文档库 最新最全的文档下载
当前位置:文档库 › 20-Bi2O3-MoO3 Binary System An Alternative Ultralow Sintering Temperature Microwave Dielectric

20-Bi2O3-MoO3 Binary System An Alternative Ultralow Sintering Temperature Microwave Dielectric

20-Bi2O3-MoO3 Binary System An Alternative Ultralow Sintering Temperature Microwave Dielectric
20-Bi2O3-MoO3 Binary System An Alternative Ultralow Sintering Temperature Microwave Dielectric

Bi 2O 3–MoO 3Binary System:An Alternative Ultralow Sintering

Temperature Microwave Dielectric

Di Zhou,w ,z ,y Hong Wang,z Li-Xia Pang,z Clive A.Randall,y and Xi Yao z

z

Electronic Materials Research Laboratory,Key Laboratory of the Ministry of Education,Xi’an Jiaotong University,

Xi’an 710049,China

y

Center for Dielectric Studies,Materials Research Institute,The Pennsylvania State University,University Park,

Pennsylvania 16802

Preparation,phase composition,microwave dielectric proper-ties,and chemical compatibility with silver and aluminum elec-trodes were investigated on a series of single-phase compounds in the Bi 2O 3–MoO 3binary system.All materials have ultralow sintering temperatures o 8201C.Eight different x Bi 2O 3–(1àx )MoO 3compounds between 0.2r x r 0.875were fabricated and the associated microwave dielectric properties were studied.The b -Bi 2Mo 2O 9single phase has a positive temperature coef?cient of resonant frequency (TCF)about 131ppm/1C,with a per-mittivity e r 538and Q f 512500GHz at 300K and at a fre-quency of 6.3GHz.The a -Bi 2Mo 3O 12and c -Bi 2MoO 6compounds both have negative temperature coef?cient values of TCF B à215and B à114ppm/1C,with permittivities of e r 519and 31,Q f 521800and 16700GHz at 300K mea-sured at resonant frequencies of 7.6and 6.4GHz,respectively.Through sintering the Bi 2O 3–2.2MoO 3at 6201C for 2h,a composite dielectric containing both a and b phase can be ob-tained with a near-zero temperature coef?cient of frequency TCF 5à13ppm/1C and a relative dielectric constant e r 535,and a large Q f B 12000GHz is also observed.Owing to the frequent dif?culty of thermochemical interactions between low sintering temperature materials and the electrode materials dur-ing the co?ring,preliminary investigations are made to deter-mine any major interactions with possible candidate electrode metals,Ag and Al.From the above results,the low sintering temperature,good microwave dielectric properties,chemical compatibility with Al metal electrode,nontoxicity and price ad-vantage of the Bi 2O 3–MoO 3binary system,all indicate the po-tential for a new material system with ultralow temperature co?ring for multilayer devices application.

I.Introduction

W

ITH

the rapid development of mobile communication and satellite communication,microwave electronic devices are required to be developed and fabricated for miniaturization and integration.The low-temperature-co?red ceramic technology (LTCC)becomes an important fabricating technology that can integrate the passive components within a monolithic bulk module with IC chips mounted on its surface.By this technol-ogy,microwave dielectrics are stacked in multilayers and co?red with internal electrodes,such as Ag,Cu,Au,Al,their alloys etc.,in special patterns to ful?ll different electrical functions.1,2

There are a number of excellent microwave materials with sintering temperatures !10001C.These include materials in the following systems:ZnO–Nb 2O 5,3,4Bi(Nb,Ta,Sb)O 4,5–7BaO–TiO 2–Nb 2O 5system,8,9Li 2O–Nb 2O 5–TiO 2,10,11(Zr,Sn)TiO 4,12,13and the most popular (A 1A 2)(B 1B 2)O 3complex per-ovskite system.14–16There has been a number of attempts to use sintering aids to lower the sintering temperatures of these sys-tems,which have had limited success.Typical sintering aids,such as V 2O 5,CuO,Bi 2O 3,and B 2O 3,lower the sintering tem-peratures but also increase the dielectric loss (B 1/Q ).Hence,a more fruitful approach has been made to investigate new com-pounds with intrinsically lower sintering temperatures;some of these important binary systems include Bi 2O 3–TeO 2,TiO 2–TeO 2,CaO–TeO 2,BaO–TeO 2,ZnO–TeO 2binary systems,BaO–TiO 2–TeO 2ternary system,and Bi 2W 2O 9systems.17–24

In a recent investigation,we demonstrated that a single-phase Bi 2Mo 2O 9could be sintered at temperature B 6201C and that this material also possessed excellent dielectric properties at fre-quencies in the microwave range.Bi 2Mo 2O 9have been shown to have a relative dielectric permittivity B 38,Q f B 12500GHz and a temperature coef?cient of resonant frequency (TCF)around 131ppm/1C.25Based on this ?nding and the reported low melt-ing temperatures of many compounds in Bi 2O 3–MoO 3binary system,a more expansive investigation was made to access the microwave properties of these compounds.In this work,we will report on the sintering temperatures and the microwave dielec-tric properties of nearly all the intermediate compounds in Bi 2O 3–MoO 3binary system.There is also a preliminary assess-ment of the thermochemical compatibility between these com-pounds and electrode materials Ag and Al at the co?ring temperatures.

II.Experimental Procedure

Proportionate amounts of reagent-grade starting materials of Bi 2O 3(499%,Shu-Du Powders Co.Ltd.,Chengdu,China)and MoO 3(499%,Fuchen Chemical Reagents,Tianjin,China)were prepared by mixed-oxide approach according to the fol-lowing stoichiometries:Bi 2O 3–4MoO 3,Bi 2Mo 3O 12,Bi 2O 3–2.2MoO 3,Bi 2Mo 2O 9, 1.3Bi 2O 3–MoO 3,3Bi 2O 3–2MoO 3,and 7Bi 2O 3–MoO 3compositions.Powders were mixed and milled for 4h using a planetary mill (Nanjing Machine Factory,Nanj-ing,China)operating at a running speed of 150rpm with the Zirconia balls (2mm in diameter)used as milling media.The mixed oxides were calcined at temperatures between 6001and 7501C for 4h for each of the different compositions (the calci-nation temperatures are a little lower than the densi?cation temperatures of ceramic according to the following results).After being crushed,the powders were remilled for 5h using ZrO 2balls and deionized water solvent.Then dried powders were mixed with PVA binder and granulated,and then these powders were pressed into cylinders (10mm in diameter and 5mm in

X.M.Chen—contributing editor

This work was supported by the National 973-project of China (2009CB623302),National 863-project of China (2006AA03Z0429),and NSFC projects of China (60871044,50835007).

w

Author to whom correspondence should be addressed.e-mail:zhoudi1220@https://www.wendangku.net/doc/813672964.html,

Manuscript No.25819.Received January 30,2009;approved April 28,2009.

J ournal

J.Am.Ceram.Soc.,92[10]2242–2246(2009)

DOI:10.1111/j.1551-2916.2009.03185.x r 2009The American Ceramic Society

2242

height)in a steel die under a uniaxial pressure of200MPa.After debinding the samples were sintered at various temperatures ranging from6001to8501C for2h.To investigate the chemical compatibility of Bi2O3–MoO3compounds with Ag and Al pow-ders,20wt%Ag and20wt%Al were mixed with the different compounds and held at the sintering temperatures for4h.

The crystalline structures were investigated using X-ray diffraction(XRD)with Cu K a radiation(Rigaku D/MAX-2400X-ray diffractometer,Tokyo,Japan).Microstructures of co?red ceramics were observed on the fracture surface with scanning electron microscopy(JSM-6460,JEOL,Tokyo,Ja-pan).The dielectric properties were measured at microwave fre-quency by the TE01d shielded cavity method with a network analyzer(8720ES,Agilent,Palo Alto,CA)and a temperature chamber(Delta9023,Delta Design,Poway,CA).The TCF,t f, was calculated using the following formula:

t f?

f85àf25

f25?e85à25T

(1)

where f85and f25were the TE01d resonant frequencies at851and 251C,respectively.

