文档库 最新最全的文档下载
当前位置:文档库 › 内外啮合齿轮马达的转矩脉动分析

内外啮合齿轮马达的转矩脉动分析

内外啮合齿轮马达的转矩脉动分析
内外啮合齿轮马达的转矩脉动分析

无刷直流电机转矩脉动抑制方法综述

无刷直流电机转矩脉动抑制方法综述 周杰,侯燕 (河南工业大学电气工程学院,450007) 摘要:为扩大无刷直流电机在精度较高的伺服系统中的应用,必须尽量减小其转矩脉动。详细论述了无刷直流电机各种有效的转矩脉动抑制方法,并进行分类归纳。 关键词:无刷直流电机;转矩脉动;综述 中图分类号:TM33 文献标识码:B 文章编号:1004-0420(2007)06-0005-04 The review on torque ripple minimization of brushless DC motors ZHOU Jie,HOU Yan (College of Electrical Engineering,Henan University of Technology,450007) Abstract:To enlarge the application of brushless DC motor in higher accurateness servos,the torque ripple of brushless DC motor must be minimized. Aiming at the torque ripple attenuation of brushless DC motor,many efficient methods were discussed and classified in detail. Key words:brushless DC motor; torque ripple; review 0 引言 近年来,无刷直流电机(BLDCM)以其体积小、结构简单、功率密度高、输出转矩大、动态性能好等特点而得到了广泛应用[1],尤其是在机器人、精密电子仪器与设备等对电机性能、控制精度要求较高的场合和领域,其应用和研究更是受到普遍重视。目前,无刷直流电机最突出的问题就是具有转矩脉动,转矩脉动会直接降低电力传动系统控制特性和驱动

一种三级式同步电机转矩脉动抑制方法

第19卷一第11期2015年11月一电一机一与一控一制一学一报Electri c 一Machines 一and 一Control 一Vol.19No.11Nov.2015 一一一一一一一种三级式同步电机转矩脉动抑制方法 马鹏,一刘卫国,一毛帅,一骆光照 (西北工业大学自动化学院,陕西西安710072) 摘一要:针对三级式同步电机在电动起动过程中,主发电机的转子励磁脉动导致输出转矩脉动较大二带载起动性能较低的问题,分析了转子励磁脉动对主发电机运行特性的影响,以及在采用矢量控制策略时,由于受到谐波电流的影响而输出的误差电压矢量的分布特点三为了提高主发电机的带载起动性能,本文提出了一种采用极坐标确定控制器调制电压矢量的起动控制方法,与传统的矢量控制策略相比,该方法在一个调节周期内不会产生电压幅值调节误差,仅会产生较小的矢量角调节误差三实验结果表明,在100r /min 转速时,传统矢量控制方法仅能拖动5N 四m 的负载,新方法则能够稳定拖动40N 四m 负载,说明新方法更适合电机在拖动航空发动机起动过程中低转速二大负载的运行工况三 关键词:三级式同步电机;航空发动机;励磁脉动;起动控制;转矩脉动抑制 DOI :10.15938/j.emc.2015.11.015 中图分类号:TM 341文献标志码:A 文章编号:1007-449X(2015)11-0098-06 Torque ripple reduction in three-stage brushless synchronous machines MA Peng,一LIU Wei-guo,一MAO Shuai,一LUO Guang-zhao (School of Automation,Northwestern Polytechnical University,Xi an 710072,China)Abstract :Considering the large torque ripple and poor start performance with load which are caused by the excitation current pulsation of the main generator in the electric start process of three-stage brushless synchronous machines,the impact of the excitation current pulsation was analyzed on operating character-istics of the main generator and distribution characteristics of output voltage vector error caused by har-monic currents when vector control strategy was adopted.In order to improve the start performance of the three-stage brushless synchronous machine with load,a start control method was proposed using the polar coordinate to determine the output voltage https://www.wendangku.net/doc/813587938.html,pared with the traditional vector control strategy,this method does not produce amplitude error,but only small angle error,of the vector voltage.The ex-perimental results show that,at a speed of 100r /min,the electric start system adopting the new method can operate steadily with a load of 40N四m,while for the traditional vector control method,it is only 5N四m.Therefore,the new method is more suitable for the low speed and heavy load operating condi-tions at the start mode of aircraft engines.Keywords :three-stage synchronous machine;aircraft engine;excitation pulsation;start control;torque ripple reduction 收稿日期:2014-09-21 基金项目:国家自然科学基金(51277152) 作者简介:马一鹏(1984 ),男,博士研究生,研究方向为多级电励磁无刷同步电机伺服控制; 刘卫国(1960 ),男,博士,教授,博士生导师,研究方向为永磁电机设计理论及驱动控制技术; 毛一帅(1989 ),男,博士研究生,研究方向为电励磁同步电机驱动控制技术; 骆光照(1972 ),男,博士,教授,博士生导师,研究方向为永磁同步电机驱动控制技术三 通讯作者:马一鹏

