文档库 最新最全的文档下载
当前位置:文档库 › 化工热力学课程标准

化工热力学课程标准

化工热力学课程标准
化工热力学课程标准

《化工热力学》课程标准

英文名称:Chemical Engineering Thermodynamics 课程编号:409032040

适用专业:应用化学本科学分数:2

一、课程性质

所属一级学科——化学工程,二级学科——化学工程基础学科。

《化工热力学》是应用化学专业的重要专业方向课程。该课程包括化工基础理论,热力学案例分析、化工节能创新等化工技能,是化工类专业教学体系和人才培养体系中比较重要的专业课。

先修课程为《高等数学》、《物理化学》、《化工原理》等。

二、课程理念

1、该课程是化学工程的精髓

《化工热力学》课程属于工学学科门类下化学工程学科,是化工过程研究、开发和设计的理论基础,在科研和生产领域具有不可缺少的地位。它是从化学工程的角度,分析并给出化工过程经历的实质性变化,在原理和计算方法上指导各种化工过程的进行和优化。

该课程是应用化学专业的重要专业方向课程,是化学工程的精髓,是所有单元操作的基础,是《化工原理》、《反应工程》、《化工分离过程》等课程的基础和指导。

该课程在化学化工类人才培养中起着重要的承前启后、由基础到专业的桥梁作用,是化工类人才持续深造和研究开发必须打好的知识功底。

2、理论与工程应用相结合,培养学生的工程与开发能力

该课程定位为工程学科专业方向课,故在培养学生科学素质的同时,始终强调工程能力的培养,将化工热力学理论,模型与工程应用融为一体,旨在培养学生能够应用和建立热力学模型解决化学工程和工艺开发中的问题。

3、砸实热力学知识,培养学生扎实的学习能力和创造能力

该课程是以化工热力学、工程热力学和统计热力学为学科基础,以计算机及其技术为工具,培养学生从热力学角度分析解决现代化工技术的复杂工程问题。为了培养创新型高素质人才,既要给学生以干粮——扎实的热力学知识,又要给学生以猎枪——获取和创造知识的能力。

4、重视过程与动态评价

采用平时表现与考试成绩相结合的评价理念。学生在完成课后作业、课堂讨论、口试等内容和环节后,获得参加考试资格。知识和能力之间应树立一种内在联系,多看重教学过程中学生的参与程度和提高程度,不把期末考试作为教学评价的唯一标准,坚持“过程评价”和“动态评价”。

三、课程目标

总目标:

通过介绍化工热力学的起源、现状和发展,使学生了解热力学在化工过程中的主要实际应用;引导学生构建化工热力学课程的知识网络,使学生掌握化工热力学的基本概念和基本原理,利用化工热力学的方法对化工中物系的热力学性质和其它化工物性进行关联及推算,利用化工热力学的原理和模型进行化工过程能量、相平衡分析和研究;训练学生理论联系实际的思维,使学生具备利用热力学知识分析解决化工领域中有关实际问题的初步能力,形成基本知识扎实、应用能力突出的专业素养。

分目标:

四、课程内容

本课程的主要知识体系以教师讲授为主,学生自学为辅。注重理论联系实际,反映最新的研究成果。课程内容的选定围绕化学化工类应用型人才培养,在课程目标指导下因材施教、注重实效。

五、课程实施

1、课时安排

本课程理论教学32课时。

2、教学建议

《化工热力学》课程采用多媒体教学。利用新的教育媒体,丰富的表现形式,给教学提供良好的平台。同时结合传统教学形式,在黑板上展示重要结论的推导过程,更能使师生在讨论、分析问题上加强沟通和联系。通过多种教学方法和手段的结合,以保证并提高教学质量。

课堂教学环境中,教师采用启发式教学,尽量选取与生产实际联系紧密的案例。在教学内容上,以突出重点,精讲多练为原则。习题与案例是理论联系实际的最直接体现,是巩固工程观点的重要途径。习题的选择,一要加强题目的思想性,帮助学生加深对基本教学内容的理解;二是加强题目的真实性,强调工程应用,力求反映化工生产的真实情景。

3、学业考核与评定

考核内容:

考核标准:

采用平时成绩与考试成绩相结合的考核方法,学生在完成作业、课堂讨论等学习内容后,获得参加考试资格。期末总成绩中,平时成绩占30%(作业:15%,出勤:15%),考试成绩占70%。

由于化工热力学的理论性较强,有众多的公式,难以记忆。如果采取闭卷考试的形式,学生要花费很多的时间和精力去记忆公式,难免让学生本末倒置,顾此失彼。而考试的目的在于使学生对教学内容有全面的理解,突出重点和实用性,因此采用了开卷考试,学生可带入考试前规定准备的资料。

期末考试的试卷题型包括选择题、填空题、简答题、计算题等。命题的原则是:基础知识一般要占60%左右,灵活性的题目要占20%左右,有一定难度的题目要占20%左右。

六、教材建设选用及参考书目

教材

陈钟秀,顾飞燕,胡望明.化工热力学[M].北京:化学工业出版社,2009.

参考书

胡英.近代化工热力学—应用研究的新进展[M].上海:上海科学技术文献出版社,1994.

马沛生等.化工热力学(通用型)[M].北京:化学工业出版社,2005.

