文档库 最新最全的文档下载
当前位置:文档库 › 太阳能检测之光伏组件的热斑效应和试验方法

太阳能检测之光伏组件的热斑效应和试验方法

太阳能检测之光伏组件的热斑效应和试验方法
太阳能检测之光伏组件的热斑效应和试验方法

太阳能检测之光伏组件的热斑效应和试验方法

太阳能检测之光伏组件的热斑效应和试验方法

光伏电池是将太阳光辐射能量直接转换成电能的器件。单个硅晶体光伏电池能得到的最大电压约为0.6V,最大电流约为30mA/cm2。因此光伏电池很少单个使用,而是串联或并联起来,以获得所期望的电压或电流。光伏组件正是由多个光伏电池连接和封装而成的产品,是光伏发电系统中电池方阵的基本单元为了达到较高转换效率,光伏组件中的单体电池须具有相似的特性。在实际使用过程中,可能出现电池裂纹或不匹配、内部连接失效、局部被遮光或弄脏等情况,导致一个或一组电池的特性与整体不谐调。失谐电池不但对组件输出没有贡献,而且会消耗其他电池产生的能量,导致局部过热。这种现象称为热斑效应。当组件被短路时,内部功率消耗最大,热斑效应也最严重。

一、热斑效应原理

热斑效应原理

当然,并不是所有的电池都可以通过调整遮光比例达到最佳阻抗匹配。完全遮光情况下,不同特性的Y电池I-V曲线如图3所示。斜率越低,表明电池的并联电阻越大。考虑(S-1)个电池串的最大输出功率点所限定的“试验界限”,根据I-V曲线与“试验界限”的交点,把电池分为电压限制型(A类)和电流限制型(B类)。A类电池并联电阻较大,可以通过减少遮光面积,达到最佳阻抗比配;B类电池的并联电阻较小,完全遮光已是Y电池消耗功率最大的状态。

热斑耐久试验

二、热斑耐久试验

热斑效应可导致电池局部烧毁形成暗斑、焊点熔化、封装材料老化等永久性损坏,是影响光伏组件输出功率和使用寿命的重要因素,甚至可能导致安全隐患。因此,IEC 61215:2005《地面用晶体硅光伏组件设计鉴定和定性》专门设置了热斑耐久试验,以考核光伏组件经受热斑加热效应的能力。

热斑耐久试验过程包括最坏情况的确定、5小时热斑试验以及试验后的诊断测量,分为以下4个步骤。

1、选定最差电池

由于受到检测时间和成本的限制,热斑耐久试验不能针对组件中的每一个电池进行。因此,正式试验之前先比较和选择热斑加热效应最显著的电池。具体方法是,在一定光照条件下,将组件短路,依次遮挡每个电池,被遮光后稳定温度最高者为最差电池片。电池温度可以用热成像仪等仪器测量。对于串联-并联-串联连接方式的大型组件,标准允许随机选择其中30%的电池进行比较。

对于串联和串联-并联连接方式的组件,IEC61215标准给出了两种快速的方法。第一种方法是:将组件短路,不遮光,直接寻找稳定工作温度最高的电池。第二种方法是:将组件短路,依次遮挡每个电池,选择遮光后组件短路电流减少最大的电池。本文推荐采用第二种方法,这主要是考虑到测量短路电流精度较高,测量结果可以用于下一个步骤的判断,而且短路电流跟失谐电池消耗的功率有直接关系。

2、确定最坏遮光比例

选定最差电池之后,还要确定在何种遮光比例下热斑的温度最高。即用一组遮光增量为5%的一组不透明盖板,逐渐减少对该电池的遮光面积,监测电池被遮部位背面的稳定温度,看何时达到最高温度。目前最常见的电池规格有156mm*156mm和125mm*125mm两种,因此实验室需要准备两组不透明盖板。

以上两个步骤所使用的辐射源,可以是稳态太阳模拟器或自然阳光,辐照度不低于700W/m2,不均匀度不超过±2%,瞬时稳定度在±5%以内。如果气候条件允许,可优先选择自然阳光。南方的实验室在这方面优势明显。以深圳为例,根据气象局统计(表一),年太阳辐射量平均为5225 MJ/m2,年日照时数平均为2060小时,可计算平均太阳辐射强度为705W/m2。另外,低纬度地区的太阳辐射季节分配相对均匀。实测数据表明,深圳冬季的太阳辐射强度,晴天正午前后仍可达850 W/m2以上。这种太阳辐射条件,同样适宜进行光伏组件的另外一个试验项目——电池额定工作温度(NOCT)的测量。

3、5小时热斑耐久试验

标准要求辐射源为C类或更好的稳态太阳模拟器或自然阳光,其辐照度为1000W/m2±10%。实际上自然阳光很难在5小时的长时间内保持10%的稳定度,因此须采用稳态太阳模拟器。光谱近似日光的氙灯是最佳选择,全光谱

金卤灯也可以满足光谱要求。须注意灯阵列的设计,使测试平面的辐照不均匀度小于±10%;同时配备稳压电源,保证试验期间辐照不稳定度小于10%。

4、试验后的诊断测量

组件经过热斑耐久试验之后,首先进行外观检查,对任何裂纹、气泡或脱层等情况进行记录或照相。如果发现标准第7章规定的严重外观缺陷,则视为不合格。如果存在外观缺陷但不属于严重外观缺陷,则对另外2块电池重复热斑耐久试验。试验后不再发现外观缺陷,则算合格。此外,组件在标准试验条件下的最大输出功率Pm的衰减不能超过5%;绝缘电阻应满足初始试验的同样要求。

解决热斑效应问题的通常做法,是在组件上加装旁路二极管。通常情况下,旁路二极管处于反偏压,不影响组件正常工作。当一个电池被遮挡时,其他电池促其反偏成为大电阻,此时二极管导通,总电池中超过被遮电池光生电流的部分被二极管分流,从而避免被遮电池过热损坏。光伏组件中一般不会给每个电池配一个旁路二极管,而是若干个电池为一组配一个。此时被遮挡电池只影响其所在电池组的发电能力。