III.Results and Discussion

The phase diagram and intermediate compounds of the Bi2O3–MoO3system have been studied by many researchers over the past four decades and it is now fairly well understood for Bi/ Mo r2.6.26–36A redrawn phase diagram and the densi?cation temperatures found in this study are shown in Fig.1(a),at this point(solid solution regions are ignored).Belyaev and Smoly-naninov34and Bleijenberg et al.35reported two congruently melt-ing compounds,Bi2O3–3MoO3(a)and Bi2O3–MoO3(g),in the region0–50mol%Bi2O3.Erman et al.27,28,36found additional compounds,Bi2O3–2MoO3(b)and(e)phases having solid sol-ubility with a composition of x Bi2O3–MoO3(1.3o x o1.4). Phases7Bi2O3–MoO3(m)and3Bi2O3–MoO3are low-and high-temperature forms of3Bi2O3–2MoO3and were also iden-ti?ed by XRD as reported by Egashira et al.27in Bi2O3-rich re-gion.The MoO3-rich region of the Bi2O3–MoO3binary system showed very low reaction temperatures and melting tempera-

tures below7001C.In Bi2O3-rich region the melting tempera-tures are always below10001C as shown in Fig.1(a).

The X-ray diffraction patterns for different compositions of Bi2O3–MoO3compounds sintered at their respective densi?cation temperatures are shown in Fig.2.Pure-phase dense bulk ceramics for a-Bi2Mo3O12,b-Bi2Mo2O9,g-Bi2MoO6,e-Bi26Mo10O69,and m-7Bi2O3–MoO3were all obtained,with relative densities above 96%with the exception of a-Bi2Mo3O12having a value at about 93%.For the Bi2O3–4MoO3sample,MoO3and a-Bi2Mo3O12 phases were found.The Bi2O3–2.2MoO3composition consisted of both a and b phases.All the compounds have low sintering temperatures below8501C as shown in Fig.1(a).The typical crystal structures and coordination numbers of both Mo and Bi are shown in Fig.1(b).The a-Bi2Mo3O12,b-Bi2Mo2O9, g-Bi2MoO6,and e-Bi26Mo10O69phases have low crystal sym-metries with a monoclinic structure.The space groups of a-Bi2Mo3O12and b-Bi2Mo2O9are both P21/n(14).The space groups of g-Bi2MoO6and e-Bi26Mo10O69are P21/c(14)and P2/a(13),respectively.The m-7Bi2O3–MoO3compound has a tetragonal symmetry within this phase(I4/m,number87).The coordination environment and bonding of the molybdenum cat-ion have been investigated previously in various molybdate phases.The molybdenum coordination is mostly found to be ?vefold37for the a-Bi2Mo3O12,where there are also distortions in the form of four short Mo–O bonds and intermediate bond length for each of the three Mo sites.In the Buttrey et al.’s33 study,there is evidence of a tetrahedral Mo coordination in both the b-Bi2Mo2O9and g-Bi2MoO6and the tetrahedra are also somewhat distorted.The molybdenum coordination of e-Bi26 Mo10O69is basically tetrahedral,but more distorted than that of b and g phases.The presence of four strongly bonded oxygens (with Mo–O distances below0.20nm)for each molybdenum site is a common feature to all bismuth molybdate phases with the exception of m-7Bi2O3–MoO3.All the bismuth molybdates

in-Fig.1.Phase diagram(data from Kohlmuller and Badaud,26Egashira et al.,27Chen and Smith,28and Bleijenberg et al.35)and densi?cation temperatures(solid dot with dash line)(a),typical crystal structures and coordination numbers in Bi2O3–MoO3system(b).

2θ(°)

Fig.2.X-ray diffraction patterns of Bi2O3–MoO3compounds sintered at different temperatures(a-Bi2Mo3O12,b-Bi2Mo2O9,g-Bi2MoO6, e-Bi26Mo10O69solid solution,and m-7Bi2O3–MoO3).

October2009Microwave Dielectric Properties of Bi2O3–MoO3System2243

troduced in this work show a tendency for the bismuth sites to group into channels,which extend through the crystal structure.The molybdenum polyhedral forms a discontinuous framework around these channels.The coordination environment and bonding of the molybdenum cation might have the dominant role on the melting temperatures and the densi?cation temper-atures of Bi 2O 3–MoO 3compounds.The densi?cation tempera-tures are approximately 80%–90%of the melting temperatures of the compounds.As shown in Fig.1(a),the sintering temper-atures linearly increased from 6001to 7501C as x value increased from 0.2to 0.5.When x value increased to 0.875,the sintering temperature of x Bi 2O 3–(1àx )MoO 3ceramic was maintained at around 8201C.In general,MoO 3-rich region possesses lower sintering temperatures than that of Bi 2O 3-rich region.More Bi atoms in structure will accelerate the discontinuity of molybde-num polyhedra.This could explain the increase of melting tem-perature and densi?cation temperature when x value increases.The phase compositions,sintering temperatures,and micro-wave dielectric properties of eight Bi 2O 3–MoO 3compositions are summarized in Table I.Among all the compounds studied,the b -Bi 2Mo 2O 9ceramic has the largest dielectric constant of 38and a positive TCF value at about 131ppm/1C.Near the Bi 2Mo 2O 9composition,there are also two single phases,a -Bi 2Mo 3O 12and g -Bi 2MoO 6,and both have large negative TCF values of à215.0and à113.8ppm/1C,respectively.These three phases offered large design ?exibility to obtain composite ce-ramics with adjustable TCF values by relative mixing of the phases,such as in the Bi 2O 3–2.2MoO 3composition with both a and b phases providing a near-zero TCF about à13.4ppm/1C.The high-frequency room-temperature permittivity is plotted as a function of Bi 2O 3ratio across the Bi 2O 3–MoO 3system.Also the TCFs are plotted as a function of permittivity and are shown in Figs.3(a)and (b).The b -Bi 2Mo 2O 9and Bi 2O 3–4MoO 3com-positions have the biggest and smallest permittivity,respectively.Dielectric constant in the microwave region is usually domi-nated by the ionic and electronic polarizability contributions of the oxide components.Attempts were made to calculate the re-spective permittivities of the Bi 2O 3–MoO 3compounds using the oxide additivity rule,38but in all cases there were poor correla-tions and consistent underestimates in the magnitude of the permittivity,which suggest that small dipolar or order–disorder contributions may also exist in these compounds.TCFs are de-termined by both the linear thermal expansion coef?cient a l and the temperature coef?cient of permittivity t e .39Because a l of microwave dielectrics is typically small (in the range of 0B 20ppm/1C),TCF mainly depends on t e .Although TCF values of all the microwave dielectric ceramics collected by Sebastian et al .2seemed to scatter randomly,t e values were often found to be sensitive to the value of permittivity in many high-permittivity systems with similar composition or similar crystal struc-ture.40,41For the Bi 2O 3–MoO 3system,TCF values were found to be approximately linear to the permittivity as shown in Fig.3(b).Bond valence considerations provided a useful way of examining bonding between every atom in particular struc-tures.42,43The bond valence of each atom can be obtained from the actual bond length and parameters provided by Brown and Altermatt.44Then the apparent valences of atoms at each site can be obtained by simply summing over all neighbors’bond valences.Results for every cation site the valence sums are plot-ted in Fig.4(a)as a function of Bi 2O 3ratio in Bi 2O 3–MoO 3.It can be seen that for most phases both Bi and Mo have large valence deviations except for the b -Bi 2Mo 2O 9and m -7Bi 2O 3–MoO 3phases.Valence deviation suggests the compressing or expanding of ions,which also means an unstable status of a cation at its position.The temperature coef?cients as a function of the relative valence deviation of both Bi and Mo are also shown in Fig.4(b).It is clear that larger valence deviation causes a larger TCF value.It can be inferred that ions with larger va-lences deviation will be more sensitive to temperature change than that with more normal valences.An exception was found for Mo valence deviation in a -Bi 2Mo 3O 12phase.This may be caused by the different environment of Mo atom in

Table I.Microwave Dielectric Properties of Bi 2O 3–MoO 3Compounds:a -Bi 2Mo 3O 12,b -Bi 2Mo 2O 9,g -Bi 2MoO 6,e -Bi 26Mo 10O 69,

and m -7Bi 2O 3–MoO 3

Compounds

Phase

ST (1C)

Frequency (GHz)

Permittivity

Q f (GHz)

TCF (ppm/1C)

Bi 2O 3–4MoO 3a 1MoO 3

600758.3711771.093007400à16077.0Bi 2Mo 3O 12

a 6107107.5771971.2218007800à21579.0Bi 2O 3–2.2MoO 3a 1

b 620710 5.7393571.5120007500à1372.0Bi 2Mo 2O 9b 620720 6.3023871.512500750013173.0Bi 2MoO 6

g 750720 6.4343171.2167007500à11475.01.3Bi 2O 3–MoO 3e 8207308.0572671.240007400à13975.03Bi 2O 3–2MoO 3e 820730 6.1933171.210007300à4174.07Bi 2O 3–MoO 3m 820730 6.2363071.21900730012072.5

ST,sintering temperature;TCF,temperature coef?cient of resonant frequency.

