文档库 最新最全的文档下载
当前位置:文档库 › 使用NMOS场效应管的白光烙铁控制电路

使用NMOS场效应管的白光烙铁控制电路

使用NMOS场效应管的白光烙铁控制电路
使用NMOS场效应管的白光烙铁控制电路

使用NMOS场效应管的白光烙铁控制电路原理简介:U1B组成一个单稳态电路,时间由R4和C3决定。上电时,6脚为低电平,7脚输出高电平,通过9013使MOS管导通,烙铁芯通电升温。MOS导通时,电源电压通过R1加在LM358的3脚上,由于D1的限压,3脚得到约0.7V的电压,远大于2脚上毫伏级电压,使1脚输出高电平。零点几秒后,C3充满,7脚输出低电平,MOS断开,这时热电偶产生的电压通过R1加在LM358的3脚上,U1A接成比较器,比较烙铁芯的热电偶电压和控制电压的大小(对应200~350℃的温度,T12的电压范围应该在5.x mV至10 mV之间,电路通过VR、R2、R3提供同样范围的电压给2脚以供比较)。3脚电压小于2脚时,1脚输出低电平,C3通过U1A、D2放电,MOS管导通,烙铁芯继续加热;反之则停止加热。调整VR1就可以调整烙铁芯的温度。

如果您用的元件参数有点“离散”,那么有可能无论电位器怎么调,R3(22Ω)上的电压都超出了这个范围,导致后面的单稳电路状态无法翻转,那么T12只在刚上电的那一下有电压,之后就一直保持无工作电压了。您可观察LED,是否只在上电时亮了一下后面就不再亮了?如果是,请量一下电位器调到最大时,358的2脚上电压是多少mV(普通数字表的200mV档测就行)?一般只要调整一下R3和R2的取值,或者调一下431的输出电压,就能够正常工作了。

最好是能让电位器调到最小时约400度左右(大约是12mV以下),电位器最

大时温度约180度左右(约5mV)。

计算如下,要求电压在Vmin=5.X,Vmax=10mV,Vr电位器,稳压输出是V,那么R2=Vmin×Vr/(Vmax-Vmin),R3=R2×Vmax/V。

计算得出R2、R3的值后,取相近的阻值,再验算。Vmax=V/(R2+R3)×R3,Vmin=(Vr+R2+R3)×R3。

对于T12的热电耦,11mV以上的电压对应的是4~500℃的高温了,即使能烧到这温度,T12也很快会“玩完”,而且我们平时也不需要这样的温度。最理想的是电位器的整个调节行程对应的就是你平时用到的温度范围。

“开环”调试:将运放3脚到输出端的线断开,加一个多圈电位器,可调端接3脚,上接电源下接地,通过调节3脚电压,使它低于2脚,看此时电路是否工作在加热状态,反之调到高于2脚电压时,电路应该不加热。如果电路的工作状态不对,换358试试看。

Q:用万用表测烙铁头温度始终400度左右,灯常亮,358的2脚调电位器,电压在5.2mV~10mV变化,3脚电压0.3V左右,调电位器不变。

A:首先请您试试将T12的两脚对调,看看是否正常了。因为热电耦是有极性的,接反了会导致控制器一直加热不停。

3脚是T12中热电耦反馈回来的电压,如果您T12始终保持在一个温度,那么这个电压也应该是一个稳定的值,但是对“地”电压应该在5到10mV的范围才对。3脚的0.3V您是在T12通电加热期间测的吧,此时测到的0.3V应该是D1(4148)的正向压降。请在T12烧热以后,断电马上测量358的3脚电压,应该在5到15mV的范围之内,不应该有0.3V这么高的。

加电,在指示灯常亮的状态下,测量358的5脚、6脚电压,5脚应该为稳压块输出电压的一半左右,6脚应该接近稳压块的输出电压。如果5脚电压不正常,请检查R5/R6的阻值是否正确,如果是6脚电压不正常,可能是C3(105)电容漏电,试更换看看。如果5、6脚电压均正常,那就是358里的U1B坏了,换358试试。

要想达到PMOS的效果,就必须提高NMOS场管的G极电压。NMOS管的G极电压应该比电源电压高7 ~12V。根据这个想法,实际搭焊了两个电路,

证明使用NMOS是可行的,场管上的压降很小,在1.5A的电流下约0.1V,不加散热片,场管几乎感觉不到温升。使用NMOS场管的缺点是要增加一些零件,电路略微复杂,不如使用PMOS场管简单。

对于使用普通30W变压器作为电源的朋友,电路相对简单些,所增加的零件不多,只有8个零件,完全可以在原来电路板旁搭焊连接。

使用笔记本电源,上面的电路就不适合,需要增加一个自举升压电路。升压电路有多种形式,只要把电源电压提升10V左右,即可满足电路需要。

这个电路使用两只三极管,组成互补振荡升压电路。

实验时使用100μH~2.2mH,均可正常工作。

Q:上面图的Q4和下面图的Q6当稳压管用?

A:自举电路中的三极管反向使用,用来代替稳压二极管。小功率硅管eb 结的反向击穿电压一般在7 ~ 9V间,性能稳定,不用挑选,使用方便。

如果身边没有合适的电感,也可以用报废节能灯里面的小磁环,自己绕一个升压变压器,用0.1 ~ 0.3mm的漆包线穿绕,或者用细导线也可。

LED2作为电源指示,同时给升压电路供电。

不用电感,用自举升压方式,我没有实验,先画了个草图,感兴趣的朋友可以试验下。

看到有朋友用NMOS代换PMOS做白光烙铁的控制电路,原升压部分需要使用

电感,特地把我以前用在直流电机H桥驱动器里面的自举升压电路发上来,供大

家参考:

图中是555供电跟主电源分开的情况,对于白光烙铁来说,只要供电电源不超过555的极限值就可以直接将+12V 跟VDD 端连接起来,在Vout 端就可以得到高过VDD 近一倍的电压,驱动NMOS 是绝对没有问题的。

分析一下NMOS 白光的自举部分。

https://www.wendangku.net/doc/893819439.html,/viewthread.php?tid=3547&extra=page%3D1

当Q1导通时,R1、R2、D1、D2导通,同时对C1充电。

当Q1截止时,由于C1上还有电,而且对于D1、D2都是反偏,只要不高于击穿电压,D1、D2就不导通。同时C1上的电压通过R1、R2和VCC 叠加,完成自举。

如果C1所存电压低于D1击穿压,输出就是VCC 和C1的电压叠加。

这是在手谈发布的关于NMOS白光的原理图

图中黄色背景部分就是自举部分。

当C1所存电压高于D1击穿压,C1将通过D1放电,这时R1充当了限流电阻。由于D1阳极电位为VCC,于是输出电压就是VCC和D1击穿电压的叠加。

一个传统的自举电路,可以对比分析一下。

C1充的电是下正上负,那么在Q2截止时,C1通过

RL的下端接地了,C1上端电压反反而要变负,自举达

到了不过是反作用,这个电路只适用N沟道的管子。

R0/R1,取值改为10K(原理图中为12K)

电位器应该1-10K的都可以

适合NMos、PMos的新版白光烙铁控制器

https://www.wendangku.net/doc/893819439.html,/read.php?tid=256787

https://www.wendangku.net/doc/893819439.html,/viewthread.php?tid=4288&extra=page%3D10

以下是对“新版NPmos白光烙铁控制器”套件的说明。

1、NMOS大家都喜欢自己从旧主板上“找”!减少费用开支,这是白菜的主要基础嘛

2、这个版本的电位器可以在1-50k以内任选.(在1-50k范围内阻值变化不会影响温度控制范围)

3、本版本不会受手机干扰,(保守一些,1-3mm以外应该很安全),结合*鸟不飞兄弟的最新研究发现,兄弟们可以从根本上解决这个问题!在D1二极管串入30-60k电阻一个。由于PCB已经做好,这个电阻我送大家了,综合考虑一下选用了51K电阻,喜欢自己DIY的可以加上,彻底不怕干扰了!

