文档库 最新最全的文档下载
当前位置:文档库 › 热力学_统计物理学答案第七章

热力学_统计物理学答案第七章

热力学_统计物理学答案第七章
热力学_统计物理学答案第七章

热力学与统计物理第二章知识总结

§2.1内能、焓、自由能和吉布斯函数的全微分 热力学函数中的物态方程、内能和熵是基本热力学函数,不仅因为它们对应热力学状态描述第零定律、第一定律和第二定律,而且其它热力学函数也可以由这三个基本热力学函数导出。 焓:自由能: 吉布斯函数: 下面我们由热力学的基本方程(1) 即内能的全微分表达式推导焓、自由能和吉布斯函数的全微分 焓、自由能和吉布斯函数的全微分 o焓的全微分 由焓的定义式,求微分,得, 将(1)式代入上式得(2) o自由能的全微分 由得 (3) o吉布斯函数的全微分 (4)

从方程(1)(2)(3)(4)我们容易写出内能、焓、自由能和吉布斯函数的全微分dU,dH,dF,和dG独立变量分别是S,V;S,P;T,V和T,P 所以函数U(S,V),H(S,P),F(T,V),G(T,P)就是我们在§2.5将要讲到的特性函数。下面从这几个函数和它们的全微分方程来推出麦氏关系。 二、热力学(Maxwell)关系(麦克斯韦或麦氏) (1)U(S,V) 利用全微分性质(5) 用(1)式相比得(6) 再利用求偏导数的次序可以交换的性质,即 (6)式得(7) (2) H(S,P) 同(2)式相比有 由得(8) (3) F(T,V)

同(3)式相比 (9) (4) G(T,P) 同(4)式相比有 (10) (7),(8),(9),(10)式给出了热力学量的偏导数之间的关系,称为麦克斯韦(J.C.Maxwell)关系,简称麦氏关系。它是热力学参量偏导数之间的关系,利用麦氏关系,可以从以知的热力学量推导出系统的全部热力学量,可以将不能直接测量的物理量表示出来。例如,只要知道物态方程,就可以利用(9),(10)式求出熵的变化,即可求出熵函数。 §2.2麦氏关系的简单应用 证明 1. 求 选T,V为独立变量,则内能U(T,V)的全微分为 (1) 熵函数S(T,V)的全微分为( 2)

热力学与统计物理学课后习题及解答

第一章 热力学的基本规律 1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T k 。 解:由理想气体的物态方程为 nRT PV = 可得: 体胀系数:T P nR V T V V αp 111==??? ????= 压强系数:T V nR P T P P βV 111==??? ????= 等温压缩系数:P P nRT V P V V κT 1)(112=???? ??=??? ?????= 1.2 证明任何一种具有两个独立参量P T ,的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数T k ,根据下述积分求得:()??=dP κdT αV T ln 如果P κT αT 11==,,试求物态方程。 解: 体胀系数:p T V V α??? ????=1,等温压缩系数:T T P V V κ??? ?????=1 以P T ,为自变量,物质的物态方程为:()P T V V ,= 其全微分为:dP κV VdT αdP P V dT T V dV T T p ?=??? ????+??? ????=,dP κdT αV dV T ?= 这是以P T ,为自变量的全微分,沿任意的路线进行积分得: ()??=dP κdT αV T ln 根据题设 ,将P κT αT 1,1==,代入:???? ???=dP P dT T V 11ln 得:C p T V +=ln ln ,CT PV =,其中常数C 由实验数据可确定。 1.4 描述金属丝的几何参量是长度L ,力学参量是张力£,物态方程是()0£=T L f ,,,实验通常在1n p 下进行,其体积变化可以忽略。

热力学统计物理课后习题答案

第七章 玻耳兹曼统计 7.1试根据公式V a P L l l ??- =∑ε证明,对于非相对论粒子 () 2 222 22212z y x n n n L m m P ++?? ? ??== πε, ( ,2,1,0,,±±=z y x n n n )有V U P 32= 上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。 证明:处在边长为L 的立方体中,非相对论粒子的能量本征值为 () 2222 2,,2212z y x n n n n n n L m m P z y x ++?? ? ??== πε ( ,2,1,0,,±±=z y x n n n )-------(1) 为书写简便,我们将上式简记为3 2 -=aV ε-----------------------(2) 其中V=L 3 是系统的体积,常量() 22 222)2(z y x n n n m a ++= π,并以单一指标l 代表n x ,n y ,n z 三个量子数。 由(2)式可得 V aV V l L εε323235 -=-=??----------------------(3) 代入压强公式,有V U a V V a P l l l L l l 3232 = =??-=∑∑εε----------------------(4) 式中 l l l a U ε ∑= 是系统的能。 上述证明未涉及分布的具体表达式,因此上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。 注:(4)式只适用于粒子仅有平移运动的情形。如果粒子还有其他的自由度,式(4)中的U 仅指平动能。 7.2根据公式V a P L l l ??- =∑ε证明,对于极端相对论粒子 () 2 1 2 222z y x n n n L c cp ++== πε, ,2,1,0,,±±=z y x n n n 有V U P 31= 上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。 证明:处在边长为L 的立方体中,极端相对论粒子的能量本征值为 () 2 1 22 2,,2z y x n n n n n n L c z y x ++= πε, ,2,1,0,,±±=z y x n n n -------(1) 为书写简便,我们将上式简记为3 1-=aV ε-----------------------(2) 其中V=L 3 是系统的体积,常量( ) 2 1 2 2 2 2z y x n n n c a ++= π,并以单一指标l 代表n x ,n y ,n z 三 个量子数。

