文档库 最新最全的文档下载
当前位置:文档库 › 用于运动声源定位的解多普勒算法-论文

用于运动声源定位的解多普勒算法-论文

用于运动声源定位的解多普勒算法-论文
用于运动声源定位的解多普勒算法-论文

FPGA声源定位

基于FPGA的实时声源定位 李俊杰,何友,宋杰时间:2009年08月05日字体:大中小 关键词:FPGA声源定位时延估计 摘要:提出了利用2个麦克风基于FPGA的声源定位的方法。具体通过基于相位变换改进的互相关方法成功在低信噪比(10dB)的噪声环境下完成声源定位。利用同样的算法和硬件结构,可以在1片FPGA芯片上实现5组并行的时域处理的系统,而且每个麦克风的功耗只有77mW~108mW。 关键词:声源定位;时延估计;FPGA 实时声源定位在许多方面得到了应用,例如声音的识别和电话会议,可以利用阵列麦克风来实现对多个声源信号的获取和并行处理[1-3]。由于处理多路语音信号需要多个处理器,使得其实现费用昂贵,即便是使用DSP,系统也会带来很大的功耗,因而限制了其在许多实际中的应用。例如Brown大学发展的大规模麦克阵列系统利用多个DSP处理器和缓冲器来实现声源的定位,每个麦克的功耗达到了400mW。这大大超过了一些便携式设备(PDA 和手机)的功耗,因此最好的解决办法是设计专用芯片。 本文将阐述声源定位系统在FPGA中的实现,为专用芯片提供一个可行性参考,具有很好的商业应用价值。以前采用DSP[4]或是DSP+FPGA[5]实现多路声源信号的定位,而本设计的整个定位系统除了前端的模拟部分外其余部分均在FPGA中实现。采取有效的算法后,整个硬件实现的功耗可以控制在77mW~108mW之间。 1声源定位的算法 现有许多算法[1-4]实现声源定位,包括基于信号子空间的方法(例如MUSIC算法)和空间似然方法[2,4]等,最为常用的方法是估计信号的对应的麦克对到达延时(TDOA)[3]估计方法。该方法的每一组麦克对将声源定位在3维空间的一个双曲面上,这样通过多个麦克对确定的双曲面的交点能有效地实现声源的定位。TDOA估计方法已进行了很多研究[3,6],最为普通的是广义互相关GCC(Generalized Cross Correlation)方法[6]。与其他的方法相比,基于GCC的方法计算量小、计算效率高。 假设2个麦克各自接收的信号分别为m1(t)和m2(t)(包括噪声、回响和声音的延时信号)。常用的估计延时的方法是互相关方法:

基于MATLAB的声源定位系统

基于MATLAB的声源定位系统摘要 确定一个声源在空间中的位置是一项有广阔应用前景的有趣研究,将来可以广泛的应用于社会生产、生活的各个方面。 声源定位是通过测量物体发出的声音对物体定位,与使用声纳、雷达、无线通讯的定位方法不同,前者信源是普通的声音,是宽带信号,而后者信源是窄带信号。根据声音信号特点,人们提出了不同的声源定位算法,但由于信号质量、噪声和混响的存在,使得现有声源定位算法的定位精度较低。此外,已有的声源定位方法的运算量较大,难以实时处理。 关键词:传声器阵列;声源定位;Matlab

目录 第一章绪论 (1) 第二章声源定位系统的结构 (2) 第三章基于到达时间差的声源定位原理 (3) 第四章串口通信 (5) 第五章实验电路图设计 (8)

第六章总结 (16) 第七章参考文献 (17) 第一章绪论 1.1基于传声器阵列的定位方法简述 在无噪声、无混响的情况下,距离声源很近的高性能、高方向性的单传声器可以获得高质量的声源信号。但是,这要求声源和传声器之间的位置相对固定,如果声源位置改变,就必须人为地移动传声器。若声源在传声器的选择方向之外,则会引入大量的噪声,导致拾取信号的质量下降。而且,当传声器距离声源很远,或者存在一定程度的混响及干扰的情况下,也会使拾取信号的质量严重下降。为了解决单传声器系统的这些局限性,人们提出了用传声器阵列进行声音处理的方法。

