文档库 最新最全的文档下载
当前位置:文档库 › 细胞生物学额 章节提要 第三章 细胞质膜和跨膜运输

细胞生物学额 章节提要 第三章 细胞质膜和跨膜运输

细胞生物学额 章节提要 第三章 细胞质膜和跨膜运输
细胞生物学额 章节提要 第三章 细胞质膜和跨膜运输

细胞质膜和跨膜运输

细胞质膜是细胞结构的基本单位,生物膜具有界膜和区室化、调节运输、功能定位和组织化、信号检测与传递能、能量转换等功能。

现代质膜流动镶嵌模型的建立经历了近百年的时间。19世纪90年代提出Overton提出脂栅栏模型;1925年Goter和Grendel提出了脂双层膜结构;1935年Danielli和Dacson 提出了三明治模型;1959年J.D.Robertson提出了单位膜模型;1972年,S.J.Singer和G.Nicolson提出了流动镶嵌模型,也是目前的普遍接受的模型。

成熟的红细胞由于没有质膜以外的其他膜结构,成为了理想的膜结构研究细胞。红细胞中的带3蛋白是阴离子交换蛋白。血红蛋白是红细胞中唯一的非膜蛋白。当红细胞的内容物全部渗漏出来以后,质膜可以重新封闭起来,此时的红细胞称为红细胞血影。

红细胞质膜的研究工具之一是Langmuir水盘。红细胞质膜中主要有三种蛋白:血影蛋白、血型糖蛋白、带3蛋白,它们约占细胞膜蛋白60%以上。血影蛋白(spectrin)(收缩蛋白)是红细胞骨架的主要成分。是可伸缩的纤维状蛋白,α亚基和β亚基相似,反向平行排列。血型糖蛋白A(glycophorin A)(涎糖蛋白 sialo glycoprotein),它的唾液酸中含有大量负电荷,可能防止了红细胞在循环过程中,通过狭小血管时互相聚集沉积。带3蛋白(bang 3 protein)、锚定蛋白(ankyrin)、带4.1蛋白(band 4.1 protein)、内收蛋白(adducin)。

细胞质膜主要由膜脂、膜糖、蛋白质组成。

膜脂主要包括磷脂、鞘脂、胆固醇。总量占细胞的50%,是细胞的骨架结构。膜质的流动性主要包括有三种形式:侧向扩散、旋转运动、翻转扩散。胆固醇对于调节膜的流动性和加强膜的稳定性有重要的作用。

膜糖主要包括D-葡萄糖、D-半乳糖、D-甘露糖、L-岩藻糖、N-乙酰-D-半乳糖胺、乙酰N-葡萄糖胺、唾液酸。占质膜成分的2%-8%,主要存在形式是N-连接方式。膜糖和细胞识别和信号传递有关。

膜蛋白占膜组分的40%-50%,一共有50多种蛋白质。根据膜脂与膜蛋白的关系分为整合蛋白、外周蛋白、脂锚定蛋白。

整合蛋白(integral protein)(内在蛋白 intrinsic protein、跨膜蛋白 transmembrane protein),分为单次跨膜、多次跨膜、多亚基跨膜。跨膜蛋白多含有25%-50%的α-helix。

外周蛋白(膜周边蛋白 peripheral protein)(附着蛋白 attachment protein)主要

通过非共价键附着在脂的极性头部,或整合蛋白亲水区的一侧,间接与膜结合。可以采用高盐或碱性pH条件分离。

脂锚定蛋白(lipid-anchored protein)(脂连接蛋白 lipid-linked protein)通过共价键的方式同脂分子结合,位于脂双层的外侧。一种方式是直接结合于脂双分子层,一种方式是蛋白质通过糖分子结合到脂双层结构上。后者主要通过短的寡糖与包埋在脂双层外叶中的糖基磷脂酰肌醇(glycosyl-phophatidyl ionositol)相连而被锚定在质膜外部。

质膜的物质运输是细胞质膜的基本功能之一。

细胞运输的范畴包括:细胞运输、胞内运输、转细胞运输。主要形式有被动运输和主动运输。

被动运输(passive transport)包括简单扩散(simple diffusion)和协助扩散(facilitated diffusion)。

简单扩散的限制性因素是:①脂溶性②分子大小③带电性。

协助扩散需要蛋白质的协助。包括通道蛋白、载体蛋白和水通道蛋白。通道蛋白(channel protein)分为电位闸门通道、配体闸门通道、牵张闸门蛋白。协助扩散基于离子浓度梯度,不需要消耗ATP。

主动运输(active transport)从运输方向上分类包括单向运输和偶联运输。主要种类有ATPase和协同转运。在细菌中也有一些特别的主动运输方式。ATPase包括P型泵、V型泵、F型泵。依次转运H+\Na+\K+\Ca+、H+、H+。协同转运的方式转运葡萄糖和Na+。在细菌中的特殊转运方式,有磷酸化转运(phosphorylating transport)、运输ATP酶(ATP-bingding cassette transporter superfamily,ABC)、细菌视紫红质子泵(bacteriorhodopsin)。

主动运输的意义在于:①保证了细胞或细胞器能从环境周围后表面摄取必需的营养物质②能够将细胞内的一些物质,如分泌物、代谢产物排泄到细胞后细胞器外③维持一些无机离子在细胞内恒定和最适浓度,尤其是Na+、K+和H+。它具有四个基本特点:逆浓度梯度、依赖膜运输蛋白、需要代谢能,并对代谢毒性敏感、具有选择性和特异性。

细胞质膜的研究技术主要有:去垢剂分离膜蛋白、放射性标记、磷酸酶处理、细胞融合、荧光漂白恢复、电子自旋共振谱技术。

第四章 细胞质膜 第五章 物质的跨膜运输 测试题

第四章细胞质膜,第五章物质的跨膜运输- 测试题(满分:30) 一、选择题 1、目前被广泛接受的生物膜结构模型是()。1分 A. 单位膜模型 C. 流动镶嵌模型 B. 脂筏模型 D. 板状镶嵌模型 2、细胞膜结构的基本骨架主要是()。1分 A. 磷脂 C. 蛋白质 B. 胆固醇 D. 糖类 3、在endocytosis时()。2分 A. 细胞膜不被吞入,只有外界物质被吞入 B. 细胞膜随之一起吞入,由于胞吐作用吞入的膜和吞出的膜平衡,细胞面积不缩小 C. 细胞膜随之一起吞入,细胞面积缩小 D. 细胞膜随之一起吞入,但很快回到细胞表面,供下次胞吞时再利用 4、参与吞噬泡形成的物质有()。1分 A. 网格蛋白 C. 微管 B. 信号肽 D. 微丝 5、离子通道具有下列特征()。2分 A. 具有极高的转运速率 C. 对pH有依赖性 B. 没有饱和值 D. 是门控的 E. 转运的动力来自溶质的跨膜电化学梯度 6、膜脂的运动方式有()。2分 A. 侧向运动 C. 磷脂酰碱基头部的摆动 B. 自转运动 D. 翻转运动 E. 脂分子尾部的摆动 7、参与胞饮泡形成的物质有()。2分 A. 网格蛋白 C. 接合素蛋白 B. 信号肽 D. 微丝 E. GTP结合蛋白 二、判断题(每题1分) 8、糖蛋白和糖脂上的糖基既可位于质膜的内表面,也可位于质膜的外表面。() 9、细胞融合、免疫荧光技术可以显示细胞膜中的膜蛋白质是嵌入到膜脂中的。() 10、胆固醇由于具有调节膜的流动性、增强膜的稳定性等重要作用,所以它是所有细胞的细 胞质膜上不可缺少的成分。() 11、liposome是由双层脂分子构成的人工膜。()