(完整word版)热力学统计物理_第四版_汪志诚_答案

1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。 解:已知理想气体的物态方程为,pV nRT = 由此易得11 ,p V nR V T pV T α???= == ? ??? 11,V p nR p T pV T β???= == ???? 2111 .T T V nRT V p V p p κ???????=-=--= ? ? ???????? 1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V = αdT κdp -?如果1 1 ,T T p ακ== ,试求物态方程。 解:以, T p 为自变量,物质的物态方程为(),,V V T p = 其全微分为.p T V V dV dT dp T p ?????? =+ ? ??????? (1)全式除以V ,有11.p T dV V V dT dp V V T V p ??????=+ ? ? ??????根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为 .T dV dT dp V ακ=- (2)上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ= -? (3) 若 11,T T p ακ= =,式(3)可表为11ln .V dT dp T p ?? =- ???? (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000 l n =l n l n ,V T p V T p -即000p V pV C T T ==(常量),或.pV CT =(5) 式(5)就是由所给11 ,T T p ακ==求得的物态方程。 确定常量C 需要进一步的实验数据。 1.3 简单固体和液体的体胀系数α和等温压缩系数T κ数值都很小,在一定温度范围内可以把α和T κ看作常量. 试证明简单固体和液体的物态方程可近似为()()000(,),01.T V T p V T T T p ακ=+--???? 解: 以,T p 为状态参量,物质的物态方程为(),.V V T p =根据习题1.2式(2),有 .T dV dT dp V ακ=- (1)将上式沿习题1.2图所示的路线求线积分,在α和T κ可以看作常 量 的 情 形 下 , 有 ()()000 ln ,T V T T p p V ακ=---(2)或 ()()()() 0000,,.T T T p p V T p V T p e ακ---=(3)考虑到α和T κ的数值很小,将指数函数展开, 准确到α和T κ的线性项,有()()()()0000,,1.T V T p V T p T T p p ακ=+---????(4) 如果取00p =,即有()()()00,,01.T V T p V T T T p ακ=+--????(5)

热力学与统计物理答案详解第二章的

第二章 均匀物质的热力学性质 2.1 已知在体积保持不变时,一气体的压强正比于其热力学温度. 试证明在温度保质不变时,该气体的熵随体积而增加. 解:根据题设,气体的压强可表为 (),p f V T = (1) 式中()f V 是体积V 的函数. 由自由能的全微分 dF SdT pdV =-- 得麦氏关系 .T V S p V T ??????= ? ??????? (2) 将式(1)代入,有 ().T V S p p f V V T T ?????? === ? ? ?????? (3) 由于0,0p T >>,故有0T S V ??? > ????. 这意味着,在温度保持不变时,该气体的熵随体积而增加. 2.2 设一物质的物态方程具有以下形式: (),p f V T = 试证明其内能与体积无关. 解:根据题设,物质的物态方程具有以下形式: (),p f V T = (1) 故有 ().V p f V T ???= ???? (2) 但根据式(2.2.7),有 ,T V U p T p V T ?????? =- ? ??????? (3) 所以

()0.T U Tf V p V ???=-= ???? (4) 这就是说,如果物质具有形式为(1)的物态方程,则物质的内能与体积无关,只是温度T 的函数. 2.3 求证: ()0;H S a p ???< ???? ()0.U S b V ??? > ???? 解:焓的全微分为 .dH TdS Vdp =+ (1) 令0dH =,得 0.H S V p T ???=-< ???? (2) 内能的全微分为 .dU TdS pdV =- (3) 令0dU =,得 0.U S p V T ??? => ? ??? (4) 2.4 已知0T U V ??? = ????,求证0.T U p ?? ?= ???? 解:对复合函数 (,)(,(,))U T P U T V T p = (1) 求偏导数,有 .T T T U U V p V p ?????????= ? ? ?????????? (2) 如果0T U V ??? = ????,即有 0.T U p ?? ?= ???? (3) 式(2)也可以用雅可比行列式证明:

热力学统计物理_答案

1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得: ()ln T V =αdT κdp -? 如果11 ,T T p ακ== ,试求物态方程。 解:以,T p 为自变量,物质的物态方程为 (),,V V T p = 其全微分为 .p T V V dV dT dp T p ?????? =+ ? ? ?????? (1) 全式除以V ,有 11.p T dV V V dT dp V V T V p ??????=+ ? ??????? 根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为 .T dV dT dp V ακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有 ()ln .T V dT dp ακ=-? (3) 若1 1,T T p ακ==,式(3)可表为 11ln .V dT dp T p ?? =- ???? (4) 选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体

积由0V 最终变到V ,有 000 ln =ln ln ,V T p V T p - 即 00 p V pV C T T ==(常量) , 或 .p V C T = (5) 式(5)就是由所给11,T T p ακ==求得的物态方程。 确定常量C 需要进一步的实验数据。 1.10 声波在气体中的传播速度为 s p αρ?? ?= ???? 假设气体是理想气体,其定压和定容热容量是常量,试证明气体单位质量的内能u 和焓h 可由声速及γ给出: ()2 1a a u u h h γγγ=+=+-2 , -1 其中00,u h 为常量。 解:根据式(1.8.9),声速a 的平方为 2v,a p γ= (1)

热力学统计物理课后11

第一章 热力学的基本规律 1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数 κT 。 解:已知理想气体的物态方程为 ,pV nRT = (1) 由此易得 11 ,p V nR V T pV T α???= == ? ??? (2) 11 ,V p nR p T pV T β???= == ? ??? (3) 2111 .T T V nRT V p V p p κ???????=-=--= ? ? ???????? (4) 1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得: ()ln T V =αdT κdp -? 如果11 ,T T p ακ== ,试求物态方程。 解:以,T p 为自变量,物质的物态方程为 (),,V V T p = 其全微分为 .p T V V dV dT dp T p ?????? =+ ? ? ?????? (1) 全式除以V ,有 11.p T dV V V dT dp V V T V p ??????=+ ? ???????

根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为 .T dV dT dp V α κ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有 ()ln .T V dT dp ακ=-? (3) 若1 1,T T p ακ==,式(3)可表为 11ln .V dT dp T p ?? =- ???? (4) 选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体 积由0V 最终变到V ,有 000 ln =ln ln ,V T p V T p - 即 000 p V pV C T T ==(常量), 或 .pV CT = (5)

热力学统计物理 课后习题 答案

第七章 玻耳兹曼统计 7.1试根据公式V a P L l l ??- =∑ε证明,对于非相对论粒子 () 2 222 22212z y x n n n L m m P ++?? ? ??== πε,( ,2,1,0,,±±=z y x n n n )有V U P 32= 上述结论对于玻尔兹曼分布,玻色分布与费米分布都成立。 证明:处在边长为L 的立方体中,非相对论粒子的能量本征值为 () 2222 2,,2212z y x n n n n n n L m m P z y x ++?? ? ??== πε ( ,2,1,0,,±±=z y x n n n )-------(1) 为书写简便,我们将上式简记为3 2 -=aV ε-----------------------(2) 其中V=L 3就是系统的体积,常量() 22 22 2)2(z y x n n n m a ++= π,并以单一指标l 代表n x ,n y ,n z 三个量子数。 由(2)式可得 V aV V l L εε323235 -=-=??----------------------(3) 代入压强公式,有V U a V V a P l l l L l l 3232 = =??-=∑∑εε----------------------(4) 式中 l l l a U ε ∑= 就是系统的内能。 上述证明未涉及分布的具体表达式,因此上述结论对于玻尔兹曼分布,玻色分布与费米分布都成立。 注:(4)式只适用于粒子仅有平移运动的情形。如果粒子还有其她的自由度,式(4)中的U 仅指平动内能。 7.2根据公式V a P L l l ??- =∑ε证明,对于极端相对论粒子 () 2 1 2 222z y x n n n L c cp ++== πε, ,2,1,0,,±±=z y x n n n 有V U P 31= 上述结论对于玻尔兹曼分布,玻色分布与费米分布都成立。 证明:处在边长为L 的立方体中,极端相对论粒子的能量本征值为 () 2 1 22 2,,2z y x n n n n n n L c z y x ++= πε, ,2,1,0,,±±=z y x n n n -------(1) 为书写简便,我们将上式简记为3 1-=aV ε-----------------------(2) 其中V=L 3就是系统的体积,常量( ) 2 1 2 222z y x n n n c a ++= π,并以单一指标l 代表n x ,n y ,n z 三个 量子数。

