文档库 最新最全的文档下载
当前位置:文档库 › l流体分析fluent中的边界条件设置

l流体分析fluent中的边界条件设置

l流体分析fluent中的边界条件设置
l流体分析fluent中的边界条件设置

各类边界条件fluent

Fluent技巧 边界条件 定义边界条件概述 边界条件包括流动变量和热变量在边界处的值。它是FLUENT分析得很关键的一部分,设定边界条件必须小心谨慎。 边界条件的分类:进出口边界条件:压力、速度、质量进口、进风口、进气扇、压力出口、压力远场边界条件、质量出口、通风口、排气扇;壁面、repeating, and pole boundaries:壁面,对称,周期,轴;内部单元区域:流体、固体(多孔是一种流动区域类型) ;内部表面边界:风扇、散热器、多孔跳跃、壁面、内部。(内部表面边界条件定义在单元表面,这意味着它们没有有限厚度,并提供了流场性质的每一步的变化。这些边界条件用来补充描述排气扇、细孔薄膜以及散热器的物理模型。内部表面区域的内部类型不需要你输入任何东西。) 下面一节将详细介绍上面所叙述边界条件,并详细介绍了它们的设定方法以及设定的具体合适条件。周期性边界条件在本章中介绍,模拟完全发展的周期性流动将在周期性流动和热传导一章中介绍。 使用边界条件面板 边界条件(Figure 1)对于特定边界允许你改变边界条件区域类型,并且打开其他的面板以设定每一区域的边界条件参数 菜单:Define/Boundary Conditions... Figure 1: 边界条件面板 改变边界区域类型 设定任何边界条件之前,必须检查所有边界区域的区域类型,如有必要就作适当的修改。比方说:如果你的网格是压力入口,但是你想要使用速度入口,你就要把压力入口改为速度入口之后再设定。 改变类型的步骤如下:: 1.在区域下拉列表中选定所要修改的区域 2.在类型列表中选择正确的区域类型 3.当问题提示菜单出现时,点击确认 确认改变之后,区域类型将会改变,名字也将自动改变 (如果初始名字时缺省的请参阅边界条件区域名字一节),设定区域边界条件的面板也将自动打开。 !注意:这个方法不能用于改变周期性类型,因为该边界类型已经存在了附加限制。创建边界条件一节解释了如何创建和分开周期性区域。需要注意的是,只能在图一中每一个类别中改变边界类型(注意:双边区域表面是分离的不同单元区域.) Figure 1: 区域类型的分类列表 设定边界条件 在FLUENT中,边界条件和区域有关而与个别表面或者单元无关。如果要结合具有相同边界条件的两个或更多区域请参阅合并区域一节。 设定每一特定区域的边界条件,请遵循下面的步骤: 1.在边界条件区域的下拉列表中选择区域。 2. 点击Set...按钮。或者,1.在区域下拉列表中选择区域。 2.在类型列表中点击所要选择的类型。或者在区域列表中双击所需区域.,选择边界条件区域将会打开,并且你可以指定适当的边界条件

FLUENT中各种边界条件的适用范围

FLUENT中各种边界条件的适用范围 速度入口边界条件:用于定义流动入口边界的速度和标量。 压力入口边界条件:用来定义流动入口边界的总压和其它标量。 质量流动入口边界条件:用于已知入口质量流速的可压缩流动。在不可压缩流动中不必指定入口的质量流,因为当密度是常数时,速度入口边界条件就确定了质量流条件。压力出口边界条件:用于定义流动出口的静压(在回流中还包括其它的标量)。当出现回流时,使用压力出口边界条件来代替质量出口条件常常有更好的收敛速度。 压力远场边界条件:用于模拟无穷远处的自由可压缩流动,该流动的自由流马赫数以及静态条件已知。这一边界类型只用于可压缩流。 质量出口边界条件:用于在解决流动问题之前,所模拟的流动出口的流速和压力的详细情况还未知的情况。在流动出口是完全发展的时候这一条件是适合的,这是因为质量出口边界条件假定出了压力之外的所有流动变量正法向梯度为零。不适合于可压缩流动。 进风口边界条件:用于模拟具有指定的损失系数、流动方向以及周围(入口)环境总压和总温的进风口。 进气扇边界条件:用于模拟外部进气扇,它具有指定的压力跳跃、流动方向以及周围(进口)总压和总温。 通风口边界条件:用于模拟通风口,它具有指定的损失系数以及周围环境(排放处)的静压和静温。 排气扇边界条件:用于模拟外部排气扇,它具有指定的压力跳跃以及周围环境(排放处)的静压。 速度入口边界条件:速度入口边界条件用于定义流动速度以及流动入口的流动属性相关标量。这一边界条件适用于不可压缩流,如果用于可压缩流它会导致非物理结果,这是因为它允许驻点条件浮动。应该注意不要让速度入口靠近固体妨碍物,因为这会导致流动入口驻点属性具有太高的非一致性。 压力入口边界条件:压力入口边界条件用于定义流动入口的压力以及其它标量属性。它即可以适用于可压缩流,也可以用于不可压缩流。压力入口边界条件可用于压力已知但是流动速度和/或速率未知的情况。这一情况可用于很多实际问题,比如浮力驱动的流动。压力入口边界条件也可用来定义外部或无约束流的自由边界。 质量流动入口边界条件:用于已知入口质量流速的可压缩流动。在不可压缩流动中不必指定入口的质量流,因为当密度是常数时,速度入口边界条件就确定了质量流条件。当要求达到的是质量和能量流速而不是流入的总压时,通常就会使用质量入口边界条件。调节入口总压可能会导致解的收敛速度较慢,所以如果压力入口边界条件和质量入口条件都可以接受,应该选择压力入口边界条件。 压力出口边界条件:压力出口边界条件需要在出口边界处指定静(gauge)压。静压值的指定只用于亚声速流动。如果当地流动变为超声速,就不再使用指定压力了,此时压力要从内部流动中推断。所有其它的流