细胞生物学物质的跨膜运输

物质跨膜转运主要有 3种途径:被动运输、主动运输、胞吞与胞吐作用(膜泡运输) 第一节膜转运蛋白与小分子物质的跨膜运输 一、脂双层的不透性和膜转运蛋白 细胞膜上存在2类主要的转运蛋白,即:载体蛋白( carrier protein )和通道蛋白(channel protein )。 载体蛋白和通道蛋白识别转运物质的方式不同:载体蛋白只允许与其结合部位相适合的溶质分子通过,而且每次转运都发生自身构象的改变;通道蛋白主要根据溶质大小和电荷进行辨别,通道开放时,足够小和带适当电荷的溶质就能通过。 (一)载体蛋白及其功能 载体蛋白为多次跨膜蛋白,又称做载体(carrier )、通透酶和转运器(transporter ),能够与 特定溶质结合,通过自身构象的变化,将与它结合的溶质转移到膜的另一侧。 载体蛋白既可以执行被动运输、也可执行主动运输的功能。 (二)通道蛋白及其功能 通道蛋白有3种类型:离子通道、孔蛋白、水孔蛋白( AQP。只介导被动运输。 1. 选择性离子通道,具有如下显着特征: 离子选择性(相对的) 转运离子速率高没有饱和值大多数具门控性 分为:电压门通道、配体门通道、应力激活通道 电位门通道举例: 电位门通道(voltage gated channel )是对细胞内或细胞外特异离子浓度发生变化时,或对 其他刺激引起膜电位变化时,致使其构象变化,“门”打开。 女口:神经肌肉接点由 Ach门控通道开放而出现终板电位时,这个电位改变可使相邻的肌细胞膜中存在的电位门 Na+通道和K+通道相继激活(即通道开放),引起肌细胞动作电位;动作电位传至肌质网,Ca2+通道打开引起Ca2+外流,弓I发肌肉收缩。 配体门通道举例一一乙酰胆碱门通道 N型乙酰胆碱受体是目前了解较多的一类配体门通道。它是由4种不同的亚单位组成的 5聚体, 总分子量约为 290kd。亚单位通过氢键等非共价键,形成一个结构为 a 23Y§的梅花状通道样结 构,其中的两个a亚单位是同两分子 Ach相结合的部位。 Ach (乙酰胆碱)门通道具有具有 3种状态:开启、关闭和失活。当受体的两个a亚单位结合Ach时,引起通道构象改变,通道瞬间开启,膜外Na+内流,膜内K+外流。使该处膜内外电位差接 近于0值,形成终板电位,然后引起肌细胞动作电位,肌肉收缩。 即使在结合 Ach时,Ach门通道也处于开启和关闭交替进行的状态,只不过开启的概率大一些(90%)。Ach释放后,瞬间即被乙酰胆碱酯酶水解,通道在约1毫秒内关闭。如果 Ach存在的时间 过长(约20毫秒后),则通道会处于失活状态。 应力激活通道(机械门通道) 细胞可以接受各种各样的机械力刺激,如摩擦力、压力、牵拉力、重力、剪切力等。细胞将机械刺激的信号转化为电化学信号最终引起细胞反应的过程称为机械信号转导 (mecha notran sduct ion )。 内耳毛细胞顶部的听毛也是对牵拉力敏感的感受装置,听毛弯曲时,毛细胞会出现暂短的感受器电位。

细胞生物学 物质的跨膜运输

物质的跨膜运输 现象:cell 内外离子浓度差原因 取决于膜转运蛋白活性脂双层的疏水特征 膜转运蛋白 载体蛋白(通透酶)特性① 1、多次跨膜蛋白; 2、载体蛋白与特异的溶质结合后,通过自身构象的改变以实现物质的跨膜转运; 3、对底物具有高度选择性,通常只转运一种类型的分子; 4、转运过程具有类似于酶与底物作用的饱和动力学特征,可被底物类似物竞争性抑制,也可被抑制剂非竞争性抑制; 5、对pH 有依赖性 通道蛋白特性②通道蛋白通过形成亲水性通道实现对特异溶质的跨膜转运 类型 离子通道(ion channel)特性③ 1、对离子的选择取决于通道的直径,形状 及通道内带电氨基酸的分布; 2、具有极高的转运速率; 3、与载体蛋白不同,离子通道没有饱和性; 4、非连续性开放,而是门控的 孔蛋白(porin) 分布④存在于革兰氏阴性细菌的外膜以及线粒体和叶绿体的外膜上特性⑤ 孔蛋白选择性很低,能通过较大的分子 水孔蛋白(AQP)研究模型-血红细胞 结构特征⑥转运特点⑦ 对水分子特异通透性,同时能有效阻止质子的通过,这可能与Asn-Pro-Ala 肽段有关 小分子物质跨膜转运类型 简单扩散 以热自由运动能方式顺着电化学梯度或浓度梯度直接穿过脂双层 影响简单扩散溶质的通透性因素 分子大小极性与非极性电荷量 被动运输/协助扩散 在膜转运蛋白协助下,顺着电化学梯度或浓度梯度的扩散方式 例子 葡萄糖转运蛋白(GLUT)水孔蛋白 主动运输 由载体蛋白所介导的物质逆化学梯度或浓度梯度进行跨膜转运的方式 根据能量来源分 ATP 驱动泵⑧ 协同转运/偶联转运蛋白同向协同 小肠上皮细胞肾小管上皮细胞反向协同Na +/H +交换载体 光驱动泵 菌紫红质 载体蛋白 通道蛋白 参与运输的类型 协助扩散、主动运输 被动运输 在膜上状态 可移动,转运底物 固定 类型 多,根据不同底物有不同的类型 离子通道、孔蛋白、水孔通道 运输方式 通过自身构象改变实现物质跨膜运输 通过形成亲水通道实现对特异溶质的跨膜运输 运输方向 逆化学梯度或者度梯度运输 顺化学梯度或浓度梯度运输 耗能 消耗ATP 不消耗能量 饱和性 具有饱和动力学特性 没有饱和性 选择性 对底物高度选择性 离子通道有选择性;孔蛋白选择性较低;水孔蛋白只允许水分子通过 相同点 化学本质均为蛋白质、分布均在细胞的膜结构中、都有控制特定物质跨膜运输的功能 ①载体蛋白特性(通透酶): 1、多次跨膜蛋白; 2、载体蛋白与特异的溶质结合后,通过自身构象的改变以实现物质的跨膜转运; 3、对底物具有高度选择性,通常只转运一种类型的分子;