4、兄弟是高手或者不想需要保护,就可以不安装自恢复保险丝和Q3,R18,R19,短接保险丝焊盘既可。

5、除nmos,pmos以外,电路图中的关键人物是Q2!大家记住!如果兄弟打算安装Nmos,那就把Q2也安装上,如果兄弟打算安装Pmos,那就不安装Q2!其它阻容二极管装不装都可以,建议都装上,防止丢失。

6、方便大家,mos部分可以兼容NPmos的2种封装,这2种封装主板上面比较常见,大家都可以找到类似的mos,总之你有什么mos都可以兼容!(sop-8或者to252)

7、贴片尺寸是:17*30mm,直插尺寸是:30*40mm,

8、大致调试:焊接完工,初步检查一下,在不接入白光头和电位器的情况下,可以送12-24V电源试试,正常的情况是橙灯闪一下,变绿灯,此时说明电路基本成功了,进一步接入白光头和电位器,加电,应该是橙灯亮的时间较长一些(10-20秒)逐步闪烁,在橙灯和绿灯之间变化,最后的闪烁间隙应该较长,调整电位器应能感觉到橙灯随之变化,说明基本成功啦!

错误:

1、R5电阻22改为10欧姆

2、R16R17R18电阻22k改为3k

3、二极管4007改为4148

4、PCB板子D1和D4方向标错,对调,具体看照片

5、直插PCB板子的C1和C3改为1uf电解电容器,兄弟们安装时注意极性

简要说明

1、保护部分:

2、保护电路包含1.5A自恢复保险丝和Q3和R19R20;如果兄弟不需要保护,这几个元件可以不安装

3、Nmos部分:

电路图中红色部分,如果兄弟是Pmos,这部分也可以不安装!

Pmos部分:

其实就是原电路,不能不安装,在Pmos时,不能安装Q2!

4、这个板子最大的特点就是mos部分的pcb设计,大家在安装mos时一定要注意一点,具体看图中说明!贴片PCB板子可以兼容NPmos的sop-8或者to252

5、为了方便大家自备电位器,采用这种调温电路,电位器的阻值可以在1--50k 选用,使用效果基本一样!

6、由于本电路加了保护,对于新手和比较马大哈的兄弟们来说,是有一定的作用滴!不要再怕烙铁线短路了

7、pcb板子可以安装共阴发光二极管或者单RG二极管

LED显示:(以共阴RG为例)

1、绿灯亮=电源指示

2、橙灯亮=温控加热

3、红灯亮=mos保护

https://www.wendangku.net/doc/893819439.html,/read.php?tid=232965

此控制器使用的器件除了NMOS外,全部是直插件,并且是卧式设计。电阻是按1/16W设计的。

图中蓝色标记参数的元件可以不装,也不会有什么问题。而且最左边的那只0.1u的电容是最好不装了,因为此电容会对T12的关闭时间影响比较大。8050的下拉电阻也应该可以不装,LM358输出低电平的时候好象是有下拉作用的。

电位器的分压阻值改为300K和1K,原因是我手上这些电阻好找些,而且我喜欢大范围的调整。0-20mV 的调整范围对应的T12温度是0-500度C左右了。

我手上的NMOS是拆电脑主板上的,贴片方式安装,焊在图中的NMOS位置即可。

按:上面这个印板的自举升压电路不对?好像要个12V稳压管

手电论坛看到N-MOS白光控制器的电路图

自激振荡开关电源

自激振荡(RCC)开关电源 中山市技师学院 一、概述 目前市场上销售的手机充电器,从电路结构和充电方式上可分为两大类:第一类是“机充式”充电器,另一类是“直充式”充电器(也叫座充)。所谓“机充式”充电器,就是电源进入手机后由充电管理IC 控制预充电、恒流充电、恒压充电、电池状态检测、温度监控、充电结束低泄漏、充电状态指示等(比SL1051、BQ241010/2/3等),输出电压一般在5.5~6.5V;而“直充式”充电器也叫万能充电器,直接对电池充电,由于锂电池(充)满电压为4.2V,所以这类充电器输出电压一定要稍小或等于4.2V。 手机充电器输出功率都比较小,一般在5W以下,国内厂商生产的充电器1更是小到2-3W。为了节约成本,国内许多厂商都采用RCC(Ringing Chock Converter)开关电源设计方案。RCC设计方案理论技术成熟、电路结构简单、元器件常见、成本低廉,所以深受国内厂商青睐。然而,读者可能耳闻目睹许多充电器质量事故频频发生,原因不是产品原理有问题,而是制造厂家为了追求利润使用了质量较差元件或二次回收元件造成的;更有甚者部分厂商为了能在激烈的市场竞争环境下生存,不得不使出最下策——只要能输出电压,尽其所能地节省元件! 另外,国内厂商生产的充电器初、次级通常没有设计光藕(反馈),因此输出电压很难控制,负载能力较差,空载时输出电压偏高,带上负载后电压才正常。从目前市场上流通的充电器来看,成本基本在2-3元之间。国外知名公司出于市场定位和维护自身品牌形象考量,一般采用集成电路设计方案,电路结构完善、生产用料考究、产品可靠性高,成本通常是国内厂商的3-5倍,质量当然要好。 由于手机充电器输出功率较小(对电网干扰小)、产品受体积所限(消费者审美要求和拼比心理把厂家“逼上梁山”),无论国内厂商还是国外知名公司出品的手机充电器,输入侧电源滤波器(与EMC测试有关的元器件)都一概省去,部分国内厂商更是把“热地”与“冷地”之间的安规电容(Y电容)也节省掉了,所以,几乎没有任何一个厂家的手机充电器能通过EMC测试。既然通不过EMC测试,依照中国法律就不能销售,因此厂家就打“擦边球”,把充电器定位为赠品,国家对电器赠品并没有强制安规要求。再则,质量认证部门考虑到手机充电器输出功率小、对电网干扰小,在对手机作认证时对充电器“睁一只眼、闭一只眼”,于是,不符合国家标准的手机充电器就堂而皇之地进入市场了。当然,对于用户来说这些元器件的存在与否与充电的电性能几无关系,并不会影响消费者正常使用,只是与国家标准要求不符而已! RCC充电器电路结构简单,工作频率由输入电压与输出电流(自适应)改变,控制方式为频率调制(PFM),工作频率较高,如图1是RCC充电器原理框图。 1由于许多国外知名公司的手机充电几乎都由国内厂商代工,所以该处应理解为国内厂商生产的自主品牌的内销充电器,下同。