化工热力学教学大纲

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述: 化工热力学是化学工程的重要分支和基础学科,是热力学基本定律应用于化学工程领域中而形成的一门学科。本课程主要研究化工过程中各种形式的能量之间相互转化的规律及过程趋近平衡的极限条件,主要涉及能量及组成的计算。能量计算包括功能互换,也包括物理热和化学热的计算,前者包括温度、压力对焓的影响及各种相变热,后者主要是反应热。组成计算包括化学平衡和相平衡。化学平衡包括平衡常数及平衡组成的计算,并确定反应方向;相平衡包括在不同温度、压力条件下各相组成的确定。化工热力学是化工过程研究、开发与设计的理论基础,是一门理论性与应用性均较强的课程,是化学工程与工艺专业的专业基础课程。 2.设计思路: 化工热力学应用热力学基本定律研究化工过程中能量的有效利用、各种热力学过程、相平衡和化学平衡,还研究与上述内容有关的基础数据,如物质的p-V-T关系和热化学数据。 本课程主要包括四部分的内容,各部分的内容和基本要求如下: 第一部分,流体的p-V-T关系,要求掌握各种p-V-T关系使用范围,会应用各种p-V-T关系进行基本的p-V-T 计算。 第二部分,纯物质(流体)的热力学性质,要求掌握应用p-V-T关系求解纯物质的热力学性质的方法。 第三部分,热力学基本定律及其应用,要求掌握化工过程能量分析的方法,了解和掌握化工热力学原理的应用(压缩、膨胀、动力循环与制冷循环等)。 第四部分,均相混合物热力学性质,掌握利用混合规则求解均相混合物热力学性质的方法。 第五部分,相平衡,掌握气液相平衡的计算方法。 3. 课程与其他课程的关系: 本课程适宜安排在修完高等数学、大学物理、物理化学(上)等有关基础课课程之后开设,内容上注意与物理化学的衔接。 二、课程目标 通过本课程的学习,学生将系统地掌握运用化工热力学的基本概念、理论和计算方法,分析和解决化工生产中有关能量转换和有效利用、相平衡和化学变化的实际问题的能力,能利用化工热力学的方法对化工中涉及的物

化工热力学实验讲义

化工热力学试验讲义 李俊英 齐鲁工业大学 化学与制药工程学院 化学工程与工艺实验室 2013.10

实验一二氧化碳临界状态观测及p-v-t关系测定气体的压力、体积、温度(p、v、t)是物质最基本的热力学性质:pvt数据不仅是绘制真实气体压缩因子固的基础,还是计算内能、始、嫡等一系列热力学函数的根据。在众多的热力学性质中,由于pvt参数可以直接地精确测量,而大部分热力学函数都可以通过pvt参数关联计算,所以气体的pvt性质是研究其热力学性质的基础和桥梁。了解和掌握真实气体pvt性质的测试方法,对研究气体的热力学性质具有重要的意义。 一、实验目的 1. 了解CO2临界状态的观测方法,增加对临界状态概念的感性认识。 2. 加深对课堂所讲工质的热力状态、凝结、汽化、饱和状态等基本概念的理解。 3. 掌握CO2的p-v-t关系的测定方法,学会用实验测定实际气体状态变化规律的方法和技巧。 4. 学会活塞式压力计、恒温器等部分热工仪器的正确使用方法。 二、实验内容 1. 测定CO2的p-v-t关系。在p-v坐标图中绘出低于临界温度(t=20℃)、临界温度(t=31.1℃)和高于临界温度(t=40℃)的三条等温曲线,并与标准实验曲线及理论计算值相比较,并分析差异原因。 2. 测定CO2在低于临界温度时,饱和温度与饱和压力之间的对应关系。 3. 观测临界状态 (1) 临界状态时近汽液两相模糊的现象。 (2) 汽液整体相变现象。 (3) 测定的CO2的t c,p c,v c等临界参数,并将实验所得的v c值与理想气体状态方程和范德华方程的理论值相比较,简述其差异原因。 三、实验装置 实验装置由压力台、恒温器、试验本体、及其防护罩三大部分组成。 1.整体结构:见图1。 2.本体结构:见图2。

化工热力学课程论文

化工热力学课程论文 专业班级:10级核化101班 姓名:高超 学号:20104150120 任课老师:阳鹏飞 日期:2012年12月28日

空气分离 -----热力学第二定律在空分中的应用 摘要:热力学第二定律作为判定与热现象有关的物理过程进行方向的定律,本文分析了热力学第二定律的涵义以及意义,并阐述了它在在空分中的应用。 关键字:空分制冷 Abstract: the second law of thermodynamics as a judge and thermal phenomena related to the physical process of the direction of the law, this paper analyses the meaning and significance of the second law of thermodynamics, and expounds its application in air separation. Keywords: air separation refrigeration 引言 空气中的主要成分是氧和氮,它们分别以分子状态存在,均匀地混合在一起,通常要将它们分离出来比较困难,目前工业上主要有3种实现空气分离方法:吸附法、膜分离法和深冷法(也称低温法)。深冷法是目前工业上应用最广泛的空气分离方法。 其基本过程是先将混合物空气通过压缩、膨胀和降温,直至空气液化,然后利用氧、氮汽化温度(沸点)的不同进行精馏分离。流程可分为:空气过滤系统、空气压缩机系统、空气预冷系统、空气净化系统、空气压缩膨胀制冷系统、空气分离系统。其中空气压缩膨胀制冷系统对整个空气分离过程来说至关重要。 制冷按照制冷温度大小,分为三类:普通制冷:t>-120℃;深度制冷:-120℃>t>-253℃;超低温制冷:t<-253℃。空气的液化技术属于深度制冷。 工业制冷主要方法之一为气体膨胀制冷:将高压气体做绝热膨胀,使其压力、温度下降,利用降温后的气体来吸取被冷却物体的热量从而制冷。 0.制冷的原理