齿槽转矩脉动

齿槽转矩脉动 齿槽转矩是由转子的永磁体磁场同定子铁心的齿槽相互作用,在圆周方向产生的转矩。此转矩与定子的电流无关,它总是试图将转子定位在某些位置。在变速驱动中,当转矩频率与定子或转子的机械共振频率一致时,齿槽转矩产生的振动和噪声将被放大。齿槽转矩的存在同样影响了电机在速度控制系统中的低速性能,和位置控制系统中的高精度定位。解决齿槽转矩脉动问题的方法主要集中在电机本体的优化设计 上。 (1)斜槽法定子斜槽或转子斜极是抑制齿槽转矩脉动最有效且应用广泛的方法之一,该方法主要用于定子槽数较多且轴向较长的电机。实践表明,采用斜槽角度为10°时,齿槽转矩的基波转矩幅值相当于直槽时的90%,3次谐波幅值相当于直槽时的30%,5次谐波幅值相当于直槽时的19%。值得注意的是,为产生恒定的电磁转矩,反电动势波形必须是平顶宽度大于120°的理想梯形波,而斜槽或斜极引起的绕组反电动势的正弦化将会增大电磁转矩纹波。因此,选择合适的斜槽角度是有效抑制齿槽转矩脉动的关键。 (2)分数槽法该方法可以提高齿槽转矩基波的频率,使齿槽转矩脉动量明显减少。但是,采用了分数槽后,各极下绕组分布不对称,从而使电机的有效转矩分量部分被抵消,电机的平均转矩也会因此而相应减 小。 (3)磁性槽楔法采用磁性槽楔法就是在电机的定子槽口上涂压一层磁性槽泥,固化后形成具有一定导磁性能的槽楔。磁性槽楔减少了定子槽开口的影响,使定子与转子间的气隙磁导分布更加均匀,从而减少由于齿槽效应而引起的转矩脉动。由于磁性槽楔材料的导磁性能不是很好,因而对于转矩脉动的削弱程度有限。 (4)闭口槽法闭口槽即定子槽不开口,槽口材料与齿部材料相同。因槽口的导磁性能较好,所以闭口槽比磁性槽楔能更有效地消除转矩脉动。但采用闭口槽,给绕组嵌线带来极大不便,同时也会'大大增加槽漏抗,增大电路的时间常数,从而影响电机控制系统的动态特性。 (5)无齿槽绕组为了消除齿槽转矩脉动,可采用无槽绕组的永磁无刷直流电机,这种结构的电机定子可使用非导磁铁心的无齿槽空心杯定子结构(见图),能够彻底消除了齿槽转矩脉动的影响;但绕组电感显著减小,一般只有几μH到几十μH,因此定子电流中的PWM分量非常明显。

课程设计之齿轮啮合有限元分析

有限元法分析与建模课程设计报告 学院:机械电子工程学院 指导教师: 学生及学号: 2012-12-31

摘要 ANSYS是随着电子计算机的发展而迅速发展起来的一种在计算数学,计算力学和计算工程科学领域最有效的通用有限元分析软件。它是融合结构,热,流体,电磁,声学于一体的大型通用有限元商用分析软件。利用ANSYS有限元分析,可以对各种机械零件、构件进行应力,应变,变形,疲劳分析,并对某些复杂系统进行仿真,实现虚拟的设计,从而大大节省人力,财力和物力。由于其方便性、实用性和有效性,ANSYS软件在各个领域,特别是机械工程当中得到了广泛的应用。这次大作业一齿轮啮合的有限元分析为例介绍有限元法的基本过程。 关键词:有限元法;齿轮;啮合 I