场效应管功放

场效应管功放 场效应管功放以其温暖、甜润、松软而被发烧友推崇备至,然而,由于其输出电阻大、承受电流小而低频疲软、推力不足的毛病却挥之不去,如很多对管并联虽然改善了低频,但一方面造价成倍增长,二方面场效应管的配对在业内也是个难题。如金嗓子A-100每声道采用10对场效应管并联输出,虽然声音堪称完美,但其价格之高,也仅仅成为了一台概念机、形象机。 90年代末,一种新型的mos管诞生了,这就是被称为超大电流场效应管的UHC-mos,这种mos管的单管输出电流达30A以上,输出电阻约50毫欧以下。首先在天龙PMA-S1功放上使用,一经推出就好评如潮,发烧友称赞其高音的透明度高得惊人,低频强劲有力。而当时这种器件即便在日本本国也很难购买得到,而在国内就更加无法目睹其芳容了。天龙功放亦将其功放管的型号磨去、煞有其事的打上自己编制的型号,就更让人觉得高深莫测了。 然而,十几年过去了,当年高深莫测的UHC-mos而今已成了大路货,如2sk851、2sk2967等新的10多元一个、而拆机的才2、3元一个,已经沦落到白菜价的水平了,真的是此一时、彼一时啊。 为圆笔者一直的梦想,笔者踏破铁鞋,参阅众多电路,发现的确这种器件的成品电路不仅少,而且多有错漏,只得自己设计电路制作。为方便起见,用何庆华音乐传真E-10功放板改装而来。这是原电路 这是改的电路

下面接着有 这是制作完成图。 调试,通电后先检查输出端直流电位在10mv以下。将可变电阻调到最大,再逐步调小,让发射极0.22欧电阻电压为5mV左右,这时每管电流约25ma即可。再检查中点电位在10mv以下即可开声。声音评价: 机器一开声就有一种让人振奋的感觉,高音透明度极高,音场开阔、堂音丰富。人声极为亲切感人,而低频结实有力,硬度十足。花费才20元不到,而声音却提高了几个档次,内心激动啊。 主观感觉,音乐味、细腻度比日立、东芝场效应管有过之而无不及,特别是透明度高,而低音的力度比东芝管结实的多,和三肯管比感觉霸气少了点,但量感大,硬度足,控制力好。一对管可比美3、4对并联的效果。 这种管子看上去其貌不扬,但声音的确有惊人的表现,我买的k851是拆机的,开启电压在3.2V左右,2.5元一个。4个才10元,加上几个电阻,总成本不到20元。却享受到高级机种才有的效果,比我自己制作的所有功放以及家里的5000千多元的nad、sony功放都要好。 拆机的管子没有做配对工作,由于静态电流只有20ma已经很好声,目前室温15度,散热器即便在很大音量基本感觉不到热量。只有简单的温度补偿,暂时没感觉到问题。夏天温度可能高些,准备把温补管和大管固定在一起,只要不把静态电流调的很大,应该没问题。 已经准备好了秘密武器,三肯专用温度补偿管,放大倍数1500倍。 天龙DENON PMA-2000的电路 G极电阻原则上是越小越好,但场管电路太小容易自激,我选120欧很稳定,100欧应该也可以此功放电压放大部分采用两级差分电路、末级则为准互补输出,最大限度保持了偶次谐波因此极具

场效应管放大器实验报告

实验六场效应管放大器 一、实验目的 1、了解结型场效应管的性能和特点 2、进一步熟悉放大器动态参数的测试方法 二、实验仪器 1、双踪示波器 2、万用表 3、信号发生器 三、实验原理 实验电路如下图所示: 图6-1

场效应管是一种电压控制型器件。按结构可分为结型和绝缘栅型两种类型。由于场效应管栅源之间处于绝缘或反向偏置,所以输入电阻很高(一般可达上百兆欧)又由于场效应管是一种多数载流子控制器件,因此热稳定性好,抗辐射能力强,噪声系数小。加之制造工艺较简单,便于大规模集成,因此得到越来越广泛的应用。 1、结型场效应管的特性和参数 场效应管的特性主要有输出特性和转移特性。图6-2所示为N沟道结 图6-2 3DJ6F的输出特性和转移特性曲线 型场效应管3DJ6F的输出特性和转移特性曲线。其直流参数主要有饱和漏极电 流I DSS ,夹断电压U P 等;交流参数主要有低频跨导 常数 U △U △I g DS GS D m = = 表6-1列出了3DJ6F的典型参数值及测试条件。 表6-1 参数名称饱和漏极电流 I DSS (mA) 夹断电压 U P (V) 跨导 g m (μA/V) 测试条件U DS =10V U GS =0V U DS =10V I DS =50μA U DS =10V I DS =3mA f=1KHz 参数值1~3.5 <|-9|>100

2、场效应管放大器性能分析 图6-1为结型场效应管组成的共源级放大电路。其静态工作点 2 P GS DSS D )U U (1I I - = 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D 式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U (1U 2I g P GS P DSS m -- = 计算。但要注意,计算时U GS 要用静态工作点处之数值。 3、输入电阻的测量方法 场效应管放大器的静态工作点、电压放大倍数和输出电阻的测量方法,与实验二中晶体管放大器的测量方法相同。其输入电阻的测量,从原理上讲,也可采用实验二中所述方法,但由于场效应管的R i 比较大,如直接测输入电压U S 和U i ,则限于测量仪器的输入电阻有限,必然会带来较大的误差。因此为了减小误差,常利用被测放大器的隔离作用,通过测量输出电压U O 来计算输入电阻。测量电路如图3-3所示。 图3-3 输入电阻测量电路 在放大器的输入端串入电阻R ,把开关K 掷向位置1(即使R =0),测量放大器的输出电压U 01=A V U S ;保持U S 不变,再把K 掷向2(即接入R ),测量放大器的输出电压U 02。由于两次测量中A V 和U S 保持不变,故 S D DD g2 g1g1 S G GS R I U R R R U U U -+= -=

场效应管在开关电路中的应用

场效应管在开关电路中的应用 场效应管在mpn中,它的长相和我们前面讲的三极管极像,所以有不少修mpn的朋友好长时间还分不清楚,统一的把这些长相相同的三极管、场效应管、双二极管、还有各种稳压IC统统称作“三个脚的管管”,呵呵,如果这样麻木不分的话,你的维修技术恐怕很难快速提高的哦! 好了,说到这里场效应管的长相恐怕我就不用贴图了,在电路图中它常用 表示,关于它的构造原理由于比较抽象,我们是通俗化讲它的使用,所以不去多讲,由于根据使用的场合要求不同做出来的种类繁多,特性也都不尽相同;我们在mpn 中常用的一般是作为电源供电的电控之开关使用,所以需要通过电流比较大,所以是使用的比较特殊的一种制造方法做出来了增强型的场效应管(MOS型),它的电路图符号: 仔细看看你会发现,这两个图似乎有差别,对了,这实际上是两种不同的增强型场效应管,第一个那个叫N沟道增强型场效应管,第二个那个叫P沟道增强型场效应管,它们的的作用是刚好相反的。前面说过,场效应管是用电控制的开关,那么我们就先讲一下怎么使用它来当开关的,从图中我们可以看到它也像三极管一样有三个脚,这三个脚分别叫做栅极(G)、源极(S)和漏极(D),mpn中的贴片元件示意图是这

