文档库 最新最全的文档下载
当前位置:文档库 › A possible new dipping X-ray source in the field of M31

A possible new dipping X-ray source in the field of M31

A possible new dipping X-ray source in the field of M31
A possible new dipping X-ray source in the field of M31

a r X i v :a s t r o -p h /0401299v 1 15 J a n 2004Astronomy &Astrophysics manuscript no.paper

February 2,2008

(DOI:will be inserted by hand later)A possible new dipping X–ray source in the ?eld of M31

Vanessa Mangano 1,Gian Luca Israel 1and Luigi Stella 1

1Osservatorio Astronomico di Roma,Via Frascati 33,I–00040Monteporzio Catone (Roma),Italy

Submitted ...../Accepted .....Abstract.We report the discovery of the new dipping X–ray source,XMMU J004308.6+411247,in M31,during a systematic search for periodicities in XMM–Newton archival observations.During the 2002January 6observation,the dips recur with a 107min period and the source count rate is consistent with zero at the dip minimum.Dips with the same modulation and period are also observed during the XMM–Newton observations carried out on 2000June 25,2001June 29and the Chandra observation of 2001October 5.The dips of XMMU J004308.6+411247show no evidence of energy dependence.The average X–ray ?ux of XMMU J004308.6+411247is nearly constant across di ?erent observations (~1037erg s ?1for an assumed M31distance of 780kpc in the 0.3–10keV band);the spectrum is well ?t by an absorbed power law with a photon index ~0.8or an absorbed Comptonization model.The photo-electric absorption is consistent with the Galactic value in the source direction.If XMMU J004308.6+411247is located in M31its properties are consistent with those of dipping low mass X–ray binaries in the Galaxy.Present observations do not allow to distinguish between dips and eclipses.The possibility that XMMU J004308.6+411247is a foreground X–ray source cannot be ruled out at present;in this case the source might be a magnetic cataclysmic variable.Key words.galaxies:individual:M31-X rays:stars -binaries:close 1.Introduction Being the closest large spiral (Sb)galaxy to our own,the Andromeda Galaxy (M31)provides us with a prime opportunity to study X–ray emission in a Galaxy similar to the Milky Way both in morphology and size.The sources in M31are observed at the nearly uniform and well known distance of ~780kpc (Stanek &Garnavich 1998;Macri et al.2001).Moreover,owing to its inclination angle of ~77?and high galactic latitude (l II =121.174312,b II =?21.573022)sources are viewed through a substantially lower absorption column (N H ~7×1020cm 2,Dickey &Lockman 1990)than for sources in the Galaxy.Because of this moderate and fairly uniform extinction,M31sources can be studied and compared over an extended low energy band.Moreover,di ?erent stellar populations in the bulge,spiral arms and halo can be easily distinguished based on their location.

The XMM–Newton mission (Jansen et al.2001)yields an unprecedented opportunity to study the time variability and spectral properties of individual X–ray sources in nearby galaxies with increased throughput.Previous observations of M31performed with Einstein (Trinchieri &Fabbiano 1991;van Speybroeck et al.1979)and ROSAT (Primini,Forman &Jones 1993)revealed many point-like X–ray sources in its core (r <5′~1.1kpc),but were too insensitive for their precise characterization.The two deep and extensive ROSAT –PSPC surveys of the entire M31disk (Supper et al.2001;Supper et al.1997),though e ?ective in mapping the Globular Cluster (GC)and Supernova Remnant (SNR)populations,proved inadequate for a detailed study of point sources in the core of the galaxy because of the limited spatial resolution.Spatial resolution was the main limitation also in the study of the bulge of M31carried out with Beppo –SAX,the ?rst to image M31up to energies of ~10keV (Trinchieri et al.1999).The observations of the central part of M31with the Chandra X–Ray Observatory (Weisskopf 1988)resolved the nuclear source seen with the Einstein and ROSAT –HRI into ?ve point sources (Garcia et al.2000)and detected and localized bulge point sources down to luminosities of ~2×1035erg s ?1in the 0.3–7keV band,with positional errors of less than 1′′(Kong et al.2002;Di Stefano et al.2002;Kaaret 2002).None of these observations,however,was long enough for a detailed timing analysis.The large collecting area and bandpass of XMM–Newton a ?orded a more accurate characterization of both the global properties of the X–ray emission from M31(Shirey et al.2001)and individual X–ray sources in its bulge (Osborne et al.2001;Barnard,Kolb &Osborne 2002;Trudolyubov et al.2002).M31was selected as an XMM–Newton Performance Veri?cation target (Jansen et al.2001)and subsequently observed within the Guaranteed Time Program.The XMM–Newton observations of M31(see section 2)are among the M31X–ray observations with the longest total exposure;they are eminently suited for timing and spectral

analysis.

2Mangano,V.,Israel,G.L.,Stella,L.:A possible new dipping X–ray source in M31

Table1.XMM–Newton observations of M31used in this analysis.

Observation Date T start T stop Exposure time MOS a Exposure time PN a

(UT)(UT)(UT)(ks)(ks)

a E?ective exposures used in our analysis.The number in parentheses is the exposure after exclusion of time intervals with high background

levels.

b The following day.

We started a program of systematic search for periodicities with Fourier techniques among all bright(>~5×1035erg s?1)point-like X–ray sources detected in the XMM–Newton archival observations of M31.Our search strategy is aimed at detecting periodic signals over the widest possible period range(see section3).

In this paper we report the discovery of a107min dip-like modulation(nearly100%amplitude)in the2002January6light curve of the source XMMU J004308.6+411247.The same modulation is clearly seen also in other XMM–Newton observations of M31and in the ACIS–S Chandra observation of2001October5(see section4.1).

In the following sections we describe the set of data we analysed(section2),summarise the periodicity search technique (section3)and illustrate the properties of the dip we discovered in the light curve of XMMU J004308.6+411247(section4).Our results are discussed in section5.

Throughout the paper we adopt a distance to M31of780kpc(Stanek&Garnavich1998;Macri et al.2001)and a Galactic column density in the direction of M31of7×1020cm?2(Dickey&Lockman1990).

2.Observations and data analysis

We used the four archival XMM–Newton observations of the core of M31listed in Table1.The2000June25observation (observation1in Table1)was part of the Performance Veri?cation Program(Jansen et al.2001;Shirey et al.2001;Osborne et al.2001).The other three observations(observations2,3,4)were carried out on2000December28,2001June29and2002 January6respectively as a part of Guaranteed Time Program.We used data from the three European Photon Imaging Camera (EPIC)instruments at the focus of the three co–aligned1500cm2X–ray telescopes on board XMM–Newton:two EPIC MOS detectors(Turner et al.2001)and one EPIC PN detector(Str¨u der et al.2001).Each MOS detector is sensitive in the0.2–10keV band,while the PN detector is sensitive in the0.1–15keV band.In all observations,the three quoted detectors were operated in the full window mode(~30′diameter?eld of view)with medium(observations1,2and3)and thin(observation4)optical blocking?lters.We reduced EPIC data with the XMM–Newton Science Analysis System(SAS)version5.4.1,by performing standard screening of the EPIC data in order to exclude time intervals with high background levels and/or solar?ares.This resulted in shortened exposures of observations1and3as indicated in Table1.We applied the automatic source detection and analysis pipeline summarised in the following section to all the four observations.Observations1,3and4have high enough statistics to carry out a detailed timing analysis of more than half of the individual point sources in them.Observation2has a somewhat lower exposure.Thus,section4present only the results we obtained from observations1,3and4.In Fig.1the central part of the MOS1image of M31extracted from the2002January6observation is shown.

3.Search strategy

For each observation listed in table1we?ltered PN,MOS1and MOS2events in the energy band0.2–15keV,and merged the events of the two MOS detectors into a single MOS1+MOS2event list(task merge).We then produced images of the PN and MOS1+MOS2?elds binned in square pixels of2′′×2′′.Note that this is smaller than the FWHM of the point spread function in the center of the?eld for both PN and MOS,which is~6′′for the PN and~4′′for the MOS(XMM–Newton Users’Handbook V2.12003).We detected all sources above the5σthreshold in the two images(task ewavelet).For a description of the wavelet based source detection algorithm used by the task ewavelet see Damiani et al.1997.For every detected source this task yields the source position and extension,corresponding to the standard deviation of an equivalent Gaussian luminosity pro?le,i.e.the radius containing~66%of the source counts.In the longest exposure observation(observation4)we found~350sources in the PN image and~180in the MOS image.We removed from the source lists some spurious sources close to the image edge,CCD borders and bad pixel lines(this was important especially in PN images).

After that we extracted light curves of all detected point sources and applied the barycentric correction to the photon arrival times.We used an extraction radius of two times the source extension calculated by ewavelet(i.e.2σof the equivalent Gaussian

Mangano,V.,Israel,G.L.,Stella,L.:A possible new dipping X–ray source in M313

Fig.1.Image of M31from the XMM–Newton observation carried out on2002January6(MOS1data).The source XMMU J004308.6+411247is marked by the extraction circle that we used,containing98%of the source counts.

luminosity pro?le;this contains about98%of the source counts)whenever there was no superposition with nearby sources,and an extraction radius of one time the source extension in all other cases.

Finally we considered all extracted light curves containing more than200photons(including background)in order to have enough statistics for timing analysis.In this way,for instance,we reduced the total number of analysed sources to~140(PN) and~90(MOS)in observation4.Detailed discussion on the complete set of sources that we analysed will be presented in a forthcoming paper.

The light curves obtained were searched for pulsations by using the power spectrum technique developed by Israel&Stella (1996).In order to maximize signal detection sensitivity we calculated a single power spectrum with the highest Fourier resolution ?ν=1/?T(with?T the time span covered by the observation).In each power spectrum we searched for peaks above the detection threshold up to the Nyquist frequencyνNyq=1/2?t,with the binning time?t equal to the intrinsic time resolution of the EPIC cameras(i.e.73.4ms for the PN and2.6s for the MOS).The detection threshold for peaks in a single power spectrum containing N trial=?T/2?t frequencies was set such that the probability of exceeding it by chance in a total number of trials equal to N trial times the number n of light curves analysed in the image was?=n?N trial??single trial,with?=2.326×10?4 (corresponding to3.5σin a Gaussian approximation).Thus,the detection threshold for the analysis of a single power spectrum was given by?/n.In this way,the minimum detectable amplitude(or pulsed fraction)for a sinusoidal signal(i.e.the sensitivity of the search to coherent periodic signals)for each source can be derived according to the prescription given by Vaughan et al. (1994).

4.Results

4.1.Timing analysis

The systematic search described in section3revealed both the865s pulsation of the transient super-soft source XMMU J004319.4+411759(Osborne et al.2001)visible in the2000June25observation(observation1)and quiescent in all other archival XMM–Newton observations,and the2.78hr dips in the2002January6observation(observation4)of XMMU J004314.1+410724in the globular cluster Bo158(Trudolyubov et al.2002).

4Mangano,V.,Israel,G.L.,Stella,L.:A possible new dipping X–ray source in M31

Fig.2.Power spectrum of the combined PN and MOS light curves of the source XMMU J004308.6+411247corresponding to the2002January6observation.The power spectrum is normalized according to Leahy et al.1983.