(完整word版)《物质跨膜运输的方式》教学设计解析

《物质跨膜运输的方式》教学设计 一、教学内容分析: 《物质跨膜运输的方式》是新课标人教版高中生物教科书必修I中第四章第三节的内容,本章内容属于细胞的基本功能之一──物质的输入和输出。学习内容主要有物质跨膜运输的方式,自由扩散、协助扩散、主动运输、胞吞及胞吐的主要特征和各自的区别。任何一个生命系统都是开放的系统,都与外界有物质的交换。所以本节的内容对学生理解细胞是基本的生命系统有着重要的意义,也为以后进一步的生物学习奠定基础知识。 二、学习者特征分析: 1、知识基础:在本章前两节中,学生已经学习了细胞膜的组成、功能以及物质跨膜运输的一些实例,但还未对物质跨膜运输的原理进行学习。本节内容就是系统的学习物质跨膜运输的方式,学生对其中涉及的知识已经有一些了解,所以本节内容对于高中学生并不难理解,因此可以用引导的方式让学生进行学习,以此提高学生的分析总结能力。 2、认知能力:高中生已达到一定分析处理问题的水平。 三、教学目标: 1、知识目标: (1)举例说明物质跨膜运输的类型及特点。 (2)阐述主动运输对细胞的意义。 (3)说出被动运输与主动运输的异同点。 (4)正确解读坐标图与表格。 2、技能目标: (1)逐渐形成打破定势思维,实际问题实际解决的能力。 (2)逐渐形成运用类比和对比的方法进行学习的能力。 (3)逐渐形成运用表格的方式进行总结归纳知识的能力。 3、情感态度价值观: 树立生物膜结构与功能相适应的生物学观点。 四、教学重点:

1.小分子和离子跨膜运输的方式:自由扩散、协助扩散、主动运输 2.大分子跨膜运输的方式:胞吞和胞吐 五、教学难点: 三种跨膜运输方式的概念及区别;通过已知跨膜运输的特征推出跨膜运输的方式。 六、教学媒体: 教科书、板书、PPT课件(包含flash动画)等。 七、教学方法: 直观教学法、讲授法、引导法。 八、课时安排: 1课时 九、教学流程图

细胞跨膜运输(苏教版)

物质的跨膜运输 使用说明: 1、阅读课本P46—P48页的内容,自主高效的预习,培养自己的学习能力; 2、将预习时有疑问的或不能解决的用红笔标记,在课堂上认真学习。 【学习目标】 1、掌握物质进出细胞及特点。 2、了解生物膜在生活中的应用。 3、掌握植物系细胞壁分离与复原的原理及过程。 【学习重、难点】掌握植物系细胞壁分离与复原的原理及过程。 『第一课时』一.被动运输 1、物质如何进出细胞取决于______________、_________________及____________________。 2、扩散:由于物质运动而产生的_______________,即一种物质从__________区域向________区域迁移的现象。一些____________________的物质,如_____________________等,可以通过扩散进出细胞。 3、这种不需要____________参加的扩散叫做__________。 4、另一些物质的扩散则需要_________的参与,如_______________________,这种扩散称为__________或者____________________. 5、简单扩散和易化扩散的动力都是________________________,物质顺____________进出细胞,________(需要还是不需要)消耗能量,将它们统称为了___________。 二.渗透 1.渗透:我们把水分子从___________通过____________,向水分子稀少的___________称为渗透。 2.植物细胞的细胞壁主要是由__________和______组成的,它是一种_______,水分子和脂质分子可以自由通过。 3.选择透过性膜:细胞膜和液泡膜是________,_______可以通过,细胞要选择吸收的一些______和______也可以通过,二其它的一些离子和分子不能通过,将这种生物膜我们叫做选择透过性膜。 4.半透膜:原生质层包括____、_____、_______相当于半透膜。 5.液泡中的细胞液、原生质层和细胞外液之间若有___________,便会发生_______________. 三、质壁分离 1、当把具有______的植物细胞放入________的液体中时,由于______作用,细胞会因_________出现____________的现象。 2、当把已经质壁分离的植物细胞放低浓度溶液中,由于_________,细胞会因吸水而出现______的现象。 『第二课时』 一、主动运输 1、主动运输:这些物质能________梯度进出细胞,不仅需要膜上____________的参与,还需要消耗___________________________,这种运输方式我们叫做主动运输。比如 ________________________________________________________________________是主动运输. 2、主动运输的意义:能保证活细胞按照生命活动的需要,主动地________________,排出________________,可见,主动运输对于活细胞完成各项生命活动具有重要意义。 二、细胞的内吞和外排 1、_____________和______________主要通过内吞作用进入细胞。 2、内吞作用:这些物质附着在_________,由_________________________,这些物质被__________.然后,小囊从______________形成小囊泡,进入细胞内部,这种现象叫内吞作用。 3、外排作用:与内吞作用相反,有些物质在细胞膜内被_____________,形成___________,______与_________融合在一起,小囊泡逐渐移到细胞表面,并且向细胞外张开,使内含物质排出细胞外的方式。 1、物质出入细胞的方式中,自由扩散区别于协助扩散的是()。 A.由高浓度向低浓度扩散B.需要载体 C.由低浓度向高浓度扩散D.不需要载体 预习案 预习自测

细胞的跨膜运输方式

物质跨膜运输 一、结构基础:细胞膜的选择透过性 二、跨膜运输的实例:细胞的吸水和失水 原理:渗透作用。该作用必须具备两个条件: (1)具有半透膜;(2)膜两侧溶液存在浓度差。 渗透系统的组成:完整的渗透系统,由两个溶液体系(A和B)以及两者之间的半 透膜组成。当容易浓度A>B时,水分通过半透膜从B流向A, 当容易浓度A<B时, 水分通过半透膜从A流向B,当溶液浓度A=B时,渗透体系处于动态平衡状态。 易混易错: (1)发生渗透平衡只意味着半透膜两侧水分子达到动态平衡,既不可看作没有 水分子移动也不可看做两侧溶液浓度相等。 (2)溶液浓度指物质的量浓度而非质量浓度; 1、动物细胞的吸水和失水:(以红细胞为例,动物细胞的细胞膜相当于半透膜) ①当细胞质浓度大于外界溶液浓度时,细胞质渗透压高于外界渗透压,细胞吸水膨 胀 ②当细胞质浓度等于外界溶液浓度时,细胞质渗透压等于外界渗透压,水分子进出 细胞处于动态平衡。 ③当细胞质浓度小于外界溶液浓度时,细胞质渗透压低于外界渗透压,细胞失水皱 缩 植物细胞的吸水和失水: 结构基础: (1)细胞液:成熟植物细胞的中央大液泡占据了细胞的大部分空间,将细胞质挤成一薄层,因此细胞内的液体环境主要指液泡的细胞液。 (2)原生质层:细胞膜和液泡膜以及两层膜之间的细胞质称为原生质层。相当于半透膜,具有选择透过性 (3)细胞壁的特性:全透性,伸缩性小 植物细胞的质壁分离和复原现象 ①当细胞液浓度小于外界溶液浓度时,细胞失水,发生质壁分离现象 ②当细胞液浓度大于外界溶液浓度时,细胞吸水,发生质壁分离复原现象。