热力学与统计物理论文

负温度状态 姓名:王军帅学号:20105052010 化学化工学院应用化学专业 指导老师:胡付欣职称:教授 摘要:通过分析负温度概念的引入,从理论上证明负温的存在,并论证实验上负温度的实现,在进步分析了负温度系统特征的基础上,引入了种新的温度表示法,使之与人们的习惯致。 关键词:负温度;熵;能量;微观粒 Negative Temperature State Abstract:The concept of negative temperature was introduced Its existence was proved theoretically and its realization in experiment also discussed after analysis of the negative temperature system characteristic,one kind of new temperature express is used in order to consistent with the common express. Key words: negative temperature; entropy; energy; microparticle 引言 温度是热学中非常重要的一个物理量,可以说任何热力学量都与温度有关.描述物体冷热程度的物理量—开尔文温度—一般都是大于零的,由热力学第三定律可知“绝对零度是不可能达到的”,也就是说自然界的低温极限是绝对零度,即-273.16℃.以OK作为坐标原点,通常意义上的温度一般就在原点的右半轴上,其范围就是零到 值总为正。那么有没有负温度呢?左半轴是不是可以用负温度来对应呢?它表示的温度是不是更低呢?此时系统的热力学性质又将会怎么样呢?这些问题激起人们对温度的疑惑与兴趣. 1.负温度概念的引入 通常所说的温度与系统微观粒子的运动状态有关,随着温度的升高,粒子的能量也升高,粒子运动就会越激烈,无序度也会增加:在低温时,高能量粒子的数目总是少于低能量粒子的数目,所以随着温度的升高,高能量粒子数目逐渐增

热力学统计物理答案 第一章

第一章 热力学的基本规律 习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。 解:由得:nRT PV = V n R T P P n R T V == ; 所以, T P nR V T V V P 1 1)(1== ??=α T PV Rn T P P V /1)(1== ??=β P P n R T V P V V T T /11 1)(12=--=??-=κ 习题1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:?-=)(ln dp dT V T κα如果1T α= 1 T p κ= ,试求物态方程。 解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此, dp p V dT T V dV T p )()( ??+??=, 因为T T p p V V T V V )(1,)(1??-=??=κα 所以, dp dT V dV dp V dT V dV T T κακα-=-=, 所以, ?-=dp dT V T καln ,当p T T /1,/1==κα. CT pV p dp T dT V =-=? :,ln 得到 习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和 1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C 。问(1压强 要增加多少n p 才能使铜块体积不变?(2若压强增加100n p ,铜块的体积改多少 解:分别设为V xp n ?;,由定义得: 74410*8.7*10010*85.4;10*858.4----=?=V x T κ 所以,410*07.4,622-=?=V p x n 错

热力学与统计物理

《热力学与统计物理》课程教学大纲 课程英文名称:Thermodynamics and Statistical Physics 课程编号:0312043002 课程计划学时:48 学分:3 课程简介: 《热力学与统计物理》课是物理专业学生的专业基础课,与理论力学、量子力学、电动力学共同构成物理专业重要的四门必修课,通常称为物理专业的四大力学课。热力学和统计物理的任务是研究热运动的规律,研究与热运动有关的物性及宏观物质系统的演化。本课程的作用是使学生掌握热力学与统计物理的基本原理和处理具体问题的一些重要方法,并初步具有用这些方法解决较简单问题的能力。 一、课程教学内容及教学基本要求 第一章热力学的基本规律 本章重点:热力学的基本规律,热力学的三个定律,掌握热力学函数内能、焓、熵、自由能、吉布斯函数的物理意义. 难点:熵增加原理的应用及卡诺循环及其效率。 本章学时:16学时 教学形式:讲授 教具:黑板,粉笔 第一节热力学系统的平衡状态及其描述 本节要求:掌握:系统、外界、子系统,系统的分类,热力学平衡态及其描述。 1系统、外界、子系统(①掌握:系统与外界概念。②了解:界面的分类。③了解:系统与子系统的相对性) 2系统的分类(掌握:孤立系、闭系、开系的概念。) 3热力学平衡态及其描述(①掌握:热力学平衡态概念。②掌握:状态参量的描述及引入。)第二节热平衡定律和温度 本节要求:掌握:热接触与热平衡,热平衡定律、温度、热平衡的传递性,存在态函数温度的数学论证,温度的测量(考核概率50%)。 1热接触与热平衡(①掌握:系统间没有热接触时系统状态参量的变化。②掌握:系统间热接触时系统状态参量的变化。) 2热平衡定律、温度、热平衡的传递性(①掌握:热平衡定律。②掌握:温度的数学论证,温标的确定及分类)(重点) 第三节物态方程