个样子: 1脚就是栅极,这个栅极就是控制极,在栅极加上电压和不加上电压来控制2脚和3脚的相通与不相通,N沟道的,在栅极加上电压2脚和3脚就通电了,去掉电压就关断了,而P沟道的刚好相反,在栅极加上电压就关断(高电位),去掉电压(低电位)就相通了! 我们常见的2606主控电路图中的电源开机电路中经常遇到的就是P沟道MOS管: 这个图中的SI2305就是P沟道MOS管,由于有很多朋友对于检查这一部分的故障很茫然,所以在这里很有必要讲一下它的工作原理,来加深一下你的印象! 图中电池的正电通过开关S1接到场效应管Q1的2脚源极,由于Q1是一个P沟道管,它的1脚栅极通过R20电阻提供一个正电位电压,所以不能通电,电压不能继续通过,3v稳压IC输入脚得不到电压所以就不能工作不开机!这时,如果我们按下SW1开机按键时,正电通过按键、R11、R23、D4加到三极管Q2的基极,三极管Q2的基极得到一个正电位,三极管导通(前面讲到三极管的时候已经讲过),由于三极管的发射极直接接地,三极管Q2导通就相当于Q1的栅极直接接地,加在它上面的通过R20电阻的

场效应管特性及单端甲类功放制作全过程

场效应管特性及单端甲类功放制作全过程 场效应管控制工作电流的原理与普通晶体管完全不一样,要比普通晶体管简单得多,场效应管只是单纯地利用外加的输入信号以改变半导体的电阻,实际上是改变工作电流流通的通道大小,而晶体管是利用加在发射结上的信号电压以改变流经发射结的结电流,还包括少数载流子渡越基区后进入集电区等极为复杂的作用过程。场效应管的独特而简单的作用原理赋予了场效应管许多优良的性能,它向使用者散发出诱人的光辉。 场效应管不仅兼有普通晶体管和电子管的优点,而且还具备两者所缺少的优点。场效应管具有双向对称性,即场效应管的源极和漏极是可以互换的(无阻尼),一般的晶体管是不容易做到这一点的,电子管是根本不可能达到这一点。所谓双向对称性,对普通晶体管来说,就是发射极和集电极互换,对电子管来说,就是将阴极和阳极互换。 一、场效应管的特性 场效应管与普通晶体管相比具有输入阻抗高、噪声系数小、热稳定性好、动态范围大等优点。它是一种压控器件,有与电子管相似的传输特性,因而在高保真音响设备和集成电路中得到了广泛的应用,其特点有以下一些。 高输入阻抗容易驱动,输入阻抗随频率的变化比较小。输入结电容小(反馈电容),输出端负载的变化对输入端影响小,驱动负载能力强,电源利用率高。 场效应管的噪声是非常低的,噪声系数可以做到1dB以下,现在大部分的场效应管的噪声系数为0.5dB左右,这是一般晶体管和电子管难以达到的。 场效应管具有更好的热稳定性和较大的动态范围。 场效应管的输出为输入的2次幂函数,失真度低于晶体管,比胆管略大一些。场效应管的失真多为偶次谐波失真,听感好,高中低频能量分配适当,声音有密度感,低频潜得较深,音场较稳,透明感适中,层次感、解析力和定位感均有较好表现,具有良好的声场空间描绘能力,对音乐细节有很好表现。 普通晶体管在工作时,由于输入端(发射结)加的是正向偏压,因此输入电阻是很低的,场效应管的输入端(栅极与源极之间)工作时可以施加负偏压即反向偏压,也可以加正向偏压,因此增加了电路设计的变通性和多样性。通常在加反向偏压时,它的输入电阻更高,高达100MΩ以上,场效应管的这一特性弥补了普通晶体管及电子管在某些方面应用的不足。 场效应管的防辐射能力比普通晶体管提高10倍左右。 转换速率快,高频特性好。 场效应管的电压与电流特性曲线与五极电子管输出特性曲线十分相似。 场效应管的品种较多,大体上可分为结型场效应管和绝缘栅场效应管两类,且都有N型沟道(电流通道)和P型沟道两种,每种又有增强型和耗尽型共四类。 绝缘栅场效应管又称金属(M)氧化物(O)半导体(S)场效应管,简称MOS管。按其内部结构又可分为一般MOS管和VMOS管两种,每种又有N型沟道和P型沟道两种、增强型和耗尽型四类。 VMOS场效应管,其全称为V型槽MOS场效应管,是在一般MOS场效应管的基础上发展起来的新型高效功率开关器件。它不仅继承了MOS场效应管输入阻抗高(大于100MΩ)、驱动电流小(0.1uA左右),还具有耐压高(最高1200V)、工作电流大(1.5~100A)、输出功率高(1~250W)、跨导线性好、开关速度快等优良特性。目前已在高速开关、电压放大(电压放大倍数可达数千倍)、射频功放、开关电源和逆变器等电路中得到了广泛应用。由于它兼有电子管和晶体管的优点,用它制作的高保真音频功放,音质温暖甜润而又不失力度,备受

自激振荡的产生和消除

运放震荡自激原因及解决办法 分类:信号完整性运放2011-07-10 21:10 10663人阅读评论(0) 收藏举报360工作测试网络 闭环增益G=A/(1+FA)。其中A为开环增益,F为反馈系数,AF为环路增益 A(开环增益) = Xo/Xi F(反馈系数)=Xf/Xo 运放震荡自激的原因: 1、环路增益大于1 (|AF|》1) 2、反馈前后信号的相位差在360度以上,也就是能够形成正反馈。 参考《自控原理》和《基于运算放大器和模拟集成电路的电路设计》

在负反馈电路时,反馈系数F越小越可能不产生自激震荡。换句话说,F越大(即反馈量越大),产生自激震荡的可能性越大。对于电阻反馈网络,F的最大值是1。如果一个放大电路在F=1时没有产生自激振荡,那么对于其他的电阻反馈电路也不会产生自激振荡。F=1的典型电路就是电压跟随电路。所以在工作中,常常将运放接成跟随器的形式进行测试,若无自激再接入实际电路中 自激振荡的引起,主要是因为集成运算放大器内部是由多级直流放大器所组成,由于每级放大器的输出及后一级放大器的输入都存在输出阻抗和输入阻抗及分布电容,这样在级间都存在R-C相移网络,当信号每通过一级R-C网络后,就要产生一个附加相移.此外,在运放的外部偏置电阻和运放输入电容,运放输出电阻和容性负载反馈电容,以及多级运放通过电 源的公共内阻,甚至电源线上的分布电感,接地不良等耦合,都可形成附加相移.结果,运放输 出的信号,通过负反馈回路再叠加增到180度的附加相移,且若反馈量足够大,终将使负反馈转变成正反馈,从而引起振荡. 重要的概念 相位裕度---如下图所示,显然我们比较关心当20lg|AF|=0时,相位偏移是否超过180