传声器阵列是指由一定的几何结构排列而成的若干个传声器组成的阵列。相对于单个传声器而言具有更多优势,它能以电子瞄准的方式从所需要的声源方向提供高质量的声音信号,同时抑制其他的声音和环境噪声,具有很强的空间选择性,无须移动传声器就可对声源信号自动监测、定位和跟踪,如果算法设计精简得当,则系统可实现高速的实时跟踪定位。 传声器阵列的声音信号处理与传统的阵列信号处理主要有以下几种不同: (1)传统的阵列信号处理技术处理的信号一般为平稳或准平稳信号,相关函数可以通过时间相关来准确获得,而传声器阵列要处理的信号通常为短时平稳的声音信号,用时间平均来求得准确的相关函数比较困难。 (2)传统的阵列信号处理一般采用远场模型,而传声器阵列信号处理要根据不同的情况选择远场模型还是使用近场模型。近场模型和远场模型最主要的区别在于是否考虑传声器阵列各阵元因接收信号幅度衰减的不同所带来的影响,对于远场模型,信源到各阵元的距离差与整个传播距离相比非常小,可忽略不计,对于近场模型,信源到各阵元的距离差与整个传播距离相比较大,必须考虑各阵元接收信号的幅度差。 (3)在传统的阵列信号处理中,噪声一般为高斯噪声(包括白、色噪声),与信源无关,在传声器阵列信号处理中噪声既有高斯噪声,也有非高斯噪声,这些噪声可能和信源无关,也可能相关。 由于上述阵列信号处理间的区别,给传声器阵列信号处理带来了极大的挑战。声波在传播过程中要发生幅度衰减,其幅度衰减因子与传播距离成正比,信源到传声器阵列各阵元的距离是不同的,因此声波波前到达各阵元时,幅度也是不同的。 另外,当声音信号在传播时,由于反射、衍射等原因,使到达传声器的声音信号的路径除了直达路径外还存在着多条其它路径,从而产生接收信号的幅度衰减、音质变差等不

2011005646_噪音振动分析系统在变速器校验台上的应用

噪音振动分析在变速器校验台上的应用 摘要:传统的变速器校验台使用声级计测量变速器的噪音并通过校验人员人工判别变速器校验是否合格,由于环境噪音的客观存在和操作人员的主观因素导致校验结果可靠性不高。在江铃变速器校验台使用噪音振动分析系统,此系统通过加速度传感器将变速器表面的振动信号通过一系列数学变换转换为噪音能量,并使用阶次分析和频谱图直观的反映出各特征频率能量大小,从而可有效判断各运动部件的状态。噪音振动分析系统的引入大幅提高了变速器校验的科学性和可靠性。 关键词:噪音振动系统阶次分析频谱图变速器校验 1.概述 现代工程信号处理技术的高速发展,使得采用信号分析在变速器乃至汽车整车NVH(振动、噪音及舒适性)测试方面的应用也越来越广泛,其中频谱分析便是其中最常用的方法之一。频谱分析的数学基础是离散傅里叶变换(DFT)。该方法的一般过程是通过传感器以固定的采样频率采集时域信号,然后通过傅里叶变换得到频域信号,或者说频谱。由于平稳旋转机械中相关部件如齿轮、电动机等它们的工作频率(即特征频率)相对稳定,因此在频谱图可以很直观的反映出各特征频率能量大小,从而可有效判断各运动部件的状态。然而,当旋转机械的转速不平稳时则难以在频谱上判断出各运动部件的状态。例如在变速器总成加载校验中,就存在加载的过程同时转速也在不断变化的校验过程,这就需要新的处理方法。阶次分析就是近些年发展起来的,针对非稳态旋转机械状态检测和故障分析有效方法之一。 在江铃变速器校验台上使用的是德国Discom公司的Rotas噪音振动分析系统,通过加速度传感器将变速器的振动信号通过一系列数学变换转换为噪音能量并使用阶次分析将变速器输入轴、中间轴、输出轴的噪音信号分离,便于变速器的诊断。 2.阶次分析的基本原理 2.1.阶次的概念 阶次概念的提出,是为区别于传统频谱分析概念。阶次分析的本质上是基于参考轴转速的频率分析。 阶次O、频率f与参考轴转速n1之间的关系为: O =f/ n1 (1) 齿轮啮合频率的计算公式为:

近场声源定位算法研究

Word文档可进行编辑 近场声源定位算法研究 近场声源定位算法研究 引言 近年来,基于麦论文联盟克风阵列得声源定位技术快速进展,同时在多媒体系统,移动机器人,视频会议系统等方面有广泛得应用.例如,在军事方面,声源定位技术能够为雷达提供一个非常好得补充,不需要发射信号,仅靠接收信号就能够推断目标得位置,因此,在定位得过程中就可不能受到干扰和攻击.在视频会议中,讲话人跟踪可为主意拾取和摄像机转向操纵提供位置信息,使传播得图像和声音更清楚.声源定位技术因为其诸多优点以及在应用上得广泛前景成为了一个研究热点.

现有得声源定位方法要紧分为三类:基于时延可能得定位方法、基于波束形成得定位方法和基于高分辨率空间谱可能得定位方法.基于时延可能得定位方法[1]要紧步骤是先进行时刻差可能,也确实是先计算声源分不到达两个麦克风得时刻差,然后依照那个时刻差和麦克风阵列得几何结构可能出声源得位置.该类方法得优点是计算量较小,容易实时实现,在单声源定位系统中差不多得到广泛应用.基于波束形成得定位方法[2]不需要直截了当计算时刻差,而是通过对目标函数得优化直截了当实现声源定位.但由于实际得应用环境中,目标函数往往存在多个极值点,因此如何优化复杂峰值得搜索过程就成为了一个重点.基于高分辨率得空间谱可能得声源定位算法,例如宽带得music(multiplesignalclassification)方法[3]和最大似然方法[4],因其能够同时定位多个声源同时具有比较高得空间分辨率,受到了广泛得关注.

