文档库 最新最全的文档下载
当前位置:文档库 › 浅谈基于小波分析的神经网络

浅谈基于小波分析的神经网络

浅谈基于小波分析的神经网络
浅谈基于小波分析的神经网络

浅谈基于小波分析的神经网络

摘要:基于小波分析的神经网络在我们的日常生产中有着重要的作用,尤其是在故障检测中,正因为有了它的存在,使得我们能更好的对一些机器内部微小的部件进行检测。在一定程度上,避免了人工检测工作量大且准确度不高的情况,降低了检验的成本,减少了因零件损坏而带来的损失,为工业的生产提供了极大的帮助。

关键词:小波分析,神经网络,故障诊断

随着科学的进步与时代的发展,神经网络正慢慢的运用到我们的日常生活与生产之中。从1943年人们首次提出了人工神经网络这一概念至今,神经网络已经与越来越多的其他技术结合了起来,例如,结合神经元的混沌属性提出混沌神经网络,应用于组合优化的问题中,与粗集理论结合,应用于对数据的分类处理,与分形理论结合,应用于图形识别、图像编码、图像压缩等,与小波分析结合,应用于机械设备的故障检测中。以下是我对基于小波分析的神经网络的见解。

一、概述

小波分析即小波变换,是1981年Morlet首先提出的,经过发展后成为了一门学科,小波分析对低频信号在频域和高频信号在时域里有着较好的分辨率。而神经网络特有的对非线性适应性信息处理能力,当它与小波分析相结合后,使得它们能在对高压电网的信号处理,机械故障的检测等方面发挥了重要的作用。

二、小波神经网络的算法

小波神经网络的算法大体的思路是这样的,小波神经网络的核心是隐层神经元的激活函数小波基函数(Morlet )进行非线性映射,信号通路只进行前向传递,待分类信号进行前向传递的同时,误差信号进行反向的传递。输出层的传递函数为S 函数,小波函数的拓扑结构如下所示:

小波函数的修正公式如下:

(k 1)(k)*E mc ωωη

ωω?+=++? (1) a(k 1)(k)*E a mc a a

η?+=++? (2) b(k 1)(k)*E b mc b b η

?+=++? (3) 误差函数如下:

211

1(y yt )2N M n n m m n m E N ===-∑∑ (4) 输入层 隐含层 输出层

其中,w 为小波神经网络的权值,a 、b 是小波神经网络的伸缩因子和平移因子,

,a,b ω分别是,,a b ω的改变量。η是学习率,mc 是动量因子。y n

m 和yt n m 是m 样

本的第n 个节点的是实际输出和理想输出。

三、故障的检测

根据需要我们将待检测的部件分类,并且根据不同的故障原因,我们分类得到各个部件的样本故障特征向量。而我们通过采集各个部件的信号,利用小波分析来提取各部件的信号信息,然后分析这些信息,得出相应的模拟的特征向量,并为了提高准确性,将这些向量做向量的融合处理,最后将经过融合处理的向量输入到神经网络中进行计算,得到相应的能量信息,而我们的神经网络是通过机器学习,在内部,我们已经保存了相应的样本故障特征向量所对应的不同的故障信息。

同时,我们也可以利用MATLAB 等软件,对数据进行相应的处理,然后将MATLAB 处理过的数据,利用A/D 数模信号转换和离散化处理,对的得到信号进行分析处理,与样本的数据进行匹配,得到部件所对应的不同的故障信息。

四、结束语

基于小波分析的神经网络不仅仅在故障检测方面有着重要的作用,同样其也可以运用于图像的识别仿真方面。随着时代的发展,小波神经网络在我们的生活中将会发挥更多的作用。我相信,基于小波分析的神经网络将会更为广泛的我们的生产中得到运用,利用这样的技术,将会使我们的生产变得更加快捷,更加完全,更加便利。

参考文献

[1] Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang https://www.wendangku.net/doc/843628883.html,plex networks:

Structure and dynamics [J].PHYSICS REPORTS-REVIEW SECTION OF

PHYSICS LETTERS,2006,424(4-5):175-308

[2] Rodriguez-Galiano, Victor F, Chica-Rivas, Mario.Evaluation of different machine

learning methods for land cover mapping of a Mediterranean area using multi-

seasonal Landsat images and Digital Terrain Models[J].INTERNATIONAL

JOURNAL OF DIGITAL EARTH,2014,7(6); 492-509,

[3]邱世卉.小波神经网络在模拟电路故障诊断中的应用研究[J].科学技术与工

程,2012,12(30):145-149

[4]彭良玉,王恒华.基于小波神经网络的模拟电路故障诊断方法及LabVIEW实

现[J].微电子学与计算机,2013,30(5):72-75

[5] Kasabov Nikola, Feigin Valery, Hou Zeng-Guang, Chen Yixiong, Liang Linda,

Krishnamurthi Rita, Othman Muhaini, Parmar Priya;Evolving spiking neural networks for personalised modelling, classification and prediction of spatio-

temporal patterns with a case study on stroke[J].