(A) 化工热力学期末试卷

化学化工学院《化工热力学》课程考试试题(A 卷) 2013-2014学年 第一学期 班级 时量120分钟 总分100分 考试形式:闭卷 一、填空题(24分,每空1.5分) 1、写出热力学基本方程式dU= ;dA = 。 2、几个重要的定义公式: A= ; H= ;G=__________。 3、对理想溶液,ΔH=_______,ΔS=________。 4、热力学第一定律的公式表述(用微分形式): 。 5、等温、等压下的二元液体混合物的活度系数之间的关系_________+0ln 11=γd x 。 6、化工热力学研究的主要方法包括: 、 、 。 7、以压缩因子表示的三参数对应态原理的关系式: 。 8、朗肯循环的改进的方法: 、 、 。 二、选择题(每个2分,共22分,每题只一个选择项是正确答案) 1、纯物质的第二virial 系数( ) A 、仅是温度的函数 B 、是温度和压力的函数 C 、 是温度和体积的函数 D 、是任何两强度性质的函数 2、泡点的轨迹称为( ) A 、饱和汽相线 B 、汽液共存线 C 、饱和液相线 3、等温等压下,在A 和B 组成的均相体系中,若A 的偏摩尔体积随A 浓度的减小而减小,则B 的偏摩尔体积将随A 浓度的减小而( ) A 、增加 B 、减小 C 、不变 D 、不一定 4、关于活度和活度系数的下列说法中不正确的是 ( ) A 、活度是相对逸度,校正浓度,有效浓度; B 、理想溶液活度等于其浓度。 C 、活度系数表示实际溶液与理想溶液的偏差。 D 、γi 是G E /RT 的偏摩尔量。 5、在一定的温度和压力下二组分体系汽液平衡的条件是( )。 为混合物的逸度)) (; ; ; L2V1V2L1L2 L1V2122f f f D f f f f C f f f f B f f f f A V L V L V L V (????).(????)(????).(=======11 6、关于偏摩尔性质,下面说法中不正确的是( ) A 、纯物质无偏摩尔量。 B 、T 与P 一定,偏摩尔性质就一定。

华南理工大学期末考试化工热力学B

华南理工大学期末考试 《化工热力学》试卷B 注意事项:1. 考前请将密封线内填写清楚; 2. 所有答案请直接答在试卷上(或答题纸上); 3.考试形式:闭卷; 一、 判断题(20分,每题2分,请在括号内答“对”或“错”) 1、对于负偏差体系,液相的活度系数总是小于1。 ( ) 2、能满足热力学一致性的汽液平衡数据就是高质量的数据。 ( ) 3、 若活度系数γi 是取亨利定则为标准态,则lim x i →0 γi =1 ( ) 4、在0.1013MPa ,100℃时,一定量的水等温等压蒸发为水蒸气,且蒸汽为理想气体,由于温度不变,所以△U=△H=0 ( ) 5、无论流体的温度高于或低于环境温度,其有效能均为正。 ( ) 6、任何真实气体通过节流膨胀后,因为压力下降,膨胀后气体温度下降。 ( ) 7、体系达到汽液平衡时,汽相液相的化学位相等。 ( ) 8、逸度是一种热力学性质,溶液中组分i 分逸度与溶液逸度的关系f m =∑x i f ?i n i ( ) 9、压力相同,过热蒸汽的做功本领比饱和蒸汽大。 ( ) 10、冬天,同样使室温由10℃升至20℃,与电加热器相比,热泵型空调不仅也能将能耗得电能转化为热量,而且能将空气中的热量传到室内,因此它比电加热器更省电。 ( ) 二、选择题(共20分,每题2分) 1、 指定温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则流体的状态为。 ( ) A 饱和蒸汽 B 超临界流体 C 过热蒸汽 D 过冷液体 2、 以下的( )方程不是立方型状态方程。 ( ) A van der Waals方程 B Ridlich-Kwang方程 C Peng-Robinson方程 B Virial方程 3、 下列表达式中,正确的式子是( )。

应用化工热力学课程设计任务书

应用化工热力学课程设计任务书

题目一: 设计完全互溶体系低压条件下,气液平衡泡点温度和气相组成的计算程序。并采用该程序计算甲醇(1)—水(2)体系: 1,压力为101.325KPa,液相组成x1=0.40时的泡点温度和气相组成. 2,压力为101.325KPa,液相组成x1=0.30时的泡点温度和气息组成. 已知该体系液相活度系数满足Wilson方程,A12=0.2972,A21=1.3192。

涉及公式 Wilson方程:lnr1=-ln(x1+x2*A12)+x2[A12/(x1+x2*A12)-A21/(x2+x1*A12)]; lnr2=-ln(x2+x1*A21)+x1[A21/(x2+x1*A21)-A12/(x1+x2*A21)]; 其中A12=0.2972,A21=1.3192; r1:甲醇的活度,r2表示水的活度; x1:液相中甲醇的摩尔分数;x2:液相中水的摩尔分数; 查得的安托万方程lnP i s=A-B/(T+C),P i s单位是mmHg,T的单位是K。 甲醇安托万方程参数如下:A=18.5875,B=3626.55,C=-34.29, 水的安托万方程参数如下:A=18.3036,B=3816.44,C=-46.13 y1= x1* r1* P1s/p; y2= x2* r2* P2s/p; P1s:甲醇的饱和蒸汽压,单位:Pa; P2s:水的饱和蒸汽压,单位:Pa y1:气相中甲醇的摩尔分数;y2:气相中水的摩尔分数; p:给定环境压力,单位:Pa;T:所求温度,单位:T 题目二: 有一台并流换热器,燃气的压力为0.1013Mpa,温度为1400K,换热后温度降至810K。水以1.2吨/h,1Mpa,423K进入换热器,产生1Mpa,533K的过热 =4.56KJ/Kg· K。大气环境温度为298K,燃气可蒸汽送出,燃气的平均热容C p 燃 视为理想气体,忽略换热过程压降,假设燃气放出的热量全部被水吸收。 ⑴计算该过程的有效能损失及目的有效能效率。 ⑵试画出换热器的热利用线图,并由此图讨论如何降低换热器换热过程的有效能损失。