注意:如果质壁分离的细胞死亡,则不会发生质壁分离的复原。 实验探究: 材料选取:紫色洋葱鳞片叶(含有颜色为佳,也可选水绵细胞) 实验结果:质壁分离前,细胞呈现紫色,原生质层紧贴细胞壁;当加入蔗糖溶液后,液泡由大变小,颜色由浅变深,原生质层与细胞壁分离;对质壁分离的细胞加入清水后,液泡由小变大,颜色由深变浅,原生质层恢复原状。 思考:不含中央大液泡的植物细胞(如根尖分生区细胞、种子的胚细胞)能发生质壁分离的现象吗? 不能,因为不含大液泡的植物细胞不会失去较多的水,因此不会发生质壁分离的现象 细胞对无机盐离子的吸收实例: 1、水稻吸收SiO 44-多,吸收Ca2+和Mg2+少,番茄吸收Ca2+和Mg2+较多,吸收SiO 4 4-较少, 说明不同植物对不同的无机盐离子吸收表现出较大的差异。 2、人体甲状腺滤泡上皮细胞中碘的含量明显高于血液中碘的含量。 3、不同微生物对无机盐离子吸收表现出很大的差异。 物质跨膜运输的特点: 1、物质跨膜运输并不都是顺相对含量梯度的。 2、细胞对于物质的输入和输出有选择透过性。

细胞生物学(翟中和)物质的跨膜运输

第五章物质的跨膜运输 物质跨膜转运主要有3种途径:被动运输、主动运输、胞吞与胞吐作用(膜泡运输)。 第一节膜转运蛋白与小分子物质的跨膜运输 一、脂双层的不透性和膜转运蛋白 细胞膜上存在2类主要的转运蛋白,即:载体蛋白(carrier protein)和通道蛋白(channel protein)。 载体蛋白和通道蛋白识别转运物质的方式不同:载体蛋白只允许与其结合部位相适合的溶质分子通过,而且每次转运都发生自身构象的改变;通道蛋白主要根据溶质大小和电荷进行辨别,通道开放时,足够小和带适当电荷的溶质就能通过。 (一)载体蛋白及其功能 载体蛋白为多次跨膜蛋白,又称做载体(carrier)、通透酶和转运器(transporter),能够与特定溶质结合,通过自身构象的变化,将与它结合的溶质转移到膜的另一侧。 载体蛋白既可以执行被动运输、也可执行主动运输的功能。 (二)通道蛋白及其功能 通道蛋白有3种类型:离子通道、孔蛋白、水孔蛋白(AQP)。 只介导被动运输。 1. 选择性离子通道,具有如下显著特征: 离子选择性(相对的) 转运离子速率高没有饱和值 大多数具门控性 分为:电压门通道、配体门通道、应力激活通道 电位门通道举例: 电位门通道(voltage gated channel)是对细胞内或细胞外特异离子浓度发生变化时,或对其他刺激引起膜电位变化时,致使其构象变化,“门”打开。 如:神经肌肉接点由Ach门控通道开放而出现终板电位时,这个电位改变可使相邻的肌细胞膜中存在的电位门Na+通道和K+通道相继激活(即通道开放),引起肌细胞动作电位;动作电位传至肌质网,Ca2+通道打开引起Ca2+外流,引发肌肉收缩。 配体门通道举例——乙酰胆碱门通道 N型乙酰胆碱受体是目前了解较多的一类配体门通道。它是由4种不同的亚单位组成的5聚体,总分子量约为290kd。亚单位通过氢键等非共价键,形成一个结构为α2βγδ的梅花状通道样结构,其中的两个α亚单位是同两分子Ach相结合的部位。 Ach(乙酰胆碱)门通道具有具有3种状态:开启、关闭和失活。当受体的两个α亚单位结合Ach时,引起通道构象改变,通道瞬间开启,膜外Na+内流,膜内K+外流。使该处膜内外电位差接

细胞生物学额 章节提要 第三章 细胞质膜和跨膜运输

细胞质膜和跨膜运输 细胞质膜是细胞结构的基本单位,生物膜具有界膜和区室化、调节运输、功能定位和组织化、信号检测与传递能、能量转换等功能。 现代质膜流动镶嵌模型的建立经历了近百年的时间。19世纪90年代提出Overton提出脂栅栏模型;1925年Goter和Grendel提出了脂双层膜结构;1935年Danielli和Dacson 提出了三明治模型;1959年J.D.Robertson提出了单位膜模型;1972年,S.J.Singer和G.Nicolson提出了流动镶嵌模型,也是目前的普遍接受的模型。 成熟的红细胞由于没有质膜以外的其他膜结构,成为了理想的膜结构研究细胞。红细胞中的带3蛋白是阴离子交换蛋白。血红蛋白是红细胞中唯一的非膜蛋白。当红细胞的内容物全部渗漏出来以后,质膜可以重新封闭起来,此时的红细胞称为红细胞血影。 红细胞质膜的研究工具之一是Langmuir水盘。红细胞质膜中主要有三种蛋白:血影蛋白、血型糖蛋白、带3蛋白,它们约占细胞膜蛋白60%以上。血影蛋白(spectrin)(收缩蛋白)是红细胞骨架的主要成分。是可伸缩的纤维状蛋白,α亚基和β亚基相似,反向平行排列。血型糖蛋白A(glycophorin A)(涎糖蛋白 sialo glycoprotein),它的唾液酸中含有大量负电荷,可能防止了红细胞在循环过程中,通过狭小血管时互相聚集沉积。带3蛋白(bang 3 protein)、锚定蛋白(ankyrin)、带4.1蛋白(band 4.1 protein)、内收蛋白(adducin)。 细胞质膜主要由膜脂、膜糖、蛋白质组成。 膜脂主要包括磷脂、鞘脂、胆固醇。总量占细胞的50%,是细胞的骨架结构。膜质的流动性主要包括有三种形式:侧向扩散、旋转运动、翻转扩散。胆固醇对于调节膜的流动性和加强膜的稳定性有重要的作用。 膜糖主要包括D-葡萄糖、D-半乳糖、D-甘露糖、L-岩藻糖、N-乙酰-D-半乳糖胺、乙酰N-葡萄糖胺、唾液酸。占质膜成分的2%-8%,主要存在形式是N-连接方式。膜糖和细胞识别和信号传递有关。 膜蛋白占膜组分的40%-50%,一共有50多种蛋白质。根据膜脂与膜蛋白的关系分为整合蛋白、外周蛋白、脂锚定蛋白。 整合蛋白(integral protein)(内在蛋白 intrinsic protein、跨膜蛋白 transmembrane protein),分为单次跨膜、多次跨膜、多亚基跨膜。跨膜蛋白多含有25%-50%的α-helix。 外周蛋白(膜周边蛋白 peripheral protein)(附着蛋白 attachment protein)主要