组件热斑效应

组件热斑效应 众所周知为了使组件达到最高的功率输出,光伏组件中的单体电池须具有相似的特性,对于组串及阵列也是如此。但在实际使用过程中,可能出现电池裂纹或不匹配、内部连接失效、局部被遮光或弄脏等情况,导致一个或一组电池的特性与整体不谐调。失谐电池不但对组件输出没有贡献,而且会消耗其他电池产生的能量,导致局部过热。这种现象称为热斑效应。当组件被短路时,内部功率消耗最大,热斑效应也最严重。 热斑效应不仅会严重影响组件的性能和使用寿命,还有可能引发燃烧及火灾,给电站带来财产损失和人员伤害,因此有效的判断热斑效应的发生及严重性是电站长期的工作。下左图是电站现场发生的组件背板灼烧现象。 对于热斑效应的判断,切记勿用手去触摸组件,因为当热斑发生时,组件的局部温度非常高,极有可能造成灼伤。运维人员应选择相应的测试仪器去对组件整体温度进行测试判断,并提早发现组件是否已经存在局部温度异常。此时选用最方便最快捷的测试仪器即是红外热像仪。红外热像仪可以全方位拍摄整个组件甚至阵列的温度分布情况,及时发现热斑所在。并通过软件全面了解组件当前的发热情况,对于明显有热斑的组件可以清楚判断,同时可对组件中尚不明显的热点进行分析判断。如上右图所示。 从图中可看出组件靠近地面的部位均存在一定程度的热斑效应,这是热斑效应发生概率较高的部位,原因是:(1)这部分组件最容易被遮挡,被遮挡的时间也最长;(2)灰尘覆盖最严重,有时候清洗的不干净时,这部分囤积的灰尘也越多。(3)靠近地面,通风较差,散热不佳。因此发生热斑效应的概率较高。当然引起热斑效应的原因并不止这些,组件本身的性能差别,是否存在隐裂,是否有损伤等等也会造成热斑效应。 HT测试仪器建议在运维过程中,对于已经存在热斑效应的组件,需要对其进行I-V曲线测试判断其功率下降的比例,对于热斑效应较严重的组件可考虑更换组件,避免对整个组串造成过大影响。对于尚未存在热斑效应的组件,最好进行抽查,对部分组件的I-V曲线进行测试,这样可以提前发现造成组件功率下降的原因,并及时改进。

太阳能光伏设计方案

前言 太阳能光伏发电是新能源和可再生能源的重要组成部分,由于它集开发利用绿色可再生能源、改善生态环境、改善人民生活条件于一体,被认为是当今世界上最有发展前景的新能源技术,因而越来越受到人们的青睐。随着世界光伏市场需求持续高速增长、我国《可再生能源法》的颁布实施以及我国光伏企业在国际光伏市场上举足轻重的良好表现,我国光伏技术应用呈现了前所未有的快速增长的态势并表现出强大的生命力。它的广泛应用是保护生态环境、走经济社会可持续发展的必由之路。 太阳能发电的利用通常有两种方式,一种是将太阳能发电系统所发出的电力输送到电网中供给其他负载使用,而在需要用电的时候则从电网中获取电能,称谓并网发电方式。另一种是依靠蓄电池来进行能量存储的所谓独立发电方式,它主要用于因架设线路困难市电无法到达的场合,应用十分广泛。

1.项目概况 1.1项目背景及意义 本项目拟先设计一个独立系统,安装在客户工厂的屋顶上,用于演示光伏阵列采取跟踪模式和固定模式时发电的情况,待客户参考后再设计一套发电量更大的系统,向工厂提供生产生活用电。本系统建成后将为客户产品做出很好的宣传,系统会直观的显示采用跟踪系统后发电总量的提升情况。 1.2光伏发电系统的要求 因本系统仅是一个参考项目,所以这里就只设计一个2.88kWp的小型系统,平均每天发电5.5kWh,可供一个1kW的负载工作5.5小时。 2.系统方案 2.1现场资源和环境条件 江阴市位于北纬31°40’34”至31°57’36”,东经119°至120°34’30”。气候为亚热带北纬湿润季风区,冬季干冷多晴,夏季湿热雷雨。年降水量1041.6毫米,年平均气温15.2℃。具有气候温和、雨量充沛、四季分明等特点。其中4月-10月平均温度在10℃以上,最冷为1月份,平均温度2.5℃;最热月7月份,平均温度27.6℃。

组件热斑效应的原因与防护

组件热斑效应原因和运维防护措施 曹晓宁1 闻震利2 吴达 1 ( 1. 中广核太阳能开发有限公司 100048; 2. 镇江大全太阳能有限公司 212211) 摘要:光伏电站中组件在运行中存在很多因素引起功率损耗并可能导致安全问题,热斑效应会造成组件功率的大幅度下降,而且是比较严重的安全隐患。在组件生产过程、现场施工和运行维护中可以对技术指标提出要求或采取相应的措施来防护热斑效应。为了减少运维工作量,提供效率,监控系统可以对组件的电流和电压进行监测并进行逻辑判断,可帮助运维人员进行针对性的排查,提高光伏电站运行的安全可靠性。 光伏发电是人类解决能源危机和环境问题的必由之路,在过去的二十年里光伏发电产业有了迅猛的发展,权威能源机构预测在本世纪中叶光伏发电会能为人类主要的供电方式之一。太阳电池组件是光伏电站的核心元件,组件的性能和安全可靠性直接决定了光伏电站的运行效率。目前组件的标称功率是在标准测试环境下(标准条件具体是指:温度25℃,光谱分布AM1.5,辐照强度是1000W/m 2)的发电功率,而在实际运行环境中,由于温度、辐照强度、光谱失配等因素会影响组件的实际发电功率。在实际应用中,组件的阴影遮蔽是不可避免的问题,阴影遮蔽会造成功率损失,而且会导致局部发热,产生安全隐患,即热斑效应。本文对热斑的成因和热斑效应的防护措施进行探讨。 1、热斑效应 晶硅组件是由多个太阳电池片串联组成,当串联支路中的一个太阳电池被遮挡时,将被当作负载消耗其他的太阳电池所产生的能量,被遮蔽的太阳电池此时会严重发热,称为热斑效应,如图1所示。热斑效应会严重影响组件的输出功率,同时会破坏太阳电池的性能。有光照的太阳电池所产生的部分能量,都可能被遮蔽的电池所消耗,热斑效应时组件温度分布如图2所示,可以看到被遮挡电池的温度明显高于其它电池。 图 1 热斑效应原理示意图 图2 热板效应时组件的温度分布图 2、热斑效应的防护措施 组件中电池片的电流失配、电池片破损、组件虚焊和污损遮挡等原因都会引起电池发热,为了防止热斑效应对光伏电站造成发电量损失及对太阳电池造成损伤,应该在组件生产、现场施工和运行维护过程中采取相应的措施来减少热斑效应发生的风险,降低其危害。 2.1组件生产过程控制 首先对太阳电池进行电流分档,减少组件中串联太阳电池之间的电流失配,另外对组件进行功率分档后,仍要进行电流分档;其次在电池两端并联旁路二极管,即在组件中安装旁路二极管;再次对太阳电池的反向漏电进行控制,太阳电池承受12V 反向电压热斑 热斑