空间谱可能得方法源于阵列信号处理,其中得多重信号分类(music)算法在特定条件下具有非常高得可能精度和分辨力,从而吸引了大量得学者对其进行深入得分析与研究.WwwcOm但与阵列信号处理不同得是,在声源定位中,声源在大多数情况下是位于声源近场得.为了解决这一近场咨询题,许多学者针对传统得信号模型提出了改进算法,asano等人将传统时域得music[5,6]算法应用在频域中,提出了一种基于子空间得近场声源算法[7].下面来看一下近场得声源信号模型. 1近场声源信号模型 传统得阵列信号处理大多是基于远场模型得平面波信号得假设,然而在声源定位得实际应用中,有非常多情况是处于声源近场得[8],例如视频会议,机器人仿真等.同时又由于麦克风阵列阵元拾音范围有限,更多得情况下定位也处于近场范围内,如今信源到达各麦克风阵元得信

噪声测量噪声源识别与定位的方法简析

噪声测量:噪声源识别与定位的方法简析噪声测量的一项重要内容就是估计和寻找产生噪声的声源。 确定噪声源位置是实施控制噪声措施的先决条件。从声源上控制噪声可以大大减轻噪声治理的工作量,而且对促进生产低噪声产品研制,提高产品质量和寿命有直接效果,同时噪声源识别技术是声学测量技术的综合运用,具有很强的技术性。因此,噪声源识别有很大的现实意义。 噪声源识别的本质在于正确地判断作为主要噪声源的具体发声零部件,主要辐射部分。有时还要求对噪声源的特点及其变化规律有所了解。噪声源识别的要求有以下两个主要方面: ?确定噪声源的特性,包括声源类别,频率特性,变化规律和传播通道等。在复杂的机械中,用一种测量方法要明确区分声源的主次及其特性实际上往往是比较困难的。因此经常需要综合应用多种测量方法和信号处理技术,以便最终达到明确识别的目的。 ?确定噪声产生的部位、主要的发声部件等以及各噪声源在总声级中的比重。对多声源噪声,控制噪声的主要方法之一是找到

发声部件中占噪声总声级中比重最大的声源噪声,采取措施进行降噪,可达到事半功倍的效果。 噪声源识别方法很多,从复杂程度、精度高低以及费用大小等方面均有不少的差别,实际使用时可根据研究对象的具体要求,结合人力物力的可能条件综合考虑后予以确定。具体说来,噪声源识别方法大体上可分为二类: ?第一类是常规的声学测量与分析方法,包括分别运行法、分别覆盖法、近场测量法、表面速度测量法等。 ?第二类是声信号处理方法,它是基于近代信号分析理论而发展起来的,象声强法、表面强度法、谱分析、倒频谱分析、互相关与互谱分析、相干分析等都属于这一类方法。 在不同研究阶段可以根据声源的复杂程度与研究工作的要求,选用不同的识别方法或将几种方法配合使用。 声学测量法 人的听觉系统具有比最复杂的噪声测量系统更精确的区分不同声音的能力,经过长期实践锻炼的人,有可能主观判断噪声声

一种改进的AEDA声源定位及跟踪算法

北京大学学报(自然科学版),第41卷,第5期,2005年9月 Acta Scientiarum Naturalium Universitatis Pekinensis,V ol.41,N o.5(Sept.2005) 一种改进的AEDA声源定位及跟踪算法1) 李承智 曲天书2) 吴玺宏 (北京大学视觉与听觉信息处理国家重点实验室,北京,100871;2)E2mail:qutianshu@https://www.wendangku.net/doc/843849242.html,) 摘 要 开展了基于麦克风阵列的真实声场环境声源定位的工作。针对传统的自适应特征值分 解时延估计算法收敛时间慢、对初值敏感以及不能有效跟踪时延变化等问题,提出了一种改进的 自适应特征值分解时延估计算法,该方法通过改进初值设定方法,有效改善了对时延变化的估计。 另外,通过引入一个基于相关运算的语音检测算法,提高了定位系统的抗噪声能力。实验表明在 真实的声场环境下该算法能够对单个声源的三维空间位置进行实时的定位和跟踪,系统在115m 范围内对声源的定位误差小于8cm,声源位置变化时,系统也能准确跟踪声源的位置。 关键词 麦克风阵列;声源定位;声源跟踪;AE DA算法;LMS算法 中图分类号 TP391 0 引 言 基于麦克风阵列的声源定位是声学信号处理领域中的一个重要问题,在视频会议、智能机器人、鲁棒语音识别等领域有着广泛的应用。近年来,在真实声场环境下抗混响的声源定位算法研究成为研究热点。 声源定位大致分为3类方法。第1类是基于波束成型的方法,该方法可以对单声源进行定位[1,2],也可以对多声源进行定位[3],但存在对初值敏感的问题。另外还需要知道声源和噪声的先验知识,该方法存在计算量大,不利于实时处理等缺点。第2类是基于高分辨率谱估计的方法。该方法在理论上可以对声源的方向进行有效的估计,并且适用于多个声源的情况[4]。但由于该算法是针对窄带信号,因此如要获得较理想的精度就要付出很大的计算量代价。另外这些算法无法处理高度相关的信号,因此混响会给算法的定位精度带来较大影响。第3类方法是基于时延估计的方法。该类算法计算量小,易于实时实现,近年来得到了高度重视。 基于时延估计的算法分为2个部分。第1部分为时延估计,即计算声源到两两麦克风之间的时间差;第2部分为方位估计,即根据时延和麦克风阵列的几何位置估计出声源的位置,其中时延估计最为关键。互相关法是最常用的一种时延估计算法,但是它在混响较大的情况下性能下降很多。1982年,D1H.Y oun等[5]提出了最小均方(LMS,Least Mean Square)时延估计算法,其性能和互相关法基本相当。布朗大学于1995年实现了一个实时声源定位系统[6],该系统采用相位变换的时延估计算法和线性插值方位估计算法,在混响较小的情况下能够准确的估计时延但在混响较大情况下误差较大。1997年新泽西州立大学采用相位变换法作为时  1)国家自然科学基金(60305004)中国博士后科学基金(2003033081)资助项目 收稿日期:2004208223;修回日期:2004211211 908