04-1-细胞跨膜运输-扩散运输

第四章物质的跨膜运输 大家好! 在我们的现实社会中,交通运输必不可少。比如每年春运壮观的铁路运输、日常的公路运输、快捷的空中运输、远洋的货轮集装箱运输、方便的快递。。。。这些都与我们的生活息息相关。 在我们的体内世界中,物质循环和交换也是忙忙碌碌。比如我们的血液循环系统日夜不停地进行着营养物质和代谢物的运送,片刻也不能耽搁。 同样,细胞为了生存和生长,必须与其所处的环境进行分子交换。细胞运输发生在生命体内我们肉眼所不能见的微观世界。例如,我们所熟悉的红细胞将新鲜的氧气送到各个组织器官,并将代谢产生的二氧化碳“废气”送走。 那么,细胞是如何完成物质的运输和交换的呢? 带着这个问题,让我们首先看一下不同物质是如何进出细胞的。 我们在以前学习中已经知道,细胞是由细胞膜包裹的生命活动基本单位,进出细胞的各种物质必须要通过细胞膜,即:细胞跨膜运输。 不同种类的物质跨膜运输采用不同的方式。小分子的跨膜运输方式主要有:简单扩散、被动运输和主动转运,其中被动运输实际上也属于扩散的特殊形式;大分子和颗粒性物质的跨膜运输则通过膜泡运输进出细胞,具体包括:胞吞作用与胞吐作用。 本章将分以下三讲来给大家介绍物质的跨膜运输方式: ?扩散运输 ?主动转运 ?膜泡运输 4.1 细胞跨膜运输:扩散运输 在讲物质跨膜扩散运输之前,我们先来看看小分子物质通过细胞膜的一些基本特性。 细胞膜允许一定物质穿过的特性称为膜的通透性(permeability)。这一特性是跨膜扩散运输的前提。 细胞膜通透性的最显著特点是它的选择性,即有选择地允许或阻止一些物质通过细胞膜。 细胞膜的选择性通透对调节物质进出细胞具有决定性作用,从而维持膜内外离子电化学梯度,保证膜内外的渗透压平衡。这是细胞膜最主要的生理功能之一,对保证细胞及机体生命活动的正常运行具有极其重要的作用。 让我们想像一下:细胞膜就像一道由脂双层构造的栅栏,性质相近的疏水性分子可自由通行,亲水性分子也能挤过,少量大个子的极性分子只能勉强通过细胞膜,而荷电的离子则完全跨不通过细胞膜。 一般来说,分子量越小、脂溶性越强,通过细胞膜的速率越快。因此,膜对物质的通透性,既决定于物质本身的性质,也决定于细胞膜的结构属性。 一、简单扩散 简单扩散(simple diffusion)是最简单的一种跨膜运输方式,它既不需要消耗细胞本身的代谢能量,也不需要特定的膜蛋白分子参与,只要物质在膜两侧保持一定的电化学梯度,即可发生顺浓度梯度的简单扩散运输。脂溶性物质如苯、醇和甾类激素分子,以及O2、CO2和N2等气体,和部分极性小分子如尿素和甘油等,

细胞生物学笔记-细胞膜及跨膜运输

特性 流动性 存在状态 液晶态——既具有固态的有序性,又有液态的流动性 形式 ★ 胆固醇的含量:虽可稳定相变温度,但多↓ ★ 脂肪酸链的长短和饱和程度:长↓,短↑ ★ 卵磷脂、鞘磷脂的比值:卵、鞘占膜脂的50% △卵磷脂:含不饱和脂肪酸程度高 ↑ △鞘磷脂:含 饱和 脂肪酸程度高 ↓ ★ 膜蛋白的含量(内在蛋白):类似胆固醇 影响 意义 ★使膜具有缓冲作用,不易破裂 ★有利于内在蛋白作用发挥 ★有利于膜的正常分裂及吞噬、吞饮作用发挥 不对称性 ◆ 外层:胆固醇、磷脂酰胆碱(PC)、鞘磷脂(SM)含量多。 ①由于碳氢链长互相凝集,伸至全膜; ②三种成分亲合力强,影响流动。 ◆ 内层:磷脂酰乙醇胺(PE)、磷脂酰丝氨酸(PS)、磷脂酰肌醇(PI)含量多。上述三种成份头部基团带较强的负电荷,所以细胞内侧负电荷大于细胞外侧。 膜脂的不对称性 膜蛋白不对称性 ◆糖蛋白、糖脂都分布在细胞膜外表面。 ◆细胞内膜系统上的糖蛋白都位于膜腔内侧面。 膜糖类不对称性 45% 膜糖类 2-5% 识别 稳定 保护 成分 膜 55%胆固醇:占膜脂1/3 磷脂:占膜脂2/3 糖脂:占2%左右 磷脂酰胆碱 (卵磷脂PC ) 磷脂酰乙醇胺 (脑磷脂PE ) 磷脂酰丝氨酸 (PS ) 磷脂酰肌醇 (PI ) 鞘磷脂 (SM ) 糖蛋白:占膜糖类90%。 糖 脂:量少。 膜内在蛋白(整合、镶嵌、跨膜) 脂锚定蛋白(脂连接蛋白) 占膜蛋白的70-80% 镶嵌于脂质双层中间 主要是跨膜蛋白 占膜蛋白的20-30% 主要位于胞质面 细胞外表面很少 位于膜的两侧,与子分子结合 在细胞膜外表面共同构成―细胞外被‖ 或称―糖萼‖ ◆ 侧向扩散 ◆ 翻转运动 ◆ 旋转运动 ◆ 弯曲运动 ◆ 伸缩振荡 细胞膜 概念:包围在细胞质表面的一层薄膜。又称质膜。将细胞中生命物质与外界环境分隔开,维持细胞特有内环境。 功能

细胞跨膜运输实例的教案

第四章第一节物质跨膜运输的实例的教案 授课内容:细胞的吸水和失水 授课班级:高一某班 教师:XXX 授课时间:20**年*月*日 教材:高中《生物必修1》分子与细胞 1、学情分析 本节课授课对象是高一学生,在上一章中他们学习了细胞的基本结构,为本节课的学习打下了基础。通过本节课的学习对细胞膜有了更进一步的了解,为后面学习细胞膜的结构和功能奠定了基础。 学生在第三章对细胞膜有了一定的科学认识,但同时也会存在一些不科学的前科学概念,因此在教学过程中要创设情境暴露学生存在的问题,从而转变他们的错误观点。 学生可能存在的前科学概念如:动物细胞的吸水与失水同植物细胞的完全一样。 2教学内容分析 (1)知识结构: 本节课主要是探究性的实验即探究植物细胞的吸水和失水。探究植物细胞在什么情况下吸水、什么情况下失水,并比较其与动物细胞吸水与失水的异同。学生在已有知识的基础上对本节课的教学有一定的自主性,能提出问题、作出假设、设计实验、进行实验、分析结果,得出结论、表达和交流、进一步探究来实现对知识点的学习。 本节课的知识结构如下图:

(2)本节课的生物学概念 半透膜:指水分子、一些离子及部分小分子物质可以自由通过,其他离子、小分子和大分子物质不能通过。 原生质层细胞膜与液胞膜以及两层膜之间的细胞质称为原生质层。 质壁分离/复原:细胞在与自身浓度不同的溶液中表现出的细胞膜与细胞壁分离的现象称为质壁分离;在质壁分离的细胞中滴加比细胞所处环境底的溶液后细胞膜与细胞壁恢复原来形状的过程称为质壁复原。 3、学习动机的唤起和保持 实验前展示课件,帮助学生回忆第三章细胞膜的知识。让学生回答所给的问题,从而引入本节课的学习。 学生分成小组学习,争对本节课的知识体系主动参与学习,做到人人动手、动脑的分工合作。 实验过程中,观察学生的学习情况,及时解决学生遇到的问题。鼓励学生发散思维,提出问题、解决问题,从而调动学生的学习兴趣。 4、落实课程标准 本节课要实现高中生物学课程内容标准是: 第四章:“物质的跨膜运输” 5、教学目标 同过本节课的学习,学生能达到以下的目标: (1)知识目标

细胞生物学各章节重点内容

第一章细胞质膜 1、被动运输 是指通过简单扩散或协助扩散实现物质由高浓度向低浓度方向的跨膜转运。转运的动力来自于物质的浓度梯度,不需要细胞代谢提供能量。 2、主动运输 是由载体蛋白所介导的物质逆浓度梯度或电化学梯度由低浓度一侧向高浓度一侧进行跨膜转运的方式。转运的溶质分子其自由能变化为正值,因此需要与某种释放能量的过程相耦连。主动运输普遍存在于动植物细胞和微生物细胞中。 3、紧密连接 是封闭连接的主要形式,一般存在于上皮细胞之间。紧密连接有两个主要功能:一是紧密连接阻止可溶性物质从上皮细胞层一侧通过胞外间隙扩散到另一侧,形成渗透屏障,起重要封闭作用,二是形成上皮细胞质膜蛋白与质膜分子侧向扩散的屏障,从而维持上皮细胞的极性。 4、通讯连接 一种特殊的细胞连接方式,位于特化的具有细胞间通讯作用的细胞。介导相邻细胞间的物质转运、化学或电信号的传递,主要包括间隙连接、神经元间的化学突触和植物细胞间的胞间连丝。动物与植物的通讯连接方式是不同的,动物细胞的通讯连接为间隙连接,而植物细胞的通讯连接则是胞间连丝

5、桥粒 是一种常见的细胞连接结构,位于中间连接的深部。一个细胞质内的中间丝和另一个细胞内的中间丝通过桥粒相互作用,从而将相邻细胞形成一个整体,在桥粒处内侧的细胞质呈板样结构,汇集很多微丝,这种结构和加强桥粒的坚韧性有关。 物质跨膜运输的方式和特点 Ⅰ、被动运输 是指物质由高浓度向低浓度方向的跨膜转运。转运的动力来自于物质的浓度梯度,不需要细胞代谢提供能量。主要分为两种类型: (1)简单扩散②不需要提供能量; 分子物质等。 (2)协助扩散②存在最大转运速率;在一定限度内运输速率同物质浓度成正比。如超过一定限度,浓度不再增加,运输也不再 ④不需要提供能量。属于这种运输方式的物质有某些离子和一些较大的分子如葡萄糖等物质 Ⅱ、主动运输 物质从浓度梯度从低浓度的一侧向高浓度的一侧方向跨膜运输的过程。此过程中需要消耗细胞生产的能量,也需要膜上载体协助。属于这种运输方式的物质有离

物质跨膜运输的方式教学设计(公开课)(新)

《物质跨膜运输的方式》教学设计 一、【教材分析】 《物质跨膜运输的方式》是人教版必修一第四章细胞的物质输出和输入第3节的内容,本模块第三章细胞的基本结构已经介绍了细胞膜的化学组成和细胞膜结构以及大致的功能,本节着重介绍细胞膜控制物质进出这一重要功能,包括小分子或离子进出细胞的方式和大分子物质进出细胞的方式,通过对几种跨膜运输方式的探究,并运用数学坐标图来表达三种方式的规律和特征,可以培养学生对图表数据的解读能力,即信息解读和知识迁移转化的能力。这部分内容和前面所学的"分泌蛋白的合成和运输"有关联的地方,同时又是对生物膜具有流动性的一个很好的佐证。对学生理解细胞是基本的生命系统有着重要的意义。 二、【教学目标】 根据教学大纲的要求和教材的具体内容,结合高二年级学生的认知结构、心理特征和现有的知识水平,拟定了下列几个教学目标: (1)知识目标: a.能举例说明物质跨膜运输方式的类型及特点。 b.正确解读坐标数据图表。 (2)能力目标: 培养学生利用数学知识解决生物问题的能力以及学生的探究学习的能力。 (3)情感态度与价值观:学会交流和合作,体验成功的喜悦。 三、【学情分析】 本节的授课对象是高二的学生,在初中阶段,学生对物质交换有了很肤浅的了解,通过前几章的学习,学生已经具备了细胞膜的结构,水分子跨膜运输实例的基础,掌握了蛋白质多样性的知识,为新知识的学习奠定了认知基础。并且还具备了一定的认知能力,思维的目的性,连续性和逻辑性也已初步建立,能独立思考,对生活现象提出疑问,并通过多种途径找出解决的办法。同时经过前阶段的新课程学习,他们具备了群体讨论,并大胆说出自己的想法和理论依据的能力。对事物的探究有激情,但往往对探究的目的性及过程,结论的形成缺乏理性的思考,需要教师的引导。 四、【教学重点】 ①小分子物质和离子跨膜运输的方式:自由扩散、协助扩散和主动运输。 ②大分子和颗粒性物质进出细胞的方式:胞吞和胞吐。

细胞生物学第五章跨膜运输习题及答案 done

第五章:物质的跨膜运输与信号传递 1.比较主动运输与被动运输的特点及其生物学意义。 答:被动运输是指通过简单扩散或者协助扩散实现物质有高浓度向低浓度方向的跨膜转运。 动力来自物质的浓度梯度不需要细胞代谢的能量。被动运输为那些无需耗能跨膜的物质提供了一个快速跨膜的通道。 主动运输是指由载体蛋白介导的物质逆浓度梯度或电化学梯度,从浓度低的一侧香浓度高的一侧进行跨膜转运的方式。与能量偶联,为细胞提供需要的物质和维持细胞渗透压(Na-K泵制造反向压力)等。 2.小肠上皮细胞膜上的载体蛋白转运葡萄糖,什么时候是协同运输,什么时候是协助扩散? 答:葡萄糖通过Na驱动的同向转运方式进入小肠上皮细胞是协同运输;由GLUT蛋白所介导的细胞对葡萄糖的摄取使葡萄糖进入血液是协助扩散。 3.两类膜转运蛋白工作原理的主要差别如何? 答:两类膜转运蛋白是指载体蛋白和通道蛋白。 载体蛋白(carrier proteins),它既可介导被动运输,又可介导逆浓度梯度或电化学梯度的主动运输,如:氨基酸、核糖等通过载体蛋白选择结合跨膜转运,每种载体蛋白只能与特定的溶质分子结合。 通道蛋白(channel proteins),只能介导顺浓度梯度或电化学梯度的被动运输。选择性开启离子通道。通道蛋白所介导的被动运输不需要与溶质分子结合,横跨形成亲水通道,允许适宜大小的分子和带电荷的离子通过。 4.说明Na+-K+泵的工作原理及其生物学意义。 答:钠钾泵:(Na+—K+泵) 在细胞内侧a亚基与Na结合促进ATP水解, a亚基上的一个天门冬氨基酸残基磷酸化引起a亚基构象发生变化,将Na泵出细胞; 同时细胞外的K与a亚基的另一个位点结合,使其去磷酸化,a亚基构象再度发生变化将K泵进细胞,完成整个循环。 每消耗一个ATP分子,泵出3个Na和泵进2个K