fluent实例-油水两相管内流动模拟

油水两相流弯管流动模拟 弯管被广泛应用于石化、热能动力、给排水、钢铁冶金等工程领域的流体输送,其内部流体与管壁的相对运动将产生一定程度的振动而使管道系统动力失稳,严重时会给系统运行带来灾难性的毁坏。而现今原油集输管线中普遍为油水两相流,较单相流动复杂,且通过弯管时由于固壁的突变,使得流动特性更为繁杂。因此,研究水平弯管内油水两相流的速度、压力分布等流动特性,不仅能够为安全输运、流动参数控制等提供参考,还可为管线防腐、节能降耗措施选取等提供依据。 一、实例概述 选取某输油管道工程管径600mm的90°水平弯管道,弯径比为3,并在弯管前后各取5m直管段进行建模,其几何模型如图所示。为精确比较流体流经弯管过程中的流场变化,截取了图所示的5个截面进行辅助分析。弯管进出口的压差为800Pa,油流含水率为20%。 二、模型建立 1.启动GAMBIT,选择圆面生成面板的Plane为ZX,输入半径Radius为0.3,生成圆面, 如图所示。

2.选择圆面,保持Move被选中,在Global下的x栏输入1.8,完成该面的移动操作。 3.选取面,Angle栏输入-90,Axis选择为(0,0,0)→(0,0,1),生成弯管主体,如图所 示。

4.在Create Real Cylinder面板的Height栏输入5,在Radius1栏输入0.3,选择Axis Location 为Positive X,生成沿x方向的5m直管段,如图所示。 5.同方法,改变Axis Location为Positive Y生成沿y方向的5m直管段,如图所示。

6.将直管段移动至正确位置,执行Volume面板中的Move/Copy命令,选中沿y轴的直管 段,在x栏输入1.8,即向x轴正向平移1.8。然后选中沿x轴的直管段,在x栏输入-5,在y栏输入-1.8,最后的模型如图所示。 7.将3个体合并成一个,弹出Unite Real Volumes面板,选中生成的3个体,视图窗口 如图所示。

FLUENT进行流体动力学分析时,分析边界条件的种类及应用要点

FLUENT进行流体动力学分析时,分析边界条件的种类及应用要点。答:FLUENT 软件提供了十余种类型的进、出口边界条件,分别如下: (1) 速度入口(velocity-inlet):给出入口边界上的速度。 给定入口边界上的速度及其他相关标量值。该边界条件适用于不可压速流动问题,对可压缩问题不适合,否则该入口边界条件会使入口处的总温或总压有一定的波动。 (2) 压力入口(pressure-inlet):给出入口边界上的总压。 压力入口边界条件通常用于流体在入口处的压力为已知的情形,对计算可压和不可压问题都适合。压力进口边界条件通常用于进口流量或流动速度为未知的流动。压力入口条件还可以用于处理自由边界问题。 (3) 质量入口(mess-flow-inlet):给出入口边界上的质量流量。 质量入口边界条件主要用于可压缩流动;对于不可压缩流动,由于密度是常数,可以用速度入口条件。质量入口条件包括两种:质量流量和质量通量。质量流量是单位时间内通过进口总面积的质量。质量通量是单位时间单位面积内通过的质量。如果是二维轴对称问题,质量流量是单位时间内通过2π弧度的质量,而质量通量是通过单位时间内通过1 弧度的质量。 (4) 压力出口(pressure-outlet):给定流动出口边界上的静压。 对于有回流的出口,该边界条件比outflow 边界条件更容易收敛。给定出口边界 上的静压强(表压强)。该边界条件只能用于模拟亚音速流动。如果当地速度已经超过音速,该压力在计算过程中就不采用了。压力根据内部流动计算结果给定。其他量都是根据内部流动外推出边界条件。该边界条件可以处理出口有回流问题,合理的给定出口回流条件,有利于解决有回流出口问题的收敛困难问题。(5) 无穷远压力边界 (pressure-far-field):该边界条件用于可压缩流动。 如果知道来流的静压和马赫数,FLUENT 提供了无穷远压力边界条件来模拟该类问题。该边界条件适用于用理想气体定律计算密度的问题。为了满足无穷远压力边界条件,需要把边界放到我们关心区域足够远的地方。

fluent边界条件(二)