噪声源测量方法

噪声源测量方法 发布时间:2014-02-11 来源于:互联网 噪声源测量是一种多用途测量方法,这种方法能测量与次临界中子增殖因子相关的量。 噪声源测量 (1)主要是测量噪声源的辐射功率和指向性。测量方法有混响室法、消声室(或半消声室)法和比较法等。 混响室法只能测量噪声源的辐射声功率。将被测的噪声源放在混响室(见声学实验室)中,当噪声源辐射声功率W随时间的改变量不大时,即 在混响室的混响场中声压的均方根的平方: (2) 或声源辐射的声功率级(分贝): (3) 式中ρ为室内空气密度;c为室内声速;V为混响室的体积;A=S峞,S为混响室总面积;峞为平均吸声系数;岧p为混响场中的平均声压级。ρc值取温度为15℃时空气中的值为415。 在混响室的混响场中取n个点,在这些点上测声压级,取其平均值岧p代入(3)式。混响室的平均吸声系数可由混响时间的测量得到。 在实际测量时,声源应放在离开墙壁λ/4的距离以外,测点之间的距离不小于λ/2,各测点与墙壁之间的距离应大于λ/2。λ是相应于测量的频率的波长。 消声室法(或半消声室法)在消声室内,可以同时测量噪声源的辐射声功率和指向性。在自由场内,声强(I)与声压p之间的关系为: (4) 将被测的噪声源放在消声室内,以它为中心,作一球面,将球面等分为n个面元,在每个面元的中心测量声压级Lpj,取这些测量值的平均值岧p,按声强与声功率之间的关系计算声功率级LW: (5) 式中r为测量球面的半径,ρc值取温度为15℃时空气中的值。再按 (6) 计算指向性指数DI。θ和φ是以球心为中心的方位角。 在半消声室中的测量与在消声室中的测量相似。将被测的噪声源尽可能按实际的安装放置在半消声室的地面上,以声源为中心在自由场内作半球面,将半球面分成n个相等面元,在每个面元中心测声压级Lpj,取它们的平均值岧p,按下式计算辐射声功率级: (7) 及按(6)式计算指向性指数。 比较法是一种工程方法。对测量环境除要求安静、不影响声压级测量数据以及有一个用以比较的标准声源以外,没有其他要求。比较法可以在安装机器(设备)的现场,或在其他环境进行。测量时,以机器或设备为中心,在地面上作一半球面,将它分成n个相等的面元,在每个面元的中心测量一个声压级,计算其平均声压级岧p。机器或设备如能移开,将

基于STM32的声源定位装置

目录 1 前言 (1) 2 总体方案设计 (3) 2.1 方案比较 (3) 2.1.1 声源信号产生方案 (3) 2.1.2 声源的选择 (3) 2.1.3 坐标解算方案 (4) 2.2 方案选择 (4) 3 单元模块设计 (6) 3.1 各单元模块功能介绍及电路设计 (6) 3.1.1 555构成的多谐振荡器电路 (6) 3.1.2 电源电路设计 (7) 3.1.3 自动增益控制电路设计 (7) 3.1.4 有源二低通滤波电路 (8) 3.1.5 有源二阶高通滤波电路 (9) 3.1.6 STM32F103最小系统电路 (10) 3.1.7 液晶显示电路 (11) 3.1.8 电平转换电路 (12) 3.2 电路参数的计算及元器件的选择 (13) 3.2.1 电源电路参数的计算 (13) 3.2.2 555定时器外围元件参数的计算 (14) 3.2.3 音源坐标位置的计算 (15) 3.2.3 元器件的选择 (17) 3.3特殊器件的介绍 (19) 3.3.1 STM32F103单片机介绍 (19) 3.3.2 ILI9320液晶简介 (21) 3.3.3 VCA810简介 (24) 4软件设计 (26) 4.1软件设计开发环境介绍 (26) 4.1.1编程软件开发环境介绍 (26) 4.1.2绘图软件开发环境介绍 (27) 4.2软件设计流程图 (28) 4.2.1主程序流程图 (28) 4.2.1液晶初始化流程图 (29)