1520253035

40P e r m i t t i v i t y

Bi 2O 3 ratio in Bi 2O 3-MoO 3

T C F (p p m /°C )

Permittivity

Fig.3.Permittivity as a function of Bi 2O 3ratio in Bi 2O 3–MoO 3system (a)and temperature coef?cient of resonant frequency as a function of permittivity (b).

2244Journal of the American Ceramic Society—Zhou et al.Vol.92,No.10

a -Bi 2Mo 3O 12phase from other phases,i.e.a pentahedron rather than a tetrahedron.In fact,Bi 31has nearly twice bigger po-larizability than that of Mo 61from the data reported by Shan-non 45and Choi et al .46Hence,the Bi valence deviation should dominate the change trend of TCF values.

Finally,a brief and preliminary investigation of the chemical compatibility of Bi 2O 3–MoO 3compounds with common metal electrode materials is made.This was assessed by mixing 20wt%Ag and 20wt%Al powders with b -Bi 2Mo 2O 9,a -Bi 2Mo 3O 12,and Bi 2O 3–4MoO 3samples,which were co?red at 6001B 6301C for 4h.The XRD patterns of Bi 2O 3–MoO 3compounds co?red with 20wt%Ag are shown in Fig.5(a).In the MoO 3-rich re-gion,Ag seemed more easy to react with MoO 3and Bi 2O 3,and

then formed new product phases of AgBi(MoO 4)2and other unidenti?ed phases containing Ag and Mo.Figure 5(b)shows the XRD results of co?red samples with 20wt%Al.For the b -Bi 2Mo 2O 9and a -Bi 2Mo 3O 12samples,only pure b -Bi 2Mo 2O 9,a -Bi 2Mo 3O 12,and aluminum phases were identi?ed inferring that there were no chemical interactions.For the Bi 2O 3–4MoO 3samples,an Al 2(MoO 4)3phase was formed with excess MoO 3.Although Mo is an active element that easily reacts with Ag and Al,the formation of bismuth-based compounds effectively sup-press chemical reactions at these low temperatures.In summary,compounds in the Bi 2O 3–MoO 3binary system are attractive candidate materials for an Ultra LTCC technology given the intrinsic low ?ring temperatures,excellent microwave

dielectric

Fig.4.Valence of each cation as a function of Bi 2O 3ratio in Bi 2O 3–MoO 3system (a)(hollow circle J for each atom and solid dot for mean values)and temperature coef?cients of resonant frequencies as a function of the valence deviation of cations (b).

102030

40

50

2θ(°)

2θ(°)

60

(c)(d)

Fig.5.X-ray diffraction patterns of Bi 2O 3–MoO 3compounds co?red with 20wt%Ag (a)and 20wt%Al (b)at around 6301C (J ,AgBi(MoO 4)2;?Al 2(MoO 4)3(PDF:23-0764)),BEI photos of Bi 2Mo 2O 9co?red with Al (c)and Bi 2Mo 3O 12

co?red with Al (d).

October 2009Microwave Dielectric Properties of Bi 2O 3–MoO 3System 2245

properties,and relatively high chemical stability with the elec-trode materials Al,at the low co?ring temperatures.

IV.Conclusions

A series of single phases and complex phases in Bi 2O 3–MoO 3binary system that exhibited very low sintering temperature and good microwave dielectric properties was introduced.Among them the b -Bi 2Mo 2O 9single phase has a dielectric constant of about 38,a Q f of about 12500GHz,and a positive TCF of about 131ppm/1C.Two other single phases near b -Bi 2Mo 2O 9in the Bi 2O 3–MoO 3binary diagram were a -Bi 2Mo 3O 12and g -Bi 2MoO 6and they both have negative TCF values.This offered the possibility to design some complex phases with near-zero TCF values and Bi 2O 3–2.2MoO 3designed in this work made an example.To apply this system in Ultra LTCC technology,we also studied the chemical compatibility of Bi 2O 3–MoO 3system with silver and aluminum.It is found that Ag reacts with samples easily and forms a AgBi(MoO 4)2phase,whereas the b -Bi 2Mo 2O 9and a -Bi 2Mo 3O 12ceramics did not appear to react with aluminum at 6301C.

References

1

R.R.Tummala,‘‘Ceramic and Glass–Ceramic Packaging in the 1990’s,’’J.Am.Ceram.Soc.,74[5]895–908(1991).2

M.T.Sebastian and H.Jantunen,‘‘Low Loss Dielectric Materials for LTCC Applications:A Review,’’Int.Mater.Rev.,53[2]57–90(2008).3

O.A.Shlyakhtin and Y.J.Oh,‘‘Low Temperature Sintering of Zn 3Nb 2O 8Ceramics from Fine Powders,’’J.Am.Ceram.Soc.,89[11]3366–72(2006).4

C.L.Huang,R.J.Lin,and J.H.Wang,‘‘Effect of B 2O 3Additives on Sintering and Microwave Dielectric Behaviors of CuO-Doped ZnNb 2O 6Ceramics,’’Jpn.J.Appl.Phys.,Part 1,41,758–62(2002).5

N.Wang,M.Y.Zhao,and Z.W.Yin,‘‘Effects of Ta 2O 5on Microwave Di-electric Properties of BiNbO 4Ceramics,’’Mater.Sci.Eng.B ,99,238–42(2003).6

C.L.Huang and M.H.Weng,‘‘The Microwave Dielectric Properties and the Microstructures of Bi(Nb,Ta)O 4Ceramics,’’Jpn.J.Appl.Phys.,Part 1,38[10]5949–52(1999).7

D.Zhou,H.Wang,X.Yao,and L.X.Pang,‘‘Dielectric Behavior and Co-Firing with Silver of Monoclinic BiSbO 4Ceramic,’’J.Am.Ceram.Soc.,91[4]1380–3(2008).8

I.S.Cho,J.R.Kim,D.W.Kim,D.W.Kim,and K.S.Hong,‘‘Microwave Dielectric Properties and Far-Infrared Spectroscopic Analysis of Ba 51n Ti n Nb 4O 1513n (0.3o n o 1.2)Ceramics,’’J.Eur.Ceram.Soc.,27,3081–6(2007).9

R.Ratheesh,H.Sreemoolanadhan,S.Suma,M.T.Sebastian,K.A.Jose,and P.Mohanan,‘‘New High Permittivity and Low Loss Ceramics in the BaO–TiO 2–Nb 2O 5Composition,’’J.Mater.Sci.Mater.Electron.,9,291–4(1998).10

Q.Zeng,W.Li,J.L.Shi,J.K.Guo,M.W.Zuo,and W.J.Wu,‘‘A New Microwave Dielectric Ceramic for LTCC Applications,’’J.Am.Ceram.Soc.,89[5]1733–5(2006).11

A.Y.Borisevich and P.K.Davies,‘‘Crystalline Structure and Dielectric Properties of Li 11x ày Nb 1àx à3y Ti x 14y O 3M-Phase Solid Solutions,’’J.Am.Ceram.Soc.,85[3]573–8(2002).12