化工热力学气体p-V-T关系的编程计算论文

气体p-V-T关系的编程计算 摘要 本文运用c语言编程的方法,解决化工热力学中的气体p-V-T关系的计算。 在化热力学气体p-V-T关系的计算过程中,有很多复杂的计算,有些需要进行复杂的小数计算,还有谢问题需要通过反复迭代才能得到结果。在解决这些问题时通过编程计算成为大家选择的最佳途径之一。本文系统的对这些程序做了汇集、汇编、整理,得到了可以直接应用的程序。 本程序充分考虑了人机语言转换的障碍,在人机交流的过程中会自动提示使用者进行操作:在输入数据时,会有输入格式说明等提示;在结果输出时,会把运算公式、计算迭代过程以及运算结果一并输出,方便使用者解决问题。 程序中使用的是C语言做计算,程序中使用了if,for,switch语句等基础函数语句和函数调用的基本方法,函数之间结合比较简单,使用者也可以按自己的需求自行改动函数语句。 本程序的主函数部分如下: #include #include void main( ) { char fch,jg,sql; float p,V,T; int i,n; printf("欢迎进入物质p-V-T关系计算环境,程序正在编写中,欢迎交流学习!"); printf("\n请输入所用方程和所求量。\n公式代号说明:1 理想气体状态方程;2 维里方程;3 范德华方程;4 RK方程;5 SRK(RKS)方程。\n所求量为p,V,T"); printf("\n请输入所选方程代号fch=");scanf("%s",&fch); printf("\n请输入所求量sql="); scanf("%s",&sql); xzfch(fch,sql); } 本文运用本文成功的解决了计算中遇到的大部分题。在数值计算、迭代计算等复杂问题中得到了方便的应用。程序能解决的问题如表一: 表一:程序能解决的计算

化工热力学主观题考核答案

中国石油大学(北京)远程教育学院 期 末 考 核 《 化工热力学 》 一、请学生运用所学的化工热力学知识,从以下给定的题目中选择至少选择2个题目进行论述:(总分100分) 1.教材中给出了众多的状态方程,请根据本人的工作或者生活选择一个体系、选择一个状态方程、对其PVT 关系的计算准确度进行分析,并提出改进的方向和意见。 丙烯的PVT 状态分析 近期我正在中海石油中捷石化甲醇车间进行培训,在甲醇净化工段丙烯为利用最多的制冷剂,在学习丙烯压缩工段的同时对丙烯的物化性质也有了深入了解。 丙烯的理化学性质:丙烯是一种无色略带甜味的易燃气体,分子式为CH 3CH=CH 2,分子量为42.08,沸点-47.7℃,熔点为-185.25℃,其密度为空气的 1.46倍,临界温度为91.8℃,临界压力为4.6Mpa ,爆炸极限为 2.0~11%(vol ),闪点为-108℃。(因此,丙烯在贮藏时要特别小心,如果发生泄漏,因为它比空气重,积聚在低洼处及地沟中,如在流动过程中遇到火星,则极易引起爆炸,酿成严重后果。) 选择用R-K 状态方程计算对液态丙烯的PVT 关系计算准确度进行分析,从《化工热力学、陈光进等编著》中查得丙烯的临界数据为Tc=364.9K;p c =46.0*10-1 MPa, 下面是中海石油中捷石化给定的丙烯性质数据。 温度 (℃) -40 -30 -20 -10 0 10 20 30 40 50

为了计算方便,用excel 换算和简单计算得到新的数据如下: R-K 方程:() b v v T a b v RT p +--=5.0 () 2 5.0665 .25.223409.16106.49.3643146.842748.042748.0-???=???==mol K Pa m p T R a c c () 1356107145.5106.49.3643146.808664.008664.0--??=???==mol m p RT b c c 由上表又知道摩尔体积v ,故根据R-K 方程,用excel 可分别计算得到各温度下的压力值P 1: 压力 (atm ) 1.401 2.097 3.023 4.257 5.772 7.685 10.046 12.911 1 6.307 20.299 体积 (mL/g ) 12966 6404 4639 3423 2569 1957 1510 1510 1177 922 温度 (℃) -40 -30 -20 -10 0 10 20 30 40 50 温度(K ) 233 243 253 263 273 283 293 303 313 323 压力P (1*10-1MPa ) 1.4196 2.1248 3.0631 4.3134 5.8485 7.7868 10.1791 13.0821 1 6.5231 20.5680 摩尔体积v (1*10-5m 3/mol) 54560.928 26948.032 19520.912 14403.984 10810.352 8235.056 6354.080 6354.080 4952.816 3879.776 温度 (℃) -40 -30 -20 -10 0 10 20 30 40 50 压力P (1*10-1MPa ) 1.4196 2.1248 3.0631 4.3134 5.8485 7.7868 10.1791 13.0821 1 6.5231 20.5680 计算压力 P 1(1*10-1MPa) 1.0288 2.1706 3.1182 4.3903 6.0679 8.2505 11.0602 11.4412 15.1467 19.9288

化工热力学期末考试A卷及答案精修订

化工热力学期末考试A 卷及答案 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

化工热力学期末试题(A)卷 2007~2008年使用班级化学工程与工艺专业05级 班级学号姓名成绩 一.选择 1.纯物质在临界点处的状态,通常都是 D 。 A.气体状态 B.液体状态 C.固体状态D.气液不分状态2.关于建立状态方程的作用,以下叙述不正确的是 B 。 A. 可以解决由于实验的P-V-T数据有限无法全面了解流体P-V-T 行为的问 题。 B.可以解决实验的P-V-T数据精确度不高的问题。 C.可以从容易获得的物性数据(P、V、T、x)来推算较难测定的数据( H,U,S,G ) D.可以解决由于P-V-T数据离散不便于求导和积分,无法获得数据点以外的P-V-T的问题。 3.虚拟临界常数法是将混合物看成一个虚拟的纯物质,从而将纯物质对比态原理的计算方法用到混合物上。. A 。 A.正确 B.错误

4.甲烷P c =4.599MPa,处在P r =0.6时,甲烷的压力为 B 。 A .7.665MPa B .2.7594 MPa ; C .1.8396 MPa 5.理想气体的压缩因子Z=1,但由于分子间相互作用力的存在,实际气体的压缩因子 C 。 A . 小于1 B .大于1 C .可能小于1也可能大于1 6.对于极性物质,用 C 状态方程计算误差比较小,所以在工业上得到广泛应用。 A .vdW 方程,SRK ; B .RK ,PR C .PR ,SRK D .SRK ,维里方程 7.正丁烷的偏心因子ω=0.193,临界压力P c =3.797MPa 则在T r =0.7时的蒸汽压为 2435.0101==--ωc s P P MPa 。 A 。 A .正确 B .错误 8.剩余性质M R 的概念是表示什么差别的 B 。 A .真实溶液与理想溶液 B .理想气体与真实气体 C .浓度与活度 D .压力与逸度 9.对单位质量,定组成的均相流体体系,在非流动条件下有 A 。 A .dH = TdS + Vdp B .dH = SdT + Vdp