NEUROCOMPUTING,2014,134(SI): 269-279

[6] Qin Sitian, Xu Jingxue, Shi Xin; Convergence analysis for second-order interval

Cohen-Grossberg neural networks[J].COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION,2014,19(8): 2747-2757

[7]赵林明,楚清河, 代秋平, 王利英; 基于小波分析与人工神经网络的水轮机

压力脉动信号分析 [J]. 水利学报,2011,42(9):1075-1080

[8]杨立儒,李红波,郑红岩,曾繁景,李铁峰;一种基于小波分析和神经网络的模拟

电路故障诊断的方法研究[J].计算机应用与软件,2012,28(3):223-226

[9]陈佳;小波分析神经网络技术在故障诊断中的应用[J].软件工程

师,2013,7:43-45

[10]满红,贾世杰;基于小波分析和神经网络的异步电机早期故障诊断[J].大连

交通大学学报,2012,32(3):80-83

[11]黄河;电机故障诊断的仿真研究[J].计算机仿真,2011,28(9):177-180

[12]荣明星;基于小波神经网络的电动机转子故障诊断[J].机械制造与自动

化,2013,02:191-194

【CN110705812A】一种基于模糊神经网络的工业故障分析系统【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910303394.0 (22)申请日 2019.04.15 (71)申请人 中国石油大学(华东) 地址 266580 山东省青岛市黄岛区长江西 路66号 (72)发明人 于强 张卫山 房凯  (51)Int.Cl. G06Q 10/06(2012.01) G06N 3/04(2006.01) G06N 5/04(2006.01) G05B 19/418(2006.01) (54)发明名称 一种基于模糊神经网络的工业故障分析系 统 (57)摘要 本发明提出了一种基于模糊神经网络 (Fuzzy network -FNN)的工业故障分析系统,包 括以下步骤:获取领域内专家经验知识、数据库 中所记载的历史故障数据以及相应故障模式解 释,并进行数据预处理消除异常和补全缺失值; 接下来进行知识数据模糊化;更新解释器,为新 增工业故障模式增加相应故障解释;使用模糊化 后的数据训练神经网络,动态更新神经网络连接 权值;基于神经网络正向推理方法对工业故障进 行诊断分析, 高效准确的判断数据或设备异常。权利要求书2页 说明书4页 附图1页CN 110705812 A 2020.01.17 C N 110705812 A

1.一种基于模糊神经网络的工业故障分析系统。其特征在于,知识获取与预处理模块、知识数据模糊处理模块、解释器更新模块、模糊神经网络训练模块、故障模糊推理模块,包括以下步骤: 步骤(1)、在知识获取与预处理模块,接收工作人员输入的与故障诊断分析相关的专家经验知识或是历史工业故障分析数据,经过清洗、筛选、和特征提取,形成有效的故障特征相关信息。建立工业故障特征数据集C, C={c 1,c 2,c 3,L ,c m }, 元素c i (i=1,2,L ,m)代表各种故障数据,以及故障原因分析数据集F,即故障数据的解释集合 F={f 1,f 2,f 3,L ,f n } 其中,元素f i (i=1,2,L ,n)代表各种可能的故障原因解释集合。 步骤(2)、在知识数据模糊处理模块,对故障诊断分析相关的专家经验数据知识进行模糊化处理,根据隶属度函数从具体的输入故障数据得到对模糊集隶属度。故障特征数据模 糊化后构成模糊向量: 是故障分析数据c i 的隶属度,同时将故障原因集合进行模糊处理后构 成故障原因模糊向量。 其中是故障原因f i 的隶属度,即可能性大小。故障分析模糊向量对应着模糊神经网络的神经元域,作为神经网络神经元的输入。 步骤(3)、在解释器更新模块,将故障原因分析数据集F,即故障数据的解释集合F={f 1,f 2,f 3,L ,f n }(元素f i (i=1,2,L ,n)代表故障原因解释集合)更新到综合数据库中,为解释器中新增工业故障进行故障解释。 步骤(4)、模糊神经网络训练模块,使用模糊化的专家经验知识以及历史故障数据训练模糊神经网络。模糊神经网络最上层为工业故障特征向量输入层,中间层网络为故障原因分析层,最下层网络为输出层。建立工业故障向量与故障原因向量模糊矩阵,作为模糊神经 网络连接权值矩阵: 矩阵中连接权值代表了故障特征向量到原因的模糊关系。其中r ij 表示故障数据中第i 个特征到第j种类故障的映射,即故障分析知识。设定故障诊断模型为β为特征系数,模糊矩阵r ij 将通过模糊神经网络对故障分析样本学习得到。通过实际故障样本不断对模糊神经网络进行训练,不断修正模糊矩阵r ij ,从而提高系统故障分析的准确性与可靠性。 权 利 要 求 书1/2页2CN 110705812 A

人工神经网络原理及实际应用

人工神经网络原理及实际应用 摘要:本文就主要讲述一下神经网络的基本原理,特别是BP神经网络原理,以及它在实际工程中的应用。 关键词:神经网络、BP算法、鲁棒自适应控制、Smith-PID 本世纪初,科学家们就一直探究大脑构筑函数和思维运行机理。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在“计算"某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。1943年Macullocu和Pitts融合了生物物理学和数学提出了第一个神经元模型。从这以后,人工神经网络经历了发展,停滞,再发展的过程,时至今日发展正走向成熟,在广泛领域得到了令人鼓舞的应用成果。本文就主要讲述一下神经网络的原理,特别是BP神经网络原理,以及它在实际中的应用。 1.神经网络的基本原理 因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。其结构如下图所示: 从上图可看出生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成;