We also found a signi?cant peak at1.525879×10?2Hz in the power spectrum of XMMU J004308.6+411247extracted from observation4MOS data.The source position we obtained,RA=00h43m08.s611DEC=41?12′47.′′58(equinox2000),is to be considered accurate to better than4′′.The power spectrum peak has a signi?cance of~4.3σafter taking into account the number of trial frequencies for this source,as well as for the other sources in the MOS image of observation4for which the periodicity search could be carried out.Visual inspection of the power spectra of the2002January6MOS and PN light curves of XMMU J004308.6+411247clearly reveals the presence of the second and the third harmonics of the signal.As a further con?rmation,we calculated the power spectrum of the combined PN and MOS light curves(using the XRONOS package, version5.19)and obtained a signi?cant increase in the power of the signal and its harmonics.In Fig.2the power spectrum of the PN+MOS light curve of XMMU J004308.6+411247is shown.The signal fundamental plus two harmonics can be easily seen. An epoch folding search was carried out on the PN,MOS and PN+MOS light curves of XMMU J004308.6+411247from2002 January6observation aiming at a more accurate determination of the period value.Following the prescription of Leahy(1987)we obtained an average best period of6420±80s(error estimate at67%con?dence level).For the background count rate estimation we used an annular region around the extraction circle of XMMU J004308.6+411247(see also section4.2).The background subtracted PN+MOS light curve folded at a period of6420s is shown in Fig.3(panel a).The reference epoch T0corresponding to the minimum of the modulation is given in Table2,together with the source count rate.The minima are consistent with a zero count rate.The dips last~25%of each cycle and their fall and rise are fairly continuous.A?t of the folded light curve in Fig.3 with a simple model consisting of a constant and a Gaussian with negative normalization centered at the minimum gives a nearly 100%amplitude of the dip with respect to the out-of-dip intensity and aσ=(8.3±1.2)×10?2(phase units).See Table2.The same results are obtained from the combined PN+MOS light curve restricted to the0.2–1keV and1–15keV energy bands and folded at the6420s period(see Fig.3,panels b and c).The?t to the folded light curve gives a dip amplitude of104%±27% and95%±12%in the0.2–1keV and in the1–15keV energy band respectively,fully compatible with the98%±11%amplitude obtained in the0.2–15keV energy band.We thus conclude that the data provide no evidence for an energy dependence of the modulation.

We searched for a modulation at a period around6420s also in all the other XMM–Newton observations of XMMU J004308.6+411247,using combined PN+MOS light curves of the source in all cases in order to improve statistics. An epoch folding search yields a best period of6400±440s in observation1and6425±200s in observation3.The errors are a factor3–5larger than in observation4and the best period values are consistent with one another.Therefore we are justi?ed in adopting the same period of6420s to fold all the light curves.We folded the XMMU J004308.6+411247light curves extracted from XMM–Newton observations1and3at the6420s period and?tted the folded light curve with the same model used for observation4(a constant and a Gaussian with negative normalization).We con?rmed the presence of the signal at the same period and with a modulation amplitude compatible with that previously found.Results are shown in Fig.4(panels a and b)and summarised in Table2.

Mangano,V.,Israel,G.L.,Stella,L.:A possible new dipping X–ray source in M315

Fig.3.Panel(a)shows the combined PN+MOS light curve of XMMU J004308.6+411247from the XMM–Newton observation of2002January6(observation4),in the energy band0.2–15keV,and folded at the best period of6420s.The solid line represents the?t of the data with the model described in the text(a constant minus a Gaussian).Panels(b)and(c)show the results obtained by folding at6420s the combined PN+MOS light curve in the0.2–1keV and in the1–15keV energy band,respectively.Each light curve is background subtracted and normalized to the average source count rate value given in the top right corner of the panel.

In order to further investigate XMMU J004308.6+411247we used archival Chandra and ROSAT observations of M31.We selected the archival Chandra observations with the longest exposure,i.e.that carried out on2001October5with the Imaging Spectrometer ACIS–S(Garmire et al.1992;Bautz1998and references therein)for an e?ective exposure of~37.7ks and the 2001November1observation with the HRC–I in imaging mode for an e?ective exposure of~46.8ks(Murray et al.1997). We used standard event processing and?ltering procedures in the CIAO package,Version2.2.1,and extracted light curves of XMMU J004308.6+411247from circular regions of diameter about twice the FWHM of the local Point Spread Function(PSF), in the0.3–10keV band.We folded the XMMU J004308.6+411247light curves obtained from Chandra data at the6420s period. The dips are clearly detected in the ACIS–S Chandra observation carried out on2001October5(see panel c in Fig.4)and their properties are consistent with those of the XMM–Newton observations(see Table2).The best period obtained with an epoch folding search on the ACIS–S Chandra observation of2001October5is6437±200s,consistent with the period during observation4.There is marginal evidence for the107min signal also in HRC–I Chandra observation of2001November1(see Fig.5)though the epoch folding search do not show any signi?cant peak.

We then considered the longest exposure ROSAT archival observations of M31containing XMMU J004308.6+411247within ten arc–minutes from the center of the?eld of view.These are the1996January7HRI observation(85.5ks exposure)and the 1991July27PSPC observation(30ks exposure).The ROSAT light curves of XMMU J004308.6+411247obtained contain too few photons(~60and~80net source counts respectively)to con?rm the presence of the dips.

Note that the four folded light curves of XMMU J004308.6+411247obtained from the XMM–Newton and Chandra data can be reasonably well?tted also by a square–wave.For this we adopted a model of the form Y(F)=

6Mangano,V.,Israel,G.L.,Stella,L.:A possible new dipping X–ray source in M31

Fig.4.We show the combined PN+MOS light curves of XMMU J004308.6+411247in the band0.2–15keV folded at107min period extracted from XMM–Newton observations of2000June25(a)and2001June29(b).The?t with a simple model consisting of a constant and a Gaussian with negative normalization is also shown(solid line).In panel(c)we show the folded light curve of an ACIS–S Chandra observation of the source of2001October5.Each light curve is background subtracted and normalized to the source average count rate.This is given in the top right corner of each panel.

Table2.Parameters of the observed modulation

Mission Date(UT)T0a(MJD)SOURCE b(counts/s)σc A d

PN MOS

Chandra05/10/200152187.057±2×10?30.99±0.050.07±0.0292%±17%

Mangano,V.,Israel,G.L.,Stella,L.:A possible new dipping X–ray source in M317

Fig.5.Background subtracted and folded light curve of XMMU J004308.6+411247from the Chandra HRC–I observation of 2001November1.The average source count rate,is given in top right corner of the panel.

We?t all our folded light curves to the square–wave model with A frozen to104,theχ2being insensitive to changes in A within one order of magnitude from this value.The results are shown in Fig.6.The square–wave model?t provides a reduced χ2slightly closer to1than the Gaussian?t,but uncertainties in the parameters D and C(needed for the eclipse depth estimation) are large.According the square–wave model?t the XMM–Newton2002January6light curve pro?le shows an eclipse lasting 0.19±0.03phase units with a92%±38%decrease of the source?ux during the eclipse(90%con?dence level errors).In the XMM–Newton2000June25light curve the eclipse lasts0.21±0.06phase units and produces a84%±45%?ux decrease;in the XMM–Newton2001June29it lasts0.125±0.005and gives a104%±60%?ux decrease and?nally,in the Chandra2001October 5observation the eclipse lasts0.21±0.03and gives an89%±49%?ux decrease.

Because of these results we conclude that poor statistics does not allow us to distinguish between a smooth pro?le of the folded light curve pro?le(as the one represented by the Gaussian model)or a sharp eclipse–like light curve pro?le.

4.2.Spectral analysis

We extracted phase-averaged spectra of XMMU J004308.6+411247in the0.2–15keV energy band from the PN and MOS data of all the XMM–Newton observations in which the107min modulation was detected(observations1,3and4).We generated the relevant spectral response matrices(SAS tasks rmfgen and arfgen).The background spectrum was extracted from the same annular region around the source extraction circle used for the background count rate estimation.These spectra were analysed simultaneously by?tting the following spectral models:absorbed power law,absorbed power law and blackbody,absorbed power law with exponential cut o?,absorbed thermal bremsstrahlung,absorbed Comptonization model(Titarchuk1994;Titarchuk& Lyubarskij1995)with spherical or disk geometry.Given the relatively poor statistics of our spectra,it is perhaps not surprising that a simple absorbed power law provides a statistically acceptable?t(see below).Nonetheless we?t also a larger sample of two components spectral models that are often used to describe the spectra of various classes of Galactic pulsating X–ray sources in order to try to draw some closer analogies.The spectral?tting was performed using the same model parameters for the PN, MOS1and MOS2phase-averaged spectra.We allowed for independent normalizations of the three spectra in order to account for calibration di?erences between the EPIC cameras.Results from the spectral?tting are given in Table3.Only models yielding a reducedχ2less than2are reported.The model consisting of an absorbed power law with an exponential cut o?was rejected because it yields a cuto?energy greater than100keV,i.e.a spectrum virtually indistinguishable from a power law in the XMM–Newton energy band.Note that the absorbed Comptonization model(Titarchuk1994)gives an acceptable?t only by assuming a disk geometry for the Comptonising region.

The model consisting of a simple absorbed power law,gives the best reducedχ2in all observations,but provides an upper limit to the absorption column at95%con?dence level that is lower than the Galactic value of7×1020cm?2derived from the HI distribution map by Dickey&Lockman1990.The latter has a very limited angular resolution(1?×1?).It was estimated that small scale structure in the HI distribution in the sky introduces errors in the column density estimates of±1×1020cm?2(90% con?dence level,see Elvis et al.1986,Appendix B).The upper limits to N H derived from the absorbed power-law?t are below the90%con?dence interval for the Galactic value.The?ts with the Comptonization model has the same problem in two out of three observations.The inclusion of a black body component in the absorbed power law model(this is done in analogy with the X–ray spectra modeling used for several Galactic dipping sources,see e.g.XB1916–053,Church et al.1997;XB1254–690,

8Mangano,V.,Israel,G.L.,Stella,L.:A possible new dipping X–ray source in M31

Fig.6.Square–wave?t of the background subtracted and folded light curves of XMMU J004308.6+411247from the XMM–Newton and Chandra observations showing the107min pulsation.The satellite,observation date and average source count rate are given in each panel.The data are the same as in Fig.3panel(a)and in Fig.4panels(a),(b)and(c).

Smale,Church&Ba?uci′n ska–Church2002;X1624–49,Church&Ba?uci′n ska–Church1995)gives plausible upper limits to the absorption column,but is not required statistically since the power-law?t is already acceptable.The phase-averaged spectra of XMMU J004308.6+411247obtained from the2002January6observation are shown in Fig.7.