运算放大电路可能遇到自激振荡和阻塞现象解决办法

运算放大电路 1.运放的阻塞现象和自激振荡及它们消除措施电路图 集成运放出现阻塞现象时,放大电路将失往放大能力,相当于信号被运放阻断一样。例如电压跟随器就常发生阻塞现象,这是由于跟随器的输进、输出电压幅度相等,其输进信号的幅度一般较大(跟随器作为输出级时),假如运放输进级偏置电压不大于输进信号的峰一峰值,则输进级在输进信号峰值时会变为饱和状态,当出现饱和时,输进、输出电压变为同相,负反馈就变为正反馈。显然,正反馈将导致输进级一直处于饱和状态,输进信号将不能正常输出,这就造成了阻塞现象。 为了进一步说明阻塞现象的成因,举例如下:图(a)为晶体管输进型运放的输进级电路,现假定共模输进电压范围小于+8V,并假定输出信号的电压振幅为+14V。若运放接成电压跟随器,参见图(b),现有一个大于8V的信号加于同相输进端(对应③脚),当输进信号处于正半周时,输出电压V o也为正值,这个电压V o经反馈加在输进差动放大电路Q2的基极,此时Q2将处于饱和导通状态(集电结处于正向偏置),因此+Vs通过Q2的集电极电阻直接加在运放的输出端,使运放出现阻塞现象。一旦发生阻塞,只能采用切断电源的方法来破坏正反馈。即为恢复运放正常工作,需暂时切断电源。这种阻塞现象具有极大的危险性,它可能使器件迅速损坏,其原因是:由图(a)知输进级采用NPN型晶体管组成差动放大电路,由于输进信号幅度超过共模电压的答应范围,电路将在信号正峰值时出现阻塞,若信号源内阻

较低,反馈电阻也较小,流过Q2集电结的电流就过大,有可能烧坏晶体管Q2,使集成运放损坏。另外,在输出端上不论什么原因产生的输出瞬时过压也会造成阻塞现象。 消除阻塞现象的方法一般可分为两类:限制输进电压法和防止输出瞬时过压法。图(b)所示电路即为限制输进电压钳位法,图中±Vcm 为共模输进电压上、下限极限值,运用二极管D1和D2实现将输进电压钳位在±Vcm之间。这个方法具有通用性。当运放的电压放大倍数大于l时,其钳位电平值应降低相应的倍数。

场效应管放大电路

第四章场效应管放大电路 本章内容简介 场效应管是利用改变外加电压产生的电场强度来控制其导电能力的半导体器件。它具有双极型三极管的体积小、重量轻、耗电少、寿命长等优点,还具有输入电阻高、热稳定性好、抗辐射能力强、噪声低、制造工艺简单、便于集成等特点。在大规模及超大规模集成电路中得到了广泛的应用。场效应管的分类根据结构和工作原理的不同,场效应管可分为两大类:结型场效应管(JFET)和绝缘栅型场效应管(IGFET)。 4.1 结型场效应管 4.1.1 JFET的结构和工作原理 1. 结构 在一块N型半导体材料的两边各扩散 一个高杂质浓度的P+ 区,就形成两个不对 称的PN结,即耗尽层。把两个P+区并联在 一起,引出一个电极g,称为栅极,在N 型半导体的两端各引出一个电极,分别称 为源极s和漏极d。 场效应管的与三极管的三个电极的对应关系: 栅极g—基极b;源极s—发射极e;漏极d—集电极c夹在两个PN结中间的区域称为导电沟道(简称沟道)。 如果在一块P型半导体的两边各扩散一 个高杂质浓度的N+区,就可以制成一个P沟 道的结型场效应管。P沟道结型场效应管的

结构示意图和它在电路中的代表符号

如图所示。 2. 工作原理 v GS对i D的控制作用 为便于讨论,先假设漏-源极间所加的电压v DS=0。 (a) 当v GS=0时,沟道较宽,其电阻较小。 (b) 当v GS<0,且其大小增加时,在这个反偏电压的作用下,两个PN结耗尽层将加宽。由于N 区掺杂浓度小于P+区,因此,随着|v GS| 的增加,耗尽层将主要向N沟道中扩展,使沟道变窄,沟道电阻增大。当|v GS| 进一步增大到一定值|V P| 时,两侧的耗尽层将在沟道中央合拢,沟道全部被夹断。由于耗尽层中没有载流子,因此这时漏-源极间的电阻将趋于无穷大,即使加上一定的电压v DS,漏极电流i D也将为零。这时的栅-源电压v GS称为夹断电压,用V P表示。在预夹断处:V GD=V GS-V DS =V P 上述分析表明: (a)改变栅源电压v GS的大小,可以有效地控制沟道电阻的大小。 (b)若同时在漏源-极间加上固定的正向电压v DS,则漏极电流i D将受v GS的控制,|v GS|增大时,沟道电阻增大,i D减小。 (c)上述效应也可以看作是栅-源极间的偏置电压在沟道两边建立了电场,电场强度的大小控制了沟道的宽度,即控制了沟道电阻的大小,从而控制了漏极电流i D的大小。 v DS对i D的影响 设v GS值固定,且V P

场效应管放大电路.(DOC)

第三章场效应管放大电路 本章内容简介 场效应管是利用改变外加电压产生的电场强度来控制其导电能力的半导体器件。它具有双极型三极管的体积小、重量轻、耗电少、寿命长等优点,还具有输入电阻高、热稳定性好、抗辐射能力强、噪声低、制造工艺简单、便于集成等特点。在大规模及超大规模集成电路中得到了广泛的应用。场效应管的分类根据结构和工作原理的不同,场效应管可分为两大类:结型场效应管(JFET)和绝缘栅型场效应管(IGFET)。 (一)主要内容: ?结型场效应管的结构及工作原理 ?金属-氧化物-半导体场效应管的结构及工作原理 ?场效应管放大电路的静态及动态性能分析 (二)教学要点: ?了解结型场效应管和MOS管的工作原理、特性曲线及主要参数 ?掌握用公式法和小信号模型分析法分析其放大电路的静态及动态性能 ?了解三极管及场效应管放大电路的特点 (三)基本要求: 介绍结型场效应管和MOS管的工作原理、特性曲线,重点介绍用公式法和小信号模型分析法分析其放大电路静态及动态性能。