周期性边界条件 周期性边界条件用来解决,物理模型和所期待的流动的流动/热解具有周期性重复的特点。FLUENT提供了两种类型的周期性边界条件。第一种类型不允许通过周期性平面具有压降(对于FLUENT4用户来说:这一类型的周期性边界是指FLUENT4中的圆柱形边界)。第二种类型允许通过平移周期性边界具有压降,它是你能够模拟完全发展的周期性流动(在FLUENT4中是周期性边界)。 本节讨论了无压降的周期性边界条件。在周期性流动和热传导一节中,完全发展的周期性模拟能力得到了详尽的描述。 周期性边界的例子 周期性边界条件用于模拟通过计算模型内的两个相反平面的流动是相同的情况。下图是周期性边界条件的典型应用。在这些例子中,通过周期性平面进入计算模型的流动和通过相反的周期性平面流出流场的流动是相同的。正如这些例子所示,周期性平面通常是成对使用的。 Figure 1: 在圆柱容器中使用周期性边界定义涡流 周期性边界的输入 对于没有任何压降的周期性边界,你只需要输入一个东西,那就是你的所模拟的几何外形是旋转性周期还是平移性周期。(对于有周期性压降的周期流还要输入其它的东西,请参阅周期性流动和热传导一节。) 旋转性周期边界是指关于旋转对称几何外形中线形成了一个包括的角度。本节中的图一就是旋转性周期。平移性周期边界是指在直线几何外形内形成周期性边界。下面两图是平移性周期边界:

Figure 1: 物理区域 Figure 2: 所模拟的区域 对于周期性边界,你需要在周期性面板(下图)中指定平移性边界还是旋转性边界,该面板是从设定边界条件菜单中打开的。 Figure 3: 周期性面板 (对于耦合解算器,周期性面板中将会有附加的选项,这一选项允许你指定压力跳跃,详细内容请参阅周期性流动和热传导一节。) 如果区域是旋转性区域,请选择旋转性区域类型。如果是平移性就选择平移性区域类型。对

fluent边界条件2

壁面边界条件 壁面边界条件用于限制流体和固体区域。在粘性流动中,壁面处默认为非滑移边界条件,但是你也可以根据壁面边界区域的平动或者转动来指定切向速度分量,或者通过指定剪切来模拟滑移壁面(你也可以在FLUENT中用对称边界类型来模拟滑移壁面,但是使用对称边界就需要在所有的方程中应用对称条件。详情请参阅对称边界条件一节)。 在当地流场的详细资料基础上可以计算出流体和壁面之间的剪应力和热传导。 壁面边界的输入 概述 壁面边界条件需要输入下列信息: ●热边界条件(对于热传导计算) ●速度边界条件(对于移动或旋转壁面) ●剪切(对于滑移壁面,此项可选可不选) ●壁面粗糙程度(对于湍流,此项可选可不选) ●组分边界条件(对于组分计算) ●化学反应边界条件(对于壁面反应) ●辐射边界条件(对于P-1模型、DTRM或者DO模型的计算) ●离散相边界条件(对于离散相计算) 在壁面处定义热边界条件 如果你在解能量方程,你就需要在壁面边界处定义热边界条件。在FLUENT中有五种类型的热边界条件: ●固定热流量 ●固定温度 ●对流热传导 ●外部辐射热传导 ●外部辐射热传导和对流热传导的结合 如果壁面区域是双边壁面(在两个区域之间形成界面的壁面,如共轭热传导问题中的流/固界面)就可以得到这些热条件的子集,但是你也可以选择壁面的两边是否耦合。详情请参阅在壁面处定义热边界条件。 下面各节介绍了每一类型的热条件的输入。如果壁面具有非零厚度,你还应该设定壁面处薄壁面热阻和热生成的相关参数,详情请参阅在壁面处定义热边界条件。 热边界条件由壁面面板输入(Figure 1),它是从边界条件打开的(见设定边界条件一节)。

fluent边界条件(一)

边界条件 定义边界条件概述 边界条件包括流动变量和热变量在边界处的值。它是FLUENT分析得很关键的一部分,设定边界条件必须小心谨慎。 边界条件的分类:进出口边界条件:压力、速度、质量进口、进风口、进气扇、压力出口、压力远场边界条件、质量出口、通风口、排气扇;壁面、repeating, and pole boundaries:壁面,对称,周期,轴;内部单元区域:流体、固体(多孔是一种流动区域类型) ;内部表面边界:风扇、散热器、多孔跳跃、壁面、内部。(内部表面边界条件定义在单元表面,这意味着它们没有有限厚度,并提供了流场性质的每一步的变化。这些边界条件用来补充描述排气扇、细孔薄膜以及散热器的物理模型。内部表面区域的内部类型不需要你输入任何东西。) 下面一节将详细介绍上面所叙述边界条件,并详细介绍了它们的设定方法以及设定的具体合适条件。周期性边界条件在本章中介绍,模拟完全发展的周期性流动将在周期性流动和热传导一章中介绍。 使用边界条件面板 边界条件(Figure 1)对于特定边界允许你改变边界条件区域类型,并且打开其他的面板以设定每一区域的边界条件参数 菜单:Define/Boundary Conditions... Figure 1: 边界条件面板 改变边界区域类型 设定任何边界条件之前,必须检查所有边界区域的区域类型,如有必要就作适当的修改。比方说:如果你的网格是压力入口,但是你想要使用速度入口,你就要把压力入口改为速度入口之后再设定。 改变类型的步骤如下:: 1.在区域下拉列表中选定所要修改的区域