轴突:是从细胞体向外伸出的细长部分,也就是神经纤维。轴突是神经细胞的输出端,通过它向外传出神经冲动;树突:是细胞体向外伸出的许多较短的树枝状分支。它们是细胞的输入端,接受来自其它神经元的冲动;突触:神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。 对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高;当膜电位升高到一阀值(约40mV),细胞进入兴奋状态,产生神经冲动,并由轴突输出神经冲动;当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。细胞进入抑制状态,此时无神经冲动输出。“兴奋”和“抑制”,神经细胞必呈其一。 突触界面具有脉冲/电位信号转换功能,即类似于D/A转换功能。沿轴突和树突传递的是等幅、恒宽、编码的离散电脉冲信号。细胞中膜电位是连续的模拟量。 神经冲动信号的传导速度在1~150m/s之间,随纤维的粗细,髓鞘的有无而不同。 神经细胞的重要特点是具有学习功能并有遗忘和疲劳效应。总之,随着对生物神经元的深入研究,揭示出神经元不是简单的双稳逻辑元件而是微型生物信息处理机制和控制机。 而神经网络的基本原理也就是对生物神经元进行尽可能的模拟,当然,以目前的理论水平,制造水平,和应用水平,还与人脑神经网络的有着很大的差别,它只是对人脑神经网络有选择的,单一的,简化的构造和性能模拟,从而形成了不同功能的,多种类型的,不同层次的神经网络模型。 2.BP神经网络 目前,再这一基本原理上已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。 这里我们重点的讲述一下BP神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,其网络模型如下图所示。它可以分为输入层,影层(也叫中间层),和输出层,其中中间层可以是一层,也可以多层,看实际情况而定。

神经网络C语言实现

#i n c l u d e"" #include <> const double e = ; //设置一个神经网络 //有一个隐藏层(含有两个节点) //输出层有一个节点 //输入数据是二维(两个节点) //一个样本数据为:x = , 标签为 //初始权值输入节点1到隐藏层:, //输入节点2到隐藏层:, //隐藏层到输出层初始权值为:, //学习速率为1 double changeWeightFromHiddenToOutput(double cost,double output,double hiddenLayerCode) { double result=0; result = cost*output*(1-output)*hiddenLayerCode; return result; } double changeWeightFromInputToHidden(double cost,double output,double weightOfHiddenCodeToOutput,double weightOfHiddenCode,double inputNum)

double result=0; result = cost*output*(1-output)*weightOfHiddenCodeToOutput*weightOfHiddenC ode*(1-weightOfHiddenCode)*inputNum; return result; } double sigmoidFunction(double x) { double result=0; result = 1/(1+pow(e,-x)); return result; } double costFunction(double originalSignal,double outputOfOurCalculation) { //此处采取的损失函数是最小二乘法 double cost=0; cost = (1/*(originalSignal-outputOfOurCalculation)*(originalSignal-outpu tOfOurCalculation); return cost;

【免费下载】小波分析及其应用

科技文献检索作业 卷 试 料 小波分析及其应用 测控技术1103 雷创新

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪 数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家 J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反

(完整版)小波神经网络的时间预测

基于小波神经网络的短时交通流预测 摘要 将小波神经网络的时间序列预测理论应用于短时交通流量的预测。通过小波分解与重构获取交通流量数据中的低频近似部分和高频随机部分, 然后在分析各种模型的优、劣的基础上, 选取较有效的模型或模型结合方式, 建立了交通流量预测模型。最后, 利用实测交通流量数据对模型仿真, 结果表明该模型可以有效地提高短时交通流量预测的精度。 关键词: 小波变换 交通流预测 神经网络 1.背景 众所周知, 道路交通系统是一个有人参与的、时变的、复杂的非线性大系统, 它的显著特点之一就是具有高度的不确定性(人为的和自然的影响)。这种不确定性给短时交通流量预测带来了极大的困难。这也就是短时交通流量预测相对于中长期预测更复杂的原因所在。在交通流量预测方面,小波分析不是一个完全陌生的工具,但是仍然处于探索性的应用阶段。实际上,这种方法在计算机网络的流量的预测中有着广泛的应用。与计算机网络一样,车流也表现出复杂的习性。所以可以把它的应用推广类比到交通流量的预测中来。小波分析有着与生俱来的解决非稳定时间序列的能力, 所以常常被单独用来解决常规时间序列模型中的问题。 2.小波理论 小波分析是针对傅里叶变换的不足发展而来的,傅里叶变换是信号处理领域里最为广泛的一种分析手段,然而他有一个严重的不足,就是变换抛弃了时间信息,变换结果无法判断某个信号发生的时间。小波是一种长度有限,平均值为0的波形,它的特点包括: (1)时域都具有紧支集或近似紧支集; (2)直流分量为0; 小波变换是指把某一基本小波函数ψ(t)平移b 后,再在不同尺度a 下与待分析的信号x(t)做内积。 dt a b t t x a b a WT x )()(1),(-=?*ψ??==?*)(),()()(,,t t x dt t t x b a b a ψψ (2 — 1) 等效的时域表达式为 dt a b x a b a WT x ωωψωj e )()(1),(-=?* a > 0 (2 — 2) 3.小波神经网络 小波神经网络是小波分析理论与神经网络理论相结合的产物,把小波基函数作为隐含层节点的传递函数,信号前向传播的同时误差反向传播的神经网络。 图一中1x ,2x ,....k x 是小波神经网络的输入参数,1y ,2y ....,m y 是小波神经网络的预测输出。