Abstract With the development of computer,ANSYS has became one of the most effective general-purpose finite element analysis software in calculation mathematics, computational mechanics and computational engineering sciences. It is one of the large general-purpose commercial finite element analysis software which is the integration of structural, thermal, fluid, electromagnetic, acoustic. By this method,we can make the stress,strain,deformation and fatigue analysis to various mechanical parts、components.Additionally ,it is also can be used to make the simulation of certain complex system,to achieve a virtual design with the significant saving in manpower, financial and material.Because of its convenience, practicality and effectiveness, ANSYS software has been widely used in various fields, especially mechanical engineering. Key Words:Finite element method;Gear;Engagement II

无刷直流电机PWM调制方式与转矩脉动关系研究

无刷直流电机PWM 调制方式与转矩脉动关系研究 收稿日期:2005-04-28 航空科学基金项目(项目编号:04F 53036) 齐 蓉,周素莹,林 辉,陈 明 (西北工业大学,西安 710072) 摘 要:针对无刷直流电机的双斩和四种单斩PW M 调制方式,分析调制方式对电机稳态转矩脉动的影响,建立稳态及换向过程中电机相电流及电磁转矩的数学模型。基于M atlab 无刷直流电机的仿真模型,研究换向转矩脉动与各种单斩P WM 调制方式的关系。 关键词:无刷直流电动机;转矩脉动;仿真;脉宽调制;数学模型 中图分类号:T M 361 文献标识码:A 文章编号:1001-6848(2006)01-0058-04 The Relation Between Torque Ripples and PWM Modes of Brushless DC Motor Q I Ro ng ,ZHOU Su-ying ,LIN Hui,CHEN Ming (N or thwester n Po ly technical U niv ersit y,Xi'an 710072,China) ABSTRACT :T his paper analy zes the differ ent PW M modes (sing le cho p P WM m odes and do uble chop PW M modes )influence on the static to r que ripple in Br ushless DC mo tor (BLD CM )co ntro l sy st em .T he ma thematic models o f phase curr ent and electr omag netic tor que ar e derived.Based on M atlab BL DCM modules,the r elation between fo ur PW M modes(H pw m -L o n,H o n-L pw m,on pwm ,pw m on )and co mmutation tor que ripples a re discussed. KEY WORDS :Br ushless DC M ot or ;T o r que ripples ;Simulatio n ;PW M ;M athematic mo dels 0 引 言 无刷直流电动机(BLDCM )由于转矩脉动较大地限制了其在高精度伺服系统中的进一步应用。因此,分析其转矩脉动产生的原因及过程,寻找抑制转矩脉动的解决办法成为提高BLDCM 伺服性能的关键。 PWM 调制方式通常分为双斩和单斩两大类型。换相转矩脉动及稳态转矩脉动都与PWM 调制方式有关[1-4]。由于BLDCM 相电感的存在使电机换相时产生换相延时,形成电机换向过程中的转矩脉动[5] ,称为换向转矩脉动。本文针对双斩及H pw m -L o n 、H on-L pw m 、on pw m 和pw m on 四种单斩PWM 调制方式,研究电机稳态和换向时的电流和电磁转矩,分析转矩脉动产生的过程,比较各种PWM 调制方式对转矩脉动的影响。 1 PWM 调制方式对稳态电流和转矩 的影响分析 (a )三相六状态 (b ) 双斩调制 (c)H pw m-L o n (d)H on-L pw m (e )o n pwm (f )pw m on 图1 P WM 调制方式的输出波形 当无刷直流电动机反电势为梯形波时,系统采用二二导通,三相六状态的120°导通方式如图1(a)所示,双斩调制方式如图1(b )所示。四种单斩PWM — 58—

机械设计---齿轮作图题

1.图1所示蜗杆传动——斜齿圆柱齿轮传动组成的传动装置,蜗杆为主动件,若蜗杆1的转动方向如图中n1所示,蜗杆齿的螺旋线方向为右旋。 试分析: (1)为使中间轴I所受的轴向力能抵消一部分,确定蜗轮2、斜齿轮3和斜齿轮4的轮齿旋向; (2)在图1的主视图上,画出蜗轮2的圆周力F t2、径向力F r2和斜齿轮3的圆周力F t3、径向力F r3 2.在图6上直接改正轴系结构的错语。(轴端安装联轴器) 图 6 1.(1)蜗轮2、齿轮3、齿轮4的旋向………………(6分) (2)F a2、F a3的方向………………(4分) (3)F r2、F t2、F r3、F t3的方向………………(4分) 2.答案图。