2.在类型列表中选择正确的区域类型 3.当问题提示菜单出现时,点击确认 确认改变之后,区域类型将会改变,名字也将自动改变(如果初始名字时缺省的请参阅边界条件区域名字一节),设定区域边界条件的面板也将自动打开。 !注意:这个方法不能用于改变周期性类型,因为该边界类型已经存在了附加限制。创建边界条件一节解释了如何创建和分开周期性区域。需要注意的是,只能在图一中每一个类别中改变边界类型(注意:双边区域表面是分离的不同单元区域.) Figure 1: 区域类型的分类列表 设定边界条件 在FLUENT中,边界条件和区域有关而与个别表面或者单元无关。如果要结合具有相同边界条件的两个或更多区域请参阅合并区域一节。 设定每一特定区域的边界条件,请遵循下面的步骤: 1.在边界条件区域的下拉列表中选择区域。 2. 点击Set...按钮。或者,1.在区域下拉列表中选择区域。 2.在类型列表中点击所要选择的类型。或者在区域列表中双击所需区域.,选择边界条件区域将会打开,并且你可以指定适当的边界条件 在图像显示方面选择边界区域 在边界条件中不论你合适需要选择区域,你都能用鼠标在图形窗口选择适当的区域。如果你是第一次设定问题这一功能尤其有用,如果你有两个或者更多的具有相同类型的区域而且你想要确定区域的标号(也就是画出哪一区域是哪个)这一功能也很有用。要使用该功能请按下述步骤做: 1.用网格显示面板显示网格。 2.用鼠标指针(默认是鼠标右键——参阅控制鼠标键函数以改变鼠标键的功能)在图形窗口中点击边界区域。在图形显示中选择的区域将会自动被选入在边界条件面板中的区域列表中,它的名字和编号也会自动在控制窗口中显示改变边界条件名字 每一边界的名字是它的类型加标号数(比如pressure-inlet-7)。在某些情况下你可能想要对边界区域分配更多的描述名。如果你有两个压力入口区域,比方说,你可能想重名名它们

第2章,fluent基本物理模型

第二章,基本物理模型 无论是可压、还是不可压流动,无论是层流还是湍流问题,FLUENT 都具有很强的模拟能力。FLUENT 提供了很多数学模型用以模拟复杂几何结构下的输运现象(如传热与化学反应)。该软件能解决比较广泛的工程实际问题,包括处理设备内部过程中的层流非牛顿流体流动,透平机械和汽车发动机过程中的湍流传热过程,锅炉炉里的粉煤燃烧过程,还有可压射流、外流气体动力学和固体火箭中的可压反应流动等。 为了能模拟工业设备和过程中的流动及相关的输运现象,FLUENT 提供了许多解决工程实际问题的选择,其中包括多空介质流动,(风扇和热交换器)的集总参量计算,流向周期流动与传热,有旋流动和动坐标系下流动问题。随精确时间滑移网格的动坐标方法可以模拟计算涡轮流动问题。FLUENT 还提供了离散相模型用以模拟喷雾过程或者稀疏颗粒流动问题。还有些两相流模型可供大家选用。 第一节,连续和动量方程 对于所有流动,FLUENT 都求解质量和动量守恒方程。对于包含传热或可压性流动,还需要增加能量守恒方程。对于有组分混合或者化学反应的流动问题则要增加组分守恒方程,当选择pdf 模型时,需要求解混合分数及其方差的守恒方程。如果是湍流问题,还有相应的输运方程需要求解。 下面给出层流的守恒方程。 2.1.1 质量守恒方程 m i i S u x t =??+ ??)(ρρ 2-1 该方程是质量守恒的总的形式,可以适合可压和不可压流动。源项m S 是稀疏相增加到连续相中的质量,(如液体蒸发变成气体)或者质量源项(用户定义)。 对于二维轴对称几何条件,连续方程可以写成: m S r v v r u x t =+ ??+ ??+??ρρρρ)()( 2-2 式中,x 是轴向坐标;r 是径向坐标,u 和v 分别是轴向和径向速度分量。 2.1.2 动量守恒方程 惯性坐标系下,i 方向的动量守恒方程为: i i j ij i j i j i F g c x p u u x u t ++??+??- =??+ ??ρτρρ)()( 2-3 式中,p 是静压;ij τ是应力张量,定义为:ij l l i j j i ij x u x u x u δμμτ??-??? ????????? ????+??=32 ,i g ρ,i F 是重力体积力和其它体积力(如源于两相之间的作用),i F 还可以包括其它模型源项或者用