4.2.2 ADC初始化流程图 (30) 5系统调试 (32) 6系统功能、指标参数 (33) 6.1系统实现的功能 (33) 6.2系统指标参数测试 (33) 6.2.1带通滤波器的频率响应 (33) 6.2.2 555定时器构成的多谐振荡器测试 (35) 6.2.3 STM32 ADC电压采集测试 (35) 6.2.4 VCA810电路测试 (36) 6.3系统功能及指标参数分析 (38) 7结论 (39) 8总结与体会 (40) 9 谢辞 (42) 10参考文献 (43) 附录 (44) 附录一:部分原理图 (44) 附录二:部分PCB图 (45) 附录三:核心代码 (46) 附录四:实物图 (51) 附录五:外文资料翻译 (52)

在声源定位地算法中,系统提供了四种算法,它们是:

在声源定位的算法中,系统提供了四种算法,它们是: 1.归一(化)正方形(阵)[1], 2.平面正方形[1], 3.任意三角形[1], 4.修正三角形算法[2]。 【1】归一正方形算法 如图,传感器阵列采用正方形,传感器的位置坐标为(L,L),(-L,L),(-L,-L),(L,-L)。则声源位置(x,y)可由下式算出(式中2L为正方阵的边长,Δt1,Δt2,Δt3分别为传感器2,3,4相对于1的时差,c是传播速度):

【2】平面正方形算法 如图,正方形排列由x和y轴的传感器对组成,位置坐标为S0=(0,L), S1= (-L,0), S2= (0,-L), S3= (L,0);2L是传感器对的距离。这时声源位置(x,y)可由下式算出(C是传播速度):

【3】任意平面三角形算法如图,设传感器阵列的坐标分别为S0=(X0,Y0)=(0,0),S1=(X1,Y1),S2=(X2,Y2)。接收到的时差分别是0,Δt1,Δt2。声源位于(X,Y)或(r,θ),分别是直角或极坐标表示。声波的传播速度是C。 令Δ1=CΔt1,Δ2=CΔt2, A=X2(X12+Y12-Δ12)-X1(X22+Y22-Δ22), B=Y2(X12+Y12-Δ12)-Y1(X22+Y22-Δ22), D=Δ1(X22+Y22-Δ22)-Δ2(X12+Y12-Δ12), Φ=tg-1B/A, 这时声源位置可由极坐标(r,θ)的形式给出:

【4】修正三角形算法 以任意三角形算法为基础,增加一个传感器S3=(X3,Y3),并设测得的时差为Δt3。在【3】中传播速度C是给定的。现给C一个变化范围(C-ΔC,C+ΔC),且给定速度步长δ。这样,每种速度C+nδ(n=±1,±2,…),均可由三角形算法得到一个声源位置(xn,yn),在这些侯选位置中,真实声源应当满足: 由此,不仅可以确定最佳的声源位置,而且可以获得信号的传播速度解。

机器人的声源定位——基于NAO机器人

Abstract One of the main purposes of having a humanoid robot is to have it interact with people. This is undoubtedly a tough task that implies a fair amount of features. Being able to understand what is being said and to answer accordingly is certainly critical but in many situations, these tasks will require that the robot is first in the appropriate position to make the most out of its sensors and to let the considered person know that the robot is actually listening/talking to him by orienting the head in the relevant direction. The “Sound Localization” feature addresses this issue by identifying the direction of any “loud enough” sound heard by NAO.Related work Sound source localization has long been investigated and a large number of approaches have been proposed. These methods are based on the same basic principles but perform differently and require varying CPU loads. To produce robust and useful outputs while meeting the CPU and memory requirements of our robot, the NAO’s sound source localization feature is based on an approach known as “Time Difference of Arrival”. Principles The sound wave emitted by a source close to NAO is received at slightly different times on each of its four microphones. For example, if someone talks to the robot on his left side, the corresponding signal will first hit the left microphones, few milli-seconds later the front and the rear ones and finally the signal will be sensed on the right microphone (FIGURE 1). These differences, known as ITD standing for “interaural time differences”, can then be mathematically related to the current location of the emitting source. By solving this equation every time a noise is heard the robot is eventually able to retrieve the direction of the emitting source (azimutal and elevation angles) from ITDs measured on the 4 microphones. FIGURE 1Schematic view of the dependency between the position of the sound source (a human in this example) and the different distances that the sound wave need to travel to reach the four NAO’s micro-phones. These different distances induce times differences of arrival that are measured and used to compute the current position of the source. KEY FEATURE SOUND SOURCE LOCALIZATION