①应画出垫片; ②应画出定位轴套,并将装齿轮的轴段长度缩短; ③应画出键; ④应降低轴肩高度,便于拆卸轴承; ⑤画出轴径变化,减小轴承装配长度; ⑥画出密封件; ⑦画出联轴器定位轴肩; ⑧键长应改为短于轮毂长度; 每改正1处错误 ………………(2分) (改正6处错误得满分) 3.图示为由圆锥齿轮和斜齿圆柱齿轮组成的传动系统。已知:Ⅰ轴为输入轴,转向如图所示。 (1)在下图中标出各轮转向。(2分) (2)为使2、3两轮的轴向力方向相反,确定并在图中标出3、4两轮的螺旋线方向。(2分) (3)在图中分别标出2、3两轮在啮合点处所受圆周力t F 、轴向力a F 和径向力r F 的方(4分) (1)各轴转向如图所示。 (2) 3轮左旋,4轮右旋。 (3) 2、3两轮的各分力方向下图所示。 F F r2 F r3t3 F a2 4. 图3中为一对圆锥滚子轴承支承的轴系,齿轮油润滑,轴承脂润滑,轴端装有联轴器。试指出图中的结构错误(在图中错误处写出序号并在下半部改正,按序号简要说明错误的内容)(每指出一处,并正确说明错误内容和改正的,得1分,总分为10分) ①键的位置应与齿轮处在同一直线上,而且结构不正确; ②轴承盖孔径应大于轴径,避免接触;

渐开线直齿圆柱齿轮接触应力有限元分析

渐开线直齿圆柱齿轮接触应力有限元分析 摘要:本文针对ANSYS有限元齿轮接触仿真进行了探讨,计算齿轮的等效应力和接触应力,对齿轮的弯曲强度失效和接触疲劳失效研究具有重要的实际意义。利用有限元分析方法,得出了相互啮合齿轮在静态情况下,等效应力和接触应力的分布规律;同时分析了齿轮与不同直径齿轮接触时,等效应力和接触应力的变化情况。 关键词:齿轮接触有限元等效应力接触应力 ANSYS 引言 齿轮的接触问题是典型的接触非线性问题,在传统的计算设计方法中,我们通常将非线性问题进行一定的简化与假设,使之变为线性问题来求解,但是这种计算方法的结果不是十分精确。本文基于ANSYS软件建立渐开线直齿圆柱齿轮的二维有限元模型,对静载荷作用下齿轮接触问题进行有限元分析,求得齿轮接触问题更为精确的解,为解决齿轮接触问题提供了一定依据。 1 齿轮传动失效分析 齿轮传动的失效主要是轮齿的失效。根据齿轮传动工作和使用条件的不同,齿轮传动也就有不同的失效形式。主要的失效形式有轮齿的折断、齿面疲劳点蚀、磨损、胶合和塑性变形等。设计齿轮传动时,应对具体情况作具体分析,按可能发生的主要损伤或失效形式来进行相应的强度计算,有时以齿根弯曲疲劳强度为主,有时以齿面接触疲劳为主。这些问题采用有限元法来计算是十分方便的,下面我们将通过ansys对传动比不同的3组齿轮进行有限元分析。 2 有限元模型及其求解 2.1模型的建立 齿轮均选用标准渐开线直齿圆柱齿轮,模数m=3,压力角α=20°,齿数分别为Z1=35、Z2=25、Z3=20,传动比分别为35:35、25:35、20:35。在建模时考虑到齿轮具有轴对称结构,每个齿的受力情况基本相同,因此可以将齿轮模型简化为平面问题,这样可以节省大量计算时间。先在三维设计软件Pro/E中生成齿轮的三维模型,再将模型保存为iges格式,然后导入到ansys中,删除多余面,仅剩下齿轮端面,并复制一个齿轮并调整角度,可得如图1所示的齿轮实体模型。

基于ANSYS的齿轮应力有限元分析

本科毕业设计 论文题目:基于ansys的齿轮应力有限元分析 学生姓名: 所在院系:机电学院 所学专业:机电技术教育 导师姓名: 完成时间:

摘要 本文主要分析了在ansys中齿轮参数化建模的过程。通过修改参数文件中的齿轮相关参数,利用APDL语言在ANSYS软件中自动建立齿轮的渐开线。再利用图形界面操作模式,通过一系列的镜像、旋转等命令,生成两个相互啮合的大小齿轮。运用有限元分析软件ANSYS对齿轮齿根应力和齿轮接触应力进行分析计算,得出两个大小齿轮的接触应力分布云图。通过与理论分析结果的比较,验证了ANSYS在齿轮计算中的有效性和准确性。 关键词 :ANSYS,APDL,有限元分析,渐开线,接触应力。