大学热力学统计物理总复习知识点

热力学部分 第一章 热力学的基本规律 1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类 孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统; 开系:与外界既有能量交换又有物质交换的系统。 2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。 3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。 4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此 也处在热平衡. 5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。 6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状 态方程作了修正之后的实际气体的物态方程。 7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。 8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。 9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。绝 热过程中内能U 是一个态函数:A B U U W -= 10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造, 只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式: Q W U U A B +=-;微分形式:W Q U d d d += 11、态函数焓H :pV U H +=,等压过程:V p U H ?+?=?,与热力学第一定律的公 式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。 12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。 13.定压热容比:p p T H C ??? ????=;定容热容比:V V T U C ??? ????= 迈耶公式:nR C C V p =- 14、绝热过程的状态方程:const =γpV ;const =γ TV ;const 1 =-γγT p 。 15、卡诺循环过程由两个等温过程和两个绝热过程组成。正循环为卡诺热机,效率 211T T -=η,逆循环为卡诺制冷机,效率为2 11T T T -=η(只能用于卡诺热机)。 16、热力学第二定律:克劳修斯表述:不可能把热量从低温物体传到高温物体 而不引起其他变化(表明热传导过程是不可逆的); 开尔文(汤姆孙)表述:不可能从单一热源吸收热量使之完全变成有用的功而不引起其 他变化(表明功变热的过程是不可逆的); 另一种开氏表述:第二类永动机不可能造成的。 V p W d d -=

热力学统计物理各章重点总结

第一章 概念 1.系统:孤立系统、闭系、开系 与其他物体既没有物质交换也没有能量交换的系统称为孤立系; 与外界没有物质交换,但有能量交换的系统称为闭系; 与外界既有物质交换,又有能量交换的系统称为开系; 2.平衡态 平衡态的特点:1.系统的各种宏观性质都不随时间变化;2.热力学的平衡状态是一种动的平衡,常称为热动平衡;3.在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落;4.对于非孤立系,可以把系统与外界合起来看做一个复合的孤立系统,根据孤立系统平衡状态的概念推断系统是否处在平衡状态。 3.准静态过程和非准静态过程 准静态过程:进行得非常缓慢的过程,系统在过程汇总经历的每一个状态都可以看做平衡态。 非准静态过程,系统的平衡态受到破坏 4.内能、焓和熵 内能是状态函数。当系统的初态A和终态B给定后,内能之差就有确定值,与系统由A到达B所经历的过程无关; 表示在等压过程中系统从外界吸收的热量等于态函数焓的增加值。这是态函数焓的重要特性 克劳修斯引进态函数熵。定义: 5.热容量:等容热容量和等压热容量及比值

定容热容量: 定压热容量: 6.循环过程和卡诺循环 循环过程(简称循环):如果一系统由某个状态出发,经过任意一系列过程,最后回到原来的状态,这样的过程称为循环过程。系统经历一个循环后,其内能不变。 理想气体卡诺循环是以理想气体为工作物质、由两个等温过程和两个绝热过程构成的可逆循环过程。 7.可逆过程和不可逆过程 不可逆过程:如果一个过程发生后,不论用任何曲折复杂的方法都不可能使它产生的后果完全消除而使一切恢复原状。 可逆过程:如果一个过程发生后,它所产生的后果可以完全消除而令一切恢复原状。 8.自由能:F和G 定义态函数:自由能F,F=U-TS 定义态函数:吉布斯函数G,G=U-TS+PV,可得GA-GB-W1

热力学与统计物理试题及答案

一.选择(25分) 1.下列不是热学状态参量的是( ) A.力学参量 B 。几何参量 C.电流参量 D.化学参量 2.下列关于状态函数的定义正确的是( ) A.系统的吉布斯函数是:G=U-TS+PV B.系统的自由能是:F=U+TS C.系统的焓是:H=U-PV D.系统的熵函数是:S=U/T 3.彼此处于热平衡的两个物体必存在一个共同的物理量,这个物理量就是( ) A.态函数 B.内能 C.温度 D.熵 4.热力学第一定律的数学表达式可写为( ) A.W Q U U A B +=- B.W Q U U B A +=- C.W Q U U A B -=- D.W Q U U B A -=- 5.熵增加原理只适用于( ) A.闭合系统 B.孤立系统 C.均匀系统 D.开放系统 二.填空(25分) 1.孤立系统的熵增加原理可用公式表示为( )。 2.热力学基本微分方程du=( )。