声源定位系统毕业设计(论文)

0 前言 声音是我们所获取的外界信息中非常重要的一种。不同物体往往发出自己特有的声音,而根据物体发出的声音,人们可以判断出物体相对于自己的方位。有些应用场合,人们需要用机器来完成声音定位这个功能,并且往往要求定位精度比较高。2003年的美伊战争期间,人民网、CCTV网站的军事频道、国防在线等网站均报道了装配于美军的狙击手探测技术,这项技术其中一部分就包含了声源定位技术。 声源定位作为一种传统的侦察手段,近年来通过采用新技术,提高了性能,满足了现代化的需要,其主要特点是: 1)不受通视条件限制。可见光、激光和无线电侦察器材需要通视目标,在侦察器材和目标之间不能有遮蔽物,而声测系统可以侦察遮蔽物(如山,树林等)后面的声源。 2)隐蔽性强。声测系统不受电磁波干扰也不会被无线电侧向及定位,工作隐蔽性较强。 3)不受能见度限制。其他侦察器材受环境气候影响较大,在恶劣气候条件下工作时性能下降,甚至无法工作。声测系统可以在夜间、阴天、雾天、和下雪天工作,具有全天候工作的特点。 以下对美军装备的报道来自于《“巴格达之战”考验英军巷战武器装备》一文,该文刊登于2003年4月8日国防在线美伊战争专题。“狙击手声测定位系统通过接收并测量膛口激波和弹丸飞行产生的冲击波来确定狙击手的位置,通常仅能探测超音速弹丸。这种系统有单兵佩挂型、固定设置型和机动平台运载型。美国BBN系统和技术公司的声测系统,通过测量弹丸飞行中的声激波特性来探测弹丸并进行分类。该系统为固定设置型,采用2个置于保护区两侧的传声器阵列或6个分布在保护区内的单向传声器。传声器通过电缆或射频链路与指挥节点相连。为了准确定位,需事先确定传声器的距离,精度要在1米以内。该系统可探测到90%的射击,定位精度为方位1.2°、水平3°。此外,美国的“哨兵”和“安全”有效控制城区环境安全系统均是采用声测定位技术的反狙击手系统。

近场声全息方法识别噪声源的实验研究

近场声全息方法识别噪声源的实验研究Ξ 于 飞 陈 剑 李卫兵 陈心昭 (合肥工业大学机械与汽车工程学院 合肥,230009) 摘 要 根据近场声全息(NA H)的原理,建立了全息实验所需要的采集、分析系统。针对影响重建精度较大的截止波数的选取问题,给出了较为详细的讨论,并提出一种不需先验知识的截止波数选取方法。最后通过对实测数据进行全息变换,重建结果表明:在采用提出的截止滤波选取方法后,NA H技术可以精确地对噪声源进行定位与识别,并且可以得到三维空间内的声压、质点振速和声强矢量等声学信息。 关键词:声源识别;近场声全息;实验研究;截止波数 中图分类号:TB532;TB533+.2 进行空间声场的可视化和噪声源的识别与定 位,对于噪声测量和控制工程具有非常重要的意义。上世纪80年代初提出的近场声全息技术(NA H),便是可视化空间声场和定位噪声源的一种强有力工具。近场声全息可以由一个测量面的声压标量数据,反演和预测另一面上的声压、质点振速、矢量声强等重要声场参量,受到了各国研究人员及一些相关公司的重视。近场声全息技术真正地将丰富的声学理论同噪声测量、控制工程紧密地结合起来[1~2]。20世纪80年代末,国内一些学者逐渐对此方法进行了研究:中科院武汉物理所对编磬表面振动模态做了研究[3~4];哈尔滨工程大学对基于边界元法的水下近场声全息也做了研究[5];清华大学汽车工程系对非近场声全息确定噪声源进行了研究[6~7];合肥工业大学机械工程学院对近场声全息方法识别噪声源作了一定的研究[8~9]。 近场声全息可以不受波长分辨率限制重建声场,但在此种全息过程中截止波数的选取对重建分辨率的影响非常大。文献[3]提出一种需要测量先验知识的优化滤波方法,而这种先验知识一般是不易获得的。本文根据截止波数的大小对重建结果的影响趋势,提出一种不需要先验和后验知识的截止波数选取方法。并根据近场声全息的原理,建立了全息实验所需要的采集、分析系统。采用提出的滤波参数选取方法后,对数据进行全息变换,得到了令人满意的重建结果。该优化截止波数选取方法的提出,有助于在实际工程中推进近场声全息技术在高分辨率识别噪声源、可视化声场等方面的应用。1 理论背景 由文献[1,8]可知,在稳态的三维空间声场中,一个平面(全息面)上声压的波数谱与另一个更靠近声源的平行面(声源面或重建面)上声压和质点法向振速的波数谱之间的关系为 P(k x,k y,z S)=P(k x,k y,z H)e-i k z(z H-z S)(1) V(k x,k y,z S)=k z P(k x,k y,z H)e-i k z(z H-z S) Θ0ck(2)式中 z H和z S分别为全息面和重建面的z坐标;k 为声波数;k x和k y分别为对应坐标x和y的波数;而k z与波数k x,k y之间的关系为 当k2x+k2y≤k2时 k z=k2-(k2x+k2y)(3)当k2x+k2y>k2时 k z=i(k2x+k2y)-k2(4) k z取值为式(3)时,对应的声波传播方式是以幅值不变、相位改变的传播波方式传播;当取值为式(4)时,对应的声波传播方式是以相位不变、幅值减小的倏逝波方式传播。倏逝波随全息面与重建面之间距离的增加,成指数倍地迅速衰减,对应的是高波数成分的声波。在非近场的声全息中,由于测量点位置与声源面之间距离过大造成倏逝波信息的丢失或被测量噪声所掩盖,全息重建的结果也就失去高频信息,这种高频信息类似于小波变换处理图像中的细节信息。 近场声全息技术除了能够由全息声压数据重建源面上的声压和法向振速之外,由Eu ler公式还能 第17卷第4期2004年12月 振 动 工 程 学 报 Jou rnal of V ib rati on Engineering V o l.17N o.4 D ec.2004 Ξ国家自然科学基金资助项目(编号:50275044)及高等学校博士点科研基金资助项目(编号:20020359005)收稿日期:2004203203;修改稿收到日期:2004205231