3.1 结型场效应管 3.1.1 JFET的结构和工作原理 1. 结构 在一块N型半导体材料的两边各扩散 一个高杂质浓度的P+ 区,就形成两个不对 称的PN结,即耗尽层。把两个P+区并联在 一起,引出一个电极g,称为栅极,在N 型半导体的两端各引出一个电极,分别称 为源极s和漏极d。 场效应管的与三极管的三个电极的对 应关系: 栅极g—基极b;源极s—发射极e;漏极d —集电极c 夹在两个PN结中间的区域称为导电沟道(简称沟道)。 如果在一块P型半导体的两边各扩散一 个高杂质浓度的N+区,就可以制成一个P沟 道的结型场效应管。P沟道结型场效应管的 结构示意图和它在电路中的代表符号 如图所示。 2. 工作原理 v GS对i D的控制作用 为便于讨论,先假设漏-源极间所加的电压v DS=0。 (a) 当v GS=0时,沟道较宽,其电阻较小。 (b) 当v GS<0,且其大小增加时,在这个反偏电压的作用下,两个PN结耗尽层将加宽。由于N区掺杂浓度小于P+区,因此,随着|v GS| 的增加,耗尽层将主要向N沟道中扩展,使沟道变窄,沟道电阻增大。当|v GS| 进一步增大到一定值|V P| 时,两侧的耗尽层将在沟道中央合拢,沟道全部被夹断。由于耗尽层中没有载流子,因此这时漏-源极间的电阻将趋于无穷大,即使加上一定的电压v DS,漏极电流i D也将为零。这时的栅-源电压v GS称为夹断电压,用V P表示。在预夹断处:V GD=V GS -V DS =V P 上述分析表明: (a)改变栅源电压v GS的大小,可以有效地控制沟道电阻的大小。

场效应管放大器

实验四 场效应管放大器 一、实验目的 1、了解结型场效应管的性能和特点 2、进一步熟悉放大器动态参数的测试方法 二、实验原理 场效应管是一种电压控制型器件。按结构可分为结型和绝缘栅型两种类型。由于场效应管栅源之间处于绝缘或反向偏置,所以输入电阻很高(一般可达上百兆欧)又由于场效应管是一种多数载流子控制器件,因此热稳定性好,抗辐射能力强,噪声系数小。加之制造工艺较简单,便于大规模集成,因此得到越来越广泛的应用。 1、结型场效应管的特性和参数 场效应管的特性主要有输出特性和转移特性。图3-1所示为N 沟道结 图3-1 3DJ6F 的输出特性和转移特性曲线 型场效应管3DJ6F 的输出特性和转移特性曲线。 其直流参数主要有饱和漏极电流I DSS ,夹断电压U P 等;交流参数主要有低频跨导

常数U △U △I g DS GS D m == 表3-1列出了3DJ6F 的典型参数值及测试条件。 表3-1 2、场效应管放大器性能分析 图3-2为结型场效应管组成的共源级放大电路。其静态工作点 2 P GS DSS D )U U (1I I - = 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D 式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U (1U 2I g P GS P DSS m -- = 计算。但要注意,计算时U GS 要用静态工作点处之数值。 S D DD g2 g1g1 S G GS R I U R R R U U U -+= -=

自激振荡器电路的解析过程

自激振荡器电路的解析过程 图中用灯泡代表喇叭.当开关按下,电流从X1-->C1--->R1--->Q1基极--->Q1--->发射极---->负这个路径向电容充电,由于电容一开始电压不能突变,电容开始瞬间左边直接等于电压电压1.5V 相当于短路. Q2基极此时为高电平截止,随着电容充电电流的减少,C1左边电压变成负电,Q1截止,此时电容开始放电,放电回路分2路:第一:C1---->X1----->Q2集电极------>Q2基极。第二:C1----->X1------>Q2集电极------>Q2发射极------>Q1基极------->Q1发射极------>负.一旦放电完毕,Q1又开始导通,就出现发声现象.注:仿真软件局限性:开关闭合是,仿真软件只认为有直流信号,导致仿真失效. PNP 三极管正向导通电阻小,反向导通电阻大。 刚上电的时候,10T上有电压,所以其电流逐渐增加。三极管Q1导通,30T上有了电压,电流放大增加,结果导致10T电流减小。10T电流减小到一定程度,Q1截止,30T上没了电流。T1的能量在次级释放。周而复始,产生震荡。 这是一个开关式手机充电器电路。二极管D3将220交流电半波整流,经电容C1滤波,形成大约300V直流电源电压。300V直流电源电压经R2 4M7电阻给三极管Q1提供微弱的基极电流使其导通,由于变压器3、4脚之间的电感作用,Q1集电极电流缓慢上升,上升到大约0.05A时,电阻R1电压达到13x0.05=0.65V,使晶体管Q2导通,将Q1基极电流旁路,Q1关断。变压器3、4端电感线圈的电流经二极管D7向1、2端之间的副边转移,这样的周期性工作给电容C4充电形成4.3V电压,经R6限流使LED亮,表示充电器工作,如经USB接口接上手机锂电池,就给手机锂电池充电。 追问: 谢谢,,您回答的特别好。。但我还是有些地方不懂,Q1关闭之后R1上将没有压降,Q2是如何继续导通的还是就进入下个周期了。。?还是Q1截止之后次级输出电压,反馈绕组

电容三点式振荡电路

电容三点式振荡电路的分析与仿真摘要:自激式振荡器是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅值的交变能量电路。正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定度、反馈系数、输出波形、起振等因素的综合考虑,本设计采用的是电容三点式振荡器。 关键词:电容三点式、multisim、振荡器 引言:不需外加输入信号,便能自行产生输出信号的电路称为振荡器。按照产生的波形,振荡器可以分为正弦波振荡器和非正弦波振荡器。按照产生振荡的工作原理,振荡器分为反馈式振荡器和负阻式振荡器。所谓反馈式振荡器,就是利用正反馈原理构成的振荡器,是目前用的最广泛的一类振荡器。所谓负阻式振荡器,就是利用正反馈有负阻特性的器件构成的振荡器,在这种电路中,负阻所起的作用,是将振荡器回路的正阻抵消以维持等幅振荡。反馈式振荡电路,有变压器反馈式振荡电路,电感三点式振荡电路,电容三点式振荡电路和石英晶体振荡电路等。本次设计我们采用的是电容三点式振荡电路。 设计原理: 1、电容三点式振荡电路 (1)线路特点

电容三点式振荡器的基本电路如图(1)所示。与发射极连接的两个电抗元件为同性质的容抗元件C2和C3;与基极和集电极连接的为异性质的电抗元件L。它的反馈电压是由电容C3上获得,晶体管的三个电极分别与回路电容的三个端点相连接,故称之为电容反馈三端式振荡器。电路中集电极和基极均采取并联馈电方式。C7为隔直电容。图(1) (2)起振条件和振荡频率 由图可以看出,反馈电压与输入电压同相,满足相位起振条件,这时可以调整反馈系数F,使之满足A0F>1就可以起振。 同理,可推倒出电容反馈三端电路的振荡频率如式: f C 1 LC C =反馈系数F为:F=C2/C3. pi+ C /( /( 2 )3 2 )3 *) ( 2 (3)电路的优缺点 电容反馈三端电路的优点是振荡波形较好,因为它的反馈电压是靠电容获得,而电容原件对信号的高次谐波呈低阻抗,因此对高次谐波反馈较弱,使振荡波形更接近正弦波;另外,这种电路的频率稳定度较高,由于电路中得不稳定电容与回路电容C2、C3相并联,因此,适当增大回路的电容量,就可以减小不稳定因素对振荡频率的影响。第三,电容三端电路的工作频率可以做得很高,因此它可以这届利用振荡管的输出、输入电容作为回路的振荡电容。工作频率可以做得较高,可达到几十MHz到几百MHz的甚高频波段范围。 这种电路的缺点是:调C2或C3来改变振荡频率时,反馈系数也将改变。使振荡器的频率稳定度不高。

