文档库

最新最全的文档下载
当前位置:文档库 > 湘教版八年级下册数学教案完整版

湘教版八年级下册数学教案完整版

新化十五中学

八年级下册

肖志光

第一章

课题

第1章直角三角形

§1.1直角三角形的性质和判定(Ⅰ)

主备教师使用教师

教学目的

1、掌握“直角三角形的两个锐角互余”定理。

2、掌握“有两个锐角互余的三角形是直角三角形”定理。

3、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。

4、巩固利用添辅助线证明有关几何问题的方法。

教学重点直角三角形斜边上的中线性质定理的应用。

教学难点直角三角形斜边上的中线性质定理的证明思想方法。

观察、比较、合作、交流、探索.

教学方法

教学课时一个课时

教学过程个性化设计

一、复习提问:(1)什么叫直角三角形?

(2)直角三角形是一类特殊的三角形,除了具备三角形的性

质外,还具备哪些性质?

二、新授

(一)直角三角形性质定理1

请学生看图形:

1、提问:∠A与∠B有何关系?为什么?

2、归纳小结:定理1:直角三角形的两个锐角互余。

3、巩固练习:

练习1、

(1)在直角三角形中,有一个锐角为520,那么另一个锐角度数

(2)在Rt△ABC中,∠C=900,∠A -∠B =300,那么∠

A= ,∠B= 。

练习2 在△ABC中,∠ACB=900,CD是斜边AB上的高,那么,(1)

与∠B互余的角有(2)与∠A相等的角有。

(3)与∠B相等的角有。

(二)直角三角形的判定定理1

1、提问:“在△ABC中,∠A +∠B =900那么△ABC是直角三角形吗?”

2、利用三角形内角和定理进行推理

3、归纳:有两个锐角互余的三角形是直角三角形

练习3:若∠A= 600,∠B =300,那么△ABC是三角形。(三)直角三角形性质定理2

1、实验操作:要学生拿出事先准备好的直角三角形的纸片

(l)量一量斜边AB的长度。(2)找到斜边的中点,用字母D 表示。

(3)画出斜边上的中线。(4)量一量斜边上的中线的长度让学生猜想斜边上的中线与斜边长度之间有何关系?

归纳:直角三角形斜边上的中线等于斜边的一半。

三、巩固训练:

练习4:在△ABC中,∠ACB=90 °,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB= _________。

练习5:已知:∠ABC=∠ADC=90O,E是AC中点。

求证:(1)ED=EB。

(2)∠EBD=∠EDB。

(3)图中有哪些等腰三角形?

练习6 已知:在△ABC中,BD、CE分别是边AC、AB上的高, M 是BC的中点。如果连接DE,取DE的中点 O,那么MO 与DE有什么样的关系存在?

四、小结:

这节课主要讲了直角三角形的那两条性质定理和一条判定定理?

1、

2、

3、布置作业

板书设计

§1.1直角三角形的性质和判定(Ⅰ)定理1:直角三角形的两个锐角互余。

有两个锐角互余的三角形是直角三角形

直角三角形斜边上的中线等于斜边的一半。

教学反思

课题

§1.1直角三角形的性质和判定(Ⅰ)主备教师使用教师

教学目的1、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。

2、巩固利用添辅助线证明有关几何问题的方法。

3、通过图形的变换,引导学生发现并提出新问题,进行类比联想,促进

学生的思维向多层次多方位发散。培养学生的创新精神和创造能力。

4、从生活的实际问题出发,引发学生学习数学的兴趣。从而培养学生发

现问题和解决问题能力。

直角三角形斜边上的中线性质定理的应用。

教学重点

直角三角形斜边上的中线性质定理的证明思想方法。

教学难点

观察、比较、合作、交流、探索.

教学方法

教学课时

教学过程个性化设计(一)引入:如果你是设计师:(提出问题)

2008年将建造一个地铁站,设计师设想把地铁站的出口建造在离附

近的三个公交站点45路、13路、23路的距离相等的位置。而这三个公

交站点的位置正好构成一个直角三角形。如果你是设计师你会把地铁站

的出口建造在哪里?

(通过实际问题引出直角三角形斜边上的中点和三个顶点之间的

长度关系,引发学生的学习兴趣。)

动一动想一想猜一猜(实验操作)

请同学们分小组在模型上找出那个点,并说出它的位置。

请同学们测量一下这个点到这三个顶点的距离是否符合要求。

通过以上实验请猜想一下,直角三角形斜边上的中线和斜边的长

度之间有什么关系?