3.热力学第二定律告诉我们,自然界中与热现象有关的实际过程都是()。 4.在S.V不变的情况下,平衡态的()最小。 5.在T.VB不变的情形下,可以利用()作为平衡判据。 三.简答(20分) 1.什么是平衡态?平衡态具有哪些特点? 2.什么是开系,闭系,孤立系? 四.证明(10分) 证明范氏气体的定容热容量只是温度的函数,与比容无关 五.计算(20分) 试求理想气体的体胀系数α,压强系数β,等温压缩系数 T K

参考答案 一.选择 1~5AACAB 二.填空 1. ds≧0 2. Tds-pdv 3. 不可逆的 4. 内能 5. 自由能判据 三.简答 1.一个孤立系统,不论其初态如何复杂,经过足够长的时间后,将会达到这样状态,系统的各种宏观性质在长时间内不发生变化,这样的状态称为热力学平衡态。 特点:不限于孤立系统 弛豫时间 涨落 热动平衡 2.开系:与外界既有物质交换,又有能量交换的系统 闭系:与外界没有物质交换,但有能量交换的系统, 孤立系:与其他物体既没有物质交换也没有能量交换的系统四.证明

热力学与统计物理课后习题答案第一章

试求理想气体的体胀系数,压强系数和等温压缩系数。 解:已知理想气体的物态方程为 (1)由此易得 (2) (3) (4) 证明任何一种具有两个独立参量的物质,其物态方程可由实验测得的体胀系数及等温压缩系数,根据下述积分求得: 如果,试求物态方程。 解:以为自变量,物质的物态方程为 其全微分为 (1)全式除以,有 根据体胀系数和等温压缩系数的定义,可将上式改写为 (2)上式是以为自变量的完整微分,沿一任意的积分路线积分,有 (3)

若,式(3)可表为 (4)选择图示的积分路线,从积分到,再积分到(),相应地体 积由最终变到,有 即 (常量), 或 (5)式(5)就是由所给求得的物态方程。确定常量C需要进一步的实验数据。 在和1下,测得一铜块的体胀系数和等温压缩系数分别为可近似看作常量,今使铜块加热至。问: (a)压强要增加多少才能使铜块的体积维持不变?(b)若压强增加100,铜块的体积改变多少? 解:(a)根据题式(2),有 (1)上式给出,在邻近的两个平衡态,系统的体积差,温度差和压强差之间的关系。如果系统的体积不变,与的关系为 (2)在和可以看作常量的情形下,将式(2)积分可得 (3)将式(2)积分得到式(3)首先意味着,经准静态等容过程后,系统在初态和终态的压强差和温度差满足式(3)。但是应当强调,只要

初态和终态是平衡态,两态间的压强差和温度差就满足式(3)。这是因为,平衡状态的状态参量给定后,状态函数就具有确定值,与系统到达该状态的历史无关。本题讨论的铜块加热的实际过程一般不会是准静态过程。在加热过程中,铜块各处的温度可以不等,铜块与热源可以存在温差等等,但是只要铜块的初态和终态是平衡态,两态的压强和温度差就满足式(3)。 将所给数据代入,可得 因此,将铜块由加热到,要使铜块体积保持不变,压强要增强(b)题式(4)可改写为 (4)将所给数据代入,有 因此,将铜块由加热至,压强由增加,铜块体积将增加原体积的倍。 简单固体和液体的体胀系数和等温压缩系数数值都很小,在一定温度范围内可以把和看作常量. 试证明简单固体和液体的物态方程可近似为 解: 以为状态参量,物质的物态方程为 根据习题式(2),有 (1)将上式沿习题图所示的路线求线积分,在和可以看作常量的情形下,有 (2)或 (3)

关于热力学统计物理各章总结归纳

第一章 1、与其他物体既没有物质交换也没有能量交换的系统称为孤立系; 2、与外界没有物质交换,但有能量交换的系统称为闭系; 3、与外界既有物质交换,又有能量交换的系统称为开系; 4、平衡态的特点:1.系统的各种宏观性质都不随时间变化; 2.热力学的平衡状态是一种动的平衡,常称为热动平衡; 3.在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落; 4.对于非孤立系,可以把系统与外界合起来看做一个复合的孤立系统,根据孤立系统平衡状态的概念推断系统是否处在平衡状态。 5、参量分类:几何参量、力学参量、化学参量、电磁参量 6、温度:宏观上表征物体的冷热程度;微观上表示分子热运动的剧烈程度 7、第零定律:如果物体A和物体B各自与处在同一状态的物体C达到热平衡,若令A与B进行热接触,它们也将处在热平衡,这个经验事实称为热平衡定律 8、t=T-273.5 9、体胀系数、压强系数、等温压缩系数、三者关系 10、理想气体满足:玻意耳定律、焦耳定律、阿氏定律、道尔顿分压