Modeling and Finite Element Analysis of Involute Spur Gear Based on ANSYS Abstract We have mainly analyzed spur gear parametrization modelling process in the ansys software. using the APDL language through revises the gear related parameter in the parameter document,we establishes gear's involute automatically in the ANSYS software.Then, using the graphical interface operator schema, through a series of orders ,mirror images, revolving and so on, we produce the big and small gear which two mesh mutually. Carring on the stress analysis of the gear by using the finite element analysis software-- ANSYS, we obtain two big and small gear's contact stress distribution cloud charts. through with the theoretical analysis result's comparison,we explain ANSYS in the gear computation validity and the accuracy. Keywords: ANSYS; APDL;finite element analysis;involute line;contact stress

(完整版)机械设计受力分析题

1.(10分) 如图4-1传动系统,要求轴Ⅱ、Ⅲ上的轴向力抵消一部分,试确定: 1)蜗轮6的转向; 2)斜齿轮3、4和蜗杆5、蜗轮6的旋向; 3)分别画出蜗杆5,蜗轮6啮合点的受力方向。 1.(12分)(1) 蜗轮6的转向为逆时针方向; (2分) (2)齿轮3左旋,齿轮4右旋,蜗杆5右旋,蜗轮6右旋;(4分) (3)蜗杆5啮合点受力方向如图(a);蜗轮6啮合点受力方向如图(b)。(6分) 图 4-1

2、传动力分析 如图所示为一蜗杆-圆柱斜齿轮-直齿圆锥齿轮三级传动。已知蜗杆为主动,且按图示方向转动。试在图中绘出: (1)各轮传向。(2.5分) (2)使II 、III 轴轴承所受轴向力较小时的斜齿轮轮齿的旋向。(2分) (3)各啮合点处所受诸分力t F 、r F 、a F 的方向。(5.5分) 3.(10分)如图4-1为圆柱齿轮—蜗杆传动。已知斜齿轮1的转动方向和斜齿轮2的轮齿旋向。 (1)在图中啮合处标出齿轮1和齿轮2所受轴向力F a1和F a2的方向。 (2)为使蜗杆轴上的齿轮2与蜗杆3所产生的轴向力相互抵消一部分,试确定并标出蜗杆3轮齿的螺旋线方向,并指出蜗轮4轮齿的螺旋线方向及其转动方向。 (3)在图中啮合处标出蜗杆和蜗轮所受各分力的方向。 (1)在图中啮合处齿轮1和齿轮2所受轴向力F a1和F a2的方向如图(2分)。 (2)蜗杆3轮齿的螺旋线方向,蜗轮4轮齿的螺旋线方向及其转动方向如图(2分)。 (3)蜗杆和蜗轮所受各分力的方向。(6分)

4.(15分) 解:本题求解步骤为; (1.)由I轴给定转向判定各轴转向; (2.)由锥齿轮4.5轴向力方向及Ⅲ、Ⅳ轴转向可定出3、6的螺旋方向; (3.)继而定1、2的螺旋方向; (4.)由蜗杆轴力Fa6判定Ft7,从而确定蜗杆转动方向; (5.)判别各力的方向。

方波无刷直流电机转矩脉动分析

方波无刷直流电机转矩脉动分析 作 者:中国中铁电气化局集团第二工程有限公司 李 庆 [专家点评] 引言 永磁方波无刷直流电动机具有体积小、重量轻、出力大、控制简单和调速方便等优点,被广泛应用于军事、工业和家电等各行业。但是,方波无刷直流电机转矩脉动大,限制了它在一些场合的应用。转矩脉动主要是由于电磁因素引起的,本文分析了无刷直流电动机转矩脉动的成因,并从系统的观点提出改善转矩脉动的措施。 方波无刷直流电机转矩脉动成因[2] 永磁无刷直流电动机的气隙磁场为方波,相应的逆变装置采用二二导通模式,以保证定子电流波形与气隙磁场波形一致,这样电机转矩脉动最小,几乎为零。但是现实中做到定子电流波形与气隙磁场波形完全一致是不可能的,同时由于电机本身存在定子绕组的换流问题,这就带来了转矩的脉动。从转矩公式 (1) 式中:t e为转矩;为相反电;为相电流;ω角速度;从式中可以看出,转矩脉动主要与定子电流和气隙磁场有关。 定子电流对转矩脉动的影响 控制逆变装置目的就是调整电流,使之尽量接近理想的方波波形,但是由于定子绕组存在电感,使得定子中的电流上升和下降都有个过程,使得定子电流达不到理想方波波形,导致了转矩的脉动。同时由于斩波频率的限制,非换相期间电流的脉动也带来的精度允许范围之内的转矩脉动。 气隙磁场对转矩脉动的影响 电机气隙磁场在设计时是梯形波磁场,但是由于机械加工制造等方面的影响,使得气隙磁场达不到理想的梯形波形,同时由于定子齿槽的存在使得气隙磁场有脉动[1];当电机带负载运行时,定子磁场与转子磁场相互作用,有电枢反应,使得气隙磁场产生畸变,偏离理想梯形波,这也带来了转矩的脉动。 抑制转矩脉动的措施 为了抑制转矩脉动主要从三方面来采取措施: (1)从主回路角度,尽量采用高频器件,提高谐波次数,减少谐波转矩脉动; (2)从控制的角度,采用最佳的逆变器控制模式,尽量增加有效电磁转矩,采用合适的控制方法抑制换流带来的电流脉动导致的转矩脉动;