S.X.Zhang,J.B.Li,J.Cao,H.Z.Zhai,and B.Zhang,‘‘Effect of Compo-sition on Sinterability,Microstructure and Microwave Dielectric Properties of Zr x Ti 1àx O 4(x 50.40–0.60)Ceramics,’’J.Mater.Sci.Lett.,20,1409–11(2001).13

C.L.Huang,C.S.Hsu,and R.J.Lin,‘‘Improved High-Q Microwave Di-electric Resonator Using ZnO and WO 3-Doped Zr 0.8Sn 0.2TiO 4Ceramics,’’Mater.Res.Bull.,36,1985–93(2001).14

H.J.Kim,S.Kucheiko,S.J.Yoon,and H.J.Jung,‘‘Microwave Dielectrics in the (La 1/2Na 1/2)TiO 3–Ca(Fe 1/2Nb 1/2)O 3System,’’J.Am.Ceram.Soc.,80[5]1316–8(1997).15

X.M.Chen,D.Liu,R.Z.Hou,X.Hu,and X.Q.Liu,‘‘Microstructures and Microwave Dielectric Characteristics of Ca(Zn 1/3Nb 2/3)O 3Complex Perovskite Ceramics,’’J.Am.Ceram.Soc.,87[12]2208–12(2004).16

M.S.Fu,X.Q.Liu,X.M.Chen,and Y.W.Zeng,‘‘Microstructure and Microwave Dielectric Properties of (1àx )Ca(Mg 1/3Ta 2/3)O 3/x CaTiO 3Ceramics,’’J.Am.Ceram.Soc.,91[4]1163–8(2008).

17

M.Udovic,M.Valant,and D.Suvorov,‘‘Phase Formation and Dielectric Characterization of the Bi 2O 3–TeO 2System Prepared in an Oxygen Atmosphere,’’J.Am.Ceram.Soc.,87,591–7(2004).18

M.Udovic,M.Valant,and D.Suvorov,‘‘Dielectric Characterisation of Ce-ramics from the TiO 2–TeO 2System,’’J.Eur.Ceram.Soc.,21,1735–8(2001).19

M.Valant and D.Suvorov,‘‘Glass-Free Low-Temperature Co-Fired Ceram-ics:Calcium Germanates,Silicates and Tellurates,’’J.Eur.Ceram.Soc.,24,1715–9(2004).20

D.K.Kwon,https://www.wendangku.net/doc/813672964.html,nagan,and T.R.Shrout,‘‘Microwave Dielectric Prop-erties of BaO–TeO 2Binary Compounds,’’Mater.Lett.,61,1827–31(2007).21

D.K.Kwon,https://www.wendangku.net/doc/813672964.html,nagan,and T.R.Shrout,‘‘Synthesis of BaTiTe 3O 9Ceramics for LTCC Application and Its Dielectric Properties,’’J.Ceram.Soc.Jpn.,113[3]216–9(2005).22

D.K.Kwon,https://www.wendangku.net/doc/813672964.html,nagan,and T.R.Shrout,‘‘Microwave Dielectric Prop-erties and Low-Temperature Co?ring of BaTe 4O 9with Aluminum Metal Elec-trode,’’J.Am.Ceram.Soc.,88,3419–22(2005).23

A.Feteira and D.C.Sinclair,‘‘Microwave Dielectric Properties of Low Firing Temperature Bi 2W 2O 9Ceramics,’’J.Am.Ceram.Soc.,91[4]1338–41(2008).24

G.Subodh and M.T.Sebastian,‘‘Glass-Free Zn 2Te 3O 8Microwave Ceramic for LTCC,’’J.Am.Ceram.Soc.,90[7]2266–8(2007).25

D.Zhou,H.Wang,X.Yao,and L.-X.Pang,‘‘Microwave Dielectric Prop-erties of Low Temperature Firing Bi 2Mo 2O 9Ceramic,’’J.Am.Ceram.Soc.,91[10]3419–22(2008).26

R.Kohlmuller and J.P.Badaud,‘‘Studies on System Bi 2O 3–MoO 3,’’Bull.Soc.Chim.Fr.,10,3434–9(1969).27

M.Egashira,K.Matsuo,S.Kagawa,and T.Seiyama,‘‘Phase Diagram of the System Bi 2O 3–MoO 3,’’J.Catal.,58,409–18(1979).28

T.Chen and G.S.Smith,‘‘The Compounds and the Phase Diagram of MoO 3-Rich Bi 2O 3–MoO 3System,’’J.Solid State Chem.,13,288–97(1975).29

D.J.Buttrey,T.Vogt,U.Wildgruber,and W.R.Robinson,‘‘Structural Re-?nement of the High Temperature Form of Bi 2MoO 6,’’J.Solid State Chem.,111,118–27(1994).30

D.J.Buttrey,T.Vogt,and B.D.White,‘‘High-Temperature Incommensu-rate-to-Commensurate Phase Transition in the Bi 2MoO 6Catalyst,’’J.Solid State Chem.,155,206–15(2000).31

R.N.Vannier,G.Mairesse,F.Abraham,and G.Nowogrocki,‘‘Bi 26Mo 10O d Solid Solution Type in the Bi 2O 3–MoO 3–V 2O 5Ternary Diagram,’’J.Solid State Chem.,122,394–406(1996).32

D.J.Buttrey,T.Vogt,G.Yap,and A.L.Rheingold,‘‘The Structure of Bi 26Mo 10O 69,’’Mater.Res.Bull.,32,947–62(1997).33

D.J.Buttrey,‘‘Compositional and Structural Trends Among the Bismuth Molybdates,’’Top.Catal.,15,235–9(2001).34

I.N.Belyaev and N.P.Smolynaninov,‘‘Ternary System Bi 2O 3–MoO 3–PbO,’’Zhur.Neorgan.Khimii ,7,1126–31(1962).35

A.C.A.M.Bleijenberg,

B.

C.Lippens,and G.C.A.Shuit,‘‘Catalytic Oxidation of 1-Butene over Bismuth Molybdate Catalysts:I.The System Bi 2O 3–MoO 3,’’J.Catal.,4[5]581–5(1965).36

L.Y.Erman,E.L.Calpe

rin,and B.P.Soboler,‘‘Phase Diagram of the Bis-muth Sesquioxide–Molybdenum Trioxide System,’’Zhur.Neorgan.Khimii ,16[2]490–5(1971).37

A. F.Van Den Elzen and G. D.Rieck,‘‘The Crystal Structure of Bi 2(MoO 4)3,’’Acta Crystallogr.Sec.B:Struct.Crystallogr.Cryst.Chem.,29,2433–6(1973).38

A.Heydweiller,‘‘Dichte,Dielektrizita tskonstante und Refraktion fester Salze,’’Z.Phys.,3,308–17(1920).39

A.J.Bosman and E.E.Havinga,‘‘Temperature Dependence of Dielectric Constants of Cubic Ionic Compounds,’’Phys.Rev.,129,1593–600(1963).40

P.J.Harrop,‘‘Temperature Coef?cients of Capacitance of Solids,’’J.Mater.Sci.,4,370–4(1969).41

D.Zhou,H.Wang,X.Yao,and L.-X.Pang,‘‘Sintering Behavior and Mi-crowave Dielectric Properties of Bi 3(Nb 1àx Ta x )O 7Solid Solutions,’’Mater.Chem.Phys.,110,212–5(2008).42

M.O’Keefe and N.E.Brese,‘‘Atom Sizes and Bond Lengths in Molecules and Crystals,’’J.Am.Chem.Soc.,113,3226–9(1991).43

N.E.Brese and M.O’Keefe,‘‘Bond-Valence Parameters for Solids,’’Acta Cryst.,B47,192–7(1991).44

I.D.Brown and D.Altermatt,‘‘Bond-Valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal Structure Database,’’Acta Crystal-logr.,B41,244–7(1985).45

R.D.Shannon,‘‘Dielectric Polarizabilities of Ions in Oxides and Fluorides,’’J.Appl.Phys.,73,348–66(1993).46

G.K.Choi,J.R.Kim,S.H.Yoon,and K.S.Hong,‘‘Microwave Dielectric Properties of Scheelite (A 5Ca,Sr,Ba)and Wolframite (A 5Mg,Zn,Mn)AMoO 4Compounds,’’J.Eur.Ceram.Soc.,27,3063–7(2007).&

2246Journal of the American Ceramic Society—Zhou et al.