3细胞质膜与跨膜运输

幻灯片102 练习题 ●一、填空题 ●1、流动镶嵌模型强调生物膜的主要基本特征是和 。 ●2、离子通道分为、 和。 ●3、被动运输可以分为和 两种方式。 ●4、钠钾泵每消耗1分子的A T P可以泵出个N a+和个K+。 ●二、判断题 ●1、S D S是离子型去垢剂,可以用于膜蛋白的纯化。() ●2、载体蛋白既可以介导促进扩散,又可以介导主动运输。() ●3、协助扩散就是协同运输,是物质从高浓度侧转运到低浓度侧,不需要消耗能量。 () ●4、质膜对所有带电荷分子是高度不通透的。() 不对称性 流动性 电位闸门通道 配体闸门通道 牵张闸门通道 简单扩散 促进扩散 3 2 × √ × × 幻灯片103 ●三、选择题 ●1、下列各组分中,可以通过自由扩散通过细胞质膜的一组物质是() ●A、H2O、C O2、N a+B、甘油、O2、苯 ●C、葡萄糖、N2、C O2D、蔗糖、苯、C l- ●2、膜脂分子的运动方式中生物学意义最重要的是() ●A、侧向运动B、脂分子围绕轴心的自旋 运动 ●C、脂分子尾部的摆动D、翻转运动 ●3、协同运输所需要的能量属于() ●A、耦联转运蛋白提供的能量B、A T P直接供应能量 ●C、光能驱动的能量D、间接消耗顺浓度梯度所提供的 能量

B A A 幻灯片104 作业 ●为什么在生理状态下,细胞膜内外的离子及电荷是不均等分布的?这种不均等分布为 什么是必须的? ● 幻灯片105 ●(1)质膜上相对稳定的离子跨膜运输或离子流使细胞膜内外侧的离子及电荷呈不均等 分布:N a+-K+泵使细胞内外的N a+和K+不平衡分布,K+是细胞内有机分子所带负电荷的主要平衡者,质膜对K+的通透性大于N a+,K+的大量外流导致细胞内负电荷过量,而膜外正电荷过量。 ●(2)质膜上N a+通道和K+通道蛋白及N a+-K+泵等膜蛋白随膜电位变化有规律的开启, 具有重要的生理意义,特别是在神经、肌肉等可兴奋细胞中,是化学信号或电信号引起的兴奋传递的重要方式。

高考生物复习必备考点:物质跨膜运输方式的类型及特点

高考生物复习必备考点:物质跨膜运输方式的类 型及特点 物质通过简单扩散作用进出细胞,叫做自由扩散,下面是高考生物复习必备考点:物质跨膜运输方式的类型及特点,希望对考生有帮助。 生物物质跨膜运输的方式 1、小分子物质跨膜运输的方式: 方式浓度载体能量举例意义 被动运输简单 扩散高→低× × O2、CO2、水、乙醇、甘油、脂肪酸只能从高到低被动地吸收或排出物质 易化 扩散高→低√ × 葡萄糖进入红细胞 主动 运输低→高√ √ 各种离子,小肠吸收葡萄糖、氨基酸,肾小管重吸收葡萄糖一般从低到高主动地吸收或排出物质,以满足生命活动的需要。 2、大分子和颗粒性物质跨膜运输的方式: 大分子和颗粒性物质通过内吞作用进入细胞,通过外排作用向外分泌物质。 二、实验:观察植物细胞的质壁分离和复原 实验原理:原生质层(细胞膜、液泡膜、两层膜之间细胞质)

相当于半透膜, ? 当外界溶液的浓度大于细胞液浓度时,细胞将失水,原生质层和细胞壁都会收缩,但原生质层伸缩性比细胞壁大,所以原生质层就会与细胞壁分开,发生“质壁分离”。 ? 反之,当外界溶液的浓度小于细胞液浓度时,细胞将吸水,原生质层会慢慢恢复原来状态,使细胞发生“质壁分离复原”。 材料用具:紫色洋葱表皮,0.3g/ml蔗糖溶液,清水,载玻片,镊子,滴管,显微镜等 方法步骤: (1)制作洋葱表皮临时装片。 (2)低倍镜下观察原生质层位置。 (3)在盖玻片一侧滴一滴蔗糖溶液,另一侧用吸水纸吸,重复几次,让洋葱表皮浸润在蔗糖溶液中。 (4)低倍镜下观察原生质层位置、细胞大小变化(变小),观察细胞是否发生质壁分离。 (5)在盖玻片一侧滴一滴清水,另一侧用吸水纸吸,重复几次,让洋葱表皮浸润在清水中。 (6)低倍镜下观察原生质层位置、细胞大小变化(变大),观察是否质壁分离复原。 实验结果: 细胞液浓度外界溶液浓度细胞吸水(质壁分离复原)