太阳能电池组件及方阵的设计方法案例图文说明

太阳能电池组件及方阵的设计方法案例图文说明 上面已经说过,太阳能电池组件的设计就是满足负载年平均每日用电量的需求。所以,设计和计算太阳能电池组件大小的基本方法就是用负载平均每天所需要的用电量(单位:安时或瓦时)为基本数据,以当地太阳能辐射资源参数如峰值日照时数、年辐射总量等数据为参照,并结合一些相关因素数据或系数综合计算而得出的。 在设计和计算太阳能电池组件或组件方阵时,一般有两种方法。一种方法是根据上述各种数据直接计算出太阳能电池组件或方阵的功率,根据计算结果选配或定制相应功率的电池组件,进而得到电池组件的外形尺寸和安装尺寸等。这种方法一般适用于中小型光伏发电系统的设计。另一种方法是先选定尺寸符合要求的电池组件,根据该组件峰值功率、峰值工作电流和日发电量等数据,结合上述数据进行设计计算,在计算中确定电池组件的串、并联数及总功率。这种方法适用于中大型光伏发电系统的设计。下面就以第二种方法为例介绍一个常用的太阳能电池组件的设计计算公式和方法,其他计算公式和方法将在下一节中分别介绍。 1.基本计算方注 计算太阳能电池组件的基本方法是用负载平均每天所消耗的电量(Ah)除以选定的电池组件在一天中的平均发电量(Ah),就算出了整个系统需要并联的太阳能电池组件数。这些组件的并联输出电流就是系统负载所需要的电流。具体公式为: 负载用电10A,负载工作8小时。(220V ) ) 组件日平均发电量()负载日平均用电量(电池组件并联数Ah Ah = 其中, 组件日平均发电量=组件峰值工作电流(A)×峰值日照时数(h)。 假设告知负载日耗电(KWh ),如何计算负载日平均用电量(Ah )。 再将系统的工作电压除以太阳能电池组件的峰值工作电压,就可以算出太阳能电池组件的串联数量。这些电池组件串联后就可以产生系统负载所需要的工作电压或蓄电池组的充电电压。具体公式为: 组件峰值工作电压 系数)系统工作电压(电池组件串联数 1.43V ?= 系数1.43是太阳能电池组件峰值工作电压与系统工作电压的比值。例如,为工作电压12V 的系统供电或充电的太阳能电池组件的峰值电压是17~17.5V ;为工作电压24V 的系统

家用分布式光伏系统设计(并网型)

家用分布式光伏系统设计 摘要:太阳能是最普遍的自然资源,也是取之不尽的可再生能源。分布式光伏发电特指采用光伏组件,将太阳能直接转换为电能的分布式发电系统。它是一种新型的、具有广阔发展前景的发电和能源综合利用方式,它倡导就近发电,就近并网,就近转换,就近使用的原则,不仅能够有效提高同等规模光伏电站的发电量,同时还有效解决了电力在升压及长途运输中的损耗问题。 目前应用最为广泛的分布式光伏发电系统,是建在建筑物屋顶的光伏发电项目,方便接入就近接入公共电网,与公共电网一起为附近的用户供电。从发电入网角度出发,根据家庭用电情况可以给出系统施工要求、设计方法以及光伏组件、逆变器的选择等。 关键词:太阳能分布式光伏发电系统 1.前言 太阳能是一种重要的,可再生的清洁能源,是取之不尽用之不竭、无污染、人类能够自由利用的能源。太阳每秒钟到达地面的能量高达50万千瓦,假如把地球表面0.1%的太阳能转换为电能,转变率5%,每年发电量可达5.6×1012kW·h,相当于目前世界上能耗的40倍。从长远来看,太阳能的利用前景最好,潜力最大。近30年来,太阳能利用技术在研究开发、商业化生产和市场开拓方面都获得了长足发展,成为快速、稳定发展的新兴产业之一。 本文简单地阐述了家用分布式光伏发电系统设计方法和施工要求,仅供参考。 2.太阳能光伏发电应用现状 太阳能转换为电能的技术称为太阳能光伏发电技术(简称PV技术)。太阳能光伏发电不仅可以部分代替化石燃料发电,而且可以减少CO2和有害气体的排放,防止地球环境恶化,因此发展太阳能光伏产业已经成为全球各国解决能源与经济发展、环境保护之间矛盾的最佳途径之一。目前发达国家如美国、德国、日本的光伏发电应用领域从航天、国防、转向了民用,如德国的“百万屋顶计划”使许多家庭不仅利用太阳能光伏发电解决了自家供电,而且这些家庭还办成了一所所私人的“小型电站”,能够源源不断地为公用电网提供电能。 近几年,我国光伏行业发展也非常迅速。国家对光伏发电较为重视,国家和地方政府相继出台了一些列的补贴政策以促进光伏产业的发展,国家发改委实施“送电到乡”、“光明工

热斑

热斑效应 在一定条件下,一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组件所产生的能量。被遮蔽的太阳电池组件此时会发热,这就是热斑效应。这种效应能严重的破坏太阳电池。有光照的太阳电池所产生的部分能量,都可能被遮蔽的电池所消耗。为了防止太阳电池由于热斑效应而遭受破坏,最好在太阳电池组件的正负极间并联一个旁路二极管,以避免光照组件所产生的能量被受遮蔽的组件所消耗。 孤岛效应:太阳能发电系统与市电系统并联供电时,当市电发生故障系统未能及时检知并切离市电系统,而产生独立供电现象。一旦发生孤岛运转现象时,会造成人员受伤与设备之损坏,故系统设计须具备该效应侦测保护功能。改善的方法就是采用“反孤岛检测”。 太阳电池组件热斑效应介绍及检测方法:太阳电池组件通常安装在地域开阔、阳光充足的地带。在长期使用中难免落上飞鸟、尘土、落叶等遮挡物,这些遮挡物在太阳电池组件上就形成了阴影,在大型太阳电池组件方针中行间距不适合也能互相形成阴影。由于局部阴影的存在,太阳电池组件中某些电池单片的电流、电压发生了变化。其结果使太阳电池组件局部电流与电压之积增大,从而在这些电池组件上产生了局部温升。太阳电池组件中某些电池单片本身缺陷也可能使组件在工作时局部发热,这种现象叫“热斑效应”。 在实际使用太阳电池中,若热斑效应产生的温度超过了一定极限将会使电池组件上的焊点熔化并毁坏栅线,从而导致整个太阳电池组件的报废。据国外权威统计,热斑效应使太阳电池组件的实际使用寿命至少减少10%。 热斑现象是不可避免的,尽管太阳电池组件安装时都要考虑阴影的影响,并加配保护装置以减少热斑的影响。为表明太阳电池能够在规定的条件下长期使用,需通过合理的时间和过程对太阳电池组件进行检测,确定其承受热斑加热效应的能力。确定太阳电池组件承受热斑加热能力的检测试验叫“热斑耐久试验”。热斑耐久试验过程需严格遵循国际标准IEC 61215-2005,试验内容大致如下: 1. 装置(1)辐照源1,稳态太阳模拟器或自然光,辐照度不低于700W/m2,不均匀度不超过±2%,瞬时不稳定度在±5%以内。(2)辐照源2,C类(或更好)的稳态太阳模拟器或自然光,其辐照度为1000W/m2±10%。(3)太阳电池组件I-V 曲线测试仪。(4)一组对试验太阳电池组件遮光增量为5%的不透明盖板。(5)一个适当的温度探测器。 2. 程序在太阳电池组件试验前应安装厂商推荐的热斑保护装置。(1)将不遮光的组件在辐照源1下照射,测试其I-V特性和最大功率点。(2)使组件短路,组件在稳定的辐照源1照射下,用适当的温度探测器测定最热的电池单片。(3)完全挡住选定的电池单片,用辐照源2照射组件。在此过程中组件的温度应该在50℃±10℃。(4)保持此状态经过5小时的曝晒。(5)再次测定组件的I-V特