采用IRF250场效应管制作胆味功放及电路图

采用IRF250场效应管制作胆味功放及电路图 笔者用绝缘栅VMOS大功率场效应管IRF250制作纯甲类功率放大器。这类管子在音响界里是冷僻管,不大受人喜欢。该类管通常用于开关电源中,由于该类管高频区线性好、开关速度快、输出电流大、耐压高,让笔者很感兴趣,把它用于音频放大器中作功率输出管,在甲类输出状态下,声音极具"胆"味。该管的价位低廉,拆机品2元/只,便宜好找,适合工薪族发烧(IRF250电流30A,耐压220V,导通电阻0.8 5Ω,功率150W,IRF240电流40A耐压180V,导通电阻0.55Ω,功率150W),何乐而不为? 一、场效应管与电子管的原理比较有相似之处 场效应管与电子管的原理相比较如图1所示。场效应管的源极供应电子,相当于电子管的阴极,漏极泄漏电子,相当于电子管的屏极(阳极),栅极是控制电子流的大小,和电子管的栅极作用完全一样,都是通过栅极"G"来输入控制,开大或开小电流从漏极流向源极(电子管是阳极流向阴极)。它们都属于电压控制器件。 二、VMOS管的缺点与制作中的克服 对于电源开关管IRF250、IRF240而言,确与音频名管中的K135、J49等有差异,使众多的发烧友不大喜欢用这类管子。笔者认为其成了冷僻管的原因有两点,一是开启电压的差异,IRF250达到3V~5V不等,给推动级增加了极大的负担。二是该管的一致性差,不好配对,N沟道和P沟道的异极型就更难配对 了。 音频CMOS管在0.2V~1.5V的范围就能开启,并进入良好的线性工作区,对推动级的驱动能力要求低,且一致性好,容易配对。因此用IRF250给制作带来一定难度,工作中有时一部分管子已到甲类状态,而另一部分管子还在乙类状态,甚至有的工作在开启与夹断之间,劣化了音质。 针对IRF250这类管子的特点,笔者认为可以避开它的缺点,挖掘它潜在的优点,如高耐压、大电流和好 的高频放大线性等。 实际制作中,应将电路的重点放在推动级上,只要推动级能输出驱动末端场效应管所需的开启电压3V~5 V,也就克服了上述的一大难点。另一个是对差分电压放大管和中功率驱动管的配对误差要在2%的范围内(用数字表配对),每声道只用一对输出管,就不存在配对难的问题。IRF250管子的功率本身就大,没有必要采用多管并联。每声道使用一对输出管,纯甲类最大不失真输出功率在60W~100W,能胜任大多数 家庭的使用要求。 三、线路的选择和改进 笔者选用的是日本雅马哈(YAMAHA)功放的线路,把输出级进行了改造而成(见图2)。IRF250这类管子都是同极型N沟道,因为没有与之功率、耐压、栅偏压值相近的异极型P沟道管子,所以对同极型的管子 采用准互补推挽输出。

采用2个MOS场效应管构成的功率放大器

本电路采用2个MOS 场效应管构成功率放大器,为甲乙类(AB 类)功率放大器,上面采用N 沟道增强型MOS 场效应管IRF130,下面采用P 沟道增强型MOS 场效应管IRF9130,IRF130和IRF9130是IR 公司生产的配对N 沟道和P 沟道器件,性能几乎是对称的。 为了克服交越失真,必须使输入信号避开场效应管的截止区,可 以给场效应管加入很小的静态偏置电流,使输入信号叠加在很小的静态偏置电流上,这样可以避开场效应管的截止区,使输出信号不失真。 增强型MOS 场效应管有个开启电压V T ,V GS 必须要大于V T ,该 场效应管才能进入放大区。IRF130和IRF9130的V GS 最小值为2V ,设计时使2个场效应管栅极之间的电压在2V*2=4V ,或者为了减小直流电源的消耗,取比4V 稍小一点,也是可以的。 只要保持电压的分压比,电阻上的电流是不必考虑的,因为场效 应管的栅级输入阻抗是非常高的,栅级几乎不消耗电流,因此,分压 GND_0VOFF = 0v

电阻的阻值取常用的即可。 从单个场效应管看,这是源级跟随器,所以电压放大倍数为1。 功率放大器对输入电压范围是没有限制的,取决于场效应管的参数,IRF130和IRF9130的绝对最大V GS=±20V,就是说,输入电压范围±15V是没有问题的。 功率放大器根据输入电压,放大接近1倍,得到输出电压,由输出电压,根据负载,得到输出电流。 如果电源电压是±24V,减去2个场效应管的正常工作时的V DS,输出电压范围应该大于±22V,具体做一下实验,也是简单的事。 甲乙类放大器电路的主要特点如下所述: (a).这种放大器同乙类放大器电路一样,也是用两只场效应管分别放大输入信号的正、负半周,但给两只场效应管加入了很小的静态偏置电流,以使场效应管刚刚进入放大区。 (b).由于给场效应管所加的静态直流偏置电流很小,所以在没有输入信号时放大器对直流电源的消耗比较小(比起甲类放大器要小得多),这样具有乙类放大器的省电优点,同时因加入的偏置电流克服了场效应管的截止区,对信号不存在失真,又具有甲类放大器没有非线性失真的优点。所以,甲乙类放大器具有甲类和乙类放大器的优点,同时克服了这两种放大器的缺点。正是由于甲乙类放大器无交越失真,又具有输出功率大和省电的优点,所以被得到广泛的应用。 当这种放大电路中的场效应管静态直流偏置电流太小或没有时,就成了乙类放大器,将产生交越失真。

