,在垂直于最小主应力方向出现对称裂缝,其仅能测得垂直于钻孔横截面上的二维应力。在构造作用弱和地形平坦区,垂直孔所测结果可代表2个水平主应力,垂直应力约等于上覆岩体自重,裂缝方位为最大水平主应力方位。 HF法测试周期短,不需要岩石力学参数参与计算,适合工程初勘阶段,不需试验洞,可进行大深度测量,是目前惟一一种可直接进行深部地应力测定的方法。通过对HF法的改进,德国大陆科学深钻计划(KTB)在主孔6 000 m和9 000 m处已成功获得了地应力资料。HF法是一种平面应力测量方法,为获得三维应力,YMizutaI和M KuriyagawaE提出3孔交汇地应力测量,我国长江科学院和地壳所也进行了大量的测试。但研究表明,当钻孔轴向偏离主应力方向,其结果就有疑问,要精确获得三维地应力较困难。为此,文献[7]基于最小主应力破坏准则,对3孔交汇HF法测试理论进行了完善,其有助于提高测量结果的计算精度,但还有待足够的测量数据来验证。

原生裂隙水压致裂法(HTPF法) HTPF法是HF法的发展,其要求在含有原生节理和裂隙的钻孔段进行裂隙重张试验以确定原位应力。HTPF法假定裂隙面是平的,且面上应力一致。对于深孔三维地应力直接测量,HTPF法可进行大尺度的地壳地应力测试,很有发展前途。HTPF法同HF法相比,假设少,不需考虑岩石 破坏准则和孔隙水压力,在单孔中便可获得三维地应力。但用HTPF法测试费时,且裂隙产状和位置的确定误差都可降低计算精度。 2.套钻孔应力解除法 套钻孔应力解除法根据解除方式和传感器的安装部位分为探孔应力解除法、孔底应变解除法和孔壁切割解除法。探孔应力解除法根据传感器的类型可分为孔壁应变法和孔径变形法。 孔壁应变法 孔壁应变法基于岩石各向同性、均质、连续、线弹性的假设,通过孔壁6个以上不同方向的应变值来计算岩体的三维地应力。孔壁应变法又可分为直接粘贴方法和包体方法。CSIR型三轴应变计就是将应变元件直接贴到孔壁中。空心包体是将应变元件贴到薄筒壁中,再用胶将薄筒和孔壁粘结。还有一种实心圆柱式包体技术,由于受包体材料和岩石物理力学性质差异影响大,已基本不用。 孔壁应变法最大的优点是单孔单点可准确测量岩体的三维地应力,缺点是:对岩石的完整性要求高,岩芯解除长度大于40~60 cm,并且在岩芯易饼化时测试很难成功;存在应变元件的粘贴、防潮、全过程测量和定向等问题;受温度变化、岩性差异影响大,测量结果离散性大。

相关文档