光伏组件一二三:参数、热斑效应和PID效应、运营后检测概要

光伏组件一二三:参数、热斑效应和PID效应、运营后检测 毫无疑问,光伏组件是光伏电站最重要的设备之一,今天来说说常用的多晶硅光伏组件,包含:光伏组件的关键参数、热斑效应和PID 效应、运营后检测。 一、光伏组件技术规格书中的关键参数 1、功率 我们常说,采用255Wp光伏组件。下表的“p”为peak的缩写,代表其峰值功率为255W。所有的技术规格书中都会标注“标准测试条件”的。下图为广东太阳库的光伏组件技术规格书一部分(250W,下同。 只有在标准测试条件(辐照度为1000W/m2,电池温度25℃时,光伏组件的输出功率才是“标称功率”(250W,辐照度和温度变化时,功率肯定会变化。另外,功率误差为正负3%,说明组件的实际功率是242.5~257.5W都是增长的。不过,这个组件的功率偏差为正偏差3%。 在非标准条件下,光伏组件的输出功率一般不是标称功率,如下图。

辐照度为800W/m2,电池温度20℃时,250W的组件输出功率只有183W,为标况下的73.2%。 2、效率 理论上,尺寸、标称功率相同的组件,效率肯定是相同的。光伏组件是由电池片组成,一块光伏组件通常由60片(6×10或72片(6×10电池片组成,面积分别为 1.638 m2(0.992m×1.652m和 3.895 m2(0.992m×1.956m。 辐照度为1000W/m2时,1.638 m2组件上接收的功率为1638W,当输出为250W时,效率为15.3%,255W时为15.6%。 3、电压与温度系数 电压分开路电压和MPPT电压,温度系数分电压温度系数和功率温度系数。在进行串并联方案设计时,要用开路电压、工作电压、温度系数、当地极端温度(最好是昼间进行最大开路电压和MPPT电压范围的计算,与逆变器进行匹配。 二、影响光伏组件的两个效应 1、热斑效应 一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组件所产生的能量,被遮蔽的太阳电池组件此时会发热,这就是热斑效应。

光伏组件课程设计

课程设计报告 题目太阳能节能灯的设计与分析 系别物理与电子工程学院 年级 2011级专业光伏技术与产业 班级光伏111 学生姓名宋梦丹 学号050411139 指导教师薛春荣 设计时间2013-12

产品简介 【使用优点】 无需电线,按一下底部的开关,白天晒太阳,晚上自动亮光,环保,不用交电费!灯体造型美观大方,轻巧灵活多样,动感十足,太阳能充满电能亮8小时以上。 【安装及使用方法】 把灯罩向左旋开,拨动开关,把灯具插地,放置在阳光下 【技术参数】 ?品牌: MODAS ?型号: MD9548 ?颜色分类: 白色(MD9548W) ?灯具是否带光源: 带光源 ?光源类型: LED ?太阳能板:0.08W(2V 40MA) ?电源:600MAH 1.2V NI-MH ?光源:1*LED(15000MCD) ?产品尺寸:6.7*6.7*36.7CM ?一盒重量:260g 【工作原理】 通过顶部的太阳能板转换成电能,白天光通过太阳能板转换成电能储存在充电电池中,等到晚上天黑时,太阳能板不再对电池充电,灯就自动亮起来。 原理分析 太阳能光伏发电LED照明系统组成高效节能的太阳能光伏发电LED照明系统包括太阳能电池组、DC-DC变换器、最大功率跟踪控制、储存电能的蓄电池组和LED照明控制、LED光源等部分。 太阳能LED自动照明系统的基本原理,是在有光照的情况下,太阳能电池板把光能转变成电能对蓄电池充电,并将电能储存在蓄电池中。夜晚,蓄电池中的电能为半导体发光二极管LED充电发光起到照明的效果。系统采用全自动工作方式,无须人工介入,可以采用声、光或延时控制方式,做到“人在灯亮,人走灯灭”(指楼道、走廊等)或“天黑即亮,延时关灯”(指道路、庭院、景点等)或每日24小时“常明不灭”(指地下停车场、隧道等)。对连续阴雨天,系统可根据

太阳能电池组件“热斑效应”分析

太阳能电池组件“热斑效应”分析随着科技日新月异的发展,光伏发电技术在国内外均得到了广泛的应用,其应用形式多种多样,应用场所分布广泛,主要用于大型地面光伏电站、住宅和商用建筑物的屋顶、建筑光伏建筑一体化、光伏路灯等。在这些场所,不可避免的会出现建筑物、树荫、烟囱、灰尘、云朵等对太阳能电池组件造成遮挡。因此,人们关心的是此类情况对太阳能电池的发电效率影响有多大,又该如何解决。 在实际应用中,太阳能电池一般是由多块电池组件串联或并联起来,以获得所期望的电压或电流的。为了达到较高的光电转换效率,电池组件中的每一块电池片都须具有相似的特性。在使用过程中,可能出现一个或一组电池不匹配,如:出现裂纹、内部连接失效或遮光等情况,导致其特性与整体不谐调。 在一定条件下,一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组件所产生的能量。被遮蔽的太阳电池组件此时会发热,这就是热斑效应。这种效应能严重的破坏太阳电池。有光照的太阳能电池所产生的部分能量,都可能被遮蔽的电池所消耗。为了防止太阳电池由于热斑效应而遭受破坏,最好在太阳电池组件的正负极间并联一个旁路二极管,以避免光照组件所产生的能量被受遮蔽的组件所消耗。 关于组件热斑产生的原因、问题电池的来源及相应对策 (一)组件热斑产生的原因 光伏组件的核心组成部分是太阳电池,一般说来,每个组件所用太阳电池的电特性要基本一致,否则将在电性能不好或被遮挡的电池(问题电池)上产生所谓热斑效应。

为防止热斑产生应该在每一片电池上都并联一个旁路二极管,在当电池发生问题或被遮挡时,其它电池产生的大于问题电池的电流将被旁路二极管旁路。 而事实上,在每一片电池上都并联一个二极管是不现实的。一般在组件上是18片(36片或54片电池串联的组件)或24片(72片电池串联的组件)电池串联后并联一个二极管。 可以想象,当这18片或24片电池中产生的电流不一致时,也就是有问题电池存在时,通过这串电池的电流将在问题电池上引起热斑。若电池串与串之间电流不一致,可以在接了旁路二极管的组件特性曲线上看到所谓台阶曲线或异常曲线。 如果组件内太阳电池性能本来就不一致,必然导致组件发生热斑现象。我们可以通过组件的输出特性曲线和红外成像看到组件热斑现象的存在。 若是由于组件内太阳电池光衰减后效率下降,引起的组件内太阳电池性能不一致。我们可以通过测试组件衰减前和衰减后的输出特性曲线以及红外成像看到组件在光照前后发生的变化。 若组件未接旁路二极管,即使有问题电池存在,组件的输出特性曲线也看不到台阶曲线,但短路电流应比正常组件要小,这表明热斑现象存在。 (二)问题电池的来源 1. 硅材料自身的缺陷 2. 电池制造的原因 1)去边不彻底、边缘短路 2)去边过头,P型层向N型层中心延伸,边缘栅线引起局部短路