Vol.92,No.10

软件工程-银行储蓄管理系统源代码

package src.day01; public class ACC { //父类,以下是共有属性和方法 //卡号 protected static long id; // 名字 protected static String name; // 身份证 protected static String personId; //电子邮件 protected static String email; // 密码 protected static long password; //余额 protected static double balance; public ACC(){ } public ACC(long id,String name,String personId,String email,long password,double balance ){ this.id = id; https://www.wendangku.net/doc/813672964.html, = name; this.personId = personId; this.email = email; this.password = password; this.balance = balance; } // 存款方法 public static void deposit(double money){ balance += money; System.out.println("存款成功,你存入的金额为:" + money); } public long getId() { return id; } public void setId(long id) { this.id = id; } public String getName() { return name; } public void setName(String name) { https://www.wendangku.net/doc/813672964.html, = name; } public String getPersonId() {

全能管家多银行资金管理系统(IBS)宣传手册

全能管家多银行资金管理系统(IBS) 宣传手册 1

2

全能管家多银行资金管理系统( IBS系统) 系统背景 ”资金管理”——顾名思义是指企业和”钱”相关的所有活动的 一种统称。从企业资金管理发展的角度分析, 企业资金管理最初始的 目标就是加快收付款的速度、效率, 加快货币资金的流转。随着企业 的发展, 企业对资金的需求量大大增加, 这时资金管理所表现出来的主 要需求转换为对外部融资的需求, 这时合理的银企关系、财务资金成 本地控制、资产负债比率控制等演化为企业资金管理最重要的需求。 伴随着企业快速成长以及和资本市场的打通, 企业积累了大量的 财富, 同时货币市场的变幻莫测等, 将企业资金管理或者说财务管理人 员从筹集资金向如何将这些财富进行合法、合理的运用以及货币的保 值增值服务需求上转变。 为应对企业资金管理需求的变化和提升, 基于以客户需求为产品 创新源泉和动力的服务理念, 为更好地满足企业资金管理需求, 北京银 行汇聚财资管理智慧, 联合专业IT合作伙伴, 倾力奉献全能管家多银 行资金管理系统( IBS系统) , 致力于为北京银行企业客户伙伴提供一 站式资金、金融管理服务。 系统概述 全能管家多银行资金管理系统( IBS系统) 经过多银行数据服务程 序实现企业和各银行机构信息直通式处理, 实现企业多银行账户资金 的集中管控与统一划拨, 以全面、专业、便捷、灵活的系统服务, 满 3

足企业掌控多行账户信息、明晰资金流时效性、有效量化资金流、 加强风险管控等多项资金管理需求。 IBS系统主要功能包括: 统一数据服务平台、现金流管理、资金 计划管理、资金结算管理、内部银行管理、金融交易管理、投资理 财平台、综合查询系统等多个模块组成。 系统特点: ●为企业提供一站式金融服务: 北京银行IBS系统是一套整合了现代商业银行结算、信息、信 贷、理财服务以及企业资金管理各种需求的面向企业应用的专业资金 管理系统平台。 ●以企业流动性管理为核心: 北京银行IBS系统经过对企业多银行账户的统一管理实现企业对 账户资金实时监控管理的需求, 还进一步经过资金计划预算对企业未 来现金流和资金盈缺情况提供流量分析和平衡试算等功能, 方便企业 资金决策和头寸平衡。 ●先进的技术架构和部署模式: 北京银行IBS系统采用最先进的B/S系统架构, 真正做到单点部署, 多点使用, 同时客户端做到零维护, 方便企业的使用和维护。 应用价值 ●企业资金信息实时掌控 随着企业不断发展壮大, 资金需求、流量都不断加大, 如何能够透 4

银行储蓄管理系统

燕山大学三级项目设计说明书 题目:银行储蓄管理系统 学院(系):信息学院 年级专业:教育技术学15—1 学号: 学生姓名:付叶禹 郑凯峰 李文悦 王宇晨 李晓晗 指导教师:梁顺攀 教师职称:副教授 燕山大学三级项目设计(论文)任务书 院(系):信息学院教学单位:

说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 年月日燕山大三级项目设计评审意见表

摘要 论文阐述的是在SQL server 2008开发环境下对银行储蓄管理系统的设计。希望通过该系统的应用,能促使银行储蓄管理工作的规范化、标准化和自动化,提高管理水平和管理效率,为管理工作提供更完善的信息服务和一个成功的信息管理系统。数据库是一个非常重要的条件和关键技术,管理系统所涉及的数据库设计分为:数据库需求分析、概念设计、逻辑设计过程。 本论文叙述了数据库设计的全过程。 主要分为: 1. 系统需求分析与功能设计阶段,包括功能需求、性能需求、数据需求、系统功能框图、系统总体数据流图及分模块数据流图、数据字典。 2. 总体设计阶段,包括系统总体功能模块图、功能模块描述、输入输出及统计查询等功能模块。 3. 概念设计阶段,包括系统各个模块的ER图及系统的总ER图。 4.逻辑结构设计阶段,包括系统各个模块的ER图所转化的关系模式。 关键词:数据库设计;管理系统; SQL server 2008;

目录 摘要...................................................... 1 绪论................................... 错误!未定义书签。1.1项目背景............................. 错误!未定义书签。1.1编写目的............................. 错误!未定义书签。1.1软件定义............................. 错误!未定义书签。 1.1开发环境............................. 错误!未定义书签。 2 系统需求分析 (2) 2.1信息与功能需求 (2) 2.2业务处理需求 (2) 2.3数据流图 (3) (3) (4) 2.4安全性与完整性要求 (8) 2.5数据字典 (8) 2.5.1储户基本信息表 (8)

{业务管理}IBM新一代银行核心业务系统

(业务管理)IBM新一代银行核心业务系统

新壹代银行核心业务系统 何京汉(IBM金融事业部银行资深方案经理) 背景 本文介绍新壹代核心银行所处的金融环境;结合目前国内银行所处的金融环境和银行客户的需求的新趋势,按照模型化银行(Modelingbank)的思想,介绍国内银行于设计新壹代银行核心系统是要考虑的主要问题。突出新壹代核心银行要解决的模型化银行的问题,国内系统和新壹代系统于观念上的差距,银行转型和信息规划设计的关系。国内从业人员普遍关心的金融产品概念(模型要点),核心银行的企业级客户文件(EnterpriseCIF)的原理。 国内外核心银行系统发展所处的环境 国外银行更换核心系统的努力 国外核心应用系统大多是70年代建成的,经过多年的运行后现状是:维护成本高,系统架构封闭,不易于加入新的功能且容易引起宕机。80年代至90年代国外银行,曾经试图更换这些系统,但大多归于失败,如花旗银行10亿美金的工程最终没有取得成功。 虽然,更换新的核心银行系统,难度极大,但银行仍于思考,为什么仍要将大量新的应用放于不灵活的且过时的系统上面?所以更换新的核心系统的努力仍于继续,只是吸取了80年代90年代的教训:银行必须采取新的策略去更新核心应用系统,以保证成功! 这些策略和市场趋势概括起来有: 用核心银行提供商的解决方案替换自我开发的核心银行系统。100强的银行70%的银行将去寻找"核心银行提供商的解决方案(Vendorbuiltsolutions)",即购买软件包。 主机方案的规模性得到验证。主机的核心银行方案,将继续流行。是因为它的规模性得到证实。尽管主机的技术没有新技术灵活,它的维护成本需要进壹步下降。 浏览器方式的解决方案(browser-basedsolutions)。市场上将会有更多的以浏览器方式出