In order to investigate further the low–level absorption indicated by the above?ts,we also?t groups of PN,MOS1and MOS2 phase-averaged spectra with the three above-discussed models,while freezing N H at the Galactic value(which is to be considered a lower limit to the absorption for a source located in M31).We obtain reducedχ2values of1.2(power law),1.03(power law plus blackbody)and1.1(comptonization)for observation1,of1.4,0.96and1.2for observation3and of1.3,0.76and1.06for observation4respectively and parameter values consistent with the corresponding ones listed in Table3to within the errors. Note also that the upper limits to N H increases considerably(up to values consistent with the Galactic value in some cases) when allowing for independent absorption columns in the PN,MOS1and MOS2spectra.The2002January6PN,MOS1and MOS2phase-averaged spectra?t in this way with the absorbed power–law model gives aχ2of48.1(47d.o.f.),a photon index

of0.79+0.1

?0.09and N H<4×1020cm?2for the PN spectrum,N H<6.8×1020cm?2for the MOS1spectrum,N H<1.4×1020cm?2

for the MOS2spectrum.Fitting again the three spectra with the absorbed Comptonization model(disk geometry),we obtain a

χ2of37.20(45d.o.f.),an input photon temperature of kT0<0.12keV,Comptonising electron temperature of kT e=3.3+2.6

?0.8keV,

and optical depthτ=12.5+1.8

?1.75and N H<6.8×1020cm?2for the PN spectrum,N H<11.5×1020cm?2for the MOS1spectrum,

N H<1.7×1020cm?2for the MOS2spectrum.Based on this analysis we conclude that the low95%upper limits to N H obtained may be related to calibration uncertainties of the EPIC cameras.It is worth noting that XMMU J004308.6+411247is not the only

Mangano,V.,Israel,G.L.,Stella,L.:A possible new dipping X–ray source in M319 Table3.Best–?t model parameters of energy spectra of XMMU J004308.6+411247a

Parameter Observation Date

2000June252001June292002January6

(observation1)(observation3)(observation4)

N b

H ≤0.058≤0.023≤0.012

Photon Index0.84+0.17

?0.120.75+0.13

?0.13

0.78+0.09

?0.08

Flux c1.71+0.13

?0.10 1.76+0.13?0.10 1.56+0.13?0.12 1.56+0.13?0.12 1.68+0.07?0.07 1.68+0.07?0.07

χ2(d.o.f)21.53(20)27.48(25)48.13(49)

N b

H ≤0.320.07h≤0.098

Photon Index1.81+0.9

?1.52.14+0.3

?0.6

1.73+0.82

?0.7

kT d

bb 2.3+2.7

?0.54

2.07+0.96

?0.4

2.55+1.4

?0.5

Flux c1.69+0.85

?0.35 1.81+0.90?0.37 1.50+0.47?0.24 1.58+0.49?0.25 1.73+0.37?0.23 1.79+0.37?0.23

Flux(black body)c1.14+0.63

?0.29 1.15+0.64?0.29 1.20+0.41?0.19 1.20+0.42?0.19 1.21+0.32?0.19 1.21+0.32?0.19

Flux(power law)c0.55+0.22

?0.07 0.66+0.26?0.08 0.30+0.06?0.07 0.36+0.07?0.06 0.52+0.04?0.04 0.58+0.05?0.05

χ2(d.o.f)17.25(16)21.09(22)34.77(45)

N b

H ≤0.096≤0.044≤0.037

kT e

0≤0.23≤0.17≤0.15

kT f e3.2+49.2

?1.02.84+22.7

?0.85

3.2+2.2

?0.8

τg11.5+3.5

?3.2514.1+3.1

?3.0

13+2.0

?1.1

Flux c1.73+0.72

?0.45 1.77+0.74?0.46 1.60+0.77?0.21 1.60+0.77?0.21 1.77+0.56?0.23 1.78+0.57?0.23

χ2(d.o.f)20.20(18)22.81(23)40.6(47)

10Mangano,V .,Israel,G.L.,Stella,L.:A possible new dipping X–ray source in M31

Table 4.Best–?t model parameters of energy spectra of XMMU J004308.6+411247a

Parameter Observation Date

2000June 252001June 292002January 6

(observation 1)(observation 3)(observation 4)

PN data PN data PN,MOS1and MOS2data

N H (out-of-dip)b ≤0.023≤0.037≤0.01

N H (dip)b ≤9.7≤0.93≤0.22

Flux (out-of-dip)c 2.19+0.14

?0.13 2.19+0.15

?0.13 1.89+0.14

?0.14 1.89+0.14?0.14 2.02+0.07

?0.07

2.02+0.07?0.07 Flux (dip)c 1.01+0.87

?0.31 1.09+0.94

?0.33 1.09+0.31

?0.28 1.09+0.31

?0.28 0.69+0.16

?0.13 0.69+0.16

?0.13

χ2(d.o.f)39.74(26)27.48(24)85.85(95)

N H (out-of-dip)b ≤0.044≤0.048≤0.03

N H (dip)b ≤32≤0.90≤0.19

Flux (out-of-dip)c 2.14+0.44

?0.16 2.14+0.44?0.16 1.93+0.53

?0.18 1.93+0.53?0.18 2.11+0.34

?0.12

2.13+0.34?0.12 Flux (dip)c 1.03+0.84?0.32 1.16+0.91

?0.35 1.11+1.22?0.29 1.11+1.22?0.29 0.73+0.21

?0.15 0.73+0.21

?0.15

χ2(d.o.f)33.12(25)22.81(23)70.79(94)

Mangano,V.,Israel,G.L.,Stella,L.:A possible new dipping X–ray source in M3111

Fig.7.phase-averaged spectra of XMMU J004308.6+411247extracted from PN,MOS1and MOS2data of the XMM–Newton observation carried out on2002January6.The resulting simultaneous?t with the absorbed power law model is shown(see table 3).The dashed line gives the best?t model for the PN spectrum,the dot-dashed is for the MOS1and the solid line for the MOS2.

Fig.8.out-of-dip,dip and phase-averaged spectra of XMMU J004308.6+411247extracted from PN data of the XMM–Newton observation carried out on2002January6.The resulting simultaneous best?t with the absorbed power law model with photon indexΓ=0.78is shown(see Tables3and4).The dashed line gives the best?t model for the out-of-dip spectrum,the dot-dashed is for the dip spectrum and the solid line for the phase-averaged spectrum.

5.Discussion

The unprecedent throughput of XMM–Newton led to the detection of a107min modulation from the X–ray source XMMU J004308.6+411247in the?eld of M31.This source is very likely the ROSAT–HRI source[PFJ93]74(Primini,Forman &Jones1993).The modulation is con?rmed also by Chandra archival observations of the source.The source?ux was at a nearly steady level of~1.7×10?13erg s?1cm?2in the0.3–10keV band throughout all XMM–Newton observations.This value is within a factor?ve from?ux measurements obtained by other missions spanning the previous decade.The?ux above corresponds to a lu-minosity of~1×1037(d/780kpc)2erg s?1,where d is the distance of XMMU J004308.6+411247from us.The source spectrum

12Mangano,V.,Israel,G.L.,Stella,L.:A possible new dipping X–ray source in M31

is well?t by an absorbed power law model with a photon indexΓ~0.8,but is also compatible with an absorbed Comptonization model(kT e~3keV andτ~13).No other simple single-component spectral model succeeds in?tting the XMM–Newton data. Owing to poor statistics the N H value could not be measured from the XMM–Newton spectra and only upper limits were derived.

The107min modulation is due to a dip in the light curve that covers about one fourth of the cycle with an energy-independent intensity decrease compatible with100%at dip minimum.The apparent smoothness of XMMU J004308.6+411247 light curves might be due to poor statistics.An eclipse–like behaviour is also compatible with the folded light curve of XMMU J004308.6+411247.In this case,however,the“eclipse”duration would be of0.12phase units during the XMM–Newton observation of2001June29,inconsistent with the~0.2duration obtained for the other three observations.This indicates that the observed modulation might not be compatible with a true eclipse by a companion star.

The possibility that XMMU J004308.6+411247is foreground source in the Galaxy cannot be ruled out at present.Indeed the somewhat lower value of N H,compared to the galactic N H,that we inferred from the analysis of the X–ray spectrum would appear to favor this possibility.

5.1.Galactic scenario

For an assumed distance of1kpc,roughly corresponding to the thickness of the Galaxy in the direction of M31,the0.3–10keV luminosity of XMMU J004308.6+411247would be~2×1031erg s?1,close to the low–end of(but still compatible with)the quiescent X–ray luminosity of magnetic cataclysmic variables(CVs;Ramsay et al.1994,Ramsay&Cropper1994).The period of the X–ray modulation of XMMU J004308.6+411247is suggestive of the orbital period of a polar or intermediate polar(IP). Orbital periods of polars and IPs are mostly concentrated in the in the1–10hr range(Downes et al.2001).Current limits on the magnitude of any optical counterpart to XMMU J004308.6+411247(V>21.7,R>20.2,see Kong et al.2002;Haiman et al. 1994)are also compatible with a magnetic CV interpretation(see Downes et al.2001).

Dip-like X–ray modulations and/or on/o?shaped eclipses re?ecting the orbital motion of the binary are seen in both classes of polars and IPs.Examples of this are Fo Aqr,AO Psc(Hellier,Garlick&Mason1993)and XY Arietis(showing eclipses, Hellier1997)among IPs;2A0311-227(EF Eri,Beuermann,Thomas&Pietsch1991),DP Leo(showing eclipses,Schwope et al. 2002)and,to lesser extent,AN UMa(Ramsay et al.1994)among polars.

However,the longest duration of an eclipse obtained through occultation of a compact accreting X–ray source by a donor star ?lling its Roche-Lobe of radius r L in a binary system with orbital period P,binary separation a and mass ratio q=M donor/M X<1 can be calculated as1

=r L

P

should be larger than1000(Tarter,Tucker&Salpeter

N e R2

1969;Hatchett,Bu?&McCray1976).We de?ne?=?R

<10?3L X

N eξ

Mangano,V.,Israel,G.L.,Stella,L.:A possible new dipping X–ray source in M3113 A?nal possibility,producing a relatively smooth modulation in the X–ray light curve,is a self–eclipse of the hot emitting region on the polar cap of a highly magnetic WD(polar)in synchronous rotation with a low mass companion from which it accretes matter via Roche-Lobe over?ow without accretion disk formation.In this case the pro?le and duration of the eclipse would be due to the shape and extension of the hot polar cap periodically hidden at the WD spin period,equal to the orbital period.The energy independence of the eclipse depth would be also explained.

If XMMU J004308.6+411247were a Galactic CV as suggested by its low X–ray luminosity for a1kpc distance scale,the folded light curve modulation would be clearly more suggestive of an accretion stream eclipse or a self eclipse of the WD in binary system of the polar class.

However,evidence against the magnetic CV interpretation derives from the analogy with the spectral characteristics observed from Polars and IPs.In both cases the observed spectra are compatible with a thermal bremsstrahlung spectrum with temperature in excess of tens of keV,plus(in many cases)a very soft spectral component consistent with a blackbody of temperature in the 10-50eV range.The bolometric luminosity in this component is from one to several hundreds times higher than the thermal bremsstrahlung component in Polars(Ramsay&Cropper1994),while it ranges from zero(i.e.the component is not detected)to several tens of times the thermal bremsstrahlung component in IPs.

The spectral characteristics of XMMU J004308.6+411247are at variance with those of magnetic CVs.The X–ray spectrum of XMMU J004308.6+411247has a characteristic temperature2–3keV(that of the Comptonising electrons)and,in any case, cannot be?t with a thermal bremsstrahlung spectrum.The addition of a soft blackbody component with temperature of50eV or less produces a bolometric blackbody?ux comparable to the bremsstrahlung,but the?t should be discarded because of reduced χ2of1.6(in the best case).