(完整版)fluent边界条件设置

边界条件设置问题 1、速度入口边界条件(velocity-inlet):给出进口速度及需要计算的所有标量值。该边界条件适用于不可压缩流动问题。 Momentum 动量?thermal 温度radiation 辐射species 种类 DPM DPM模型(可用于模拟颗粒轨迹)multipahse 多项流 UDS(User define scalar 是使用fluent求解额外变量的方法) Velocity specification method 速度规范方法:magnitude,normal to boundary 速度大小,速度垂直于边界;magnitude and direction 大小和方向;components 速度组成?Reference frame 参考系:absolute绝对的;Relative to adjacent cell zone 相对于邻近的单元区 Velocity magnitude 速度的大小 Turbulence 湍流 Specification method 规范方法 k and epsilon K-E方程:1 Turbulent kinetic energy湍流动能;2 turbulent dissipation rate 湍流耗散率 Intensity and length scale 强度和尺寸:1湍流强度 2 湍流尺度=0.07L(L为水力半径)intensity and viscosity rate强度和粘度率:1湍流强度2湍流年度率 intensity and hydraulic diameter强度与水力直径:1湍流强度;2水力直径

(整理)FLUENT边界条件(2)—湍流设置.

FLUENT边界条件(2)—湍流设置 (fluent教材—fluent入门与进阶教程于勇第九章) Fluent:湍流指定方法(Turbulence Specification Method) 2009-09-16 20:50 使用Fluent时,对于velocity inlet边界,涉及到湍流指定方法(Turbulence Specification Method),其中一项是Intensity and Hydraulic Diameter (强度和水利直径),本文对其进行论述。 其下参数共两项, (1)是Turbulence Intensity,确定方法如下: I=0.16/Re_DH^0.125 (1) 其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(1)中的雷诺数是以水力直径为特征长度求出的。 雷诺数 Re_DH=u×DH/υ(2) u为流速,DH为水利直径,υ为运动粘度。 水利直径见(2)。 (2)水利直径 水力直径是水力半径的二倍,水力半径是总流过流断面面积与湿周之比。 水力半径 R=A/X (3) 其中,A为截面积(管子的截面积)=流量/流速 X为湿周(字面理解水流过各种形状管子外圈湿一周的周长) 例如:方形管的水利半径 R=ab/2(a+b) 水利直径 DH=2×R (4) 举例如下: 如果水流速度u=10m/s,圆形管路直径2cm,水的运动粘度为1×10-6 m2/s。 则 DH=2×3.14*r^2/(2*3.14*r)=2*3.14*0.01^2/(3.14*0.02)=0.01 r为圆管半径 Re_DH=u×DH/υ=10*0.02/10e-6=20000 I=0.16/Re_DH^0.125=0.16/20000^0.125=0.0463971424017634≈5%

FLUENT分析圆管弯头段的三维流动

用FLUENT分析圆管弯头段的三维流动 摘要:简要介绍了Fluent的组成部分和使用步骤,并通过Fluent对黏性流体通过圆管弯头段的三维流动经典案例分析,介绍了用Fluent分析解决实际问题的具体过程,说明了用Fluent 分析流体力学的可行性,从而为解决其它复杂流体问题的优化分析提供了新的方法和科学依据。 关键词: Fluent ;圆管弯头;三维流动 1概述 CFD(计算流体力学)是应用数学方法描述物理和化学现象的一种数据模型模拟工具。Fluent是目前国际上通用的商业CFD(计算流体动力学)软件包,在国际CFD市场上占主导地位,只要涉及流体、热传递及化学反应等工程问题,都可用Fluent进行解算。Fluent[1I是用于计算复杂几何条件下流动和传热问题的程序。它提供的无结构网格生成程序.把计算相对复杂的几何结构问题变得容易和轻松。可以生成的网格包括二维的三角形和四边形网格。三维的四面体、六面体及混合网格。 2Fluent程序组成部分和求解步骤 Fluent软件包由以下三部分组成:前处理器:Gambit用于网格生成.是具有强大组合建构模型能力的专用CFD前处理器:求解器是流体计算的核心.可对基于结构化或非结构化网格进行求解:后处理器具有强大的后处理功能。 求解步骤:①确定几何形状,生成计算网格(用Gambit,也可以读入其它指定程序生成的网格);②选择2D或3D来模拟计算;③输入网格;④检查网格;⑤选择解法器;⑥选择求解的方程,层流或湍流(或无粘流)、化学组分或化学反应、传热模型等;确定其它需要的模型:如风扇、热交换器、多孔介质等模型;⑦确定流体物性;⑧指定边界条件;⑨条件计算控制参数;⑩流场初始化;⑩计算;⑩检查结果:⑩保存结果,后处理等。