银行储蓄管理系统需求分析设计

〖银行储蓄管理系统〗需求分析 2016年5月

目录 1 引言 (3) 1.1 编写目的 (3) 1.2 项目背景 (3) 1.3 定义 (3) 1.4 参考资料 (3) 2 任务概述 (3) 2.1 目标 (3) 2.2 运行环境 (3) 2.3 条件与限制 (3) 3 数据描述 (3) 3.1 静态数据 (3) 3.2 动态数据 (3) 3.3数据库描述 (3) 3.4数据词典 (5) 3.5数据采集 (6) 4 功能需求 (7) 4.1 功能划分 (7) 4.2 功能描述 (7) 5 性能要求 (8) 5.1 数据精确度 (8) 5.2 时间特性 (8) 5.3适应性 (8) 6 运行需求 (8) 6.1 用户界面 (8) 6.2 硬件接口 (8) 6.3 软件接口 (8) 6.4 故障处理 (8) 7 其他需求 (9)

1引言 1.1 编写目的 根据需求调研分析报告,定义系统功能和系统数据流图,通过编写需求分析规格说明书,让开发人员能够根据需求规格说明书来开发项目。 1.2 项目背景 软件名称:银行储蓄系统 委托单位:银行 开发单位:科技大学 主管:荀亚玲 1.3 定义 银行储蓄应用软件:基本元素为构成银行储蓄行为所必需的各种部分。 媒体素材:是指传播教学信息的基本才来单元,可分为五大类:文本类素材、图形(图像)类素材、音频类素材、动画类素材、视频类素材。 需求:用户解决问题或达到目标所需的条件或功能;系统或系统部件要满足合同、标准、规范或其它正式规定文档所需具有的条件或权能。 需求分析:包括提炼,分析和仔细审查已收集到的需求,以确保所有风险承担者都明其含义并找出其中的错误,遗憾或其他部族的地方。 1.4 参考资料 《软件工程导论——第5版》张海藩编著清华大学出版社 2任务概述 2.1 目标 完善目前银行储蓄系统,之智能跟上时代发展,同时通过实践来提高自己动手能力。 2.2 运行环境 操作系统:Windows XP/Windows Vista,支持环境:IIS 5.0 数据库:Microsoft SQL. Server 2000,编程环境:Microsoft visual basic 6.0中文版。 2.3 条件与限制硬件配置要求 硬什外部设备需奔腾133以上的pc机,内存需16兆以上 软件要求操作人员具有初步的相关知识 由于本系统为即时软件,刘数据蚓叫步要求较高,建议配置网络时使川叫靠性较高佝相关网络硬件设

资金管理系统详细方案

XX集团资金管理中心设立方案 (试行) 索引 一、设立主体 二、设立目标 三、管理模式及主要职能 四、机构及人员设置 五、参与集团资金统管的公司及纳入监管的银行账户 六、资金流转方案 七、网银权限设置 八、内部账户及账号设置 九、内部存贷款利率设置 十、会计核算科目设置 十一、业务操作内容、流程及会计核算办法 十二、现有银行贷款事项及内部往来的后续处理 十三、注意事项 十四、附件

根据XX集团管理现状及未来发展要求,设立集团资金管理中心。设立方案如下: 一、设立主体 资金管理中心设立在XX集团有限公司。 资金管理中心作为XX集团公司的一个职能部门(利润中心),其所有业务受到XX集团董事长、总经理及财务总监的安排与指导。其所有经济业务设立独立账套核算,同时其涉及到XX集团公司、各下属企业的业务也纳入XX集团有限公司账套、下属企业账套进行核算。并且各账套之间有对应关系。 办公地点设立在XX集团办公室。 二、设立目标 1、实施高度集中控制的资金管理体系,加强集团资金管理与控制 2、资金实现事前计划、实时控制与分析,加快资金周转,提高资金使用效益 3、降低集团财务风险 三、管理模式及主要职能 将银行机制引入企业内部,建立集财务管理、金融管理和企业管理三位一体的现代企业管理模式。身兼银行和财会两种职能,承担企业外部资金结算、资金内部调剂、对外融资等业务。资金管理中心实时掌握集团资金的流量、流向、存量,随时监控子公司的资金使用,同时可以灵活调配“沉淀”存量资金,提高资金利用效率。 1、账户分散、资金集中的管理模式 集团的资金管理采取账户分散、资金集中管理的模式。即各下属企业在外部商业银行的现有账户不变,保持现有的资金业务处理及会计核算流程不变;资金管理中心将各下属企业的外部银行账户加以记录,资金管理中心开立内部账户对应各下属企业的外部银行账户;同时将下属企业的闲散资金每日归集到资金管理中心,作为下属企业的“内部存款”,资金管理中心会计、出纳按照资金计划进行支付单据的审批、拨付;各下属企业依据集团的审批处理资金业

银行核心系统简介

核心业务系统 描述:银行核心业务系统主要功能模块包括:公用信息、凭证管理、现金出纳、柜员支持(机构管理和柜员管理)、总账会计、内部账管理、客户信息、活期存款、定期存款、外币兑换、同城票据交换、客户信贷额度管理、定期贷款、分期付款贷款、往来业务、资金清算、金融同业、结算、人行现代支付、外汇买卖业务、国债买卖、保管箱、租赁、股金管理、固定资产管理等。 一、核心系统背景 VisionBanking Suite Core是集团在总结二十余年银行应用系统集成经验的基础上,认真分析中国银行业未来面临的竞争形势,吸纳国外银行系统中先进的设计理念,推出的与国际完全接轨、功能完善、易学易用、扩充灵活、安全可靠的新一代银行核心业务系统。该系统覆盖了银行整个基础业务范围,有助于银行提供给客户更方便、快捷和贴身的“一站式”服务。 在VisionBanking Suite Core银行核心业务系统的开发中,集团将先进的系统设计思想、技术和国内、国际银行界先进的银行业务模式、管理方法结合在一起。系统采用先进的C-S-S三层体系结构,拥有强大、稳定的系统核心。 在全面覆盖传统银行业务的基础上,突出“金融产品”概念,银行可方便定制新的业务品种、产品组装或更改业务模式;系统整合了银行的业务服务渠道,方便银行增值服务范围的扩展,在无须更改系统内核的情况下方便实现与外部系统的互联互通。系统在深化“大集中” 、“大会计”、“一本帐”、“以客户为中心”、“综合柜员制”等成熟的设计思想的基础上,建立了从“客户”、“产品”到“服务” 、“渠道”的集约化经营管理模式,提供了真正的面向客户的服务模式,作到了为客户定制差别化的服务。从而实现了银行集中经营、规范业务、个性服务、丰富渠道、减少风险、辅助决策、降低成本的目标;系统设计严格遵守业务流程和会计核算分离原则,方便于系统快速部署和适应业务流程再造要求。 集团对核心业务系统的不断发展和完善就是以技术的进步来支持和推动银行业务的拓展,为银行的可持续性发展奠定了坚实的基础。 VisionBanking Core的系统实现原则满足了银行业务系统所要求的:先进性、实时性、可靠性、完整性、安全性、网络化、开放性、易扩展性、易维护性、易移植性。 二、系统功能说明

幅度调制与相位调制

幅度/相位调制 过去几十年随着数字信号处理技术与硬件水平的发展,数字收发器性价比已远远高于模拟收发器,如成本更低,速度更快,效率更高。更重要的是数字调制比模拟调制有更多优点,如高频谱效率,强纠错能力,抗信道失真以及更好的保密性。正是因为这些原因,目前使用的无线通信系统都是数字系统。 数字调制和解调的目的就是将信息以比特形式(0/1)通过信道从发送机传输到接收机。数字调制方式主要分为两类:1)幅度/相位调制和2)频率调制。两类调制方式分别又成为线性调制和非线性调制,在优劣势上也各有不同,因此,调制方式的选择最终还需要取决于多方面的最佳权衡。 本文就对幅度/相位调制加以讨论,全文整体思路如下: 1 信号空间分析 在路径损耗与阴影衰落中已提出发送信号与接收信号的模型以复信号的实部来表示,而在本文中为了便于分析各调制解调技术,我们必须引入信号的几何表示。 数字调制将信号比特映射为几种可能的发送信号之一,因此,接收机需要对各个可能的发送信号做比较,从而找出最接近的作为检测结果。为此我们需要一个度量来反映信号间的距离,即将信号投影到一组基函数上,将信号波形与向量一一对应,这样就可以利用向量空间中的距离概念来比较信号间的距离。 1.1 信号的几何表示 向量空间中各向量可由其基向量表示,而在无线通信中,我们也可把信号用其相应的基函数来表示。本文我们讨论的幅度/相位调制的基函数就是由正弦和余弦函数组成的: 21()()cos (2)c t g t f t φπ=(1) 22()()sin (2)c t g t f t φπ=(2) 其中g (t )是为了保证正交性,即保证 220()cos (2)1T c g t f t dt π=? (3) 20()cos(2)sin(2)0T c c g t f t f t dt ππ=? (4) 则信号可表示为 12()()cos(2)()sin(2)i i c i c s t s g t f t s g t f t ππ=+ (5) 则向量s i =[s i1,s i2]T 便构成了信号s i (t )的信号星座点,所有的星座点构成信号星座图,我们把信号s i (t )用其星座点s i 表示的方法就叫做信号的几何表示。而两个星座点s i 和s k 之间的距离就是采用向量中长度的定义,这里不再赘述。 2 幅度/相位调制 相位/幅度调制主要分为3种: 1)脉冲幅度调制(MPAM):只有幅度携带信息;