Finally we note that,in the Galactic interpretation,the X–ray luminosity and spectrum of XMMU J004308.6+411247would be similar to those observed from quiescent soft X–ray transient low mass binaries hosting a neutron star(see e.g.Campana &Stella2000).X–ray eclipses have so far been observed only in a very low luminosity state of MXB1659-29(Wijnands et al.2003);no evidence for a dip–like modulation of the X-ray?ux at the orbital period has yet been found in any quiescent neutron star soft X–ray transient.Therefore,while in principle viable,the possibility that XMMU J004308.6+411247is a dip-ping quiescent soft X–ray transient is not especially appealing.On the other hand the interpretation of he X-ray modulation of XMMU J004308.6+411247in terms of eclipses by the companion star is untenable because of the eclipse duration exceeds the maximum allowed duration(see above).

5.2.Extragalactic scenario

As an M31source,the nearly steady luminosity of XMMU J004308.6+411247(~1037erg s?1(0.3–10keV)would be similar to that of moderately bright LMXRBs(White,Stella&Parmar1988).The shape of the107min periodic modulation,comprising a fairly?at on-phase lasting for about3/4of the cycle and a relatively long and smooth dip(1/4of the cycle)reaching(nearly) zero?ux over some1/10of the cycle,is clearly reminiscent of X–ray dipping LMXRBs seen from high inclinations.

The possibility that the observed modulation is due to true eclipses of a compact central X–ray source by the companion star (supported by the square–wave?t of the folded XMMU J004308.6+411247light curves shown at the end of section4.1),can be simply ruled out because the observed eclipse duration is incompatible with the geometry of the binary system(see section5.1).

LMXRB dips are believed to arise from absorption and/or Thomson scattering of X–rays coming from a central source by a bulge in the outer regions of the accretion disk,where the stream from the Roche-Lobe?lling companion impacts the outer disk rim.The dipping phenomenon re?ects the orbital period of the system,as demonstrated by a few systems which display both X–ray dips and eclipses from the companion stars(e.g.MXB1659–298,Cominsky&Wood1984,Cominsky&Wood1988, Wijnands et al.2003;EXO0748–676,Parmar et al.1986;GRS1747–312,into Zand et al.2000,in’t Zand et al.2003).Despite some jitter in phase and the common presence of pronounced dip variability,the position of the bulge must remain(nearly)?xed in phase(Frank,King&Lasota1987).It is estimated that the dip phenomenon occurs in systems with an inclination greater than~70?.Some20dipping LMXRBs are currently known in the Galaxy.Only one of these(X1916–053)has an orbital period shorter than~2hr(White&Swank1982),while two(4U1755–338and4U1630-47,in Mason et al.1985and Tomsik,Lapshow &Kaaret1998respectively)likely host an accreting Black Hole Candidate(BHC).Most dipping LMXRBs are type I X–ray bursters and thus contain an accreting neutron star.

In the dipping LMXRB interpretation XMMU J004308.6+411247would be a compact binary,the second dipper with a period below the period gap.

The spectra of high luminosity(>1037erg s?1)LMXRBs hosting a central neutron star are usually well?t e.g.by a Comptonization model plus a blackbody component(White,Stella&Parmar1988;for a review of other models see e.g.Di Salvo&Stella2002).When required,the blackbody component has a temperature around1.5keV and it accounts for~10–30% of the total1–10keV?ux.For both low/high luminosity sources,Comptonization parameters are y~2?4,optical depths τ~10?15and electron temperatures T e~2?4keV.Spectra of(soft state)Black Hole Candidates in LMXRBs are well?t by Comptonization model too,but with a somewhat higher scattering depth(τ>15)and lower electron temperature(T e~1keV;

14Mangano,V.,Israel,G.L.,Stella,L.:A possible new dipping X–ray source in M31

White,Stella&Parmar1988).LMXRBs with somewhat lower luminosity(<1037erg s?1)are often dominated by a power law with photon indexΓ>~2(Christian&Swank1997;Schulz1999;Church&Ba?uci′n ska–Church2001).

In the case of XMMU J004308.6+411247,the XMM–Newton spectra are reasonably well?t by a power law or a Comptonization model(see Table3).The power-law?t gives a photon index(Γ<1),i.e.harder than that found in LMXRBs. The addition of a blackbody component to the power law,though not required from the statistical point of view,implies too high a blackbody temperature(~2.3keV)and fraction of the total luminosity(~70%)as compared to typical values for LMXRBs. On the contrary the thermal Comptonization model discussed in section4.2yields an electron temperature of~3keV and an optical depth~13consistent with high luminosity LMXRBs hosting a neutron star.

In this interpretation other relevant features of XMMU J004308.6+411247are

(i)the~25%duty cycle of the dips;this is in agreement with those observed in Galactic dipping sources:the duty cycle of the dips varies from source to source and is typically10%–40%.Sources showing dips with a~20%duty cycle are,for example, 4U1755–338(Mason et al.1985),XB1254–690(Courvoisier et al.1986),MXB1659–29(Cominsky&Wood1984) (ii)the shape of the dips,consistent with a relatively smooth average pro?le;this is common in Galactic dipping sources as well,despite the fact that individual dips often display pronounced irregular variability.Owing to poor statistics,individual dip variability would not be revealed in XMMU J004308.6+411247.

(iii)the very high degree of modulation,nearly100%;in turn this is not unusual in LMXRBs:e.g.4U1916–053and XB1254–690often display more>90%modulated dips;MXB1658–298presented~90%modulated dips in the Beppo–SAX observation of August2000(Oosterbroek et al.2000);the dips of EXO0748–676occasionally reach a depth of80%(Parmar et al.1986).

(iv)the absence of a conspicuous increase in N H during dips.The most constraining upper limit to the average absorption column of the obscuring bulge producing the dips we got from XMM–Newton observations of XMMU J004308.6+411247is rather low:<2×1021cm?2(at95%con?dence level;see Table4).However,we reiterate that the dip spectra were extracted over a fairly large phase interval(1/4of a cycle),which samples predominantly the relatively shallow stages of the dip(this was done in order to increase the S/N).For this reason the upper limit we derived might underestimate the actual limit on the increase of N H around dip minimum.

(v)the energy independence of the modulation(to within the uncertainties).We have already discussed this point in section 5.1(5th paragraph).As in the IP case,this may be accounted for if the disk bulge producing the dips were ionized by the central X–ray source and the?ux reduction mechanism at work was Thomson scattering and not(as often happens)photo-electric absorption.

Following the same line of reasoning of section5.1we conclude that for an X–ray luminosity L X~1×1037erg s?1the distance from the central X–ray source of the material causing the dips should be R<~3×109cm,since only material closer than 3×109cm from the X–ray source will be signi?cantly ionized.By contrast,for a107min binary period the binary separation of the system is expected to be a~5.2×1010M1/3

X

(1+q)1/3cm,with M X the mass of the compact object in solar units,and q the mass

ratio of the donor star and the accreting star.Thus,the accretion disk is expected to have a radius of~0.3a<~2×1010M1/3

X cm

for stellar masses with ratio q<~1(Whitehurst&King1991;Eggleton1983).This requires,for ionization to be important,that the disk is at least one order of magnitude smaller than expected or the material responsible for the dips is located further inside the edge of the disk,both of which seem unlikely.We note that also in the case of4U1755–338the ionization hypothesis leads to the same di?culties(Mason et al.1985).

Another possibility to interpret the energy independent dips of XMMU J004308.6+411247would be the eclipse by the companion star of an extended source of X–rays of comparable size,such as that originating from electron scattering in an Accretion Disk Corona(ADC).Besides the energy-independence,this would explain the smooth ingress and egress of the dips as well as the(nearly)100%reduction of the observed X–ray?ux.In this hypothesis,however the central X–ray source should be completely hidden by the accretion disk rim in order to explain the absence of sharp eclipses.In analogy with known ADC sources we would thus expect that the true luminosity of XMMU J004308.6+411247is one or two orders of magnitude higher than that observed,i.e.1038–1039erg s?1.This in turn would suggest a BHC accreting at very high rates;however the observed source spectrum is considerably harder than that expected from such a BHC.

6.Conclusion

We discovered107min periodic dips in the X–ray light curve of XMMU J004308.6+411247.The dip pro?le and amplitude, and average spectra of XMMU J004308.6+411247are consistent with a accreting neutron star in a short period LMXRB seen at a high inclination and located in M31.The apparent energy-independence of the dips is more di?cult to interpret in this scenario.If this interpretation was correct,XMMU J004308.6+411247would be the second dipping source discovered in M31 (after XMMU J004314.1+410724in the globular cluster Bo158,Trudolyubov et al.2002).

The possibility that XMMU J004308.6+411247is a foreground magnetic CV cannot be ruled out at present,but appears to be less likely.

Acknowledgements.We acknowledge a number of useful exchanges with F.Fiore,J.Osborne and A.Tiengo on the analysis of XMM–Newton data.The comments from an anonymous referee helped improving the analysis and the presentation of the data.

Mangano,V.,Israel,G.L.,Stella,L.:A possible new dipping X–ray source in M3115 This work was partially supported through ASI and MIUR–COFIN grants.

References

Barnard,R.,Kolb,U.&Osborne,J.P.2002,Proc.Symposium New Visions of the X–ray Universe in the XMM–Newton and Chandra Era, ESA SP–488

Beuermann,K.,Thomas,H.–C.&Pietsch,W.1991,A&A,246,L36

Bautz,M.W.1998,Proc.SPIE,3444,210

Bridge,C.M.et al.2003,MNRAS,341,863

Campana,S.&Stella,L.2000,ApJ,541,849

Christian,D.J.&Swank,J.H.1997,ApJS,109,177

Church,M.J.&Ba?uci′n ska–Church,M.1995,A&A,300,441

Church,M.J.&Ba?uci′n ska–Church,M.2001,A&A,369,915

Church,M.J.et al.1997,ApJ,491,388

Cominsky,L.&Wood,K.1984,ApJ,283,765

Cominsky,L.&Wood,K.1984,ApJ,337,485

Courvoisier,T.J–L.et al.1986,ApJ,309,265

Damiani,F.et al.1997,ApJ,483,350

Dickey,J.M.,&Lockman,F.J.1990,ARA&A,28,215

Di Salvo,T.&Stella,L.2002,in The Gamma–Ray Universe,ed.A.Goldwurm,D.N.Neuman&J.Tr?a n Th?a n V?a n,Moriond Astrophysics Meetings Ser.,(Th?e Gioi Publishers),67

Di Stefano,R.et al.2002,ApJ,570,618

Downes,R.A.et al.2001,PASP,113,764

https://www.wendangku.net/doc/8d3487555.html,~downes/cvcat

Eggleton,P.P.1983,ApJ,268,368

Elvis,M.et al.1986,ApJ,310,291

Frank,J.,King,A.R.&Lasota,J.P.1987,A&A,178,137

Garcia,M.R.et al.2000,ApJ,537,L23

Garmire,G.P.et al.1992,Space Programs and Technologies Conference,(American Institute of Aeronautics&Astronautics,New York),8 Haiman,Z.et al.1994,A&A,286,725