转矩脉动抑制

International Journal of Automotive Technology , Vol. 12, No. 2, pp. 291?297 (2011)DOI 10.1007/s12239?011?0034?8 Copyright ?2011KSAE 1229?9138/2011/057?16 291 TORQUE RIPPLE MINIMIZA TION CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTORS FOR EPS APPLICA TIONS G . H. LEE 1), W. C. CHOI 1), S. I. KIM 2), S. O. KWON 2) and J. P . HONG 2)* 1) Graduate School of Automotive Engineering, Kookmin University, Seoul 136-702, Korea 2) Department of Automotive Engineering, Hanyang University, Seoul 133-791, Korea (Received 18 February 2009; Revised 9 August 2010) ABSTRACT ?This paper identifies a control method used to reduce torque ripple of a permanent magnet synchronous motor (PMSM) for an electric power steering (EPS) system. NVH (Noise Vibration Harshness) is important for safe and convenient driving. Vibration caused by motor torque is a problem in column type EPS systems. Maintaining a very low torque ripple is one solution that allows for smoother steering. Theoretically, it is possible to design and drive the motor without torque ripple.However, in reality, a PMSM system torque ripple is caused by the motor itself (saturation in the iron core and EMF distortion)and the imperfect driver. This paper analyzes torque ripple of a PMSM system, and an advanced PMSM control method for the column typed EPS system is presented. Results of the analysis indicate that the compensation current is needed in order to minimize torque ripple when a PMSM is driven. KEY WORDS :Electric power steering, Magnetic saturation, PMSM, Torque ripple, Deadtime, EMF distortion 1. INTRODUCTION Research is being performed to improve the fuel efficiency of vehicles. One of the main areas of focus is on the steering of auxiliary equipment. Electric Power Steering (EPS) is receiving more attention than Hydraulic Power Steering (HYPS). Electric power steering (EPS) is a system that supplies motor power directly to the steering to assist steering torque while HYPS uses an oil pump that is driven by the engine (Shimizu and Kawai, 1991). A permanent magnet synchronous motor (PMSM) has been used to improve the performance of EPS. Since a PMSM has many advantages, such as high efficiency and high torque per rotor volume, it is especially suitable for automotive applications in which space and energy savings are critical (Miyoshi et al ., 2005). In a column type EPS system, the PMSM is linked to the steering shaft via a reduction gear. This connection transfers the motor vibration and torque fluctuation directly through the steering wheel to the hands of the driver (Zhang et al .,2008). For this reason, only the ripple between one and three percent of rated torque is permitted. Several technical papers have presented a motor design andcontrol technique to reduce cogging torque and torque pulsation (Islam et al ., 2005; Mattavelli et al ., 2005; Bianchi et al ., 2002; Lee et al ., 2008). However, this paper discusses an estimation method of compensation current for suppress-ing torque ripple caused by a PMSM (Lee et al ., 2008).In an EPS application, the magnetic saturation in the stator core and distortion of EMF is inevitable due to spatial and cost limitations(Lee, 2010). Imperfections of a low voltage inverter for EPS can be severe. This paper also analyzes torque ripple caused by the motor, deadtime effects, and current offset problems of the PMSM driver.The harmonic current distribution is calculated using finite element analysis, and the effective dead time compensation method is proposed. 2. TORQUE RIPPLE OF PMSM 2.1. Torque Ripple of PMSM for the EPS Figure 1 indicates a fabricated PMSM for the column type EPS system. The rotor configuration was skewed to reduce cogging torque. Segment type and ring type rotors are used for the purpose of this research. The specifications for a PMSM are listed in Table 1. Cogging torque and total harmonic distortion (THD) of a back-EMF required in the motor are less than 0.02 Nm and 0.7% respectively. If the rotor of a SPMSM is composed of segment-type permanent magnets, there is relatively low THD in the back-EMF (0.7%). A ring-type magnet has a higher THD in the back-EMF (2.3%) and an acceptable level of productivity.The torque waveforms of segment and ring magnets are shown in Figure 2. In order to measure torque ripple accurately, the motor is driven at 10 rpm, and input current is controlled with a THD less than 0.5%. As the magnetic torque increases, the electric frequency increases by a *Corresponding author . e-mail: hongjp@hanyang.ac.kr