fluent下使用非牛顿流体

fluent下使用非牛顿流体 1、非牛顿流体:剪应力与剪切应变率之间满足线性关系的流体称为牛顿流体,而把不满足线性关系的流体称为非牛顿流体。 2、fluent中使用非牛顿流体 a、层流状态:直接在材料物性下设置材料的粘度,设置其为非牛顿流体。 b、湍流状态 fluent在设置湍流模型后,会自动将材料的非牛顿流体性质直接改成了牛顿流体,因此需要做一些修改。最基本的方式有两种:1、打开隐藏的湍流模型下非牛顿流体功能;2,直接利用UDF宏DEFINE_PROPERTY定义 3、打开隐藏的湍流模型下非牛顿流体功能 方法为: (1)在湍流模型中选择标准的k-e模型; (2)在Fluent窗口输入命令:define/models/viscous/turbulence-expert/turb-non-newtonian 然后回车。 (3)输入:y 然后回车。 4、利用DEFINE_PROPERTY宏 A:这是一个自定义材料的粘度程序如下,也许对你有帮助。 在记事本中编辑的,另存为“visosity1.c" #include "udf.h" DEFINE_PROPERTY(cell_viscosity, cell, thread) { real mu_lam; real trial; rate=CELL_STRAIN_RATE_MAG(cell, thread); real temp=C_T(cell, thread); mu_lam=1.e12; { if(rate>1.0e-4 && rate<1.e5) trial=12830000./rate*log(pow((rate*exp(17440.46/temp)/1.535146e8),0.2817)+pow((1.+pow((rat e*exp(17440.46/temp)/1.535146e8),0.5634)),0.5)); else if (rate>=1.e5) trial=128.3*log(pow((exp(17440.46/temp)/1.535146e8),0.2817)+pow((1.+pow((exp(17440.46/te mp)/1.535146e8),0.5634)),0.5)); else trial=1.283e11*log(pow((exp(17440.46/temp)/1.535146e12),0.2817)+pow((1.+pow((exp(17440.4 6/temp)/1.535146e12),0.5634)),0.5)); } else if(temp>=855.&&temp<905.) {

FLUENT边界条件(4)—SYMMETRY与aixs

FLUENT边界条件(4)—SYMMETRY与aixs FLUENT中的边界类型有两个很相似的类型,symmetric与axis,使用的时候很容易弄混淆。 symmetric(对称):可用于二维和三维中,通常用于几何对称及物理对称。 axis(轴):常用于三维中,和二维中一些几何对称但流场不对称的场合 它们的一些特点: 1、在二维几何中,对称边界axis必须沿着x轴方向,且要求几何位于x轴上方。 2、几何都是对称的。axis可用于利用二维模拟三维的情况。symmetry在三维几何中主要用于面的对称。 它们间的一些区别: 1、在将三维几何简化为二维的过程中,若采用symmetry,是无法考虑沿切向的物理分量的。比如说计算直管流动,若采用symmetry进行模拟,则假设流动沿切向是无速度梯度的。而此时利用axis边界,则可以考虑到切向物理量的变化。当然,他们的几何也有区别,利用symmetry需要建立的模型是轴切面,而利用axis则只需要一个旋转面就可以。 2、axis几乎只用于二维模型中,而symmetry既可用于二维模型,也可用于三维模型中。 3、axis多用于旋转几何体中,symmetry既可用于旋转几何体,也可用于镜像几何体。 4、symmetry边界有其明确的物理意义:沿该边界法向,速度为零,所有物理量梯度为零。而axis则无这样的定义,仅仅指的是旋转轴而已。 上面说的是边界类型,在fluent的2D求解器中有Axisymmetry与Axisymmetry Swirl,在实例文档中是这样描述的: Your problem may be axisymmetric with respect to geometry and flow conditions but still include swirl or rotation. In this case, you can model the flow in 2D (i.e., solve the axisymmetric problem) and include the prediction of the circumferential (or swirl) velocity. It is important to note that while the assumption of axisymmetry implies that there are no circumferential gradients in the flow, there may still be non-zero swirl velocities. 什么意思呢?

Fluent出入口边界条件设置及实例解析.

问:用了很长时间的fluent ,但一直没有把压力出入口边界条件弄明白。请大侠给予正确指导... 有的文档说亚声速流下initial 是0或者不填,而有的出版物则把total 和initial 设置成几乎想等的值,或者差值为大气压,很困惑! 比如说在一个喷射(亚声速流)流场中,实际条件为喷嘴入口压力40MPa ,出口压力20MPa ,即流场内围压20MPa ,这时,在压力入口边界条件的总压、初始表压以及压力出口的表压分别应该设置多少?如果是超声速流,又有什么区别? 还有,operating condition下的operating pressure是否设置成0或者大气压有什么说法吗? A :有的出版物则把total 和initial 设置成几乎想等的值。 我在使用时一般也是采用这样的方法,严格来讲是有公式来计算的。但是这个值一般只是用于初始化,对结果影响不大,所以简单来讲就设置成和出口的一样。 这个值对流场的初始化有一定的影响,设置成0也不是不可以,但会增加迭代步数。 对于喷射而言,建议lz 将operating condition下的operating pressure设置为 0 ,即是绝对压力。 二 最近用Fluent 做模拟的时候一直在使用压力出口边界,对其中出口温度、组分浓度等值的设置不是很明白,就仔细看了下Fluent User Guide,对压力出口边界描述如下: Pressure outlet boundary conditions require the specification of a static (gauge pressure at the outlet boundary........All other flow quantities are extrapolated from the interior。因此,压力出口边界可以这样表述,即,给定出口压力,对流动中的其他物理量均有流场内部值差值得到。 那边界条件面板中设定的温度(等)值有什么用呢?