运动目标噪声源识别方法

运动目标噪声源识别方法 严光洪,陈志菲,孙进才 (西北工业大学航海学院,陕西西安 710072) 摘 要:文章提出了利用单线列阵确定运动目标噪声源部位和特性的方法,并提出了基于DOA解算运动目标噪声源的空间位置的方法。介绍了噪声源部位识别时M USIC近场和相关性处理方法。数字仿真计算、消声水池模拟试验和实物试验结果表明,文中所介绍的方法是正确的。当运动目标和测试阵垂直距离小于150m时,噪声源部位测试误差不大于0.1m,可用于工程测试。 关 键 词:噪声源,部位识别,线列阵,M USIC 中图分类号:TN911.7 文献标识码:A 文章编号:1000-2758(2009)03-0378-04 水下航行体、汽车、飞机等运动物体辐射噪声,很多场合下要求降噪,为了有效实现噪声控制,必须确定噪声源位置和特性。对于静态目标的噪声源部位和特性的确定,可利用单个声压传感器、声矢量、多传感器形成的阵列对噪声源进行定向定位和特性分析[1~4]。而对于运动目标的噪声特性的确定,目前一般只利用声压传感器或矢量传感器测试到噪声的时域和频域特性[5,6],对运动目标的噪声源部位,目前还没有很有效的确定方法。在运动目标均速直线运动、测试平台静止条件下,本文提出了利用单线列阵基于MU SIC算法解算DOA(Direction of Arrival)的噪声源部位确定方法。另外,本文也介绍了噪声源部位识别时M USIC近场和相关性处理方法。利用仿真确定了基于单一线列阵的噪声源部位识别的误差。消声水池试验和水库试验结果表明本文所介绍方法的正确性,当运动目标和测试阵垂直距离小于150m时,噪声源部位测试误差不大于0.1m,可用于工程测试。 1 噪声源部位确定的方法 当测试阵与运动目标在同一平面时,测试阵可设计成线列阵,噪声源部位求解为2D坐标系的求解,如图1 所示。 图1 不同时刻运动目标在坐标中的位置 当运动目标作均速直线运动时,若t1、t2、t3时刻(设 t=t3-t2=t2-t1)声源与x轴的夹角 1、 2、 3可求得,则根据图中的几何关系可求出t2时刻声源的位置。由图中几何关系,则有 a sin R1-a cos =tg( 3- 2) 2a sin R1-2a co s =tg( 3- 1) (1) 式中,a=v t,为 t时刻运动物体的移动距离。由(1)式可求出和R1 =ctg-1[ctg( 3- 2)-2ctg( 3- 1)] R1=a cos+a sin ctg( 3- 2) (2) 2009年6月第27卷第3期 西北工业大学学报 Jo ur nal o f N or thw ester n Po ly technica l U niv ersity June2009 Vo l.27N o.3 收稿日期:2008-03-04基金项目:国家自然科学基金(60672136)资助作者简介:严光洪(1966-),西北工业大学博士生,主要从事信号处理、噪声控制和固体力学研究。