11、准静态过程:进行得非常缓慢的过程,系统在过程汇总经历的每一个状态都可以看做平衡态。 12、广义功 13、热力学第一定律:系统在终态B和初态A的内能之差UB-UA 等于在过程中外界对系统所做的功与系统从外界吸收的热量之和,热力学第一定律就是能量守恒定律. UB-UA=W+Q.能量守恒定律的表述:自然界一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化为另一种形式,从一个物体传递到另一个物体,在传递与转化中能量的数量保持不变。 14、等容过程的热容量;等压过程的热容量;状态函数H;P21 15、焦耳定律:气体的内能只是温度的函数,与体积无关。P23 16、理想气体准静态绝热过程的微分方程P24 17、卡诺循环过程由两个等温过程和两个绝热过程:等温膨胀过程、绝热膨胀过程、等温压缩过程、绝热压缩过程 18、热功转化效率 19、热力学第二定律:1、克氏表述-不可能把热量从低温物体传到高温物体而不引起其他变化;2、开氏表述-不可能从单一热源吸热使之完全变成有用的功而不引起其它变化,第二类永动机不可能造成 20、如果一个过程发生后,不论用任何曲折复杂的方法都不可能把它留下的后果完全消除而使一切恢复原状,这过程称为不可逆过程

热力学统计物理各章总结归纳

热力学统计物理各章总 结归纳 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

第一章 1、 与其他物体既没有物质交换也没有能量交换的系统称为孤立 系; 2、 与外界没有物质交换,但有能量交换的系统称为闭系; 3、 与外界既有物质交换,又有能量交换的系统称为开系; 4、 平衡态的特点:1.系统的各种宏观性质都不随时间变化;2.热力学的平衡状态是一种动的平衡,常称为热动平衡;3.在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落;4.对于非孤立系,可以把系统与外界合起来看做一个复合的孤立系统,根据孤立系统平衡状态的概念推断系统是否处在平衡状态。 5、 参量分类:几何参量、力学参量、化学参量、电磁参量 6、 温度:宏观上表征物体的冷热程度;微观上表示分子热运动的剧烈程度 7、 第零定律:如果物体A 和物体B 各自与处在同一状态的物体C 达到热平衡,若令A 与B 进行热接触,它们也将处在热平衡,这个经验事实称为热平衡定律 8、 t= 9、 体胀系数α=1V ?(?V ?T ?)p 、压强系数β=1p ?(?p ?T ?)v 、等温压缩系数K t =?1V ?(?V ?p ?)T 、三者关系α=k T βp 10、 理想气体满足:玻意耳定律、焦耳定律、阿氏定律、道尔顿分压 11、 准静态过程:进行得非常缓慢的过程,系统在过程汇总经历

的每一个状态都可以看做平衡态。 12、广义功dd=∑d d d d d d 13、热力学第一定律:系统在终态B和初态A的内能之差UB-UA 等于在过程中外界对系统所做的功与系统从外界吸收的热量之和,热力学第一定律就是能量守恒定律. UB-UA=W+Q.能量守恒定律的表述:自然界一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化为另一种形式,从一个物体传递到另一个物体,在传递与转化中能量的数量保持不变。 14、等容过程的热容量;等压过程的热容量;状态函数H;P21 15、焦耳定律:气体的内能只是温度的函数,与体积无关。P23 16、理想气体准静态绝热过程的微分方程P24 17、卡诺循环过程由两个等温过程和两个绝热过程:等温膨胀过程、绝热膨胀过程、等温压缩过程、绝热压缩过程 18、热功转化效率η=1?T2/T1 19、热力学第二定律:1、克氏表述-不可能把热量从低温物体传到高温物体而不引起其他变化;2、开氏表述-不可能从单一热源吸热使之完全变成有用的功而不引起其它变化,第二类永动机不可能造成20、如果一个过程发生后,不论用任何曲折复杂的方法都不可能把它留下的后果完全消除而使一切恢复原状,这过程称为不可逆过程21、如果一个过程发生后,它所产生的影响可以完全消除而令一切恢复原状,则为可逆过程 22、卡诺定理:所有工作于两个一定温度之间的热机,以可逆机

热力学统计物理(A参考答案)