人工神经网络的发展及应用

人工神经网络的发展与应用 神经网络发展 启蒙时期 启蒙时期开始于1980年美国著名心理学家W.James关于人脑结构与功能的研究,结束于1969年Minsky和Pape~发表的《感知器》(Perceptron)一书。早在1943年,心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型(即M—P模型),该模型把神经细胞的动作描述为:1神经元的活动表现为兴奋或抑制的二值变化;2任何兴奋性突触有输入激励后,使神经元兴奋与神经元先前的动作状态无关;3任何抑制性突触有输入激励后,使神经元抑制;4突触的值不随时间改变;5突触从感知输入到传送出一个输出脉冲的延迟时问是0.5ms。可见,M—P模型是用逻辑的数学工具研究客观世界的事件在形式神经网络中的表述。现在来看M—P 模型尽管过于简单,而且其观点也并非完全正确,但是其理论有一定的贡献。因此,M—P模型被认为开创了神经科学理论研究的新时代。1949年,心理学家D.0.Hebb 提出了神经元之间突触联系强度可变的假设,并据此提出神经元的学习规则——Hebb规则,为神经网络的学习算法奠定了基础。1957年,计算机学家FrankRosenblatt提出了一种具有三层网络特性的神经网络结构,称为“感知器”(Perceptron),它是由阈值性神经元组成,试图模拟动物和人脑的感知学习能力,Rosenblatt认为信息被包含在相互连接或联合之中,而不是反映在拓扑结构的表示法中;另外,对于如何存储影响认知和行为的信息问题,他认为,存储的信息在神经网络系统内开始形成新的连接或传递链路后,新 的刺激将会通过这些新建立的链路自动地激活适当的响应部分,而不是要求任何识别或坚定他们的过程。1962年Widrow提出了自适应线性元件(Ada—line),它是连续取值的线性网络,主要用于自适应信号处理和自适应控制。 低潮期 人工智能的创始人之一Minkey和pape~经过数年研究,对以感知器为代表的网络系统的功能及其局限性从数学上做了深入的研究,于1969年出版了很有影响的《Perceptron)一书,该书提出了感知器不可能实现复杂的逻辑函数,这对当时的人工神经网络研究产生了极大的负面影响,从而使神经网络研究处于低潮时期。引起低潮的更重要的原因是:20世纪7O年代以来集成电路和微电子技术的迅猛发展,使传统的冯·诺伊曼型计算机进入发展的全盛时期,因此暂时掩盖了发展新型计算机和寻求新的神经网络的必要性和迫切性。但是在此时期,波士顿大学的S.Grossberg教授和赫尔辛基大学的Koho—nen教授,仍致力于神经网络的研究,分别提出了自适应共振理论(Adaptive Resonance Theory)和自组织特征映射模型(SOM)。以上开创性的研究成果和工作虽然未能引起当时人们的普遍重视,但其科学价值却不可磨灭,它们为神经网络的进一步发展奠定了基础。 复兴时期 20世纪80年代以来,由于以逻辑推理为基础的人工智能理论和冯·诺伊曼型计算机在处理诸如视觉、听觉、联想记忆等智能信息处理问题上受到挫折,促使人们

1BP神经网络实现(JAVA代码)

BP神经网络实现(Java代码) 神经网络的原理虽然理解起来不难,但是要是想实现它,还是需要做一些工作的,并且有很多细节性的东西需要注意。通过参阅各种相关资料,以及参考网络上已有的资源,自己写了一个含有一个隐含层,且只能有一个输出单元的简单的BP网络,经过测试,达到了预期的效果。 需要说明的是,神经网络的每个输入都在[0,1]中,输出也在[0,1]中,在使用神经网络解决实际问题的时候,还需要对实际问题的输入输出进行归一化处理。另外,尽量不要使得神经网络的输入或输出接近于0或1,这样会影响拟合效果。 我用正弦函数进行了一次测试,效果如图所示: 以下是相关的代码: 1.神经网络代码 [java]view plaincopy 1.package pkg1; 2. 3.import java.util.Scanner; 4. 5./* 6.* 7.*/ 8.public class TestNeuro{