9-组件热斑效应的原因与防护之欧阳家百创编

组件热斑效应原因和运维防护措施 欧阳家百(2021.03.07) 曹晓宁1闻震利2吴达1 ( 1. 中广核太阳能开发有限公司 100048;2. 镇江大全 太阳能有限公司 212211) 摘要:光伏电站中组件在运行中存在很多因素引起功率损耗并可能导致安全问题,热斑效应会造成组件功率的大幅度下降,而且是比较严重的安全隐患。在组件生产过程、现场施工和运行维护中可以对技术指标提出要求或采取相应的措施来防护热斑效应。为了减少运维工作量,提供效率,监控系统可以对组件的电流和电压进行监测并进行逻辑判断,可帮助运维人员进行针对性的排查,提高光伏电站运行的安全可靠性。 光伏发电是人类解决能源危机和环境问题的必由之路,在过去的二十年里光伏发电产业有了迅猛的发展,权威能源机构预测在本世纪中叶光伏发电会能为人类主要的供电方式之一。太阳电池组件是光伏电站的核心元件,组件的性能和安全可靠性直接决定了光伏电站的运行效率。目前组件的标称功率是在标准测试环境下(标准条件具体是指:温度25℃,光谱分布AM1.5,辐照强度是1000W/m2)的发电功率,而在实际运行环境中,由于温度、辐照强度、光谱失配等因素会影响组件的实际发电功率。在实际应用中,组件的阴影遮蔽是不可避免的问题,阴影遮蔽会造成功率损失,而且会导致局部发热,产生安全隐患,即热斑效

应。本文对热斑的成因和热斑效应的防护措施进行探讨。 1、热斑效应 晶硅组件是由多个太阳电池片串联组成,当串联支路中的一个太阳电池被遮挡时,将被当作负载消耗其他的太阳电池所产生的能量,被遮蔽的太阳电池此时会严重发热,称为热斑效应,如图1所示。热斑效应会严重影响组件的输出功率,同时会破坏太阳电池的性能。有光照的太阳电池所产生的部分能量,都可能被遮蔽的电池所消耗,热斑效应时组件温度分布如图2所示,可以看到被遮挡电池的温度明显高于其它电池。 图1 热斑效应原理示意图 图2 热板效应时组件的温度分布图 2、热斑效应的防护措施 组件中电池片的电流失配、电池片破损、组件虚焊和污损遮挡等原因都会引起电池发热,为了防止热斑效应对光伏电站造成发电量损失及对太阳电池造成损伤,应该在组件生产、现场施工和运行维护过程中采取相应的措施来减少热斑效应发生的风险,降低其危害。 2.1组件生产过程控制 热斑 热斑

光伏组件与阵列设计复习过程

光伏组件与阵列设计

1.1 引言 太阳电池是将太阳光直接转换为电能的最基本元件,一个单体太阳能电池的单片为一个PN结,工作电压约为0.5V,工作电流约为20-25mA/cm2, 一般不能单独作为电源使用。因而需根据使用要求将若干单体电池进行适当的连接并经过封装后,组成一个可以单独对外供电的最小单元即组件(太阳能电池板)。其功率一般为几瓦至几十瓦,具有一定的防腐、防风、防雹、防雨的能力,广泛应用于各个领域和系统。 当应用领域需要较高的电压和电流,而单个组件不能满足要求时,可把多个组件通过串连或并联进行连接,以获得所需要的电压和电流,从而使得用户获取电力。根据负荷需要,将若干组件按一定方式组装在固定的机械结构上,形成直流发电的单元,即为太阳能电池阵列,也称为光伏阵列或太阳能电池方阵。一个光伏阵列包含两个或两个以上的光伏组件,具体需要多少个组件及如何连接组件与所需电压(电流)及各个组件的参数有关。 太阳能电池片并、串联组成太阳能电池组件;太阳能电池组件并、串联构成太阳能电池阵列。 1.2 光伏组件 1.2.1组件概述 光伏组件(俗称太阳能电池板)是将性能一致或相近的光伏电池片(整片的两种规格125*125mm、156*156mm),或由激光机切割开的不同规格的太阳能电池,按一定的排列串、并联后封装而成。由于单片太阳能电池片的电流和电压都很小,把他们先串联获得高电压,再并联获得高电流后,通过一个二极管(防止电流回输)然后输出。电池串联的片数越多电压越高,面积越大或并联的片数越多则电流越大。如一个组件上串联太阳能电池片的数量是36片,这意味着这个太阳能组件大约能产生17伏的电压。 1.2.2电池的连接与失配 失配的影响:失配损失是由于电池或者组件的互联引起的,这些电池或者组件没有相同的特性或者经历了不同的条件。在PV组件和方阵中,在某种条件下失配问题是一个严重的问题,因为一个组件在最差情况的输出是由其中的具有最低输出的太阳电池决定。例如,当一个太阳电池被遮挡而组件中的其它的太阳电池并没有被遮挡时,一个处于“良好”状态的太阳电池产生的功率可以被低性能的太阳电池耗散,而不是提供给负载。这可以导致非常高的局部电力耗散,并且由此而产生的局部加热可以引起组件不可恢复的损伤。 太阳能电池在串、并联成电池组件时,由于每片太阳能电池电性能不可能绝对一致,这就使得串、并联后的输出总功率往往小于各个单体太阳能电池输出功率之和,称作太阳能电池的失配。在太阳能组件的制造以及组建安装为阵列的过程中,失配问题总会存在,并或多或少的影响太阳能电池的性能。这是