Hatchett,S.,Bu?,J.&McCray,R.1976,ApJ,206,847

Hellier,C.1997,MNRAS,291,71

Hellier,C.,Garlick,M.A.&Mason,K.O.1993,MNRAS,260,299

in’t Zand,J.J.et al.2000,A&A,355,145

in’t Zand,J.J.et al.2003,A&A,406,233

Israel,G.L.&Stella,L.1996,ApJ,468,369

Jansen,F.et al.2001,A&A,365,L1

Kaaret,P.2002,ApJ,578,114

Kong,A.K.H.et al.2002,ApJ,577,738

Leahy,D.A.1983,ApJ,266,160

Leahy,D.A.1987,A&A,180,275

Macri,L.M.et al.2001,ApJ,549,721

Mason,K.O.,Parmar,A.N.&White,N.E.1985,MNRAS216,1033

Murray,S.S.et al.1997,Proc.SPIE,3114,11

Oosterbroek,T.et al.2000,A&A,376,532

Osborne,J.P.et al.2001,A&A,378,800

Parmar,A.N.et al.1986,ApJ,308,199

Patterson,J.,PASP,106,209

Primini,F.A.,Forman,W.&Jones,C.1993,ApJ,410,615

Ramsay,G.et al.1994,MNRAS,270,692

Ramsay,G.&Cropper,M.2003,MNRAS in press,astro-ph/0309527

Schulz,N.S.1999,ApJ,511,304

Schwope,A.D.et al.2002,A&A,392,541

Shirey,R.et al.2001,A&A,365,L195

Smale,A.P.,Church,M.J.&Ba?uci′n ska–Church,M.2002,ApJ,581,1286

Stanek,K.Z.,&Garnavich,P.M.1998,ApJ,503,L131

Str¨u der,L.et al..2001,A&A,365,L18

Supper,R.1997,A&A,317,328

Supper,R.2001,A&A,373,63

Tarter,C.B.,Tucker,W.H.&Salpeter,E.E.1969,ApJ,156,943

Titarchuk,L.1994,ApJ,434,570

Titarchuk,L.&Lyubarskij,Y.1995,ApJ,450,876

Tomsik,J.A.,Lapshow,I.&Kaaret,P.1998,ApJ,494,747

16Mangano,V.,Israel,G.L.,Stella,L.:A possible new dipping X–ray source in M31

Trinchieri,G.et al.1999,A&A,348,43

Trudolyubov,S.P.et al.2002,ApJ,581,L27

Trinchieri,G.&Fabbiano,G.1991,ApJ,382,82

Turner,M.J.L.et al.2001,A&A,365,L27

van Speybroeck,L.et al.1979,ApJ,234,L45

Vaughan,B.A.et al.1994,ApJ,435,362

Weisskopf,M.C.1988,Space Sci.Rev.,47,47

White,N.E.,Stella,L.&Parmar,A.N.1988,ApJ,324,363

White,N.E.&Swank,J.H.1982,ApJ,253,L61

Whitehurst,R.&King,A.1991,MNRAS,249,25

Williams,B.F.et al.2003,preprint,astro–ph/0306421

Wijnands,R.et al.2003,preprint,astro–ph/0207094

XMM–Newton Users’Handbook V2.12003,ed.M.Ehle,M.Breitfellner,R.Gonzales Riestra,M.Guainazzi,P.Rodriguez,M.Santos-Lleo,N.

Schartel,L.Tomas,E.Verdugo,M.Dahlem,http://xmm.vilspa.esa.es/external/xmm?user?support/documentation/uhb/XMM?UHB.html

(完整版)X射线光电子能谱分析(XPS)

第18章X射线光电子能谱分析 18.1 引言 固体表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。AES 分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。SIMS和ISS由于定量效果较差,在常规表面分析中的应用相对较少。但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。本章主要介绍X射线光电子能谱的实验方法。 X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法是在六十年代由瑞典科学家Kai Siegbahn教授发展起来的。由于在光电子能谱的理论和技术上的重大贡献,1981年,Kai Siegbahn获得了诺贝尔物理奖。三十多年的来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。XPS已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。XPS的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。 在XPS谱仪技术发展方面也取得了巨大的进展。在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源;传统的固定式X射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小的束斑直径已能达到6μm大小, 使得XPS在微区分析上的应用得到了大幅度的加强。图像XPS技术的发展,大大促进了XPS在新材料研究上的应用。在谱仪的能量分析检测器方面,也从传统的单通道电子倍增器检测器发展到位置灵敏检测器和多通道检测器,使得检测灵敏度获得了大幅度的提高。计算机系统的广泛采用,使得采样速度和谱图的解析能力也有了很大的提高。 由于XPS具有很高的表面灵敏度,适合于有关涉及到表面元素定性和定量分析方面的应用,同样也可以应用于元素化学价态的研究。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。因此,XPS 方法可广泛应用于化学化工,材料,机械,电子材料等领域。 18.2 方法原理 X射线光电子能谱基于光电离作用,当一束光子辐照到样品表面时,光子可以被样品中某一元素的原子轨道上的电子所吸收,使得该电子脱离原子核的束缚,以一定的动能从原子内部发射出来,变成自由的光电子,而原子本身则变成一个激发态的离子。在光电离过程中,固体物质的结合能可以用下面的方程表示: E k = hν- E b - φs (18.1)

从劳厄发现晶体X射线衍射谈

从劳厄发现晶体X射线衍射谈起 摘要:文章从劳厄发现晶体X射线衍射的前因后果谈起。劳厄的这个发现产生了两个新学科,即X射线谱学和X射线晶体学。文中还回顾了布拉格父子对这两个新学科所作的重大贡献,并阐述了X射线晶体学的深远影响。 今年是劳厄(von Lane M)发现晶体X射线衍射九秩之年。 从1895年伦琴(R0ntgen W C)发现X射线到1926年薛定愕(Schrodinger)奠定量子力学基础的30多年是现代物理学诞生和成长的重要时期。在此期间的众多重大发现中,1912年劳厄的发现发挥了极为及时而又十分深远的影响,是很值得我们通过回顾和展望来纪念它的。 我们先来了解一下劳厄发现的前因后果。1912年劳厄发现晶体X射线衍射时是在德国慕尼黑大学理论物理学教授索未菲(Sommerfeld)手下执教。除理论物理教授索未菲外,在这个大学中还有发现X射线的物理学教授伦琴和著名的晶体学家格罗特(Groth)。当时,劳厄对光的干涉作用特别感兴趣,索末菲则在考虑X射线的本质和产生的机制问题,而格罗特是晶体学权威之一,并著书Chemische KristallograPhic (化学晶体学)数卷。身在这样的学府中,劳厄当时通过耳闻目睹也就对 晶体中原子是按三维点阵排布以及X射线可能是波长很短的电磁波这样的想法不会感到陌生或难于接受了。而且看来正当而立之年的他是很想在光的干涉作用上做点文章的。真可谓机遇不负有心人了。这时,索末菲的博士生埃瓦尔德(Ewald P P)来请教劳厄,谈到他正在研究关于光波通过晶体中按三维点阵排布的原子会产生什么效应。这对劳厄有所触发并想到:如果波长短得比晶体中原子间距离更短时又当怎样?而X射线可能正是这样的射线。他意识到,说不定晶体正是能衍射X射线的三维光栅呢。现在劳厄需要考虑的大事是做实验来证实这个想法。当时索末菲正好有个助教弗里德里希(Friedrich W) ,他曾从伦琴教授那里取得博士学位。 他主动要去进行这样的实验。经过几次失败后,他终于取得了晶体的第一个衍射图「(见图1)」。晶体是五水合硫酸铜(CuSO4·5H2O)。 劳厄的发现经过进一步的工作很快取得了一箭双雕的效果:既明确了X射线的本质,测定了波长,开创了X射线谱学,又使测定晶体结构的前景在望,从而将观察晶体外形所得结论经过三维点阵理论发展到230个空间群理论的晶体学,提升为X射线晶体学。这个发现产生的两个新学科,几乎立即给出了一系列在科学中有重大影响的结果。英国的布拉格父子(Bragg W H和Bragg W L)在奠定这两个新学科的基础中起了非常卓越的作用。他们使工作的重心从德国转到英国。将三个劳厄方程(衍射条件)压缩成一个布拉格方程(定律)的小布拉格曾把重心转移的原因归之于老布拉格设计的用起来得心应手的电离分光计”。既然晶体是X射线的衍射光栅,那么,为了测定X射线的波长,光栅的间距当如何得出?1897年巴洛(Barlow W)预测过最简单的晶体结构型式,其中有氯化钠所属的型式。根据当时已知的NaCI的化学式量(58.46)和阿伏伽德罗常数(6.064×1023)以及晶体密度(2.163g/cm2),可以推算出氯化钠晶体(10)原子面的间距d=2.814×10-8cm。 布拉格父子的工作是有些分工的:老布拉格用他的电离分光计侧重搞谱学,很快发现X射线谱中含有连续谱和波长取决于对阴极材料的特征谱线。此后,测定晶体结构主要依靠特征射线。同时还观察到同一跃迁系特征射线的频率是随对阴极材料在元素周期系中的排序递增的,这种频率的排序给出了原子序数。这是对化学中总结出来的元素周期律作出的呼应。小布拉格的工作是沿着X射线晶体学的方向发展的。他一生中从氯化钠和金刚石一直测到蛋白质的晶体结构。从1913年起,他在两年中一连测定了氯化钠、金刚石、硫化锌、黄铁矿、荧石和方解石等的晶体结构。这一批最早测定的晶体结构虽然极为简单,但很有代表性,而且都足以让化学和矿物学界观感一新。同时为测定参数较多和结构比较复杂的晶体结构也进行了理论和技术方面的准备。X射线晶体学能不断采用新技术和解决周相问题的新方法,使结构测定的对象

X射线光电子能谱仪

X射线光电子能谱分析 1 引言 固体表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。AES分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。SIMS和ISS由于定量效果较差,在常规表面分析中的应用相对较少。但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。本章主要介绍X射线光电子能谱的实验方法。 X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法是在六十年代由瑞典科学家Kai Siegbahn教授发展起来的。由于在光电子能谱的理论和技术上的重大贡献,1981年,Kai Siegbahn获得了诺贝尔物理奖。三十多年的来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。XPS已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。XPS的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。 在XPS谱仪技术发展方面也取得了巨大的进展。在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源;传统的固定式X射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小的束斑直径已能达到6 m 大小, 使得XPS在微区分析上的应用得到了大幅度的加强。图像XPS技术的发展,大大促进了XPS在新材料研究上的应用。在谱仪的能量分析检测器方面,也从传统的单通道电子倍增器检测器发展到位置灵敏检测器和多通道检测器,使得检测灵敏度获得了大幅度的提高。计算机系统的广泛采用,使得采样速度和谱图的解析能力也有了很大的提高。 由于XPS具有很高的表面灵敏度,适合于有关涉及到表面元素定性和定量分析方面的应用,同样也可以应用于元素化学价态的研究。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。因此,XPS方法可广泛应用于化学化工,材料,机械,电子材料等领域。 2 方法原理 X射线光电子能谱基于光电离作用,当一束光子辐照到样品表面时,光子可以被样品中某一元素的原子轨道上的电子所吸收,使得该电子脱离原子核的束缚,以一定的动能从原子内部发射出来,变成自由的光电子,而原子本身则变成