9. 10.private int INPUT_DIM=1; 11.private int HIDDEN_DIM=20; 12.private double LEARNING_RATE=0.05; 13.double[][]input_hidden_weights=new double[INPUT_DIM][HIDDEN_DIM]; 14.double[]hidden_output_weights=new double[HIDDEN_DIM]; 15.double[]hidden_thresholds=new double[HIDDEN_DIM]; 16.double output_threshold; 17. 18.public static void main(String[]args){ 19.Scanner in=new Scanner(System.in); 20.TestNeuro neuro=new TestNeuro(1,5); 21.neuro.initialize(); 22.for(int i=0;i<10000;i++){ 23.double[]input=new double[1]; 24.input[0]=Math.random(); 25.double expectedOutput=input[0]*input[0]; 26.//System.out.println("input:"+input[0]+"\t\texpectedOutput: "+expectedOutput); 27.//System.out.println("predict before training:"+neuro.predict (input)); 28.neuro.trainOnce(input,expectedOutput); 29.//System.out.println("predict after training:"+neuro.predict( input)); 30.//in.next(); 31.} 32.while(true){ 33.//neuro.printLinks(); 34.double[]input=new double[1]; 35.input[0]=in.nextDouble(); 36.double expectedOutput=in.nextDouble(); 37.System.out.println("predict before training:"+neuro.predict(i nput)); 38.neuro.trainOnce(input,expectedOutput); 39.System.out.println("predict after training:"+neuro.predict(in put)); 40. 41.} 42.} 43. 44.public TestNeuro(int input_dimension,int hidden_dimension){ 45.this.INPUT_DIM=input_dimension; 46.this.HIDDEN_DIM=hidden_dimension; 47.this.initialize();

神经网络工具箱

神经网络工具箱 版本6.0.4(R2010a版本)25-JAN-2010 图形用户界面的功能。 nctool - 神经网络分类的工具。 nftool - 神经网络拟合工具。 nprtool - 神经网络模式识别工具。 nntool - 神经网络工具箱的图形用户界面。 nntraintool - 神经网络训练工具。 视图- 查看一个神经网络。 分析功能。 混乱- 分类混淆矩阵。 errsurf - 单输入神经元的误差表面。 maxlinlr - 最大的学习率的线性层。 鹏- 受试者工作特征。 距离函数。 boxdist - 箱距离函数。 DIST - 欧氏距离权重函数。 mandist - 曼哈顿距离权重函数。 linkdist - 链路距离函数。 格式化数据。 combvec - 创建载体的所有组合。 con2seq - 转换并行向量连续载体。 同意- 创建并发偏载体。 dividevec - 创建载体的所有组合。 ind2vec - 转换指数为载体。 最小最大- 矩阵行范围。 nncopy - 复印基质或细胞阵列。 normc - 规格化矩阵的列。 normr - 规格化行的矩阵的。 pnormc - 矩阵的伪规格化列。 定量- 值离散化作为数量的倍数。 seq2con - 转换顺序向量并发载体。 vec2ind - 将矢量转换成指数。 初始化网络功能。 initlay - 层- 层网络初始化函数。 初始化层功能。

initnw - 阮层的Widrow初始化函数。 initwb - 从重量和- 偏置层初始化函数。 初始化的重量和偏见的功能。 initcon - 良心的偏见初始化函数。 initzero - 零重量/偏置初始化函数。 initsompc - 初始化SOM的权重与主要成分。 中点- 中点重初始化函数。 randnc - 归一列重初始化函数。 randnr - 归行重初始化函数。 兰特- 对称随机重量/偏置初始化函数。 学习功能。 learncon - 良心的偏见学习功能。 learngd - 梯度下降重量/偏置学习功能。 learngdm - 梯度下降W /气势重量/偏置学习功能。 learnh - 赫布重学习功能。 learnhd - 赫布衰变重学习功能。 learnis - 重量龄学习功能。 learnk - Kohonen的重量学习功能。 learnlv1 - LVQ1重学习功能。 learnlv2 - LVQ2重学习功能。 learnos - Outstar重学习功能。 learnsomb - 批自组织映射权重学习功能。 learnp - 感知重量/偏置学习功能。 learnpn - 归感知重量/偏置学习功能。 learnsom - 自组织映射权重学习功能。 learnwh - 的Widrow - 霍夫重量/偏置学习规则。 在线搜索功能。 srchbac - 回溯搜索。 srchbre - 布伦特的结合黄金分割/二次插值。 srchcha - Charalambous“三次插值。 srchgol - 黄金分割。 srchhyb - 混合二分/立方搜索。 净输入功能。 netprod - 产品净输入功能。 netsum - 求和净输入功能。 网络创造的功能。 网络- 创建一个自定义的神经网络。 NEWC - 创建一个有竞争力的层。 newcf - 创建级联转发传播网络。

小波神经网络程序

这是一个小波神经网络程序,作者judyever %参考<青岛海洋大学学报> 2001年第1期一种基于BP算法学习的小波神经网络%% %step1--------网络初始化------------------------------------------- clc; clear all; %设定期望的误差最小值 err_goal=0.001; %设定最大循环次数 max_epoch=50; %设定修正权值的学习速率0.01-0.7 lr=0.7; epoch=0; x=0:0.01:0.3;%输入时间序列 d=sin(8*pi*x)+sin(16*pi*x);%目标输出序列 M=size(x,2);%输入节点的个数 N=M;%输出节点的个数 n=10;%隐形节点的个数 %这个地方需要改进,由于实际上隐形节点的个数可以通过小波的时频分析确定 Wjk=randn(n,M); Wij=randn(N,n); % a=randn(1,n); a=1:1:n; b=randn(1,n); % stepa=0.2*(x(M)-x(1)); % a=stepa(n-1)+stepa; % step=(x(M)-x(1))/n; % b=x(1)+step:step:x(1)+n*step; % y=zeros(1,N);%输出节点初始化 y=zeros(1,N);%输出节点初始化 net=zeros(1,n);%隐形节点初始化 net_ab=zeros(1,n);%隐形节点初始化 %step2--------对网络进行训练------------------------------------------- for i=1:1:N for j=1:1:n for k=1:1:M net(j)=net(j)+Wjk(j,k)*x(k); net_ab(j)=(net(j)-b(j))/a(j); end y(i)=y(i)+Wij(i,j)*mymorlet(net_ab(j)); %mymorlet是judyever编写的小波函数,以后可以扩展成输入不同的小波名字即可 % y(i)=mysigmoid(2,y(i)); end