第三章 细胞质膜与跨膜运输

第三章细胞质膜与跨膜运输 1. 请比较质膜、内膜和生物膜在概念上的异同。 答:细胞质膜(plasma membrane)是指包围在细胞表面的一层极薄的膜,主要由膜脂和膜蛋白所组成。质膜的基本作用是维护细胞内微环境的相对稳定,并参与同外界环境进行物质交换、能量和信息传递。另外,在细胞的生存、生长、分裂、分化中起重要作用。真核生物除了具有细胞表面膜外,细胞质中还有许多由膜分隔成的各种细胞器,这些细胞器的膜结构与质膜相似,但功能有所不同,这些膜称为内膜(internal membrane),或胞质膜(cytoplasmic membrane)。内膜包括细胞核膜、内质网膜、高尔基体膜等。由于细菌没有内膜,所以细菌的细胞质膜代行胞质膜的作用。生物膜(biomembrane,or biological membrane)是细胞内膜和质膜的总称。生物膜是细胞的基本结构,它不仅具有界膜的功能,还参与细胞的全部生命活动。 2. 如何理解细胞膜作为界膜对细胞生命活动所起的作用?答:界膜的涵义包括两个方面:细胞界膜和内膜结构的界膜,作为界膜的膜结构对于细胞生命的进化具有重要意义,这种界膜不仅使生命进化到细胞的生命形式,也保证了细胞生命的正常进行,它使遗传物质和其他参与生命活动的生物大分子相对集中在一个安全的微环境中,有利于细胞的物质和能量代谢。细胞内空间的区室化,不仅扩大了表面积,还使细胞的生命活动更加高效和有序。 3. 简述细胞膜结构的基本功能及对细胞生命活动的影响。 答:细胞膜结构的基本功能包括以下几个方面:界膜和区室化(delineation and compartmentalization) 细胞膜最重要的作用就是勾划了细胞的边界,并且在细胞质中划分了许多以膜包被的区室。调节运输(regulation of transport) 膜为两侧的分子交换提供了一个屏障,一方面可以让某些物质"自由通透",另一方面又作为某些物质出入细胞的障碍。功能区室化细胞膜的另一个重要的功能就是通过形成膜结合细胞器,使细胞内的功能区室化。例如细胞质中的内质网、高尔基体等膜结合细胞器的基本功能是参与蛋白质的合成、加工和运输;而溶酶体的功能是起消化作用,与分解相关的酶主要集中在溶酶体。又如线粒体的内膜主要功能是进行氧化磷酸化,与该功能有关的酶和蛋白复合体集中排列在线粒体内膜上。另一个细胞器叶绿体的类囊体是光合作用的光反应场所,所以在类囊体膜中聚集着与光能捕获、电子传递和光合磷酸化相关的功能蛋白和酶。信号的检测与传递(detection and transmission of signals) 细胞通常用质膜中的受体蛋白从环境中接收化学和电信号。细胞质膜中具有各种不同的受体,能够识别并结合特异的配体,产生一种新的信号激活或抑制细胞内的某些反应。如细胞通过质膜受体接收的信号决定对糖原的合成或分解。膜受体接收的某些信号则与细胞分裂有关。参与细胞间的相互作用(intercellular interaction) 在多细胞的生物中,细胞通过质膜进行多种细胞间的相互作用,包括细胞识别、细胞粘着、细胞连接等。如动物细胞可通过间隙连接,植物细胞则通过胞间连丝进行相邻细胞间的通讯,这种通讯包括代谢偶联和电偶联。能量转换(energy transduction) 细胞膜的另一个重要功能是参与细胞的能量转换。例如叶绿体利用类囊体膜上的结合蛋白进行光能的捕获和转换,最后将光能转换成化学能储存在碳水化合物中。同样,膜也能够将化学能转换成可直接利用的高能化合物A TP,这是线粒体的主要功能。细胞膜的这些基本功能也是生命活动的基本特征,没有膜的这些功能,细胞不能形成,细胞的生命活动就会停止。 4. 有人说红细胞是研究膜结构的最好材料,你能说说理由吗? 答:首先是红细胞数量大,取材容易(体内的血库),极少有其它类型的细胞污染; 其次成熟的哺乳动物的红细胞中没有细胞核和线粒体等膜相细胞器,细胞膜是它的惟一膜结构,所以分离后不存在其它膜污染的问题。 5. 红细胞如何进行O2和CO2的运输作用? 答:红细胞对O2和CO2的运输与膜的性质有关。氧是一种小分子,它能够自由扩散通过

细胞生物学试题及答案

填空题 1 细胞是构成有机体的基本单位,是代谢与功能的基本单位,是生长与发育的基本单位,是遗传的基本单位。 2 实验生物学时期,细胞学与其它生物科学结合形成的细胞分支学科主要有细胞遗传学、细胞生理学和细胞 化学。 3 组成细胞的最基础的生物小分子是核苷酸、氨基酸、脂肪酸核、单糖,它们构成了核酸、蛋白质、脂类和 多糖等重要的生物大分子。 4 按照所含的核酸类型,病毒可以分为D.NA.病毒和RNA.病毒。 1. 目前发现的最小最简单的细胞是支原体,它所具有的细胞膜、遗传物质(D.NA.与RNA.)、核糖体、酶是 一个细胞生存与增殖所必备的结构装置。 2. 病毒侵入细胞后,在病毒D.NA.的指导下,利用宿主细胞的代谢系统首先译制出早期蛋白以关闭宿主细胞 的基因装置。 3. 与真核细胞相比,原核细胞在D.NA.复制、转录与翻译上具有时空连续性的特点。 4. 真核细胞的表达与原核细胞相比复杂得多,能在转录前水平、转录水平、转录后水平、翻译水平、和翻译 后水平等多种层次上进行调控。 5. 植物细胞的圆球体、糊粉粒、与中央液泡有类似溶酶体的功能。 6. 分辨率是指显微镜能够分辩两个质点之间的最小距离。 7. 电镜主要分为透射电镜和扫描电镜两类。 8. 生物学上常用的电镜技术包括超薄切片技术、负染技术、冰冻蚀刻技术等。 9. 生物膜上的磷脂主要包括磷脂酰胆碱(卵磷脂)、磷脂酰丝氨酸、磷脂酰肌醇、磷脂酰乙醇胺和鞘磷脂。 10. 膜蛋白可以分为膜内在蛋白(整合膜蛋白)和膜周边蛋白(膜外在蛋白)。 11. 生物膜的基本特征是流动性和不对称性。 12. 内在蛋白与膜结合的主要方式有疏水作用、离子键作用和共价键结合。 13. 真核细胞的鞭毛由微管蛋白组成,而细菌鞭毛主要由细菌鞭毛蛋白组成。 14. 细胞连接可分为封闭连接、锚定连接和通讯连接。 15. 锚定连接的主要方式有桥粒与半桥粒和粘着带和粘着斑。 16. 锚定连接中桥粒连接的是骨架系统中的中间纤维,而粘着带连接的是微丝(肌动蛋白纤维)。 17. 组成氨基聚糖的重复二糖单位是氨基己糖和糖醛酸。 18. 细胞外基质的基本成分主要有胶原蛋白、弹性蛋白、氨基聚糖和蛋白聚糖、层粘连蛋白和纤粘连蛋白等。 19. 植物细胞壁的主要成分是纤维素、半纤维素、果胶质、伸展蛋白和蛋白聚糖等。 20. 植物细胞之间通过胞间连丝相互连接,完成细胞间的通讯联络。 21. 通讯连接的主要方式有间隙连接、胞间连丝和化学突触。 22. 细胞表面形成的特化结构有膜骨架、微绒毛、鞭毛、纤毛、变形足等。 23. 物质跨膜运输的主要途径是被动运输、主动运输和胞吞与胞吐作用。 24. 被动运输可以分为简单扩散和协助扩散两种方式。 25. 协助扩散中需要特异的膜转运蛋白完成物质的跨膜转运,根据其转运特性,该蛋白又可以分为载体蛋白 和通道蛋白两类。 26. 主动运输按照能量来源可以分为A.TP直接供能运输、A.TP间接供能运输和光驱动的主动运输。 27. 协同运输在物质跨膜运输中属于主动运输类型。 28. 协同运输根据物质运输方向于离子顺电化学梯度的转移方向的关系,可以分为共运输(同向运输)和反 向运输。 29. 在钠钾泵中,每消耗1分子的A.TP可以转运3个钠离子和2个钾离子。 30. 钠钾泵、钙泵都是多次跨膜蛋白,它们都具有A.TP酶酶活性。 31. 真核细胞中,质子泵可以分为三种P型质子泵、V型质子泵和H+__A.TP酶。 32. 真核细胞中,大分子的跨膜运输是通过胞吞作用和胞吐作用来完成的。

相关文档
相关文档 最新文档