《化工热力学》课程考试大纲

《化工热力学》课程考试大纲 第一部分考试说明 一、考试性质 《化工热力学》是是化学工程学分支学科之一,是化学工程与工艺专业(本科段)的一门专业课,《化工热力学》课程结合化工过程阐述热力学定律及其运用,是化工过程研究、设计和开发的理论基础。 应考者学完本课程后,学生应初步具备运用热力学定律和有关理论知识,对化工过程进行热力学分析的基本能力;应初步掌握化学工程设计和研究中获取热力学数据的方法,对化工过程进行相关计算的方法,目标是培养他们能理论联系实际,灵活分析和解决实际化工生产和设计中的有关涉及平衡的问题,并为学习后续课程和从事化工类专业实际工作奠定基础。 二、考试目标 本课程的考试目的在于检验学生掌握化工热力学的基本概念、理论和计算方法知识的程度。利用化工热力学的原理和模型对化工中涉及到的化学反应平衡原理、相平衡原理等进行分析和研究;利用化工热力学的方法对化工中涉及的物系的热力学性质和其它化工物性进行关联和推算;以及利用化工热力学的基本理论对化工中能量进行分析等的能力。 三、考试形式与试卷结构 (一)答题方式 闭卷/开卷/A4,笔试/小论文/读书报告/其他请注明。 考试方式采用开卷形式。 答案必须全部答在答题纸上,答在试卷上无效。(如有答题卡,请注明选择题的答案必须答在答题卡上,非选择题的答案答在答题纸上。) (二)答题时间 90分钟。 (三)基本题型 (1)基础概念题 包括单(多)选题、判断题、简述题,通常约占卷面成绩的20~30%。 (2)计算题 涵盖课程章节的全部内容,如流体(纯流体或混合物)的pVT性质计算、溶液的热力学性质计算、相平衡计算、化学反应平衡计算和热力学第一定律、热力学第二定律的应用计算、熵分析计算和有效能计算。该部分内容约占卷面成绩的60%~75% (3)证明推导题 基本热力学方程及其关系的推导,约占卷面成绩的5%~10%。

北京化工大学《化工热力学》2016 2017考试试卷A参考答案

北京化工大学2016——2017学年第一学期 《化工热力学》期末考试试卷 班级: 姓名: 学号: 任课教师: 分数: 一、(2?8=16分)正误题(正确的画√,错误的画×,标在[ ]中) [√]剩余性质法计算热力学性质的方便之处在于利用了理想气体的性质。 [×]Virial 方程中12B 反映了不同分子间的相互作用力的大小,因此120B =的气体混合物,必定是理想气体混合物。 [√]在二元体系中,如果在某浓度范围内Henry 定律适用于组分1,则在相同的浓度范围内,Lewis-Randall 规则必然适用于组分2。 [×]某绝热的房间内有一个冰箱,通电后若打开冰箱门,则房间内温度将逐渐下降。 [×]溶液的超额性质数值越大,则溶液的非理想性越大。 [×]水蒸汽为加热介质时,只要传质推动力满足要求,应尽量采用较低压力。 [×]通过热力学一致性检验,可以判断汽液平衡数据是否正确。 [×]如果一个系统经历某过程后熵值没有变化,则该过程可逆且绝热。 二、(第1空2分,其它每空1分,共18分)填空题 (1)某气体符合/()p RT V b =-的状态方程,从 1V 等温可逆膨胀至 2V ,则体系的 S ? 为 21ln V b R V b --。 (2)写出下列偏摩尔量的关系式:,,(/)j i E i T p n nG RT n ≠?? ?=?? ???ln i γ,

,,(/)j i R i T p n nG RT n ≠???=??????ln i ?, ,,(/)j i i T p n nG RT n ≠?? ?=?? ???i μ。 (3)对于温度为T ,压力为P 以及组成为{x}的理想溶液,E V =__0__,E H = __0__,/E G RT =__0__,ln i γ=__0__,?i f =__i f __。 (4)Rankine 循环的四个过程是:等温加热(蒸发),绝热膨胀(做功), 等压(冷凝)冷却,绝热压缩。 (5)纯物质的临界点关系满足0p V ??? = ????, 220p V ???= ???? ,van der Waals 方程的临界压缩因子是__0.375__,常见流体的临界压缩因子的范围是_0.2-0.3_。 二、(5?6=30分)简答题(简明扼要,写在以下空白处) (1)简述如何通过水蒸汽表计算某一状态下水蒸汽的剩余焓和逸度(假定该温度条件下表中最低压力的蒸汽为理想气体)。 剩余焓: ①通过线性插值,从过热水蒸汽表中查出给定状态下的焓值; ②从饱和蒸汽表中查得标准状态时的蒸发焓vap H ?(饱和液体的焓-饱和蒸汽的焓); ③通过00()T ig ig ig p p T H C dT C T T ?=≈-? 计算理想气体的焓变; ④通过R ig vap H H H H ?=-?-?得到剩余焓。 逸度: ①通过线性插值,从过热水蒸汽表中查出给定状态下的焓和熵并根据 G H TS =-得到Gibbs 自由能(,)G T p ; ②从过热蒸汽表中查得最低压力时的焓和熵,计算得到Gibbs 自由能 0(,)ig G T p ;