模糊控制的应用实例与分析

模糊控制的应用 学院实验学院 专业电子信息工程 姓名 指导教师 日期 2011 年 9 月 20 日

在自动控制中,包括经典理论和现代控制理论中有一个共同的特点,即控制器的综合设计都要建立在被控对象准确的数学模型(如微分方程等)的基础上,但是在实际工业生产中,很多系统的影响因素很多,十分复杂。建立精确的数学模型特别困难,甚至是不可能的。这种情况下,模糊控制的诞生就显得意义重大,模糊控制不用建立数学模型,根据实际系统的输入输出的结果数据,参考现场操作人员的运行经验,就可对系统进行实时控制。模糊控制实际上是一种非线性控制,从属于智能控制的范畴。现代控制系统中的的控制能方便地解决工业领域常见的非线性、时变、在滞后、强耦合、变结构、结束条件苛刻等复杂问题。可编程控制器以其高可靠性、编程方便、耐恶劣环境、功能强大等特性很好地解决了工业控制领域普遍关心的可靠、安全、灵活、方便、经济等问题,这两者的结合,可在实际工程中广泛应用。 所谓模糊控制,其定义是是以模糊数学作为理论基础,以人的控制经验作为控制的知识模型,以模糊集合、模糊语言变量以及模糊逻辑推理作为控制算法的一种控制。模糊控制具有以下突出特点: (1)模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点是现 场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确的数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用 (2)由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控制对 那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。 (3)基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同,容易 导致较大差异;但一个系统语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。 (4)模糊控制是基于启发性的知识及语言决策规则设计的,这有利于模拟人工控 制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。(5)模糊控制系统的鲁棒性强,干扰和参数变化对控制效果的影响被大大减弱, 尤其适合于非线性、时变及纯滞后系统的控制。 由于有着诸多优点,模糊理论在控制领域得到了广泛应用。下面我们就以下示例介绍模糊控制在实际中的应用: 电机调速控制系统见图1,模糊控制器的输入变量为实际转速与转速给定值 ,输出变量为电机的电压变化量u。图2为电机调试之间的差值e及其变化率e c 输出结果,其横坐标为时间轴,纵坐标为转速。当设定转速为2 000r/s时,电机能很快稳定运行于2 000r/s;当设定转速下降到1 000r/s时,转速又很快下降到1 000r/s稳定运行。 图1

人工神经网络题库

人工神经网络 系别:计算机工程系 班级: 1120543 班 学号: 13 号 姓名: 日期:2014年10月23日

人工神经网络 摘要:人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成,由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。 关键词:神经元;神经网络;人工神经网络;智能; 引言 人工神经网络的构筑理念是受到生物(人或其他动物)神经网络功能的运作启发而产生的。人工神经网络通常是通过一个基于数学统计学类型的学习方法(Learning Method )得以优化,所以人工神经网络也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题(也就是说通过统计学的方法,人工神经网络能够类似人一样具有简单的决定能力和简单的判断能力),这种方法比起正式的逻辑学推理演算更具有优势。 一、人工神经网络的基本原理 1-1神经细胞以及人工神经元的组成 神经系统的基本构造单元是神经细胞,也称神经元。它和人体中其他细胞的关键区别在于具有产生、处理和传递信号的功能。每个神经元都包括三个主要部分:细胞体、树突和轴突。树突的作用是向四方收集由其他神经细胞传来的信息,轴突的功能是传出从细胞体送来的信息。每个神经细胞所产生和传递的基本信息是兴奋或抑制。在两个神经细胞之间的相互接触点称为突触。简单神经元网络及其简化结构如图2-2所示。 从信息的传递过程来看,一个神经细胞的树突,在突触处从其他神经细胞接受信号。 这些信号可能是兴奋性的,也可能是抑制性的。所有树突接受到的信号都传到细胞体进行综合处理,如果在一个时间间隔内,某一细胞接受到的兴奋性信号量足够大,以致于使该细胞被激活,而产生一个脉冲信号。这个信号将沿着该细胞的轴突传送出去,并通过突触传给其他神经细胞.神经细胞通过突触的联接形成神经网络。 图1-1简单神经元网络及其简化结构图 (1)细胞体 (2)树突 (3)轴突 (4)突触