太阳能板热板效应解决方案

太阳能板热板效应以及解决方案 (一) 组件热斑产生的原因 光伏组件的核心组成部分是太阳电池,一般说来,每个组件所用太阳电池 的电特性要基本一致,否则将在电性能不好或被遮挡的电池(问题电池)上产 生所谓热斑效应。 为防止热斑产生应该在每一片电池上都并联一个旁路二极管,在当电池发 生问题或被遮挡时,其它电池产生的大于问题电池的电流将被旁路二极管旁路。 而事实上,在每一片电池上都并联一个二极管是不现实的。一般在组件上 是18片(36片或54片电池串联的组件)或24片(72片电池串联的组件)电 池串联后并联一个二极管。 可以想象,当这18片或24片电池中产生的电流不一致时,也就是有问题 电池存在时,通过这串电池的电流将在问题电池上引起热斑。 若电池串与串之间电流不一致,可以在接了旁路二极管的组件特性曲线上 看到所谓台阶曲线或异常曲线。 如果组件内太阳电池性能本来就不一致,必然导致组件发生热斑现象。我 们可以通过组件的输出特性曲线和红外成像看到组件热斑现象的存在。 若是由于组件内太阳电池光衰减后效率下降,引起的组件内太阳电池性能 不一致。我们可以通过测试组件衰减前和衰减后的输出特性曲线以及红外成像 看到组件在光照前后发生的变化。 若组件未接旁路二极管,即使有问题电池存在,组件的输出特性曲线也看 不到台阶曲线,但短路电流应比正常组件要小,热斑现象存在。 (二) 问题电池的来源 1. 硅材料自身的缺陷 2. 电池制造的原因 1) 去边不彻底、边缘短路 2) 去边过头,P型层向N型层中心延伸,边缘栅线引起局部短路 3) 烧结不良,正电极或背电极与硅片接触不良,串联电阻增大 4) 烧结过度,即将使PN结烧透,短路 以上几种有可能在分选测试时尚未暴露,而做成组件后在长期的使用过程中,逐渐变化而导致愈演愈烈 3. 同一档次的电池片性能不一致 1) 电池分选测试时的误判 a) 分选测试仪自身误差 b) 测试仪与测试仪之间的差异 c) 分选测试仪的误动作 2) 电池自身的衰减不一致 3) 人为的混片 如电池上信息不准确,有可能贴错标签、混包,电池外观检验时的混片等 4. 组件制造的原因 1) 焊接前混片或补片时混片 2) 电池片自身的隐裂 3) 手工焊接过程造成的裂片或隐裂片,机器焊接曲线异常的比例一般小

太阳能光伏组件支架的设计选型

1.引言 目前,在全球能源供应紧张和环境问题日益严重的情况下,经济和社会的可持续发展受到了巨大挑战,发展和利用清洁而安全的可再生能源受到了广泛重视。虽然目前已经实现利用的可再生替代能源种类较多,但从可用总量上看,水能、风能、潮汐能都太小,不足以满足人类需求。太阳能作为一种资源丰富,分布广泛且可永久利用的可再生能源,具有极大的开发利用潜力。特别是进入21世纪,太阳能光伏发电产业发展非常迅速。太阳能光伏发电在不远的将来不仅要替代部分常规能源,而且将成为世界能源供应的主体,将给能源发展带来革命性的变化。根据欧洲联合委员会研究中心(JRC)的预测,到21世纪末,可再生能源在能源结构中将占到80%以上,其中太阳能发电占到60%以上,充分显示出其重要的战略地位。 太阳能光伏组件支架是固定太阳能电池板的重要部件,在获得太阳能电池板最大发电效率的前提下,保证支架的安全可靠性是光伏组件厂家需要考虑和研究。根据不同形式的太阳能光伏发电的需要,支架系统一般分为单立柱太阳能支架、双立柱太阳能支架、矩阵太阳能支架、屋顶太阳能支架、墙体太阳能支架、追踪系统系列支架等若干规格型号,同时按照不同的安装方式又分为地面安装系统、屋顶安装系统和建筑节能一体化支架安装系统。 2.光伏组件支架设计 2.1 光伏组件支架结构 目前商品化的太阳能光伏组件安装支架大多不可以调节角度,采用跟踪方式进行太阳能发电又浪费大量人力物力,投入产出比受到一定程度的局限。本文设计了一种可根据不同纬度地区而调节角度的光伏系统支架,(如图1所示)该支架系统可以根据需要调节水平角度,不但适应于地面光伏电站的使用,同时还可以在屋顶光伏电站使用,在安装过程中可以快速调整支架的安装角度,避免了常规光伏组件支架不能够迅速调整安装角度的缺点,同时该组件支架采用高碳钢结构,表面经过热镀锌材料,具有成本低,强度高,选材耐腐蚀强,可以

太阳能光伏组件种类

光伏系统的分类与介绍 光伏系统定义:光伏系统是利用太阳电池组件和其他辅助设备将太阳能转换成电能的系统。 太阳能光伏系统的分类与介绍 一般我们将光伏系统分为独立系统、并网系统和混合系统。如果根据太阳能光伏系统的应用形式,应用规模和负载的类型,对光伏供电系统进行比较细致的划分。还可以将光伏系统细分为如下六种类型:小型太阳能供电系统(Small DC);简单直流系统(Simple DC);大型太阳能供电系统(Large DC);交流、直流供电系统(AC/DC);并网系统(Utility Grid Connect);混合供电系统(Hybrid);并网混合系统。下面就每种系统的工作原理和特点进行说明。 1.小型太阳能供电系统(Small DC) 该系统的特点是系统中只有直流负载而且负载功率比较小,整个系统结构简单,操作简便。其主要用途是一般的家庭户用系统,各种民用的直流产品以及相关的娱乐设备。如在我国西部地区就大面积推广使用了这种类型的光伏系统,负载为直流灯,用来解决无电地区的家庭照明问题。 2.简单直流系统(Simple DC) 该系统的特点是系统中的负载为直流负载而且对负载的使用时间没有特别的要求,负载主要是在白天使用,所以系统中没有使用蓄电池,也不需要使用控制器,系统结构简单,直接使用光伏组件给负载供电,省去了能量在蓄电池中的储存和释放过程,以及控制器中的能量损失,提高了能量利用效率。其常用于PV水泵系统、一些白天临时设备用电和一些旅游设施中。下图显示的就是一个简单直流的PV水泵系统。这种系统在发展中国家的无纯净自来水供饮的地区得到了广泛的应用,产生了良好的社会效益。 3 大型太阳能供电系统(Large DC) 与上述两种光伏系统相比,这种光伏系统仍然是适用于直流电源系统,但是这种太阳能光伏系统通常负载功率较大,为了保证可以可靠地给负载提供稳定的电力供应,其相应的系统规模也较大,需要配备较大的光伏组件阵列以及较大的蓄电池组,其常见的应用形式有通信、遥测、监测设备电源,农村的集中供电,航标灯塔、路灯等。我国在西部一些无电地区建设的部分乡村光伏电站就是采用的这种形式,中国移动公司和中国联通公司在偏僻无电网地区建设的通讯基站也有采用这种光伏系统供电的。如山西万家寨的通讯基站工程。 4 交流、直流供电系统(AC/DC) 与上述的三种太阳能光伏系统不同的是,这种光伏系统能够同时为直流和交流负载提供电力,在系统结构上比上述三种系统多了逆变器,用于将直流电转换为交流电以满足交流负载的需求。通常这种系统的负载耗电量也比较大,从而系统的规模也较大。在一些同时具有交流和直流负载的通讯基站和其它一些含有交、直流负载的光伏电站中得到应用。