光电子能谱分析法基本原理

第十四章 X-射线光电子能谱法 14.1 引言 X-射线光电子谱仪(X-ray Photoelectron Spectroscopy,简称为XPS),经常又被称为化学分析用电子谱(Electron Spectroscopy for Chemical Analysis,简称为ESCA),是一种最主要的表面分析工具。自19世纪60年代第一台商品化的仪器开始,已经成为许多材料实验室的必不可少的成熟的表征工具。XPS发展到今天,除了常规XPS外,还出现了包含有Mono XPS (Monochromated XPS, 单色化XPS,X射线源已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源), SAXPS ( Small Area XPS or Selected Area XPS, 小面积或选区XPS,X射线的束斑直径微型化到6μm) 和iXPS(imaging XPS, 成像XPS)的现代XPS。目前,世界首台能量分辨率优于1毫电子伏特的超高分辨光电子能谱仪(通常能量分辨率低于1毫电子伏特)在中日科学家的共同努力下已经研制成功,可以观察到化合物的超导电子态。现代XPS拓展了XPS的内容和应用。 XPS是当代谱学领域中最活跃的分支之一,它除了可以根据测得的电子结合能确定样品的化学成份外,XPS最重要的应用在于确定元素的化合状态。XPS可以分析导体、半导体甚至绝缘体表面的价态,这也是XPS的一大特色,是区别于其它表面分析方法的主要特点。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。XPS表面分析的优点和特点可以总结如下: ⑴固体样品用量小,不需要进行样品前处理,从而避免引入或丢失元素所造成的错误分析 ⑵表面灵敏度高,一般信息采样深度小于10nm ⑶分析速度快,可多元素同时测定 ⑷可以给出原子序数3-92的元素信息,以获得元素成分分析 ⑸可以给出元素化学态信息,进而可以分析出元素的化学态或官能团 ⑹样品不受导体、半导体、绝缘体的限制等 ⑺是非破坏性分析方法。结合离子溅射,可作深度剖析 目前,XPS主要用于金属、无机材料、催化剂、聚合物、涂层材料、纳米材料、矿石等各种材料的研究,以及腐蚀、摩擦、润滑、粘接、催化、包覆、氧化等过程的研究,也可以用于机械零件及电子元器件的失效分析,材料表面污染物分析等。 14.2 基本原理 XPS方法的理论基础是爱因斯坦光电定律。用一束具有一定能量的X射线照射固体样品,入射光子与样品相互作用,光子被吸收而将其能量转移给原子的某一壳层上被束缚的电子,此时电子把所得能量的一部分用来克服结合能和功函数,余下的能量作为它的动能而发射出来,成为光电子,这个过程就是光电效应。 该过程可用下式表示: hγ=E k+E b+E r(14.1) 式中: hγ:X光子的能量(h为普朗克常数,γ为光的频率);

X射线衍射分析原理及其应用

X射线衍射分析

目录 1.摘要 (2) 2.前言 (2) 3.X射线及XRD (2) 4.X射线衍射仪的结构 (3) 5.X射线衍射仪的原理 (5) X射线衍射原理 (5) X射线图谱 (6) 6.X射线衍射法 (7) 多晶粉末法 (7) 单晶衍射法 (10) 7.X射线衍射法的应用 (11) X射线衍射分析方法在中药鉴定中的应用 (11) X射线衍射仪在岩石矿物学中的应用 (11) 8.总结 (12) 9.参考文献 (14)

X射线衍射分析 摘要: X射线衍射分析是一种重要的晶体结构和物相分析技术,广泛应用于冶金、石油、化工、科研、航空航天、教学、材料生产等领域。本文简要介绍X射线衍射原理,X射线衍射仪器的结构、原理,及其在地质学、医学等自然科学领域中的应用。 前言: 1895年伦琴发现X射线,又称伦琴射线。德国科学家劳厄于1912年发现了X射线衍射现象,并推导出劳厄晶体衍射公式。随后,英国布拉格父子又将此衍射关系用简单的布拉格方程表示出来。到上世纪四、五十年代,X射线衍射的原理、方法及在其他各方面的应用逐渐建立。在各种测量方法中,X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。X射线衍射技术可以探究晶体存在的普遍性和特殊性能,使得其在冶金、石油、岩石矿物、科研、航空航天、材料生产等领域的被广泛应用。 关键词:X射线,XRD,衍射,原理,岩石矿物,中药,应用 一、X射线及XRD 1.X射线是由高能电子的减速运动或原子内层轨道电子的跃迁产生的短波电磁 辐射。X射线的波长在10-6 ~10nm,在X射线光谱法中常用波长在0.01~2.5nm范围内。 2.X射线的产生途径有四种:1.高能电子束轰击金属靶即在一个X射线管中,固体阴极被加热产生大量电子,这些电子在高达100KV的电压下被加速,向金属阳极轰击,在碰撞过程中,电子束的一部分能量转化为X射线;2.将物质用初级X射线照射以产生二级射线—X射线荧光; 3.利用放射性同位素衰败过程产生的发射,人工放射性同位素为为某些分析应用提供了非常方便的单能量辐射源; 4.从同步加速器辐射源获得。 3.X射线的吸收。当一束X射线穿过有一定厚度的物质时,其光强和能量会因吸收和散射而显著减小。物质的原子序数越大,它对X射线的阻挡能力越大,X射线波长越长,即能量越低,越容易被吸收[1]。 4.X射线衍射分析(XRD)是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。X射线衍射法是目前测定晶体结构的重要手段,应用极其广泛。在实际的应用中将该分析方法分

X射线衍射分析法原理概述

第十四章 X射线衍射分析法 14.1概述 X射线衍射法是一种研究晶体结构的分析方法,而不是直接研究试样内含有元素的种类及含量的方法。当X射线照射晶态结构时,将受到晶体点阵排列的不同原子或分子所衍射。X射线照射两个晶面距为d的晶面时,受到晶面的反射,两束反射X光程差2dsinθ是入射波长的整数倍时,即 2dsinθ=nλ (n为整数) 两束光的相位一致,发生相长干涉,这种干涉现象称为衍射,晶体对X 射线的这种折射规则称为布拉格规则。θ称为衍射角(入射或衍射X射线与晶面间夹角)。n相当于相干波之间的位相差,n=1,2…时各称0级、1级、2级……衍射线。反射级次不清楚时,均以n=1求d。晶面间距一般为物质的特有参数,对一个物质若能测定数个d及与其相对应的衍射线的相对强度,则能对物质进行鉴定。 X射线衍射分析方法在材料分析与研究工作中具有广泛的用途。在此主要介绍其在物相分析等方面的应用。 14.1.1 物相定性分析 1.基本原理 组成物质的各种相都具有各自特定的晶体结构(点阵类型、晶胞形状与大小及各自的结构基元等),因而具有各自的X射线衍射花样特征(衍射线位置与强度)。对于多相物质,其衍射花样则由其各组成相的衍射花样简单叠加而成。由此可知,物质的X射线衍射花样特征就是分析物质相组成的“指纹脚印”。制备各种标准单相物质的衍射花样并使之规范化(1969年成立了国际性组织“粉末衍射标准联合会(JCPDS)”,由它负责编辑出版“粉末衍射卡片”,称PDF卡片),将待分析物质(样品)的衍射花样与之对照,从而确定物质的组成相,这就是物相定性分析的基本原理与方法。 2.物相定性分析的基本步骤 (1) 制备待分析物质样品,用衍射仪获得样品衍射花样。 (2) 确定各衍射线条d值及相对强度I/I1值(Il为最强线强度)。 (3) 检索PDF卡片。 PDF卡片检索有三种方式: 1)检索纸纸卡片 物相均为未知时,使用数值索引。将各线条d值按强度递减顺序排列;按三强线条d1、d2、d3的d—I/I1数据查数值索引;查到吻合的条目后,核对八强线的d—I/I1值;当八强线基本符合时,则按卡片编号取出PDF卡片。若按d1、d2、d3顺序查找不到相应条目,则可将d1、d2、d3按不同顺序排列查找。查找索引时,d值可有一定误差范围:一般允许

X射线荧光光谱分析基本原理

X射线荧光光谱分析 X射线是一种电磁辐射,其波长介于紫外线和γ射线之间。它的波长没有一个严格的界限,一般来说是指波长为0.001-50nm的电磁辐射。对分析化学家来说,最感兴趣的波段是0.01-24nm,0.01nm左右是超铀元素的K系谱线,24nm则是最轻元素Li的K系谱线。1923年赫维西(Hevesy, G. Von)提出了应用X射线荧光光谱进行定量分析,但由于受到当时探测技术水平的限制,该法并未得到实际应用,直到20世纪40年代后期,随着X射线管、分光技术和半导体探测器技术的改进,X荧光分析才开始进入蓬勃发展的时期,成为一种极为重要的分析手段。 1.1 X射线荧光光谱分析的基本原理 当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12-10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子。它的能量是特征的,与入射辐射的能量无关。当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差。因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。图1-1给出了X射线荧光和俄歇电子产生过程示意图。

K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。同样,L层电子被逐出可以产生L系辐射(见图1-2)。

晶体X射线衍射实验报告全解

晶体X射线衍射实验报告全解

中南大学 X射线衍射实验报告 材料科学与工程学院材料学专业1305班班级 姓名学号0603130500 同组者无 黄继武实验日期2015 年12 月05 日指导教 师 评分分评阅人评阅日 期 一、实验目的 1)掌握X射线衍射仪的工作原理、操作方法; 2)掌握X射线衍射实验的样品制备方法; 3)学会X射线衍射实验方法、实验参数设置,独立完成一个衍射实验测试; 4)学会MDI Jade 6的基本操作方法; 5)学会物相定性分析的原理和利用Jade进行物相鉴定的方法; 6)学会物相定量分析的原理和利用Jade进行物相定量的方法。 本实验由衍射仪操作、物相定性分析、物相定量分析三个独立的实验组成,实验报告包含以上三个实验内容。 二、实验原理

1 衍射仪的工作原理 特征X射线是一种波长很短(约为20~0.06nm)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。考虑到X射线的波长和晶体内部原子间的距离相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光,即当一束X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布拉格父子(W. H. Bragg, W. L Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式──布拉格定律: 2dsinθ=nλ 式中λ为X射线的波长,n为任何正整数。当X射线以掠角θ(入射角的余角,又称为布拉格角)入射到某一点阵晶格间距为d的晶面面上时,在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。 2 物相定性分析原理 1) 每一物相具有其特有的特征衍射谱,没有任何两种物相的衍射谱是完全相同 的 2) 记录已知物相的衍射谱,并保存为PDF文件 3) 从PDF文件中检索出与样品衍射谱完全相同的物相 4) 多相样品的衍射谱是其中各相的衍射谱的简单叠加,互不干扰,检索程序能 从PDF文件中检索出全部物相 3 物相定量分析原理 X射线定量相分析的理论基础是物质参与衍射的体积活重量与其所产生的衍射强度成正比。 当不存在消光及微吸收时,均匀、无织构、无限厚、晶粒足够小的单相时,多晶物质所产生的均匀衍射环上单位长度的积分强度为: 式中R为衍射仪圆半径,V o为单胞体积,F为结构因子,P为多重性因子,M为温度因子,μ为线吸收系数。 三、仪器与材料 1)仪器:18KW转靶X射线衍射仪 2)数据处理软件:数据采集与处理终端与数据分析软件MDI Jade 6 3)实验材料:CaCO3+CaSO4、Fe2O3+Fe3O4