齿轮传动例题

图示为一对锥齿轮与一对斜齿圆柱齿轮组成的二级减速器。已知:斜齿轮m =2mm, n z 3 F a3 2221210125019 T T???''' cos 22 解:

T P n 161163955109551070750 8913310=?=??=??...N mm d m z 113525806347576==?''' =n cos mm β.cos . F T t ??22891331013 .F a F r z 2=50, β=10?,齿轮3的参数m n =4mm ,z 3=20。求: 1)使II 轴所受轴向力最小时,齿轮3的螺旋线应是何旋向?在图上标出齿轮2、3的螺 23解: 123)F F a a32=,由F F a t =tan β得:F F t2t3tan tan ββ23= 由转矩平衡,T T 23=得:F d F d t2t3?=?2322 ,代入得 tan tan tan /cos /cos tan ββββββ323223322 2===F F d d m z m z t2t3n3n2 即sin sin sin .ββ3322420250 1001389==????=m z m z n3n2

β 分析图中斜齿圆柱齿轮传动的小齿轮受力,忽略摩擦损失。已知:小齿轮齿数z 1=18,大齿轮齿数z 2=59,法向模数m n =6mm ,中心距a =235mm ,传递功率P =100kW ,小齿轮转速n 1=960r/min ,小齿轮螺旋线方向左旋。求: 1)大齿轮螺旋角β的大小和方向; 2)小齿轮转矩T 1; 34 解: 齿轮螺旋角 586.10235 2)5918(6arccos 2)(arccos 21 n =?+?=+=a z z m β 小齿轮分度圆直径mm 069.109586.10cos 186cos 1n 1=?=?= βz m d 小齿轮转矩mm N 667.994791960 1001055.91055.96261?=??=?=n P T 切向力1 12d T F t ==N 5.18241069.109667.9947912=? 轴向力==βtan t a F F 18241.5cos10.586=17931N 径向力βαcos /tan n t r F F ==18241.5tan20=6639.4N

基于ANSYS的齿轮接触应力有限元分析【文献综述】

毕业论文文献综述 机械设计制造及其自动化 基于ANSYS的齿轮接触应力有限元分析 一、研究现状及研究主要成果 1. 《基于ANSYS的渐开线啮合齿轮有限元分析》中指出:采用有限元软件ANSYS建立了啮合齿轮的有限元模型,利用ANSYS软件的非线性接触分析功能,对啮合齿轮的接触问题进行仿真,计算出接触应力,为齿轮的强度计算和设计在方法上提供了参考和依据。建立了渐开线圆柱啮合齿轮的三维有限元模型;研究了齿轮系统整体分析中接触对的建立、齿轮加载方式的选择;研究了齿轮副结构有限元分析方法。采用在圆柱面的节点上加切向力来代替力矩的加载方式,对齿轮面接触参数进行设置,并且得到了接触分析的最终结果,说明该有限元建模的方法是可行的,为将来齿轮系统动力学的研究奠定基础。 2.《基于ANSYS的多齿差摆线齿轮有限元分析》中指出:应用ANSYS分析软件对多齿差摆线齿轮进行建模,推导出不同啮合相位角摆线齿轮根部应力计算公式,计算了不同啮合相位角摆线齿轮根部应力,找出齿轮齿根过渡圆弧半径与齿根处最大应力的关系和摆线齿轮根部过渡圆弧半径对齿轮根部应力的影响。摆线齿轮在齿顶啮合时齿轮根部具有最大应力值,采用了过渡圆弧的摆线齿轮齿根危险截面处的最大应力值明显比未采用过渡圆弧的摆线齿轮低,危险截面处的最大应力值随着过渡圆弧半径的增大而减小,当圆弧半径较小时最大应力减小趋势较快,当圆弧半径逐渐增大时应力减小趋势逐渐变缓。 3.《齿轮接触有限元分析》指出:计算接触非线性问题有许多方法,例如罚函数法、拉格朗日乘子法等,其中罚函数法由于其经济和方便而得到广泛使用。过去使用点-点接触单元,求解接触问题,对于象齿轮类接触,模型构造很麻烦,计算结果精度和准确性很难保证。随着计算机和有限元法的发展,新的接触单元法产生精确的几何模型,自动划分网格,适应求解。通过接触仿真分析研究了通用接触单元在轮齿变形和接触应力计算中的应用。建立了一对齿轮接触仿真分析的模型,并使用新的接触单元法计算了轮齿变形和接触应力,与赫兹理论比较,同时也计算了摩擦力对接触应力的影响。计算分析了单元离散、几何、边界范围与加载或约束处理方式的误差,建立了一个计算轮齿变形和接触应力的标准,说明了新的接触单元法的精确性、有效性和可靠性。 4.《渐开线直齿圆柱齿轮有限元仿真分析》中指出:ANSYS软件对齿轮变形和齿根应