光伏热斑效应概要

光伏组件的热斑效应和试验方法 光伏电池是将太阳光辐射能量直接转换成电能的器件。单个硅晶体光伏电池能得到的最大电压约为0.6V,最大电流约为30mA/cm2。因此光伏电池很少单个使用,而是串联或并联起来,以获得所期望的电压或电流。光伏组件正是由多个光伏电池连接和封装而成的产品,是光伏发电系统中电池方阵的基本单元。 为了达到较高转换效率,光伏组件中的单体电池须具有相似的特性。在实际使用过程中,可能出现电池裂纹或不匹配、内部连接失效、局部被遮光或弄脏等情况,导致一个或一组电池的特性与整体不谐调。失谐电池不但对组件输出没有贡献,而且会消耗其他电池产生的能量,导致局部过热。这种现象称为热斑效应。当组件被短路时,内部功率消耗最大,热斑效应也最严重。 热斑效应原理 当然,并不是所有的电池都可以通过调整遮光比例达到最佳阻抗匹配。完全遮光情况下,不同特性的Y电池I-V曲线如图3所示。斜率越低,表明电池的并联电阻越大。考虑(S-1)个电池串的最大输出功率点所限定的“试验界限”,根据I-V 曲线与“试验界限”的交点,把电池分为电压限制型(A类)和电流限制型(B 类)。A类电池并联电阻较大,可以通过减少遮光面积,达到最佳阻抗比配;B 类电池的并联电阻较小,完全遮光已是Y电池消耗功率最大的状态。

热斑耐久试验 热斑效应可导致电池局部烧毁形成暗斑、焊点熔化、封装材料老化等永久性损坏,是影响光伏组件输出功率和使用寿命的重要因素,甚至可能导致安全隐患。因此,IEC 61215:2005《地面用晶体硅光伏组件设计鉴定和定性》专门设置了热斑耐久试验,以考核光伏组件经受热斑加热效应的能力。 热斑耐久试验过程包括最坏情况的确定、5小时热斑试验以及试验后的诊断测量,分为以下4个步骤。 1、选定最差电池 由于受到检测时间和成本的限制,热斑耐久试验不能针对组件中的每一个电池进行。因此,正式试验之前先比较和选择热斑加热效应最显著的电池。具体方法是,在一定光照条件下,将组件短路,依次遮挡每个电池,被遮光后稳定温度最高者为最差电池片。电池温度可以用热成像仪等仪器测量。对于串联-并联-串联连接方式的大型组件,标准允许随机选择其中30%的电池进行比较。 对于串联和串联-并联连接方式的组件,IEC61215标准给出了两种快速的方法。第一种方法是:将组件短路,不遮光,直接寻找稳定工作温度最高的电池。第二种方法是:将组件短路,依次遮挡每个电池,选择遮光后组件短路电流减少最大的电池。本文推荐采用第二种方法,这主要是考虑到测量短路电流精度较高,测量结果可以用于下一个步骤的判断,而且短路电流跟失谐电池消耗的功率有直接关系。 2、确定最坏遮光比例 选定最差电池之后,还要确定在何种遮光比例下热斑的温度最高。即用一组遮光增量为5%的一组不透明盖板,逐渐减少对该电池的遮光面积,监测电池被遮部位背面的稳定温度,看何时达到最高温度。目前最常见的电池规格有 156mm*156mm和125mm*125mm两种,因此实验室需要准备两组不透明盖板。以上两个步骤所使用的辐射源,可以是稳态太阳模拟器或自然阳光,辐照度不低于700W/m2,不均匀度不超过±2%,瞬时稳定度在±5%以内。如果气候条件允许,可优先选择自然阳光。南方的实验室在这方面优势明显。以深圳为例,根据气象局统计(表一),年太阳辐射量平均为 5225 MJ/m2,年日照时数平均为2060小时,可计算平均太阳辐射强度为705W/m2。另外,低纬度地区的太阳辐射季节分配相对均匀。实测数据表明,深圳冬季的太阳辐射强度,晴天正午前后仍可达850 W/m2以上。这种太阳辐射条件,同样适宜进行光伏组件的另外一个试验项目——电池额定工作温度(NOCT)的测量。 3、5小时热斑耐久试验 标准要求辐射源为C类或更好的稳态太阳模拟器或自然阳光,其辐照度为 1000W/m2±10%。实际上自然阳光很难在5小时的长时间内保持10%的稳定度,

热斑效应理解

相信大多数光伏从业者都听说过“热斑效应”及其危害的宣传。常见的资料对热斑效应解释为: 在一定条件下,光伏系统中的部分电池会被周围其它物体所遮挡,造成局部阴影,这将引起被遮挡某些电池发热,产生所谓“ 热斑” 现象。 但上述解释还不够完整,局部遮挡只是形成热斑的原因之一,另外一个原因是电池本身的缺陷。因此,比较准确的定义应该是: 热斑是互相连接(主要是串联方式)的电池工作在不同的条件下或者没有相同的性能造成的,它的本质原因是电池之间的失配(对于光伏系统来说,组件之间的失配原理和此相同)。 换句话说,热斑产生的原理是: 一个串联电路中,电池由于某些原因,导致其所表现出的工作状态不一致。这些原因包括遮挡(如周围物体的阴影、落叶、鸟粪等)导致部分电池所表现出的性能和其它电池)不同,或者是电池本身的性能就不同(比较严重的情况是部分电池存在明显缺陷)。 事实上,电池之间性能完全一致的可能性是很小的。因此,从严格意义上来说,热斑效应是一种正常现象。 有权威检测机构基于大量数据积累和资料调研表明,在辐照度大于 800W/m2时,热斑最高温度与组件平均温度之间的温度差值小于10度是可以接受的;如果少数组件存在温差超过10℃的情况,只要这个比例不超过5%,系统

功率输出正常,也是可以接受的(例如组件上有直径3-125px的鸟粪,组件边缘有尘土积聚,轻微焊接问题,电池片轻微缺陷,盖板部分玻璃脏污等)。 那么产生热斑的基本机理是什么呢? 图1:理想太阳能电池和非理想太阳能电池比较图1所示是太阳电池的完整工作曲线,图中: 第一象限:是我们常见的电池发电时的IV曲线;

第二象限:代表给太阳电池加反向偏压时,电池由发电变为耗电(分界点是纵轴短路电流处); 第四象限:代表给太阳电池加正向偏压,正向电压产生的电流方向是从P 区流向N区,和光生电流方向相反,所以当正向偏压大于电池的开路电压时,电流反向,电池由发电变为耗电(分界点是横轴开路电压处)。 光伏系统中常见的热斑现象是因为电池的工作点位于第二象限! 从图1中很容易看出,反向偏压越大,流经电池的电流就越大(此电流虽和光生电流方向一致,但其大小已超过了电池的短路电流,本质是由其它电池所贡献),电池消耗的能量就越多,电池温度就会越高,可能会导致焊带熔断、EVA 黄变、背板鼓包烧穿等不可恢复的后果,严重影响系统的寿命和发电能力,更严重者能引起火灾等灾难性后果。 同时,也不难看出,如果电池工作在第一象限,那么它依旧充当发电的作用,而不是成为负载耗电。 上述描述很难理解?不妨这样假设,在公路上行驶的汽车,如果有一辆出现了问题,速度比别的车辆低很多,那么它就会整个交通产生障碍,其它车辆为了较快速度通过,必须推着问题车辆行驶,使问题车辆速度超过它的最高速度,但同时,完好车辆的行驶速度也会比正常速度要小,此时,问题车辆就是负载。 但如果路况不佳或受天气影响,所有车辆都要保持在较低的速度运行,那么问题车辆就不会对整体交通造成影响,但此时整体运输效率较低。 因此,即使存在阴影遮挡或电池性能缺陷,该部分电池也不一定就是负载,不一定就会发生热斑效应,要看电池所处的工作状态。即便发生了热斑效应,其