银行储蓄管理系统的设计与实现毕业论文

通信系统仿真实验课程设计 题目银行储蓄管理平台开发设计 学院 2010222111 专业班级通信104 学生姓名霍守斌 指导教师大彬 哥 2013年 6月 15日 摘要 近几年来,随着科技的发展和社会的进步,尤其是计算机大范围的普及,计算机应用逐渐由大规模科学计算的海量数据处理转向大规模的事务处理和对工作流的管理,这就产生了以台式计算机为核心,以数据库管理系统为开发环境的管理信息系统在大规模的事务处理和对工作流的管理等方面的应用,特别是在银行储蓄管理之中的应用日益引起人们的关注。本文基于Visual C++数据库编程技术,以可视化的集成开发环境Visual studio 2008为开发工具, Access 2007为后台数据库实现了一个小型的银行储蓄管理系统,该系统主要功能包括用户注册、销户、存款、取款、查询历史记录、用户修改信息等功能。从而满足了广大人民群众的需要同时也实现了银行储蓄管理的系统化、规范化、自动化和智能化,提高了银行管理的效率。 关键字:Visual C++;Access 2007;银行储蓄管理系统

Abstract In recent years, as technology development and social progress, in particular, the popularity of a wide range of computers, computer application gradually from large-scale scientific computing shift large-scale mass data processing and workflow transaction management, which resulted in of the desktop computer as the core database management system for the development of environmental management information system in large-scale transaction processing and management, workflow applications, especially in the management of bank savings into the application has attracted much attention. Based on the Visual C + + database programming techniques to visualize the integrated development environment, Visual studio 2008 as development tool, Access 2007 database for the background to achieve a small bank savings management system, which mainly features include user registration, cancel the account, deposit , withdrawals, query history, user modify the information and other functions. To meet the needs of the masses but also to achieve the systematic management of bank savings, standardization, automation and intelligence to improve the efficiency of bank management. Key word: visual c + +; Visual studio 2008; Access 2007; Bank savings management 目录 摘要 I Abstract II

银行储蓄系统

《数据库系统原理》 课程设计 2011年12月31日

目录 一、概述------------------------------------------------- 3 1.1 课程设计的目的---------------------------------------------- 3 1.2 课程设计的内容---------------------------------------------- 3 1.3 课程设计的要求---------------------------------------------- 3 二、需求分析--------------------------------------------- 3 2.1 系统需求---------------------------------------------------- 3 2.2 数据字典---------------------------------------------------- 3 三、系统总体设计----------------------------------------- 3 3.1系统总体设计思路--------------------------------------------- 3 3.2 概念模型设计----------------------------------------- 3 3.2.1 局部E-R图------------------------------------------------ 3 3.2.2 全局E-R图------------------------------------------------ 3 3.3 逻辑结构设计------------------------------------------------ 3 3.4 数据库建立实施--------------------------------------- 3 3.4.1 建立数据库------------------------------------------------ 3 3.4.2 建立关系表------------------------------------------------ 3 四、系统实现--------------------------------------------- 3 五、系统评价--------------------------------------------- 3 六、课程设计心得、总结----------------------------------- 3参考文献:----------------------------------------------- 3致谢--------------------------------------------------- 3附录--------------------------------------------------- 3

相位调制与解调

1.前言 1.1 序言 随着人类社会步入信息化社会,电子信息科学技术正以惊人的速度发展,开辟了社会发展的新纪元。从20世纪90年代开始至今,通信技术特别是移动通信技术取得了举世瞩目的成就。在通信技术日新月异的今天,学习通信专业知识不仅需要扎实的基础理论,同时需要学习和掌握更多的现代通信技术和网络技术。通信技术正向着数字化、网络化、智能化和宽带化的方向发展。全面、系统地论述了通信系统基本理沦、基本技术以及系统分析与设计中用到的基本工具和方法,并将重点放在数字通信系统上。通信系统又可分为数字通信与模拟通信。传统的模拟通信系统,包括模拟信号的调制与解调,以及加性噪声对幅度调制和角度调制模拟信号解调的影响。数字通信的基本原理,包括模数转换、基本AWGN信道中的数字调制方法、数字通信系统的信号同步方法、带限AWGN信道中的数字通信问题、数字信号的载波传输、数字信源编码以及信道编码与译码等,同时对多径信道中的数字通信、多载波调制、扩频、GSM与IS95数位蜂窝通信。随着数字技术的发展原来许多不得不采用的模拟技术部分已经可以由数字化来实现,但是模拟通信还是比较重要的 1.2 设计任务 本设计是基于MATLAB的模拟相位(PM)调制与解调仿真,主要设计思想是利用MATLAB这个强大的数学软件工具,其中的通信仿真模块通信工具箱以及M檔等,方便快捷灵活的功能实现仿真通信的调制解调设计。还借助MATLAB可视化交互式的操作,对调制解调处理,降低噪声干扰,提高仿真的准确度和可靠性。要求基于MATLAB的模拟调制与解调仿真,主要设计思想是利用MATLAB、simulink檔、M檔等,方便快捷的实现模拟通信的多种调制解调设计。基于simulink对数字通信系统的调制和解调建模。并编写相应的m檔,得出调试及仿真结果并进行分析。

01银行储蓄管理系统可行性分析.docx

精心整理软 银行储蓄管理系统 可行性分析 目录

一、引言 1.1 编写目的 经过对该银行储蓄系统项目进行详细调查研究,初拟系统实现报告,对软件开发中将要面临的问题及其解决方案进行可行性分析。明确开发风险及其所带来的经济效益。本报告经审核后,交由软件经理审查。 1.2 背景 项目名称:银行计算机储蓄系统 用户:××银行 说明:现在的银行储蓄系统工作效率低,不能满足广大人民群众的要,人们希望能更方便更省时地办理储蓄业务。 在这样的背景下,切需要建立一个新的、高效的、方便的计算机储蓄系统。 1.3 参考资料 ·《软件工程导论(第五版)》张海藩编着清华大学出版社出版 ·《软件工程》任胜兵邢琳编着北京邮电大学出版社 二、可行性研究的前提 2.1 基本要求 2.1.1 功能要求 此系统所要完成的主要功能有两方面: 储户填写存款单或取款单交给业务员键入系统,如果是存款,系统记录存款人姓名、住址、存款类型、存款日期、利率等信息,完成后由系统打印存款单给储户。 如果是取款,业务员把取款金额输入系统并要求储户输入密码以确认身份,核对密码正确无误后系统计算利息并印出利息清单给储户 2.1.2 性能要求 为了满足储户的要求,系统必须要有高的运作速度,储户填写的表单输入到系统,系统必须能快速及时作出响应,迅速处理各项数据、信息,显示出所有必需信息并打印出各项清单,所以要求很高的信息量速度和大的主存容量; 由于要存贮大量的数据和信息,也要有足够大的磁盘容量;另外,银行计算机储蓄系统必须有可靠的安全措施,以保证储户的存储安全。