XRF分析技术原理

第一讲 X 射线荧光及其分析原理 1、X 射线 X 射线是一种电磁波,根据波粒二相性原理,X 射线也是一种粒子,其每个粒子根据下列公式可以找到其能量和波长的一一对应关系。 E =hv=h c/λ 式中h 为普朗克常数,v 为频率,c 为光速,λ为波长。 可见其能量在0.1 ~100(kev )之间。 γ X 紫 可 红 微 短 长 射 射 外 见 线 线 线 光 外 波 波 波 波长 X 射线的产生有几种 1、高速电子轰击物质,产生韧致辐射和标识辐射。其产生的韧致辐射的X 射线的能量取决于 电子的能量,是一个连续的分布。而标识辐射是一种能量只与其靶材有关的X 射线。 E kev A o ().() = 123964 λ

常见的X射线光管就是采用的这种原理。其X射线能量分布如下: 能量 2、同位素X射线源。 同位素在衰变过程中,其原子核释放的能量,被原子的内层电子吸收,吸收后跳出内层轨道,形成内层轨道空位。但由于内层轨道的能级很低,外层电子前来补充,由于外层电子的能量较高,跳到内层后,会释放出光能来,这种能就是X射线。这就是我们常见的同位素X射线源。由于电子的能级是量化的,故释放的射线的能量也是量化的,而不是连续的。

能量 3、同步辐射源。 电子在同步加速器中运动,作园周运动,有一个恒定的加速度,电子在加速运动时,会释放出X射线,所以用这种方法得到的X射线叫同步辐射X射线。 2、X射线荧光 实际上,有很多办法能产生X射线,例如用质子、α射线、λ射线等打在物质上,都可以产生X射线,而人们通常把X射线照射在物质上而产生的次级X射线叫X射线荧光(X—Ray Fluorescence),而把用来照射的X射线叫原级X射线。所以X射线荧光仍是X射线。 3、特征X射线 有人会问,为什么可以用X射线来分析物质的成分呢?这些都归功于特征X射线。 早在用电子轰击阳极靶而产生X射线时,人们就发现,有几个强度很高的X射线,其能量并没有随加速电子用的高压变化,而且不同元素的靶材,其特殊的X射线的能量也不一样,人们把它称为特征X射线,它是每种元素所特有的。莫塞莱(Moseley)发现了X射线能量与原子序数的关系。 E∝(z-σ) E是特征X射线能量,Z是原子序数,σ是修正因子。 这就是著名的莫塞莱定律,它开辟了X射线分析在元素分析中的应用。 为什么会有特征X射线的出现呢?这可以从玻尔的原子结构理论找到答案。原子中的电子都在一个个电子轨道上运行,而每个轨道的能量都是一定的,叫能级。内层轨道能级较低,外层轨道能级较高,当内层的电子受到激发(激发源可以是电子、质子、α粒子、λ射线、X射线等),有足够的能量跳出内层轨道,那么,较外层的电子跃迁到内层的轨道进行补充,由于是从高能级上跳往低能级上,所以会释放出能量,其能量以光的形式放出,这就是特征X射线。 M层 Lα较高能级

2021年X射线荧光分析的基本原理

X射线荧光分析的基本原理 欧阳光明(2021.03.07) 1. 绪论 物质是由各种元素按照不同的构成方式构成的。各种元素的原子是由原子核和一定数目的核外电子构成。不同元素的原子,原子核中质子和中子的数量不同,核外电子数也不同,具有不同的原子结构。核外电子的能量也各不相同,这些能量不同的原子按能量大小分层排列,离原子核最近的电子层称为K电子层,其外依次为L,M,N,O…层。K层上的电子能量最低,由里向外,电子的能量逐渐升高。原子在未接受足够的能量时,处于基态,即稳定状态,此时,K层最多容纳2个电子,L层最多容纳8个电子,M层最多容纳18个电子……。当使用高能射线(如X射线)照射物质时,物质中的原子的内层电子被高能射线逐出原子之外,在内层电子层上即出现一个“空穴”。具有较高能量的外层电子立即补充这一“空穴”而发生跃迁。发生跃迁的电子将多余的能量(两个电子层能量之差)释放出来。释放出来的能量以电磁波的形式向四周发射,其波长恰好在X射线的波长范围内(0.001~10nm)。为了与照射物质的X射线(初级X射线)相区别,将被照射物质发出的X射线(二次X射线)称为荧光X射线(荧光即光致发光之意)。对于K 层电子而言,L层电子向K层电子跃迁时放射出的荧光X射线称为Kα谱线,M层电子向K层电子跃迁时放射出的荧光X射线称为Kβ谱线,其他层的电子发生跃迁时的情况依此类推(如图 1.1所示)。利用被测物质发出的荧光X射线进行物质化学成分的定性分析或定量分析,称为X射线荧光光谱分析。 图1.1原子结构示意图 在形成的线系中,各谱线的相对强度是不同的,这是由于跃迁几率不同。对K层电子而言,特定元素的荧光X射线Kα>Kβ,对于同一种元素而言,强谱线只有1-2条,特征谱线比较简单,易于分析,光谱干扰小。 2. X射线与固体之间的相互作用

X射线光电子能谱(XPS)谱图分析

一、X光电子能谱分析的基本原理 X光电子能谱分析的基本原理:一定能量的X光照射到样品表面,和待测物质 发生作用,可以使待测物质原子中的电子脱离原子成为自由电子。该过程可用 下式表示: hn=Ek+Eb+Er (1) 其中:hn:X光子的能量;Ek:光电子的能量;Eb:电子的结合能;Er:原子的 反冲能量。其中Er很小,可以忽略。 对于固体样品,计算结合能的参考点不是选真空中的静止电子,而是选用费米 能级,由内层电子跃迁到费米能级消耗的能量为结合能Eb,由费米能级进入真 空成为自由电子所需的能量为功函数Φ,剩余的能量成为自由电子的动能Ek,式(1)又可表示为: hn=Ek+Eb+Φ(2) Eb=hn-Ek-Φ(3)仪器材料的功函数Φ是一个定值,约为 4 eV,入射X光子能量已知,这样, 如果测出电子的动能Ek,便可得到固体样品电子的结合能。各种原子,分子的 轨道电子结合能是一定的。因此,通过对样品产生的光子能量的测定,就可以 了解样品中元素的组成。元素所处的化学环境不同,其结合能会有微小的差别,这种由化学环境不同引起的结合能的微小差别叫化学位移,由化学位移的大小 可以确定元素所处的状态。例如某元素失去电子成为离子后,其结合能会增加,如果得到电子成为负离子,则结合能会降低。因此,利用化学位移值可以分析 元素的化合价和存在形式。 二、电子能谱法的特点 (1)可以分析除H和He以外的所有元素;可以直接测定来自样品单个能级光电 发射电子的能量分布,且直接得到电子能级结构的信息。(2)从能量范围看,如果把红外光谱提供的信息称之为“分子指纹”,那么电子能谱提供的信息可称 作“原子指纹”。它提供有关化学键方面的信息,即直接测量价层电子及内层 电子轨道能级。而相邻元素的同种能级的谱线相隔较远,相互干扰少,元素定 性的标识性强。 (3)是一种无损分析。 (4)是一种高灵敏超微量表面分析技术,分析所需试样约10-8g即可,绝对灵敏

案例解析X射线光电子能谱(XPS)八大应用!

【干货】玩转XPS丨案例解析X射线光电子能谱(XPS)八大应用! 表面分析技术 (Surface Analysis)是对材料外层(the Outer-Most Layers of Materials (<100nm))的研究的技术。 X射线光电子能谱简单介绍 XPS是由瑞典Uppsala大学的K. Siegbahn及其同事历经近20年的潜心研究于60年代中期研制开发出的一种新型表面分析仪器和方法。鉴于K. Siegbahn教授对发展XPS领域做出的重大贡献,他被授予1981年诺贝尔物理学奖。 X射线激发光电子的原理 XPS现象基于爱因斯坦于1905年揭示的光电效应,爱因斯坦由于这方面的工作被授予1921年诺贝尔物理学奖; X射线是由德国物理学家伦琴(Wilhelm Conrad R?ntgen,l845-1923)于1895年发现的,他由此获得了1901年首届诺贝尔物理学奖。

X射线光电子能谱(XPS ,全称为X-ray Photoelectron Spectroscopy)是一种基于光电效应的电子能谱,它是利用X射线光子激发出物质表面原子的内层电子,通过对这些电子进行能量分析而获得的一种能谱。 这种能谱最初是被用来进行化学分析,因此它还有一个名称,即化学分析电子能谱(ESCA,全称为Electron Spectroscopy for Chemical Analysis)。XPS谱图分析中原子能级表示方法 XPS谱图分析中原子能级的表示用两个数字和一个小字母表示。例如:3d5/2(1)第一个数字3代表主量子数(n); (2)小写字母代表角量子数; (3)右下角的分数代表内量子数j

X射线衍射的基本原理

三.X 射线衍射的基本原理 3.1 Bragg 公式 晶体的空间点阵可划分为一族平行而等间距的平面点阵,两相邻点阵平面的间距为d hkl 。晶体的外形中每个晶面都和一族平面点阵平行。 当X 射线照射到晶体上时,每个平面点阵都对X 射线射产生散射。取晶体中任一相邻晶面P 1和P 2,如图3.1所示。两晶面的间距为d ,当入射X 射线照射到此晶面上时,入射角为θ,散射X 射线的散射角也同样是θ。这两个晶面产生的光程差是: θsin 2d OB AO =+=? 3.1 当光程差为波长λ 的整数倍时,散射的X 射线将相互加强,即衍射: λθn d hkl =sin 2 3.2 上式就是著名的Bragg 公式。也就是说,X 射线照射到晶体上,当满足Bragg 公式就产生衍射。式中:n 为任意正整数,称为衍射级数。入射X 射线的延长线与衍射X 射线的夹角为2θ(衍射角)。为此,在X 射线衍射的谱图上,横坐标都用2θ 表示。 图3.1 晶体对X 射线的衍射 由Bragg 公式表明:d hkl 与θ 成反比关系,晶面间距越大,衍射角越小。晶面间距的变化直接反映了晶胞的尺寸和形状。每一种结晶物质,都有其特定的结构参数,包括点阵类型、晶胞大小等。晶体的衍射峰的数目、位置和强度,如同人的指纹一样,是每种物质的特征。尽管物质的种类有成千上万,但几乎没有两种衍射谱图完全相同的物质,由此可以对物质进行物相的定性分析。