宝鸡文理学院试题 课程名称中学物理教育理论 适用时间2011年7月与实践研究 试卷类别 A 适用专业、年级、班专升本 一. 填空题(本题共7 题,每空3 分,总共21 分) 1. 假设一物质的体涨系数和等温压缩系数经过实验测得为:,则该物质的物态方程为:。 2. 1 mol 理想气体,保持在室温下(K)等温压缩,其压强从1 准静态变为10 ,则气体在该过程所放出的热量为:焦耳。 3. 计算机的最底层结构是由一些数字逻辑门构成的,比如说逻辑与门,有两个输入,一个输出,请从统计物理的角度估算,这样的一个逻辑与门,室温下(K)在完成一次计算后,产生的热量是:焦耳。 4. 已知巨热力学势的定义为,这里是系统的自由能,是系统的粒子数,是一个粒子的化学势,则巨热力学势的全微分为:。 5. 已知粒子遵从经典玻耳兹曼分布,其能量表达式为,其中是常数,则粒子的平均能量为:。 6. 温度时,粒子热运动的热波长可以估算为:。 7. 正则分布给出了具有确定的粒子数、体积、温度的系统的分布函数。假设系统的配分函数为,微观状态的能量为,则处在微观状态上的概率为:。 二. 简答题(本题共3 题,总共30 分) 1. 请从微观和统计物理的角度解释:热平衡辐射的吉布斯函数为零的原因。(10分) 2. 请说说你对玻耳兹曼分布的理解。(10分) 3. 等概率原理以及在统计物理学中的地位。(10分) 三. 计算题(本题共4 题,总共49 分) 1. 一均匀杆的长度为L,单位长度的定压热容量为,在初态时左端温度为T1,右端温度为T2,T1 < T2,从左到右端温度成比例逐渐升高,考虑杆为封闭系统,请计算杆达到均匀温度分布后杆的熵增。(你可能要用到的积分公式为)(10分) 2. 设一物质的物态方程具有以下形式:,试证明其内能和体积无关。(10分) 3. 表面活性物质的分子在液面上作二维自由运动,可以看作是二维气体。请用经典统计理论计算: (1)二维气体分子的速度分布和速率分布。(9分) (2)二维气体分子的最概然速率。(4分) 4. (1)证明,在二维情况下,对于非相对论粒子,压强和内能的关系为: 这里,是面积。这个结论对于玻尔兹曼分布、玻色分布和费米分布都是成立的。(8分)(2)假设自由电子在二维平面上运动,电子运动为非相对论性的,面密度为,试求: 0 K 时电子气体的费米能量、内能和简并压强。(8分)

热力学_统计物理答案第一章

第一章热力学的基本规律 习题1.2试证明任何一种具有两个独立参量的物质 T, p ,其物态方程可由实验测 得的体胀系数 及等温压缩系数 T ,根据下述积分求得:l nV 1 T —,试求物态方程。 p 7.8*10 7 p n 1 , , T 可近似看作常量,今使铜块加热至 要增加多少P n 才能使铜块体积不变?( 2若压强增加100P 解:分别设为Xp n ; V ,由定义得: 4 4 7 x T 4.858*10 ; V 4.85* 10 100* 7.8*10 所以,x 622p n , V 4.07*10 4 习题1.1试求理想气体的体胀系数,压强系数 和等温压缩系数 解:由PV nRT 得: 所以, n RT 门 V ; P P 1 nRT V V 1 nR 、—)P V 1 T T j ( V P ) 空 )V PV V )T In R T J 1/P V P 2 1/T (dT T dp) 如 解: 因为 f(T,V,p) 0,所以,我们可写成V V(T, p),由此, dV (- T ) p dT ( p )T dp , 因为 所以, dV V dT V T dP' V dT 所以, InV dT T dp , 当 1/T, InV dT 並,得到: pV C 1 V' T V )P , 习题 1.3 测得一块铜块的体胀系数和等温压缩系数分别为 4.85* 10 5K 1 和 10° 0问(1压强 ,铜块的体积改多少 P T dp T 1/ p.

习题1.4描述金属丝的几何参量是长度 L ,力学参量是张力 ,物态方程是 f ( ,L,T ) 0实验通常在1p n 下进行,其体积变化可忽略。线胀系数定义为 1(丄)等杨氏摸量定义为Y -( )T 其中A 是金属丝的截面积,一般说 L T A L 来, 和Y 是T 的函数,对 仅有微弱的依赖关系,如果温度变化范不大,可看 作常数。假设金属丝两端固定。试证明,当温度由 T i 降T 2时,其张力的增加为 YA (T 2 T i ) f( , L,T) 0, L L( ,T) L L L ( ) ;dL d L dT T AY pl dL 0;所以,—— dT,d AY dT AY 所以, YA (T 2 T i ) 习题1.7在25 C 下,压强在0至1000 p n 之间,测得水的体积 V (18.066 0.715 10 3p 0.046 10 6 p 2)cm 3mol 1 如果保持温度不变,将 1mol 的水从1 P 加压至1000 p n ,求外界所做的功 解:外界对水做功: p W Vdp P 0 1000P n (18.066 0.715 10 3 P 33.1J 错 习题1.8解:外界所作的功: 解: 所以, dL (丄)T d (+) dT (丄)T ;(丄)T L AY 4.6 10 8 1 p 3)dp

相关文档
相关文档 最新文档