神经网络学习笔记及R实现

神经网络 一、神经网络简介 人工神经网络(ANN),简称神经网络,是一种模仿生物神经网络的结构和功能的数学模型或计算模型。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统。现代神经网络是一种非线性统计性数据建模工具,常用来对输入和输出间复杂的关系进行建模,或用来探索数据的模式物理结构:人工神经元将模拟生物神经元的功能 计算模拟:人脑的神经元有局部计算和存储的功能,通过连接构成一个系统。人工神经网络中也有大量有局部处理能力的神经元,也能够将信息进行大规模并行处理存储与操作:人脑和人工神经网络都是通过神经元的连接强度来实现记忆存储功能,同时为概括、类比、推广提供有力的支持 训练:同人脑一样,人工神经网络将根据自己的结构特性,使用不同的训练、学习过程,自动从实践中获得相关知识 神经网络是一种运算模型,由大量的节点(或称“神经元”,或“单元”)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。 二、BP神经网络算法描述 1、sigmoid函数分类 回顾我们前面提到的感知器,它使用示性函数作为分类的办法。然而示性函数作为分类器它的跳点让人觉得很难处理,幸好sigmoid函数y=1/(1+e^-x)有类似的性质,且有着光滑性这一优良性质。我们通过下图可以看见sigmoid函数的图像: 错误!

《小波分析及其应用》word版

现代数字信号处理作业 小波分析及其应用 电研111 梁帅

小波分析及其应用 1.小波分析的概念和特点 1.1小波理论的发展概况 20世纪80年代逐渐发展和兴起的小波分析(wavelctanalysis)是20世纪数学领域中研究的重要杰出成果之一。小波分析理论作为数学界中一种比较成熟的理论基础,应用到了各种领域的研究当中,推动了小波分析在各工程应用中的发展。它作为一种新的现代数字信号处理算法,汲取了现代分析学中诸如样条分析、傅立叶分析、数值分析和泛函分析等众数学多分支的精华部分,替代了工程界中一直应用的傅立叶变换,它是一种纯频域分析方法,不能在时频同时具有局部化特性。而小波分析中的多尺度分析思想,犹如一台变焦照相机,可以由粗及精逐步观察信号,在局部时频分析中具有很强的灵活性,因此有“数学显微镜”的美称。它能自动随着频率增加而调节成窄的“时窗”和宽的“频窗”,又随着频率降低而调节成宽的“时窗”和窄的“频窗”以适应实际分析需要。另外,小波变换在经过适当离散后可以够成标准正交基或正交系,这些在理论和应用上都具有十分重要的意义,因此,小波分析在各个领域得到了高度的重视并取得了许多重要的成果。 小波变换作为一种数学理论和现代数字信号处埋方法在科学技术界引起了越来越多专家学者的关注和重视。在数学家看来,基于小波变换的小波分析技术是当今数值分析、泛函分析、调和分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程领域,特别是在信号处理、图像处理、机器视觉、模糊识别、语音识别、流体力学、量子物理、地震勘测、电磁学、CT成像、机械故障诊断与监控等领域,它被认为是近年来在工具及方法上的重大突破。然而,小波分析虽然在众多领域中已经取得了一定的成果,但是,有专家预言小波分析理论的真正高潮并没有到来。首先,小波分析尚需进一步完善,除一维小波分析理论比较成熟以外,向量小波和多维小波则需要进行更加深入的研究与讨论;其次,针对不同情况选择不同的小波基函数,实现的效果是有差别性的这一问题,对最优小波基函数的选取方法有待进一步研究。在今后数年中,小波理论将成为科技工作者经常使用的又一锐利数学工具,极大地促进科技进步及各个领域工程应用的新发展。 小波分析的概念最早是在1974年由法国地质物理学家J.Morlet提出的,并通过物理直观和信号处理的实际经验建立了反演公示,但当时该理论未能得到数学家的认可。1986年法国数学家YMcyer偶尔构造出一个真正的小波基,并与