基于Fluent的三通管数值模拟及分析

第40卷第2期 当 代 化 工 Vol.40,No. 2 2011年2月 Contemporary Chemical Industry February,2011 收稿日期: 2010-08-17 作者简介: 魏显达(1983-),男,硕士,黑龙江北安人,2007年毕业于大庆石油学院电子信息工程,研究方向:塔顶流出系统的腐蚀与防 基于 Fluent 的三通管数值模拟及分析 魏显达,王为民, 徐建普 (辽宁石油化工大学石油天然气工程学院, 辽宁 抚顺 113001) 摘 要:Fluent 软件作为流体力学中通用性较强的一种商业CFD 软件应用范围很广。通过利用Fluent 计算流体动力学(CFD)的软件,对石油工业系统中常见的三通管内部流体进行了模拟分析,得到了三通管内在流体流动时的速度、压力和温度场分布图,为石油管道中的流体输送提供了理论依据。 关 键 词:Fluent;三通管;模拟分析;分布图 中图分类号: TQ 018 文献标识码: A 文章编号: 1671-0460(2011)02-0165-03 Numerical Simulation and Analysis of Fluid in Three-way Connection Pipe Based on Fluent Software WEI Xian-da ,WANG Wei-min ,XU Jian-pu (Institute of Petroleum and gas engineering , Liaoning Shihua University, Liaoning Fushun 113001,China ) Abstract : As a commercial CFD software with good universality, the Fluent software has been used extensively. In this paper, Simulation analysis on fluid in the three-way connection pipe of the oil industry was carried out by the software of fluid mechanics computation .Then distribution graphs of velocity , pressure and temperature of fluid in the three-way pipe were gained ,which can offer theoretical basis on fluid transportation in the petroleum pipeline. Key words : Fluent three-way ;Connection pipe ;Simulation analysis ;Distribution graphs Fluent 是目前国际上比较流行的商用CFD 软件包,在美国的市场占有率为60%,广泛应用于流体、热传热和各种化学反应等有关工业。软件包括前处理器(利用Gambit 进行物理建模、网格划分和划定边界层条件)、求解器(根据专业条件不同,采用不同的求解器,并规定物性、外部工作环境和进行数值迭代)和后处理器(把一些数据可视化,满足用户的特定要求)。 三通管在石油工业中应用广泛,采用传统的设计开发方法,存在经济成本高,研发周期长等缺陷,耗费大量的人力、物力 [1-2] 。应用CFD 软件,能够在 相对较短的设计周期内,较低的成本运行下,准确模拟流动具体过程,如速度场、压力场和温度场等的时变特性等。CFD 技术已经成为不可缺少的设计手段。 本文利用Fluent 的超强数值计算和分析能力对三通管道内原油流动时的速度、压强和温度场进行了数值模拟和分析,为石油管道中的流体输送提供了可靠的理论依据。 1 数学模型的建立和分析 输油管道管中,原油在三通管内的流动属于湍流,简化方程管道内的流体流动满足质量守恒、动量守恒、能量守恒、状态方程等。 连续性方程(连续性方程式质量守恒定律在流体力学中的表现形式)在直角坐标系下表示为((1)方程) [3-5] : 0)()()(=??+??+??+??z y x t z y x νννρρρρ (1) 式中:V x ,V y ,V z 是速度矢量ν在x 、y 和z 轴方向的分量,t 是时间,ρ是密度。 最常用的湍流求解模型是标准k -ε湍流模型。它需要求解湍动能k ((2)方程)和耗散率ε((3)方程),具体如下所示: Y G G x x M b k i t i k t k ?+++??+??=ρεσμρ μ)[(d d (2) K K k t C G C G C x x b K i t i εμρεσμερεεε2 231)(])[(d d ?++??+??= (3)

Fluent实例:辐射与自然对流模拟

Fluent辐射与自然对流模拟 引言 在这个算例中,将会解决二维方箱中的辐射与自然对流相结合的问题,网格采用四边形单元网格。 在这个算例中将会学到以下知识点: 1.应用Fluent 中各种辐射模型Rosseland; 2.使用Boussinesq model定义密度; 3.设定辐射与自然对流传热问题的边界条件; 4.将单一的墙划分为多个墙区域; 5.对已有的流体物性进行修改; 6.用隔离求解器求解; 7.显示速度矢量和流函数等值线,以及温度等值线。 问题描述 将被考虑的问题如图5.1 所示,一个边长为L 的正方形箱体,右墙温度为2000K,左墙温度为1000K,上下墙绝热,重力向下,由于热重引起密度梯度所以发展为浮力流。箱体中的介质被认为是有吸收性和散射性的,因此墙壁间的辐射交换因存在吸收被减弱,同时也因为介质的散射作用而增强了。所有墙壁被认为是黑体,目的在于应用有效的辐射模型计算箱体中流场和温度场分布,以及墙壁的热流量,并且对于不同光学深度aL 比较所表现出的特性。 工质普朗特数大约为0.71,基于L 的雷诺数为500000,这说明流动相当于层状流动,应用Boussinesq 假设来模拟浮力流动。普朗克数为0.02,用于考虑传导与辐射的相对重要性,其中,T 0 = ( T h + T c)/2。在这个算例中将有三种optical thickness 的情况会被考虑到,分别是 aL=0, aL=0.2, and aL=5。注意:物理属性和工作条件(重力加速度)都已经给定以适合于产生的想要的普朗特数,雷诺数和普朗克数。如下图所示:

第1 步: 网格 将网格文件rad/rad.msh 拷至fluent 的工作目录下(就像在指南1 中描述 的一样),并起动fluent 的二维单精度解算器。 1. 读取网格文件rad.msh. File Read Case...当网格读入的时候,在Fluent 控制窗口会显示相应的信息,会报告网格有2500 个单元。 2. 检查网格质量。 Grid Check... Fluent 会对网格进行各种各样的检查,并会在控制窗口显示信息。特别注意最小体积,确保它是正数值。 3. 显示出网格(如图5.2)。 图5.2:网格显示

fluent下使用非牛顿流体

fluent下使用非牛顿流体 2009-11-24 10:47 1、非牛顿流体:剪应力与剪切应变率之间满足线性关系的流体称为牛顿流体,而把不满足线性关系的流体称为非牛顿流体。 2、fluent中使用非牛顿流体 a、层流状态:直接在材料物性下设置材料的粘度,设置其为非牛顿流体。 b、湍流状态 fluent在设置湍流模型后,会自动将材料的非牛顿流体性质直接改成了牛顿流体,因此需要做一些修改。最基本的方式有两种:1、打开隐藏的湍流模型下非牛顿流体功能;2,直接利用UDF宏DEFINE_PROPERTY定义 3、打开隐藏的湍流模型下非牛顿流体功能 方法为: (1)在湍流模型中选择标准的k-e模型; (2)在Fluent窗口输入命令: define/models/viscous/turbulence-expert/turb-non-newtonian 然后回车。 (3)输入:y 然后回车。 4、利用DEFINE_PROPERTY宏 A:这是一个自定义材料的粘度程序如下,也许对你有帮助。 在记事本中编辑的,另存为“visosity1.c" #include "udf.h" DEFINE_PROPERTY(cell_viscosity, cell, thread) { real mu_lam; real trial; rate=CELL_STRAIN_RATE_MAG(cell, thread); real temp=C_T(cell, thread); mu_lam=1.e12; { if(rate>1.0e-4 && rate<1.e5) trial=12830000./rate*log(pow((rate*exp(17440.46/temp)/1.53514 6e8),0.2817)+pow((1.+pow((rate*exp(17440.46/temp)/1.535146e8),0.5634) ),0.5)); else if (rate>=1.e5)

第07章 fluent流体物性33

物理性质 本章描述了用于计算物质的性质以及相应程序的物理方程,在程序中你可以输入物质的每一种性质。以下各节详细介绍了计算物质的物理性质 设定物理性质是模型设定中的重要一步。 材料属性是在材料面板中的1中定义的,它允许你输入各种属性值,这些属性值和你在模型面板中定义的的问题范围相关。这些属性可能会包括: 密度或者分子量 粘性 比热容 热传导系数 质量扩散系数 标准状态焓 分子运动论中的各个参数 属性可能是温度和/或成分相关的,温度相关是基于你所定义的或者有分子运动论计算得出的多项式、分段线性或者分段多项式函数和个别成分属性。 使用材料面板中的1就会显示所使用的模型需要定义的物理性质。需要注意的是,如果你所定义的属性需要借能量方程(如理想气体定律的密度,粘性的温度相关轮廓),FLUENT 会自动去解能量方程。此时你就需要定义热边界条件和其它参数。 固体材料的物理属性 对于固体材料,我们只需要定义密度,热传导系数和比热容(除非你所模拟的是半透明介质,此时需要定义辐射性质。对于热传导系数你可以指定它们为常值,也可以指定为温度的函数或者自定义函数;对于比热容你可以指定为常值或者温度的函数;对于密度你可以指定为常值 如果你使用非耦合解算器,除非我们是在模拟非定常流或者运动的固体区域,否则对于固体材料我们可以不需定义其密度和比热容。对于定常流来说固体材料列表中也会出现比热容一项,但是该值只被用于焓的后处理程序中,计算时并不需要它 材料类型 在FLUENT中,流体和固体的物理性质是与名字"materials"相关的,这些物理性质分配给区域作为边界条件。当你模拟组分输运时,你就需要定义混合材料,该材料包括所解决问题的各种各样材料。混合物的物理性质会被定义,其中也包括流体材料的组成部分(混合材料的概念将会在混合材料一节详细讨论)。离散相模型的附加材料类型也可以使用,请参阅离散相材料的概念一节。 材料的定义可以从零开始,也可以从全局(site-wide)数据库中下载并编辑。关于修改全局数据库请参阅自定义材料数据库一节。 注意:当前你的材料列表中所有的材料都会被保存在case文件中。如果你将这个case 文件读入到新的解算器进程,你就可以使用这些材料。 使用材料面板 1(图1)允许你创建新的材料,或者从全局数据库复制材料,也可以修改材料的属性。菜单:Define/Materials...。

相关文档
相关文档 最新文档