太阳能光伏电池的设计与制作

河南工程学院 《光伏材料设计》 实习实训报告书 太阳能光伏电池的设计与制作2016 -2017学年第二学期 学院:赵博 学生姓名:理学院 学号:201411004215 学生班级:应用物理1442 指导教师:牛金钟赵瑞锋 日期:2017 年6 月14日

摘要:太阳能光伏电池的设计与制造是我们本专业的最主要内容之一,本次实训的目的是让我们更加深刻了解太阳能光伏电池的发电原理,了解太阳能电池组件的生产流程和生产工艺,了解太阳能光伏电池的应用,并且制作一件太阳能光伏电池板。本文主要讲的是本次的太阳能光伏太阳能电池制作过程,包括选择制作材料,电池板的设计,焊接太阳能电池片,组装太阳能电池,以及对电池组件进行测试。 关键词:电池组件设计组装测试

目录 一、简介 (1) 二、材料及其性质 (1) 1.黏结剂 (1) 2.玻璃-上盖板材料 (1) 3.背面材料 (1) 4.边框 (1) 5.接线盒 (2) 6.硅胶 (2) 7.电池片 (2) 三、设计原理及组装 (2) 1.设计原理 (2) 2.太阳能电池组件设计 (3) 3.电池组件的制作 (3)

一、简介 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。太阳能电池又称为“太阳能芯片”或“光电池”,是一种利用太阳光直接发电的光电半导体薄片。通常采用硅半导体 二、材料及其性质 真空层压封装太阳能电池,主要使用的材料有黏结剂、玻璃、复合模、连接条、铝框等。合理地选用封装材料和采取正确的封装工艺能保证太阳能电池的高效利用并延长使用寿命。优良的太阳能电池组件,除了要求太阳能电池本身效率高外,优良的封装材料和合理的封装工艺也是不可缺少的。 1.黏结剂 黏结剂是固定和保证电池与上、下盖板密合的关键材料,要求可见光范围内具有高透光性,抗紫外线老化;具有一定弹性,可缓冲不同材料见的热胀冷缩;具有良好的电绝缘性能和化学稳定性,不产生有害电池的气体和液体;具有优良的气密性,适用于自动化的组件封装。本次实训中采用的是EVA膜。 2.玻璃-上盖板材料 玻璃是覆盖在电池板正面的上盖板材料,构成组件最外层,既要求透光高,又要坚固,耐风霜雨雪,经受沙砾冰雹冲击,起到长期保护电池作用。 普通玻璃体内含铁量过高及玻璃表面的光反射过大是降低太阳能利用率的主要原因。目前在商业化生产中标准太阳能电池组件的上盖板材料通常采用低铁钢化玻璃,其特点是:透光率高、抗冲击能力强、使用寿命长。厚度一般为3.2mm,透光率达90%以上,对于波长大于1200nm的红外线有较高的反射率,同时能耐太阳紫外线的辐射。 3.背面材料 组件底板对电池既有保护作用又有支撑作用。对底板的一般要求为:具有良好的耐气候性能,能隔绝从背面进来的潮气和其他有害气体:在层压温度下不起任何变化:与黏结材料结合牢固。一般所用的底板材料为玻璃、铝合金、有机玻璃以及PVF复合膜等。目前生产上较多应用的是PVF复合膜。 4.边框 平板式组件应有边框,以保护组件和便于组件与方阵支架的连接固定。边框

光伏组件的热斑效应和试验方法

光伏电池是将太阳光辐射能量直接转换成电能的器件。单个硅晶体光伏电池能得到的最大电压约为0.6V,最大电流约为30mA/cm2。因此光伏电池很少单个使用,而是串联或并联起来,以获得所期望的电压或电流。光伏组件正是由多个光伏电池连接和封装而成的产品,是光伏发电系统中电池方阵的基本单元。 为了达到较高转换效率,光伏组件中的单体电池须具有相似的特性。在实际使用过程中,可能出现电池裂纹或不匹配、内部连接失效、局部被遮光或弄脏等情况,导致一个或一组电池的特性与整体不谐调。失谐电池不但对组件输出没有贡献,而且会消耗其他电池产生的能量,导致局部过热。这种现象称为热斑效应。当组件被短路时,内部功率消耗最大,热斑效应也最严重。 一、热斑效应原理 当然,并不是所有的电池都可以通过调整遮光比例达到最佳阻抗匹配。完全遮光情况下,不同特性的Y电池I-V曲线如图3所示。斜率越低,表明电池的并联电阻越大。考虑(S-1)个电池串的最大输出功率点所限定的“试验界限”,根据I-V曲线与“试验界限”的交点,把电池分为电压限制型(A类)和电流限制型(B类)。A类电池并联电阻较大,可以通过减少遮光面积,达到最佳阻抗比配;B类电池的并联电阻较小,完全遮光已是Y电池消耗功率最大的状态。 二、热斑耐久试验 热斑效应可导致电池局部烧毁形成暗斑、焊点熔化、封装材料老化等永久性损坏,是影响光伏组件输出功率和使用寿命的重要因素,甚至可能导致安全隐患。因此,IEC 61215:2005《地面用晶体硅光伏组件设计鉴定和定性》专门设置了热斑耐久试验,以考核光伏组件经受热斑加热效应的能力。 热斑耐久试验过程包括最坏情况的确定、5小时热斑试验以及试验后的诊断测量,分为以下4 个步骤。 1、选定最差电池 由于受到检测时间和成本的限制,热斑耐久试验不能针对组件中的每一个电池进行。因此,正式试验之前先比较和选择热斑加热效应最显著的电池。具体方法是,在一定光照条件下,将组件短路,依次遮挡每个电池,被遮光后稳定温度最高者为最差电池片。电池温度可以用热成像仪等仪器测量。对于串联-并联-串联连接方式的大型组件,标准允许随机选择其中30%的电池进行比较。 对于串联和串联-并联连接方式的组件,IEC61215标准给出了两种快速的方法。第一种方法是:将组件短路,不遮光,直接寻找稳定工作温度最高的电池。第二种方法是:将组件短路,依次遮挡每个电池,选择遮光后组件短路电流减少最大的电池。本文推荐采用第二种方法,这主要是考虑到测量短路电流精度较高,测量结果可以用于下一个步骤的判断,而且短路电流跟失谐电池消耗的功率有直接关系。 2、确定最坏遮光比例 选定最差电池之后,还要确定在何种遮光比例下热斑的温度最高。即用一组遮光增量为5%的一组不透明盖板,逐渐减少对该电池的遮光面积,监测电池被遮部位背面的稳定温度,看何时达到最高温度。目前最常见的电池规格有156mm*156mm和125mm*125mm两种,因此实验室需要准备两组不透明盖板。

相关文档
相关文档 最新文档