声源定位

声源定位(李子文) #include #include using namespace std; #define c 2982 #define R int main() { double x0,x1,x2,y0,y1,y2,t0,t1,t2,a,b,d,lizard1,lizard2,dt1,dt2,r; x0=0,x1=0,x2=; y0=0,y1=,y2=; int i = 8; while(i--) { cout <<"请输入第"<<8-i<<"组时间数据"<< endl; cin >> t0 >> t1 >> t2; t0 = t0 / 1000000; t1 = t1 / 1000000; t2 = t2 / 1000000; dt1 = t0 - t2; dt2 = t1 - t2; a=x2*(pow(x1,2)+pow(y1,2)-pow(c*dt1,2)) - x1*(pow(x2,2)+pow(y2,2)-pow(c*dt2,2)); b=y2*(pow(x1,2)+pow(y1,2)-pow(c*dt1,2))- y1*(pow(x2,2)+pow(y2,2)-pow(c*dt2,2)); d=c*dt1*(pow(x2,2)+pow(y2,2)-pow(c*dt2,2))-c*dt2*(pow(x1,2)+pow(y1,2)-pow(c*dt1,2));

lizard2 = atan(b/a); if(acos(d/sqrt(pow(a,2)+pow(b,2)))+lizard2 < R/2) lizard1 = acos(d/sqrt(pow(a,2)+pow(b,2)))+lizard2; else lizard1 = lizard2 - acos(d/sqrt(pow(a,2)+pow(b,2))); r = (pow(x1,2)+pow(y1,2)-pow(c*dt1,2))/(2*(x1*cos(lizard1)+y1*sin(lizard1)+c*dt1)); cout << "声源坐标为:("<

基于声阵列技术的汽车噪声源识别试验研究

基于声阵列技术的汽车噪声源识别试验研究 司春棣陈恩利杨绍普王翠艳 石家庄铁道学院,石家庄 050043 摘要声阵列技术通过多个传声器获取声场信息,使用波束形成原理对声场信号进行处理,能对宽带声源进行有效识别。本文利用基于波束形成的声阵列噪声源分析技术研究了汽车辐射噪声的频率特性和能量分布特性,通过与光学图像的自动重叠,获得了汽车整车最大噪声源的频率、空间位置及产生来源。试验结果表明,声阵列技术能够快速有效地进行噪声源诊断和声源空间定位,为汽车的噪声控制提供了科学依据。 关键词波束形成,声阵列,汽车,噪声源识别 Experimental Study on Noise Sources Identification of Vehicle Based on Microphone Array technology Si Chun-di Chen En-li Yang Shao-pu Wang Cui-yan Shijiazhuang Railway Institute, Shijiazhuang 050043, China Abstract Microphone Array technology is to get sound field information by multiple microphones, to process sound field signals applying the beam forming technology and to be able to identify broad-band sound sources efectively. Using the microphone array system based on beam forming technology, the frequency and energy distribution property of the noise emission of vehicle were investigated in this paper, the frequency and exact noise poisitions were determined by means of the optical pictures automatically overlapping. The results show that the microphone array technology is an efective way for the noise diagnose and sound localization, it ofers the scientific basis for noise control of vehicle. Key words Beam forming, Microphone array, Noise sources identification, Vehicle 1 引言 汽车噪声是一种重要的环境污染源,不仅影响车内成员的乘坐舒适性,也是公路交通噪声的主要来源。汽车噪声也在很大程度上反映出生产厂家的设计水平及工艺水平,成为衡量汽车质量的重要标志之一,因此有效的控制噪声,成为近年来汽车行业的一个重要研究课题。要控制噪声,首先必须找出其主要噪声源。汽车是一个高速运动的复杂组合式噪声源,汽车发动机和传动系工作时产生的振动、高速行驶中汽车轮胎在地面上的滚动、车身与空气的作用,是产生汽车噪声的根本原因。按噪声产生的过程和原理,汽车噪声主要包括发动机噪声、排气系统噪声、风扇噪声、传动系统噪声、轮胎噪声、制动噪声、气动噪声等。这几种主要的噪声源按照能量叠加原则进行声压合成,从而形成总的声压级向外传播,也就是说,用常规的声级计测得的汽车噪声是不同的发声源叠加合成的结果,噪声的声学特性决定了汽车噪声主要取决于最大噪声源噪声大小[1]。噪声源的识别方法很多,本文利用声阵列技术,采用国际最先进的BBM PAK-Ⅱ噪声测试系统,对某型汽车的噪声特性进行分析,找出主要噪声源的空间位置和频率特性,为进一步开展整车降噪工作奠定了基础。 2 噪声源主要识别方法 噪声源的识别就是在同时有许多噪声源或包含许多振动发声部件的复杂声源情况下,为了确定各个声源或振动部件的声辐射性能,区分并确定主要噪声源并根据它们对声场的作用加以分析而进行的测量与研究。利用现代检测技术,准确识别主要声源的部位、频率等特征,从声源上有针对性地采取有效措施进行降噪,可以大大减轻噪声治理的工作量,对促进生产低噪声产品研制,提高产品质量和寿命有直接的效果。所以,噪声源的识别是整个噪声控制的根本,噪声测量的一项重要内容就是估计和寻找产生噪声的声源。 目前国内外对车辆噪声测试所采用的方法主要有声压法、声功率法、声强法、近场声全息法等。 声压法:声压是最基本的声学量,也是评价噪声 第 1271 页

相关文档