化工热力学期末考试A卷及答案

化工热力学期末试题(A)卷 2007~2008年使用班级化学工程与工艺专业05级 班级学号姓名成绩 一.选择 1.纯物质在临界点处的状态,通常都是 D 。 A.气体状态 B.液体状态 C.固体状态D.气液不分状态 2.关于建立状态方程的作用,以下叙述不正确的是 B 。 A. 可以解决由于实验的P-V-T数据有限无法全面了解流体P-V-T 行 为的问题。 B.可以解决实验的P-V-T数据精确度不高的问题。 C.可以从容易获得的物性数据(P、V、T、x)来推算较难测定的数据( H,U,S,G ) D.可以解决由于P-V-T数据离散不便于求导和积分,无法获得数据点以外的P-V-T的问题。 3.虚拟临界常数法是将混合物看成一个虚拟的纯物质,从而将纯物质对比态原理的计算方法用到混合物上。. A 。 A.正确 B.错误 4.甲烷P c=,处在P r=时,甲烷的压力为 B 。 A.B. MPa; C. MPa

5.理想气体的压缩因子Z=1,但由于分子间相互作用力的存在,实际气体 的压缩因子 C 。 A . 小于1 B .大于1 C .可能小于1也可能大于1 6.对于极性物质,用 C 状态方程计算误差比较小,所以在工业上 得到广泛应用。 A .vdW 方程,SRK ; B .RK ,PR C .PR ,SRK D .SRK ,维里方程 7.正丁烷的偏心因子ω=,临界压力P c = 则在T r =时的蒸汽压为 2435.0101==--ωc s P P MPa 。 A 。 A .正确 B .错误 8.剩余性质M R 的概念是表示什么差别的 B 。 A .真实溶液与理想溶液 B .理想气体与真实气体 C .浓度与活度 D .压力与逸度 9.对单位质量,定组成的均相流体体系,在非流动条件下有 A 。 A .dH = TdS + Vdp B .dH = SdT + Vdp C .dH = -SdT + Vdp D .dH = -TdS -Vdp 10.对1mol 符合Van der Waals 状态方程的气体,有 A 。 A .(S/V)T =R/(v-b ) B .(S/V)T =-R/(v-b) C .(S/V)T =R/(v+b) D .(S/V)T =P/(b-v) 11.吉氏函数变化与P-V-T 关系为()P RT G P T G x ig ln ,=-,则x G 的状态应该为

《化工热力学》课程标准

《化工热力学》课程标准 英文名称:Chemical Engineering Thermodynamics 课程编号: 适用专业:应用化学本科学分数:2 一、课程性质 所属一级学科——化学工程,二级学科——化学工程基础学科。 《化工热力学》是应用化学专业的重要专业方向课程。该课程包括化工基础理论,热力学案例分析、化工节能创新等化工技能,是化工类专业教学体系和人才培养体系中比较重要的专业课。 先修课程为《高等数学》、《物理化学》、《化工原理》等。 二、课程理念 1、该课程是化学工程的精髓 《化工热力学》课程属于工学学科门类下化学工程学科,是化工过程研究、开发和设计的理论基础,在科研和生产领域具有不可缺少的地位。它是从化学工程的角度,分析并给出化工过程经历的实质性变化,在原理和计算方法上指导各种化工过程的进行和优化。 该课程是应用化学专业的重要专业方向课程,是化学工程的精髓,是所有单元操作的基础,是《化工原理》、《反应工程》、《化工分离过程》等课程的基础和指导。 该课程在化学化工类人才培养中起着重要的承前启后、由基础到专业的桥梁作用,是化工类人才持续深造和研究开发必须打好的知识功底。 2、理论与工程应用相结合,培养学生的工程与开发能力 该课程定位为工程学科专业方向课,故在培养学生科学素质的同时,始终强调工程能力的培养,将化工热力学理论,模型与工程应用融为一体,旨在培养学生能够应用和建立热力学模型解决化学工程和工艺开发中的问题。 3、砸实热力学知识,培养学生扎实的学习能力和创造能力 该课程是以化工热力学、工程热力学和统计热力学为学科基础,以计算机及其技术为工具,培养学生从热力学角度分析解决现代化工技术的复杂工程问题。为了培养创新型高素质人才,既要给学生以干粮——扎实的热力学知识,又要给学生以猎枪——获取和创造知识的能力。 4、重视过程与动态评价 采用平时表现与考试成绩相结合的评价理念。学生在完成课后作业、课堂讨论、口试等内容和环节后,获得参加考试资格。知识和能力之间应树立一种内在联系,多看重教学过程中学生的参与程度和提高程度,不把期末考试作为教学评价的唯一标准,坚持“过程评价”和“动态评价”。 三、课程目标 总目标: 通过介绍化工热力学的起源、现状和发展,使学生了解热力学在化工过程中的主要实际应用;引导学生构建化工热力学课程的知识网络,使学生掌握化工热力学的基本概念和基本原理,利用化工热力学的方法对化工中物系的热力学性质和其它化工物性进行关联及推算,利用化工热力学的原理和模型进行化工过程能量、相平衡分析和研究;训练学生理论联系实际的思维,使学生具备利用热力学知识分析解决化工领域中有关实际问题的初步能力,形成基本知识扎实、应用能力突出的专业素养。 分目标:

化工热力学期中考试试卷答案

一、 单项选择题(每题1分,共30分): 1.关于化工热力学研究特点的下列说法中不正确的是( ) A. 研究体系为实际状态。 B. 解释微观本质及其产生某种现象的内部原因。 C. 处理方法为以理想态为标准态加上校正。 D. 获取数据的方法为少量实验数据加半经验模型。 E. 应用领域是解决工厂中的能量利用和平衡问题。 2.Pitzer 提出的由偏心因子ω计算第二维里系数的普遍化关系式是( )。 A .B = B 0ωB 1 B .B = B 0 ω + B 1 C .BP C /(RT C )= B 0 +ωB 1 D .B = B 0 + ωB 1 3.下列关于G E 关系式正确的是( )。 A. G E = RT ∑X i ln X i B. G E = RT ∑X i ln a i C. G E = RT ∑X i ln γi D. G E = R ∑X i ln X i 4.下列偏摩尔自由焓表达式中,错误的为( )。 A. i i G μ=- B. dT S dP V G d i i i - ---=;C. ()i j n P T i i n nG G ≠? ???????=-,, D. ()i j n nV T i i n nG G ≠? ???????=-,, 5.下述说法哪一个正确? 某物质在临界点的性质( ) (A )与外界温度有关 (B) 与外界压力有关 (C) 与外界物质有关 (D) 是该物质本身的特性。 6.泡点的轨迹称为( ),露点的轨迹称为( ),饱和汽、液相线与三相线所包围的区域称为( )。 A. 饱和汽相线,饱和液相线,汽液共存区 B.汽液共存线,饱和汽相线,饱和液相区 C. 饱和液相线,饱和汽相线,汽液共存区 7.关于逸度的下列说法中不正确的是 ( ) (A )逸度可称为“校正压力” 。 (B )逸度可称为“有效压力” 。 (C )逸度表达了真实气体对理想气体的偏差 。 (D )逸度可代替压力,使真实气体的状态方程 变为fv=nRT 。 (E )逸度就是物质从系统中逃逸趋势的量度。 8.范德华方程与R -K 方程均是常见的立方型方程,对于摩尔体积V 存在三个实根或者一个实根,当存在三个实根时,最大的V 值是 。 A 、饱和液体体积 B 、饱和蒸汽体积 C 、无物理意义 D 、饱和液体与饱和蒸汽的混合体积 9.可以通过测量直接得到数值的状态参数是 。 A 、焓 B 、内能 C 、温度 D 、 熵

天津大学化工热力学期末试卷(答案)

本科生期末考试试卷统一格式(16开): 20 ~20 学年第 学期期末考试试卷 《化工热力学 》(A 或B 卷 共 页) (考试时间:20 年 月 日) 学院 专业 班 年级 学号 姓名 一、 简答题(共8题,共40分,每题5分) 1. 写出封闭系统和稳定流动系统的热力学第一定律。 答:封闭系统的热力学第一定律:W Q U +=? 稳流系统的热力学第一定律:s W Q Z g u H +=?+?+?22 1 2. 写出维里方程中维里系数B 、C 的物理意义,并写出舍项维里方程的 混合规则。 答:第二维里系数B 代表两分子间的相互作用,第三维里系数C 代表三分子间相互作用,B 和C 的数值都仅仅与温度T 有关;舍项维里方程的混合规则为:∑∑===n i n j ij j i M B y y B 11 ,() 1 ij ij ij cij cij ij B B p RT B ω+= , 6.10 422.0083.0pr ij T B - =,2 .41 172.0139.0pr ij T B -=,cij pr T T T =,()() 5 .01cj ci ij cij T T k T ?-=,cij cij cij cij V RT Z p = ,()[] 33 1315.0Cj ci cij V V V +=,

()cj ci cij Z Z Z +=5.0,()j i ij ωωω+=5.0 3. 写出混合物中i 组元逸度和逸度系数的定义式。 答:逸度定义:()i i i f RTd y p T d ?ln ,,=μ (T 恒定) 1?l i m 0=??? ? ??→i i p py f 逸度系数的定义:i i i py f ??=φ 4. 请写出剩余性质及超额性质的定义及定义式。 答:剩余性质:是指同温同压下的理想气体与真实流体的摩尔广度性质之差,即:()()p T M p T M M id ,,-='?;超额性质:是指真实混合物与同温同压和相同组成的理想混合物的摩尔广度性质之差,即: id m m M M -=E M 5. 为什么K 值法可以用于烃类混合物的汽液平衡计算? 答:烃类混合物可以近似看作是理想混合物,于是在汽液平衡基本表达 式中的1=i γ,i v i φφ=?,在压力不高的情况下,Ponding 因子近似为1,于是,汽液平衡表达式化简为:v i s i s i i i id i p p x y K φφ==。由该式可以看出,K 值仅仅与温度和压力有关,而与组成无关,因此,可以永K 值法计算烃类系统的汽液平衡。 6. 汽相和液相均用逸度系数计算的困难是什么? 答:根据逸度系数的计算方程,需要选择一个同时适用于汽相和液相的状态方程,且计算精度相当。这种方程的形式复杂,参数较多,计算比较困难。

热力学论文

北京化工大学 课程论文 课程名称:高等化工热力学 任课教师:密建国 专业:化学工程与技术 班级: 姓名: 学号:

活性炭吸附储氢过程的热力学分析 摘要 储氢过程中热效应的不利影响是氢气吸附储存应用于新能源汽车需要解决的关键问题之一。文章首先介绍了活性炭吸附储氢过程的热力学分析模型,包括吸附等温线模型,吸附热的热力学计算以及气体状态方程。对吸附等温线模型的研究意义及选取、吸附过程中产生吸附热的数值确定方法、不同储氢条件下气体状态方程的适用性及选取进行了探讨。 关键词:活性炭;吸附;储氢;热力学 第一章绪论 1.1研究背景及意义 1.1.1研究背景 氢能,因其具有众多优异的特性而被誉为21世纪的绿色新能源。首先,氢能具有很高的热值,燃烧1kg氢气可产生1.25x106 kJ的热量,相当于3kg汽油或4.5kg焦炭完全燃烧所产生的热量;其次,氢燃烧释能后的产物是水,对环境友好无污染,是绿色清洁能源;此外,氢是宇宙中最丰富的元素,来源广泛,可通过太阳能、风能、地热能等自然能分解水而产生,为可再生能源,不会枯竭。当前,世界上许多国家都在加紧部署实施氢能战略,迎接氢经济时代的到来,如美国针对规模制氢的FutureGen计划,日本的NewSunshine和欧洲的Framework计划等。 持久的城市空气污染、对较低或零废气排放的交通工具的需求、减少对外国石油进口的需要、二氧化碳排放和全球气候变化、储存可再生电能供应的需求等多种因素的汇合增加了氢能经济的吸引力[1]。 目前,氢能的利用己经有了长足的进步。液氢发动机的成功研制使氢气的应用进入到航空领域,氢能的众多优点使得氢燃料驱动的铁路机车及一般汽车的研制也相当活跃。宝马氢能7系的氢动力汽车已经实现了量产,不过这种技术目前还难以普及,其主要瓶颈在于氢的存储和运输。氢是非常活跃的,以现有技术很难让其安稳长久的保存在储气罐中,如果氢动力汽车一个月不开,里面的氢就会挥发殆尽[2]。此外,氢还是一种易燃易爆的气体,在使用中必须保证安全,因此,一种安全、高能量密度(包括体积能量密度和重量能量密度)、低成本、使用寿命长的氢储、运输技术的应用需求已越来越迫切[3]。 传统的氢气存储方式主要有气态和液态两种。气态方式较为简单方便,也是目前储存压力低于70MPa氢气的常用方法,但体积密度较小是该方法严重的技术缺陷,而且气态氢在运输和使用过程中也存在易爆炸的极大安全隐患。液态储氢方法的体积密度(70kg/m3)高,但氢气的液化需要冷却到20K的超低温下才能实现,此过程消耗的能量约占所储存氢能的25%一45%。而且液态氢使用条件苛刻,对储罐绝热性能要求高,目前只限于在航天技术领域应用。利用储氢材料与氢气反应生成固溶体和氢化物的固体储氢方式,能有效克服气液两种储存方式的不足,而且储氢体积密度大、安全度高、运输便利。根据技术发展趋势,今后储氢研究的重点是在新型高性能大规模储氢材料上,目前研究比较广泛和深入的主要是多孔