(通过动手操作找到那个点,通过测量的结果让学生猜测斜边的中

线与斜边的关系。)

(二)新授:

E

D

C

B

A

提出命题:直角三角形斜边上的中线等于斜边的一半 证明命题:(教师引导,学生讨论,共同完成证明过程) 推理证明思路: ①作点D 1

②证明所作点D 1

具有的性质 ③ 证明点D 1

与点D 重合

应用定理:

例1、已知:如图,在△ABC 中,∠B=∠C ,

AD 是∠BAC 的平分线,

E 、

F 分别AB 、AC 的中点。

求证:DE=DF

分析:可证两条线段分别是两直角三角形的斜边上的中线,再证两斜边相等即可证得。

(上一题我们是两个直角三角形的一条较长直角边重合,现在我们将图形变化使斜边重合,我们可以得到哪些结论?) 练习变式:

1、 已知:在△ABC 中,BD 、CE 分别是边AC 、AB 上的高,F 是BC

的中点。 求证:FD=FE

练习引申:

(1)若连接DE ,能得出什么结论?

(2)若O 是DE 的中点,则MO 与DE 存在什么结论吗?

上题两个直角三角形共用一条斜边,两个直角三角形位于斜边的同侧。如果共用一条斜边,两个直角三角形位于斜边的两侧我们又会有哪些结论?

2、已知:∠ABC=∠ADC=90o,E 是AC 中点。你能得到什么结论?

例2、求证:一个三角形一边上的中线等于这一边的一半,那么这个三角形是直角三角形。P4 练习P4 2

F

E

D

C

B

A

湘教版八年级下册数学教案完整版

F

C

B

(三)、小结:

通过今天的学习有哪些收获?

布置作业

P7 习题A组 1、2

板书设计

§1.1直角三角形的性质和判定(Ⅰ)

直角三角形斜边上的中线等于斜边的一半

一个三角形一边上的中线等于这一边的一半,那么这个三角形是直角三角

形。

教学反思

课题

§1.1直角三角形的性质和判定(Ⅰ)主备教师使用教师

教学目的1、掌握直角三角形的性质“直角三角形中,如果一个锐角等于30度,那么

它所对的直角边等于斜边的一半”;

2、掌握直角三角形的性质“直角三角形中,如果一条直角边等于斜边的一半,

那么这条直角边所对的角等于30度”;

3、能利用直角三角形的性质解决一些实际问题。

教学重点 直角三角形的性质

教学难点 直角三角形性质的应用

教学方法

教学课时

教学过程

个性化设计

一、 创设情境,导入新课 1 直角三角形有哪些性质?

湘教版八年级下册数学教案完整版

(1)两锐角互余;(2)斜边上的中线等于斜边的一半 2 按要求画图:

(1)画∠MON ,使∠MON=30°,

(2)在OM 上任意取点P ,过P 作ON 的垂线PK ,垂足为K ,量一量PO,PK 的长度,PO,PK 有什么关系?

湘教版八年级下册数学教案完整版

(3) 在OM 上再取点Q,R ,分别过Q,R 作ON 的垂线QD,RE,垂足分别为D,E ,量一量QD ,OQ ,它们有什么关系?量一量RE,OR ,它们有什么关系? 由此你发现了什么规律?

直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。

为什么会有这个规律呢?这节课我们来研究这个问题. 二、 合作交流,探究新知

C

B

A

K

M

1 探究直角三角形中,如果有一个锐角等于30°,那么它所对的直角边为什么等于斜边的一半。

如图,Rr △ABC 中,∠A=30°,BC 为什么会等

于12

AB 分析:要判断BC=1

2

AB,可以考虑取AB 的中点,如果如果BD=BC ,那么BC=

1

2

AB ,由于∠A=30°,所以∠B=60°, 如果BD=BC,则△BDC 一定是等边三角形,所以考虑判断△BDC 是等边三角形,你会判断吗?

由学生完成

归纳:直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。

这个定理的得出除了上面的方法外,你还有没有别的方法呢? 先让学生交流,得出把△ABC 沿着AC 翻折,利用等边三角形的性质证明。

2 上面定理的逆定理

上面问题中,把条件“∠A=30°”与结论“BC=1

2

AB ”交换,结论还成立吗? 学生交流

方法(1)取AB 的中点,连接CD ,判断△BCD 是等边三角形,得出∠B=60°,从而∠A=30°

(2)沿着AC 翻折,利用等边三角形性质得出。 (3)你能把上面问题用文字语言表达吗?