小波神经网络及其应用

小波神经网络及其应用 1014202032 陆宇颖 摘要:小波神经网络是将小波理论和神经网络理论结合起来的一种神经网络,它避免了BP 神经网络结构设计的盲目性和局部最优等非线性优化问题,大大简化了训练,具有较强的函数学习能力和推广能力及广阔的应用前景。首先阐明了小波变换和多分辨分析理论,然后介绍小波神经网络数学模型和应用概况。 1.研究背景与意义 人工神经网络是基于生物神经系统研究而建立的模型,它具有大规模并行处理和分布式存储各类图像信息的功能,有很强的容错性、联想和记忆能力,因而被广泛地应用于故障诊断、模式识别、联想记忆、复杂优化、图像处理以及计算机领域。但是,人工神经网络模型建立的物理解释,网络激活函数采用的全局性函数,网络收敛性的保证,网络节点数的经验性确定等问题尚有待进一步探讨和改善。 小波理论自 Morlet 提出以来,由于小波函数具有良好的局部化性质,已经广泛渗透到各个领域。小波变换方法是一种窗口大小固定但其形状可以改变, 时间窗和频率窗都可以改变的时频局部化分析方法, 由于在低频部分具有较高的频率分辨率和较低的时间分辨率, 在高频部分具有较高的时间分辨率和较低的频率分辨率, 所以被誉为数学显微镜。正是这种特性, 使小波变换具有对信号的自适应性。基于多分辨分析的小波变换由于具有时频局部化特性而成为了信号处理的有效工具。实际应用时常采用Mallat快速算法,利用正交小波基将信号分解到不同尺度上。实现过程如同重复使用一组高通和低通滤波器把信号分解到不同的频带上,高通滤波器产生信号的高频细节分量,低通滤波器产生信号的低频近似分量。每分解一次信号的采样频率降低一倍,近似分量还可以通过高通滤波和低通滤波进一步地分解,得到下一层次上的两个分解分量。 而小波神经网络(Wavelet Neural Network, WNN)正是在近年来小波分析研究获得突破的基础上提出的一种人工神经网络。它是基于小波分析理论以及小波变换所构造的一种分层的、多分辨率的新型人工神经网络模型,即用非线性小波基取代了通常的非线性Sigmoid 函数,其信号表述是通过将所选取的小波基进行线性叠加来表现的。 小波神经网络这方面的早期工作大约开始于1992 年,主要研究者是Zhang Q、Harold H S 和焦李成等。其中,焦李成在其代表作《神经网络的应用与实现》中从理论上对小波神经网络进行了较为详细的论述。近年来,人们在小波神经网络的理论和应用方面都开展了不少研究工作。 小波神经网络具有以下特点。首先,小波基元及整个网络结构的确定有可靠的理论根据,可避免BP 神经网络等结构设计上的盲目性;其次,网络权系数线性分布和学习目标函数的凸性,使网络训练过程从根本上避免了局部最优等非线性优化问题;第三,有较强的函数学习能力和推广能力。 2.数学模型与小波工具 2.1 小波变换及多分辨分析 L R(或更广泛的Hilbert 空间)中,选择一个母小波函数(又称为基本在函数空间2() ,使其满足允许条件: 小波函数)()x

人工神经网络及其应用实例_毕业论文

人工神经网络及其应用实例人工神经网络是在现代神经科学研究成果基础上提出的一种抽 象数学模型,它以某种简化、抽象和模拟的方式,反映了大脑功能的 若干基本特征,但并非其逼真的描写。 人工神经网络可概括定义为:由大量简单元件广泛互连而成的复 杂网络系统。所谓简单元件,即人工神经元,是指它可用电子元件、 光学元件等模拟,仅起简单的输入输出变换y = σ (x)的作用。下图是 3 中常用的元件类型: 线性元件:y = 0.3x,可用线性代数法分析,但是功能有限,现在已不太常用。 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -6 -4 -2 0 2 4 6 连续型非线性元件:y = tanh(x),便于解析性计算及器件模拟,是当前研究的主要元件之一。

离散型非线性元件: y = ? 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6 -4 -2 2 4 6 ?1, x ≥ 0 ?-1, x < 0 ,便于理论分析及阈值逻辑器件 实现,也是当前研究的主要元件之一。 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6 -4 -2 2 4 6

每一神经元有许多输入、输出键,各神经元之间以连接键(又称 突触)相连,它决定神经元之间的连接强度(突触强度)和性质(兴 奋或抑制),即决定神经元间相互作用的强弱和正负,共有三种类型: 兴奋型连接、抑制型连接、无连接。这样,N个神经元(一般N很大)构成一个相互影响的复杂网络系统,通过调整网络参数,可使人工神 经网络具有所需要的特定功能,即学习、训练或自组织过程。一个简 单的人工神经网络结构图如下所示: 上图中,左侧为输入层(输入层的神经元个数由输入的维度决定),右侧为输出层(输出层的神经元个数由输出的维度决定),输入层与 输出层之间即为隐层。 输入层节点上的神经元接收外部环境的输入模式,并由它传递给 相连隐层上的各个神经元。隐层是神经元网络的内部处理层,这些神 经元在网络内部构成中间层,不直接与外部输入、输出打交道。人工 神经网络所具有的模式变换能力主要体现在隐层的神经元上。输出层 用于产生神经网络的输出模式。 多层神经网络结构中有代表性的有前向网络(BP网络)模型、

如何用MATLAB的神经网络工具箱实现三层BP网络

如何用MA TLAB的神经网络工具箱实现三层BP网络? % 读入训练数据和测试数据 Input = []; Output = []; str = {'Test','Check'}; Data = textread([str{1},'.txt']); % 读训练数据 Input = Data(:,1:end-1); % 取数据表的前五列(主从成分) Output = Data(:,end); % 取数据表的最后一列(输出值) Data = textread([str{2},'.txt']); % 读测试数据 CheckIn = Data(:,1:end-1); % 取数据表的前五列(主从成分) CheckOut = Data(:,end); % 取数据表的最后一列(输出值) Input = Input'; Output = Output'; CheckIn = CheckIn'; CheckOut = CheckOut'; % 矩阵赚置 [Input,minp,maxp,Output,mint,maxt] = premnmx(Input,Output); % 标准化数据 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% % 神经网络参数设置 %====可以修正处 Para.Goal = 0.0001; % 网络训练目标误差 Para.Epochs = 800; % 网络训练代数 Para.LearnRate = 0.1; % 网络学习速率 %==== Para.Show = 5; % 网络训练显示间隔 Para.InRange = repmat([-1 1],size(Input,1),1); % 网络的输入变量区间 Para.Neurons = [size(Input,1)*2+1 1]; % 网络后两层神经元配置

相关文档