(B )化工热力学期末试卷

化学化工学院《化工热力学》课程考试试题(B 卷) 2013-2014学年 第一学期 班级 时量120分钟 总分100分 考试形式:闭卷 一、填空题(每空1.5分,共24分) 1、朗肯循环的改进的方法: 、 、 。 2、写出热力学基本方程式dH = ;dG = 。 3、对理想溶液,ΔV= ,ΔG = 。 4、热力学第二定律的公式表述(用微分形式): 。 5、等温、等压下的二元液体混合物的活度系数之间的关系_________+0ln 22=γd x 6、化工热力学是运用经典热力学的原理,结合反映系统特征的模型,解决工业过程(特别是化工过程)中 、 、 等实际问题。 7、三参数对应态原理的统一式: 。 8、几个重要的定义公式:H=_______;A=______;G=______。 二、选择题(每个2分,共22分,每题只一个选择项是正确答案) 1、混合气体的第二维里系数是( ) A 、温度和压力的函数 B 、 仅为温度的函数 C 、温度和组成的函数 D 、压力和组成的函数 2、露点的轨迹称为( ) A 、饱和汽相线 B 、汽液共存线 C 、饱和液相线 D 、都不是 3、等温等压下,在A 和B 组成的均相体系中,若A 的偏摩尔体积随浓度的改变而增加,则B 的偏摩尔体积将( ) A 、 增加 B 、 减小 C 、 不变 D 、不一定 4、关于逸度的下列说法中不正确的是( ) A 、逸度可称为“校正压力” 。 B 、逸度就是物质从系统中逃逸趋势的量度。 C 、逸度表达了真实气体对理想气体的偏差 。 D 、逸度可代替压力,使真实气体的状态方程变为fv=nRT 。 5、在一定的温度和压力下二组分体系汽液平衡的条件是( ) 为混合物的逸度)) (; ; ; L2V1V2L1L2 L1V2122f f f D f f f f C f f f f B f f f f A V L V L V L V (????).(????)(????).(=======11

化工热力学教学大纲

《化工热力学》教学大纲 一、课程基本信息 课程中文名称:化工热力学 课程英文名称:Chemical Engineering Thermodynamics 课程编号:06131050 课程类型:学科基础课 总学时:54 学分:3 适用专业:化学工程与工艺 先修课程:物理化学、化工原理 开课院系:化工与制药学院 二、课程的性质与任务 化工热力学是化学工程学的一个重要分支,是化工类专业必修的专业基础课程。它是化工过程研究、开发与设计的理论基础,是一门理论性与应用性均较强的课程。该门课系统地介绍了将热力学原理应用于化学工程技术领域的研究方法。它以热力学第一、第二定律为基础,研究化工过程中各种能量的相互转化及其有效利用,深刻阐述了各种物理和化学变化过程达到平衡的理论极限、条件和状态。 设置本课程,为了使考生能够掌握化工热力学的基本概念、理论和专业知识;能利用化工热力学的原理和模型对化工中涉及到的化学反应平衡原理、相平衡原理等进行分析和研究;能利用化工热力学的方法对化工中涉及的物系的热力学性质和其它化工物性进行关联和推算;并学会利用化工热力学的基本理论对化工中能量进行分析等。 三、课程教学基本要求 通过本课程学习,要求 1.正确理解化工热力学的有关基本概念和理论; 2.理解各个概念之间的联系和应用; 3.掌握化工热力学的基本计算方法; 4.能理论联系实际,灵活分析和解决实际化工生产和设计中的有关问题。 四、理论教学内容和基本要求

教学内容 第一章绪论 1.1 热力学发展简史 1.2 化工热力学的主要研究内容 1.3 化工热力学的研究方法及其发展1.4 化工热力学在化工中的重要性第二章流体的p-V-T关系 2.1 纯物质的p –V –T关系 2.2 气体的状态方程 2.2.1理想气体状态 2.2.2 维里方程 2.2.3 立方型状态方程 2.2.4 多参数状态方程 2.3 对应态原理及其应用 2.3.1 对比态原理 2.3.2 三参数对应态原理 2.3.3 普遍化状态方程 2.4 真实气体混合物的p-V-T关系2.4.1 混合规则 2.4.2气体混合物的虚拟临界性质2.4.2 气体混合的第二维里系数 2.4.3 混合物的状态方程 2.5液体的p –V -T关系 2.5.1 饱和液体体积 2.5.2 压缩液体(过冷液体)体积2.5.3 液体混合物的p –V -T关系 第三章纯流体的热力学性质 3.1 热力学性质间的关系 3.1.1 热力学基本方程 3.1.2 Maxwell关系式 3.2焓变与熵变的计算

相关文档