归纳:直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30度。 三、 应用迁移,巩固提高 1、定理应用

例1、 在△ABC 中,△C=90°,∠B=15°,

湘教版八年级下册数学教案完整版

C

B

A

E D

C A

B

DE垂直平分AB,垂足为点E,交BC边于点D,BD=16cm,则AC的长为______

例2、如图在△ABC中,若∠

BAC=120°,AB=AC,AD⊥AC于点A,

BD=3,则BC=______.

2 实际应用

例3、(P5)在A岛周围20海里水域有暗礁,一轮船由西向东航行到O

处时,发现A岛在北偏东60°的方向,且与轮船相距

湘教版八年级下册数学教案完整版

海里,该轮

船如果不改变航向,有触礁的危险吗?

四、课堂练习,巩固提高

P 6练习 1、2

五、反思小结,拓展提高

直角三角形有哪些性质?怎样判断一个三角形是直角三角形?

第二课时

布置作业

P7习题A组 3、4

板书设计§1.1直角三角形的性质和判定(Ⅰ)

D C

A

湘教版八年级下册数学教案完整版

B

最新湘教版八年级下数学教案完整版
最新湘教版八年级下数学教案完整版_数学_初中教育_教育专区。学习必备 欢迎下载 ...
2018最新湘教版八年级下数学教案完整版
2018最新湘教版八年级下数学教案完整版_数学_初中教育_教育专区。. 新化十五...
湘教版八年级下册数学全册教案
湘教版八年级下册数学全册教案_理化生_高中教育_教育专区。直角三角形的性质 主备...
最新湘教版八年级数学下册全册教案
最新湘教版八年级数学下册全册教案_数学_初中教育_教育专区 人阅读|次下载 最新湘教版八年级数学下册全册教案_数学_初中教育_教育专区。 ...
湘教版八年级下册数学教案-数学八年级下册湘教版教案
湘教版八年级下册数学教案-数学八年级下册湘教版教案_数学_初中教育_教育专区。新湘教版八年级下册数学教案 数学教案 —八年级下册 姓名: 班次: 2014 年 2 ......
最新新湘教版八年级下册数学教案
最新新湘教版八年级下册数学教案_数学_初中教育_教育专区。最新新湘教版八年级下册数学教案 1.1 直角三角形的性质和判定(Ⅰ) 教学目标 1、掌握直角三角形的性质......
2019年新湘教版八年级下册数学教案(全册)
2019年新湘教版八年级下册数学教案(全册)_初一政史地_政史地_初中教育_教育...
最新湘教版八年级下数学教案完整版(DOC)
最新湘教版八年级下数学教案完整版(DOC)_数学_初中教育_教育专区。益阳市九中...
湘教版八年级下册数学全册教案
湘教版八年级下册数学全册教案_其它_职业教育_教育专区。直角三角形的性质 主备...
湘教版八年级下册数学教案
湘教版八年级下册数学教案_数学_初中教育_教育专区。第 1 章 直角三角形 §...
湘教版初中数学八年级下册全册教案
湘教版初中数学八年级下册全册教案_教学案例/设计_教学研究_教育专区。数学教案 ——八年级下册姓名: 班次: 第 1 章 因式分解 一、背景介绍 因式分解的教学是......
2017年春湘教版八年级下册数学全册教案
2017 年春湘教版八年级下册数学全册教案直角三角形的性质教学目标 知识与技能:...
2018年春湘教版八年级下册数学全册教案教学设计
2018 年春湘教版八下数学全册教案 直角三角形的性质 教学目标 知识与技能:1...
2017新湘教版八年级下册数学教案
数学教案八年级下册 姓名: 班次: 2017 年 2 月 第1章 直角三角形...
2020年湘教版八年级数学下册教学课件(含教案)
周国年全套教学资源 湘教版八年级数学下册 ppt课件+word教案 第1章 直角...
2019年湘教版数学八年级下册全册教案(含教学反思)
2019年湘教版数学八年级下册全册教案(含教学反思)_初中教育_教育专区。第1章...
湘教版八年级下册第一章数学教案
湘教版八年级下册第一章数学教案_数学_初中教育_教育专区。第 1 章 直角三角...
...湘教版八年级下期数学全套全套精品教学设计 教案
课 时教 案 课题: 第 课时 总序第 个教案 课型:复习 编写时间: 年月日 ...
2018新湘教版数学八年级下册教案设计
1 初中 八 年级 数学 学科 主备人: 2018 年月 课题 第一章 直角三角...
湘教版八年级下册数学全册课件
湘教版八年级下册数学全册课件_初二数学_数学_初中教育_教育专区。湘教版八年级下册数学全册课件 1 第1章 八年级数学下(XJ) 教学课件 直角三角形 1.1 直角......