有限元分析论文

机械1003班孙祥和 3100301144 基于高速旋转齿轮的有限元分析 引言:齿轮泵是工程中较为常见的一种泵,在高速运转时齿轮受到多种力的作用,包括齿面受到的压力,啮合时的接触应力以及自身离心力。在此过程中,齿轮将发生形变,为此我们需要对其进行分析,确保其结构的稳定性,这对于齿轮泵安全有效地运行具有很重要的意义。 关键词:高速齿轮、平面静力分析、接触应力分析、离心力分析 一、分析对象 这里我们分析的对象是齿轮泵中高速运转的齿轮,在ANSYS中我们建立了标准齿轮模型,其各项数据如下表所示 齿顶直径24 mm 齿底直径20 mm 齿数10 厚度 4 mm 弹性模量 2.06E11 pa 密度7.8e3 kg/m3 最大转速62.8 rad/s 摩擦系数0.1 啮合齿轮中心距44 mm 表1 齿轮泵高速齿轮参数 二、平面静力分析 1、分析问题 为了考查齿轮泵在高速运转时,齿轮发生多大的径向位移,从而判断其变形情况,以及齿轮运转过程齿面受到的压力作用。在这里我们将齿轮的空间结构简化为平面模型,并分析其平面应力情况。 此处的静力分析为线性静力分析,求解步骤分为建模、施加载荷和边界条件并求解、结果分析和评价三个步骤,下面依序进行。 2、建立模型 2.1 定义单元类型 根据齿轮的平面几何对称性和此处分析类型,我们选择四节点矩形单元PLANE42。PLANE42不仅可以用于计算平面应力问题,还可以用于分析平面应变和轴对称问题。每个节点2个自由度:x,y方向。具有塑性,徐变,膨胀,应力强化,大变形,大应变能力。

设定好单元类型后,对选择的PLANE42单元进行设置,在Element behavior (单元行为方式)选择Plane stress w/wk。 2.2 定义实常数 本处选用带有厚度的平面应力行为方式的PLANE 42单元,需要设置器厚度实常数,只需在“Type1 PLANE 42”中将厚度设为4即可。 2.3 定义材料属性 考虑惯性力的静力分析中必须定义材料的弹性模量和密度。 2.4 建立齿轮面模型,如下图所示 图2 建立齿轮面模型 2.5对盘面划分网格 选择Main Menu:Preprocessor>Meshing>Meshing Tool(网格工具)命令,然后单击Line域选择所有线条(Pick All),之后用线控制单元网格划分,在No.of element division(划分单元的份数)中输入10,表示所有线条被划分为10份。本处选用PLANE 42单元对盘面划分映射网格。 3、定义边界条件并求解 建立有限元模型后,就需要定义分析类型和施加边界条件及载荷,然后求解。此处齿轮的载荷为62.8 rad/s转速形成的离心力,位移边界条件将内孔边缘节点的周向位移固定,具体分为以下几个步骤。 3.1施加位移边界 由于此处是对圆柱齿轮进行静态受力分析,为了获得较好的弯曲应力特性,

相关文档