3.2 物相分析 物相的定义是物质存在的状态,如同素异构体SiO2、TiO2分别有22种和5种晶体结构。除了单质元素构成的物质如铜、银等以外,X射线衍射分析的是物相(或化合物),而不是元素成分。 对于未知试样,为了了解和确定哪些物相时,需要定性的物相分析。 正如前述,晶体粉末衍射谱图,如人的指纹一样,有它本身晶体结构特征所决定。因而,国际上有一个组织——粉末衍射标准联合会(JCPDS)后改名为JCPDS-衍射数据国际中心专门负责收集、校订、编辑和发行粉末衍射卡片(PDF)的工作。自1941年以来,共发行衍射卡片近20万个。为了使大量的卡片方便进行人工物相鉴定,还出版了对这些卡片进行检索的索引。PDF卡片的标准形式如图3.2所示,对应此图编号的内容说明如表3.1所示。 图 图3.2 PDF卡片的标准形式 每一张卡片上不一定包括表3.1所述的所有内容,但有效数据都将一一列出。 物相分析的方法就是将未知试样与标准卡片上数据进行对比,由此来确定物相。先测试未知试样,然后按图3.3所示的步骤从PDF索引中查找。找出该物相的卡片号后,按卡片号查该物相的卡片,仔细核对后再判定该物相。

X射线衍射分析原理及其应用

X射线衍射分析 摘要: X射线衍射分析是一种重要的晶体结构和物相分析技术,广泛应用于冶金、石油、化工、科研、航空航天、教学、材料生产等领域。本文简要介绍X射线衍射原理,X射线衍射仪器的结构、原理,及其在地质学、医学等自然科学领域中的应用。 前言: 1895年伦琴发现X射线,又称伦琴射线。德国科学家劳厄于1912年发现

了X射线衍射现象,并推导出劳厄晶体衍射公式。随后,英国布拉格父子又将此衍射关系用简单的布拉格方程表示出来。到上世纪四、五十年代,X射线衍射的原理、方法及在其他各方面的应用逐渐建立。在各种测量方法中,X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。X射线衍射技术可以探究晶体存在的普遍性和特殊性能,使得其在冶金、石油、岩石矿物、科研、航空航天、材料生产等领域的被广泛应用。 关键词:方法,衍射,原理,应用 X射线衍射仪的原理 1.X射线衍射原理 当X射线沿某方向入射某一晶体的时候,晶体中每个原子的核外电子产生的相干波彼此发生干涉。当每两个相邻波源在某一方向的光程差等于波长λ的整数倍时,它们的波峰与波峰将互相叠加而得到最大限度的加强,这种波的加强叫做衍射,相应的方向叫做衍射方向,在衍射方向前进的波叫做衍射波。光程差为0的衍射叫零级衍射,光程差为λ的衍射叫一级衍射,光程差为nλ的衍射叫n级衍射。n不同,衍射方向的也不同。 由于常用的X射线波长约在2.5A~0.5A之间,与晶体中的原子间距(1A)数量级相同,因此可以用晶体作为X射线的衍射光栅,这就使得用X射线衍射进行晶体结构分析成为可能。 在晶体的点阵结构中,具有周期性排列的原子或电子散射的次生X射线间相互干涉的结果,决定了X射线在晶体中衍射的方向,所以通过对衍射方向的测定,可以得到晶体的点阵结构、晶胞大小和形状等信息。 晶体结构=点阵+结构基元,点阵又包括直线点阵,平面点阵和空间点阵。在x 射线作用下晶体的散射线来自若干层原子面,除同一层原子面的散射线互相干涉外,各原子面的散射线之间还要互相干涉。 光栅衍射 当光程差(BD+BF)=2dsinθ等于波长的整数倍nλ时,相邻原子面散射波干涉加强,即干涉加强条件为: 2dsinθ=nλ 一、X射线衍射法

X射线光电子能谱模板

第二十三章 X射线光电子能谱 1954年以瑞典Siegbahn教授为首的研究小组观测光峰现象,不久又发现了原子内层电子能级的化学位移效应,于是提出了ESCA(化学分析电子光谱学)这一概念。由于这种方法使用了铝、镁靶材发射的软X射线,故也称为X-光电子能谱(X-ray Photoelectron Spectroscopy)。X光电子能谱分析技术已成为表面分析中的常规分析技术,目前在催化化学、新材料研制、微电子、陶瓷材料等方面得到了广泛的应用。 23.1 基本原理 固体表面分析,特别是对固体材料的分析和元素化学价态分析,已发展为一种常用的仪器分析方法。目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。AES分析主要应用于物理方面的固体材料(导电材料)的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。SIMS 和ISS由于定量效果较差,在常规表面分析中的应用相对较少。但近年随着飞行时间二次离子质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。 X射线光电子能谱最初是由瑞典科学家K.Siegbahn等经过约20年的努力而建立起来的,因在化学领域的广泛应用,被称为化学分析用电子能谱(ESCA)。由于最初的光源采用了铝、镁等的特性软X射线,该技术又称为X射线光电子能谱(XPS)。1962年,英国科学家D.W.Turner等建造出以真空紫外光作为光源的光电子能谱仪,在分析分子内价电子的状态方面获得了巨大成功,同时又用于固体价带的研究,与X射线光电子能谱相对照,该方法称为紫外光电子能谱(UPS) XPS的原理是基于光的电离作用。当一束光子辐射到样品表面时,样品中某一元素的原子轨道上的电子吸收了光子的能量,使得该电子脱离原子的束缚,以一定的动能从原子内部发射出来,成为自由电子,而原子本身则变成处于激发态的离子,如图23-1所示。在光电离过程中,固体物质的结合能可用下面的方程式表示: E b=hγ- E k -φs(23-1) 式中: E k为射出的光子的动能;hγ为X射线源的能量;E b为特定原子轨道上电子的电离能或结合能(电子的结合能是指原子中某个轨道上的电子跃迁到表面Fermi能级(费米能级)所需要的能量);φs为谱仪的功函数。 由于φs是由谱仪的材料和状态决定,对同一台谱仪来说是一个常数,与样品无关,其平均值为3 eV ~4eV。因此,(1)式可简化为: E b =hγ- E k’ (23-2) 由于E k’可以用能谱仪的能量分析器检出,根据式(23-2)就可以知道E b。在XPS分析中,由于X射线源的能量较高,不仅能激发出原子轨道中的价电子,还可以激发出内层轨道电子,所射出光子的能量仅与入射光子的能量及原子轨道有关。因此,对于特定的单色激发光源及特定的原子轨道,其光电子的能量是特征性的。当固定激发光源能量时,其光子的能量仅与元素的种类和所电离激发的原子轨道有关,对于同一种元素的原子,不同轨道上的电子的结合能不同。所以可用光电子的结合能来确定元素种类。图23-1表示固体材料表面受X射线激发后的光电离过程[1]。

X射线的基本原理

第一章 第一讲 X 射线荧光及其分析原理 1、X 射线 X 射线是一种电磁波,根据波粒二相性原理,X 射线也是一种粒子,其每个粒子根据下列公式可以找到其能量和波长的一一对应关系。 E =hv=h c/λ 式中h 为普朗克常数,v 为频率,c 为光速,λ为波长。 可见其能量在0.1 ~100(kev )之间。 γ X 紫 可 红 微 短 长 射 射 外 见 线 线 线 光 外 波 波 波 波长 X 射线的产生有几种 1、高速电子轰击物质,产生韧致辐射和标识辐射。其产生的韧致辐射的X 射线的能量取决于 电子的能量,是一个连续的分布。而标识辐射是一种能量只与其靶材有关的X 射线。 常见的X 射线光管就是采用的这种原理。其X 射线能量分布如下: E kev A o ().() = 123964 λ

能量 2、同位素X射线源。 同位素在衰变过程中,其原子核释放的能量,被原子的内层电子吸收,吸收后跳出内层轨道,形成内层轨道空位。但由于内层轨道的能级很低,外层电子前来补充,由于外层电子的能量较高,跳到内层后,会释放出光能来,这种能就是X射线。这就是我们常见的同位素X射线源。由于电子的能级是量化的,故释放的射线的能量也是量化的,而不是连续的。 能量 3、同步辐射源。 电子在同步加速器中运动,作园周运动,有一个恒定的加速度,电子在加速运动时,会释放出X射线,所以用这种方法得到的X射线叫同步辐射X射线。 2、X射线荧光 实际上,有很多办法能产生X射线,例如用质子、α射线、λ射线等打在物质上,都可以产生X射线,而人们通常把X射线照射在物质上而产生的次级X射线叫X射线荧光(X—Ray Fluorescence),而把用来照射的X射线叫原级X射线。所以X射线荧光仍是X射线。 3、特征X射线 有人会问,为什么可以用X射线来分析物质的成分呢?这些都归功于特征X射线。 早在用电子轰击阳极靶而产生X射线时,人们就发现,有几个强度很高的X射线,其能量并没有随加速电子用的高压变化,而且不同元素的靶材,其特殊的X射线的能量也不一样,人们把它称为特征X射线,它是每种元素所特有的。莫塞莱(Moseley)发现了X射线能量与原子序数的关系。 E∝(z-σ)"

X射线衍射分析

X射线衍射分析 1 实验目的 1、了解X衍射的基本原理以及粉末X衍射测试的基本目的; 2、掌握晶体和非晶体、单晶和多晶的区别; 3、了解使用相关软件处理XRD测试结果的基本方法。 2 实验原理 1、晶体化学基本概念 晶体的基本特点与概念:①质点(结构单元)沿三维空间周期性排列(晶体定义),并有对称性。②空间点阵:实际晶体中的几何点,其所处几何环境和物质环境均同,这些“点集”称空间点阵。 ③晶体结构=空间点阵+结构单元。非晶部分主要为无定形态区域,其内部原子不形成排列整齐有规律的晶格。 对于大多数晶体化合物来说,其晶体在冷却结晶过程中受环境应力或晶核数目、成核方式等条件的影响,晶格易发生畸变。分子链段的排列与缠绕受结晶条件的影响易发生改变。晶体的形成过程可分为以下几步:初级成核、分子链段的 图1 14种Bravais 点阵 表面延伸、链 松弛、链的重吸收 页脚内容1

结晶、表面成核、分子间成核、晶体生长、晶体生长完善。Bravais提出了点阵空间这一概念,将其解释为点阵中选取能反映空间点阵周期性与对称性的单胞,并要求单胞相等棱与角数最多。满足上述条件棱间直角最多,同时体积最小。1848年Bravais证明只有14种点阵。 晶体内分子的排列方式使晶体具有不同的晶型。通常在结晶完成后的晶体中,不止含有一种晶型的晶体,因此为多晶化合物。反之,若严格控制结晶条件可得单一晶型的晶体,则为单晶。 2、X衍射的测试基本目的与原理 X射线是电磁波,入射晶体时基于晶体结构的周期性,晶体中各个电子的散射波可相互干涉。散射波周相一致相互加强的方向称衍射方向。衍射方向取决于晶体的周期或晶胞的大小,衍射强度是由晶胞中各个原子及其位置决定的。由倒易点阵概念导入X射线衍射理论, 倒易点落在Ewald 球上是产生衍射必要条件。 1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理。衍射线空间方位与晶体结构的关系可用布拉格方程表示: θn λ d= 2 sin 式中d为晶面间距;n为反射级数;θ为掠射角;λ为X射线的波长。布拉格方程是X射线衍射分析的根本依据。 X 射线衍射(XRD)是所有物质,包括从流体、粉末到完整晶体,重要的无损分析工具。对材料学、物理学、化学、地质、环境、纳米材料、生物等领域来说,X射线衍射仪都是物质结构表征,以性能为导向研制与开发新材料,宏观表象转移至微观认识,建立新理论和质量控制不可缺少的方法。其主要分 页脚内容2

相关文档
相关文档 最新文档