LC振荡电路的工作原理及特点

简单介绍LC振荡电路的工作原理及特点 LC振荡电路,顾名思义就是用电感L和电容C组成的一个选频网络的振荡电路,这个振荡电路用来产生一种高频正弦波信号。常见的LC振荡电路有好多种,比如变压器反馈式、电感三点式及电容三点式,它们的选频网络一般都采用LC并联谐振回路。这种振荡电路的辐射功率跟振荡频率的四次方成正比,如果要想让这种电路向外辐射足够大的电磁波的话,就必须提高其振荡频率,而且还必须是电路具备开放的形式。 LC振荡电路之所以有振荡,是因为该电路通过运用电容跟电感的储能特性,使得电磁这两种能量在交替转化,简而言之,由于电能和磁能都有最大和最小值,所以才有了振荡。当然,这只是一个理想情况,现实中,所有的电子元件都有一些损耗,能量在电容和电感之间转化是会被损耗或者泄露到外部,导致能量不断减小。所以LC 振荡电路必须要有放大元件,这个放大元件可以是三极管,也可以是集成运放或者其他的东西。有了这个放大元件,这个不断被消耗的振荡信号就会被反馈放大,从而我们会得到一个幅值跟频率都比较稳定的信号。 开机瞬间产生的电扰动经三极管V组成的放大器放大,然后由LC选频回路从众多的频率中选出谐振频率F0。并通过线圈L1和L2之间的互感耦合把信号反馈至三极管基极。设基极的瞬间电压极性为正。经倒相集电压瞬时极性为负,按变压器同名端的符号可以看出,L2的上端电压极性为负,反馈回基极的电压极性为正,满足相位平衡条件,偏离F0的其它频率的信号因为附加相移而不满足相位平衡条件,只要三极管电流放大系数B和L1与L2的匝数比合适,满足振幅条件,就能产生频率F0的振荡信号。 LC振荡电路物理模型的满足条件 ①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零。 ②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存在。 ③LC振荡电路在发生电磁振荡时不向外界空间辐射电磁波,是严格意义上的闭合电路,LC电路内部只发生线圈磁场能与电容器电场能之间的相互转化,即便是电容器内产生的变化电场,线圈内产生的变化磁场也没有按麦克斯韦的电磁场理论激发相应的磁场和电场,向周围空间辐射电磁波。 能产生大小和方向都随周期发生变化的电流叫振荡电流。能产生振荡电流的电路叫振荡电路。其中最简单的振荡电路叫LC回路。 振荡电流是一种交变电流,是一种频率很高的交变电流,它无法用线圈在磁场中转动产生,只能是由振荡电路产生。 充电完毕(放电开始):电场能达到最大,磁场能为零,回路中感应电流i=0。 放电完毕(充电开始):电场能为零,磁场能达到最大,回路中感应电流达到最大。 充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。 放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。 在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的

MOSFET功放电路

目录 场效应管功率放大电路 (1) 场效应管80W音频功率放大电路 (1) 一款性能极佳的JFET-MOSFET耳机功放电路图 (2) 100W的MOSFET功率放大器 (2) 场效应管(MOSFET)组成的25W音频功率放大器电路图 (4) 一种单电源供电的MOSFET功放电路 (6) 100W的V-MOSFET功率放大器电路 (6) 100W场效应管功率放大电路 (8) 全对称MOSFET OCL功率放大器电路图 (9) 场效应管功率放大电路 如图所示电路是采用功率MOSFET管构成的功率放大器电路。电路中差动第二级采用2SJ77***率MOSFET,电流镜像电路采用2SK214。其工作电流为6mA,但电源电压较高(为±50V),晶体管会发热,因此要接人小型散热器。 场效应管80W音频功率放大电路

图 100W的MOSFET功率放大器

电路图 关于电路 电容C8是阻止直流电压,如果从输入源的输入直流去耦电容。如果畅通,将改变这个直流电压偏置值S后续阶段。电阻R20限制输入电流到Q1 C7 -绕过任何输入的高频噪声。晶体管Q1和Q2的形式输入差分对和Q9和Q10来源1毫安左右建成的恒流源电路。预设R1用于调整放大器的输出电压。电阻R3和R2设置放大器的增益。第二差的阶段是由晶体管,第三季度和Q6,而晶体管Q4和Q5形式电流镜,这使得第二个差分对漏一个相同的电流。这样做是为了提高线性度和增益。Q7和Q8在AB 类模式运行的功率放大级的基础上。预设R8可用于调整放大器的静态电流。电容C3和电阻R19组成的网络,提高了高频率稳定度和防止振荡的机会。F1和F2是安全的保险丝。 电路设置 设置在中点R1开机前,然后慢慢调整为了得到一个最低电压(比50mV)输出。下一步是成立的静态电流,并保持在最低电阻预设的R8和万用表连接跨标记点电路图X和Y的调整R8使万用表读取16.5mV对应50mA的静态电流。 注意事项 质量好的印刷电路板组装的电路。 使用一个45 / -45 V直流,3A的双电源供电电路。 电源电压不得超过55 / -55 V直流。 连接扬声器前,检查零信号放大器的输出电压,在任何情况下不应该大于50mV。如果是大于50mV,检查电路中的任何错误。另一套更换Q1,Q2,也可以解决问题。 Q7和Q8适合2 °C / W的散热片。Q7和Q8都必须被隔离,使用云母片。很容易在市场上几乎所有的功率晶体管/几乎所有封装形式的MOSFET散热器安装包。 所有电阻R10,R11和R19的其他1 / 4瓦的金属膜电阻。R10和R11是5W线绕型,而R19是一个3W线绕类型。

常见的Mos场效应管电子开关应用电路示例介绍

常见的Mos场效应管电子开关应用电路示例介绍 在脉冲与数字电路中,MOS场效应管作为最基本的开关元件得到了普遍的应用。MOS场效应管以燥声系数低、截止频率高、开关特性好、抗干扰能力强、增益高、功耗低、不存在二次热击穿等优点,广泛应用于彩色电视机、计算机等电器设备中。本文主要以MOS场效应管在开关电路中的应用示例作简要介绍。华强北IC代购网专业人士解析以下内容。 MOS场效应管在开关电路中的应用 实际上MOS场效应管是一种增强型的场效应管,其构造原理比较抽象,根据使用的场合要求不同做出来的种类也很多,特性也不尽相同。我们一般将其作为电源供电的电控开关使用,所以需要通过电流比较大,它的电路图符号如下: N沟道MOS场效应管 P沟道MOS场效应管

这两种MOS场效应管的作用刚好是相反的,那么怎么用它来当开关呢?从图中我们可以看到它与三极管一样有三个引脚,分别叫做栅极(G)、源极(S)和漏极(D)。以图1为例: 图1 图1中脚1就是控制极栅极,通过在栅极上加电压来决定脚2和脚3是否相通。在N沟道MOS场效应管中,若在栅极加上电压脚2和脚3就通电了,去掉电压就为关断状态。而P沟道MOS场效应管则刚好相反。 MOS场效应管开关电路工作原理 以我们常见的2606主控电路图中的电子开关电路为例,下图中用是美国VISHAY型号为SI2305的P沟道MOS管。下面简要介绍电子开关应用的工作原理:

图2 图2中电池的正电通过开关S1接到场效应管Q1的2脚源极,但由于Q1是一个P沟道管,它的1脚栅极通过R20电阻提供一个正电位电压,所以不能通电,电压不能继续通过,所以此时是关机状态。 当按下SW1开机按键时,正电通过按键、R11、R23、D4加到三极管Q2的基极,这时三极管Q2的基极得到一个正电位,三极管导通。而由于三极管的发射极直接接地,三极管Q2导通就相当于Q1的栅极直接接地,加在它上面的通过R20电阻的电压就直接入了地,Q1的栅极就从高电位变为低电位,Q1导通电就从Q1同过加到3v稳压IC的输入脚,3v稳压IC就是那个U1输出3v的工作电压vcc供给主控,主控通过复位清0。通过读取固件程序检测等一系列动作,输出控制电压到PWR_ON再通过R24、R13分压送到Q2的基极,Q2一直保持导通状态,即使你松开开机键断开Q1的基极电压,Q2的导通状态还是能由主控电压保持着,这时电源处于开机状态。 SW1还同时通过R11、R30两个电阻的分压,给主控PLAY ON脚送去时间长短、次数不同的控制信号,主控通过固件鉴别是播放、暂停、开机、关机而输出不同的结果给相应的控制点,以达到不同的工作状态。

相关文档