2.1.3 接口要求 业务员键入储户的资料要全部一直显示在屏幕上;储户键入密码到系统以核对;计算机与打印机有高速传输的连接接口,最后以纸张的形式打印出清单给储户。 2.1.4 输入要求 业务员从存取款表单输入数据,要迅速精确,适当调整输入时间,不能让客户等太久,但也不能让业务员太过忙碌以免影响正确率,造成用户损失。 2.1.5 输出要求 要求快速准确地打印出存款或取款清单给客户。 2.2 开发目标 近期目标: 第一年内在一个银行建立一个银行内部计算机储蓄系统,初步实现银行储蓄系统计算机化,并保证该银行能够按期望顺利完成工作。 长期目标: 希望在三至四年内,在国内银行中建立该计算机储蓄系统,促进银行间的互联合作,实现银行储蓄系统的计算机管理体制,提高银行储蓄系统的整体水平;并实现银行储蓄系统的高效性、方便性、实用性、互联性,给储蓄用户带来方便和益处,从而提高银行的信用度,提高银行公司的经济效益和社会效益。 2.3 限制条件 2.3.1 开发时间 ( 只限于近期目标 ) 预定为半年。 2.3.2 运行环境 Windowsxp 及以上操作系统、数据库:MicrosoftSQLServer2000。MicrosoftVisualBasic6.0中文版. 2.3.3 使用寿命 该系统至少使用四年以上。 2.3.4 进行可行性研究的方法 采用调查方法:通过对银行业务员和客户的调查以获得第一手资料,确定客户和实际应用中的需求;然后经过座谈

多银行资金管理系统

多银行资金管理系统标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

多银行资金管理系统 多银行资金管理系统(Multi-bank System,简称MBS),是中信银行在专业分工、合作共赢的全新商业理念的指导下,联手专业软件厂商,根据国内集团企业的实际资金管理情况而打造出的多银行资金管理系统,不但融合了银行金融服务和软件厂商技术服务优势,创造了一种专业、可持续的服务模式,更以一种开放的心态进行系统研发,使得MBS的全新合作模式不排他。 功能完善的多银行资金管理系统 中信银行MBS在研发过程中吸收了银行和软件厂商两方面的先进经验,不但能够实现与银行产品服务的快速对接,同时能够更多地体现企业在资金预算、结算和内部财务控制等方面的管理需求,既可以为集团企业提供传统的现金管理服务,还能作为全面的企业内部资金管理系统,为企业提供多银行账户管理、资金结算划拨、计划预算管控和资金流量分析四大业务平台。 通过多银行账户管理平台企业可以自主设定和维护需要管理的所有银行账户,并按照自身的组织架构来定义账户结构,并可以在总部层面实时查询和掌握所有成员机构在各银行的资金余额和交易状况,所有信息按层级分别显示,余额自动汇总,整体资金情况一目了然。 通过资金结算划拨平台企业能够对各银行账户进行收付结算处理,支持企业根据自身财务制度灵活设置各种资金交易的审批流程。资金交易可以通过手动或自动方式发起,系统及时反馈交易信息。如果与ERP相连,还可以联动记账,生成财务凭证。同时所有资金交易均支持单笔录入或批量导入,支付时可以受企业预算控制,并提供多种控制方式。此外,企业还可通过特殊对账码实现自动对账,并生成余额调节表,减少人工操作。 通过计划预算管控平台企业可以建立全面的资金计划管理体系,包括制定统一的资金计划政策和模版,资金计划审批、执行、调整和控制等。企业也可以根据实际收支情况,自动提交计划执行情况,实现资金计划考核和资金风险防范。

银行管理系统-项目开发计划书

软件工程课程设计 项目计划书 项目名称:银行管理系统 学院:计算机科学与技术学院 专业:计算机科学与技术专业 班级: 姓名: 指导教师:

2011 年11 月03 日

目录 1 系统主题................................................................................................................................. 错误!未定义书签。 引言............................................................................................................................................. 错误!未定义书签。 背景/选题动机/目的................................................................................................................... 错误!未定义书签。 系统与“创新杯”的主题关系(2)......................................................................................... 错误!未定义书签。 市场调查过程和结论(3) ............................................................................................................ 错误!未定义书签。 2 需求分析................................................................................................................................. 错误!未定义书签。 概要............................................................................................................................................. 错误!未定义书签。 使用场景..................................................................................................................................... 错误!未定义书签。 可行性分析报告......................................................................................................................... 错误!未定义书签。 应用领域/实用性分析............................................................................................................. 错误!未定义书签。 未来发展方向............................................................................................................................. 错误!未定义书签。 3 团队组成和分工..................................................................................................................... 错误!未定义书签。 4 系统功能概述......................................................................................................................... 错误!未定义书签。 功能需求分析............................................................................................................................. 错误!未定义书签。 系统性能要求 ................................................................................................................. 错误!未定义书签。 功能点列表................................................................................................................................. 错误!未定义书签。 性能点列表................................................................................................................................. 错误!未定义书签。 数据描述..................................................................................................................................... 错误!未定义书签。 5 系统设计概要......................................................................................................................... 错误!未定义书签。 实现系统所采用的技术方案和技术亮点 ................................................................................. 错误!未定义书签。 系统构架..................................................................................................................................... 错误!未定义书签。 功能模块描述............................................................................................................................. 错误!未定义书签。 E-R图 ........................................................................................................................................ 错误!未定义书签。 用例图......................................................................................................................................... 错误!未定义书签。 概念数据模型图......................................................................................................................... 错误!未定义书签。 业务模型..................................................................................................................................... 错误!未定义书签。 界面 ........................................................................................................................................... 错误!未定义书签。 6 系统环境................................................................................................................................. 错误!未定义书签。 开发平台..................................................................................................................................... 错误!未定义书签。 Client运行环境......................................................................................................................... 错误!未定义书签。

多银行资金管理系统

多银行资金管理系统编辑本段回目录 多银行资金管理系统(Multi-bankSystem,简称MBS),是中信银行在专业分工、合作共赢的全新商业理念的指导下,联手专业软件厂商,根据国内集团企业的实际资金管理情况而打造出的多银行资金管理系统,不但融合了银行金融服务和软件厂商技术服务优势,创造了一种专业、可持续的服务模式,更以一种开放的心态进行系统研发,使得MBS的全新合作模式不排他。 功能完善的多银行资金管理系统编辑本段回目录 中信银行MBS在研发过程中吸收了银行和软件厂商两方面的先进经验,不但能够实现与银行产品服务的快速对接,同时能够更多地体现企业在资金预算、结算和内部财务控制等方面的管理需求,既可以为集团企业提供传统的现金管理服务,还能作为全面的企业内部资金管理系统,为企业提供多银行账户管理、资金结算划拨、计划预算管控和资金流量分析四大业务平台。 通过多银行账户管理平台企业可以自主设定和维护需要管理的所有银行账户,并按照自身的组织架构来定义账户结构,并可以在总部层面实时查询和掌握所有成员机构在各银行的资金余额和交易状况,所有信息按层级分别显示,余额自动汇总,整体资金情况一目了然。 通过资金结算划拨平台企业能够对各银行账户进行收付结算处理,支持企业根据自身财务制度灵活设置各种资金交易的审批流程。资金交易可以通过手动或自动方式发起,系统及时反馈交易信息。如果与ERP相连,还可以联动记账,生成财务凭证。同时所有资金交易均支持单笔录入或批量导入,支付时可以受企业预算控制,并提供多种控制方式。此外,企业还可通过特殊对账码实现自动对账,并生成余额调节表,减少人工操作。 通过计划预算管控平台企业可以建立全面的资金计划管理体系,包括制定统一的资金计划政策和模版,资金计划审批、执行、调整和控制等。企业也可以根据实际收支情况,自动提交计划执行情况,实现资金计划考核和资金风险防范。 通过资金流量分析平台企业可以结合收支计划和当前资金存量计算下一计划周期的资金盈缺,为企业提供资金管理的考核及决策依据,同时将资金流量计划汇总到集团,对集团资金做出平衡试算,并能据此做出资金安排和投融资决策。 更加专业、可持续的全流程服务模式编辑本段回目录 中信银行MBS除了拥有完善的产品体系,更为关键的是引入了第三方软件厂商作为系统实施和售后服务支持的技术服务提供商,建立了一种更加专业、可持续的服务模式。

相关文档