文档库 最新最全的文档下载
当前位置:文档库 › 天然气脱水方法

天然气脱水方法

天然气脱水方法
天然气脱水方法

天然气脱水方法

作者:佚名 文章来源:自动化论坛 点击数:

37 更新时间:2009-7-20

1、溶剂吸收法

利用适当的液体吸收剂以除去气体混合物中的一部分水份,对吸收后的贫溶剂进行脱吸,使溶剂再生循环使用。常用的脱水剂有二甘醇、三甘醇等。

2 、固体干燥剂吸附法

利用气体在固体表面上积聚的特性,使某些气体组分吸附在固体吸附剂表面,进行脱除。气体组分不同,在固体吸附剂上的吸附能力也有差异,因而可用吸附方法对气体混合物进行净化。工业上常用的固体吸附剂有硅胶、活性氧化铝和分子筛。吸附是在固体表面张力作用下进行的,根据表面张力的性质可将吸附过程分为物理吸附和化学吸附。物理吸附是可逆过程,可用改变温度和压力的方法改变平衡方向,达到吸附剂的再生。目前广泛采用的用分子筛作吸附剂脱除天然气中水分的过程就是物理吸附过程。

3、冷冻分离法

将一定温度的混合气体在一定压力下通过干燥的、最低温度可达- 20 ℃以下的冷凝器,使混合气体中的水气变成液滴后分离。常用的设备有冷冻干燥器。

4、脱水剂

4.1、三甘醇( TEG) 脱水剂

甘醇类化合物具有很强的吸水性,其溶液水点较低,沸点高,毒性小,常温下基本不挥发,所以广泛应用于天然气脱水。最先用于天然气脱水的是二甘醇,50 年代后TEG 以良好的性能逐步取代了二甘醇成为最主要的脱水溶剂。TEG 热稳定性好,易于再生,蒸汽压低,携带损失量小,露点降通常为33 - 47 ℃。

4.2、分子筛吸附剂

分子筛具有均一微孔结构,能将不同大小的分子分离的一种高效、高选择性的固体吸附剂。分子筛是一种人工合成的无机吸附剂,天然气脱水常用的是4A 和5A ,它是具有骨架结构的碱金属或碱土金属的硅铝酸盐晶体,其分子式为:

M2/ nO·Al2O3·xSiO2·yH2O

式中: M —某些碱金属或碱土金属离子, 如Li ,Na ,Mg ,Ca 等;n —M 的价数;x —SiO2 的分子数; y —H2O 的分子数。

在脱水过程中,分子筛作为吸附剂的显著优点是:

具有很好的选择吸附性,也就是说分子筛能按照物质的分子大小进行选择吸附。由于一定型号的分子筛其孔径大小一样,所以一般说来只有比分子筛孔径小的分子才能被分子筛吸附在晶体内部的孔腔内,大于孔径的分子就被筛去。经分子筛干燥后的气体, 一般含水量可达到0.1 ×10 (- 6)~10 ×10( - 6) 。

具有高效的吸附性。分子筛在低水汽分压、高温、高气体线速度等较苛刻的条件下仍保持较高的湿容量,这是因为分子筛的表面积远大于一般吸附剂,达700~900m2/ g 。

5、脱水工艺

5.1、TEG 脱水工艺

如图1 所示,TEG 脱水装置主要包括两大部分:天然气在压力和常温下脱水;富TEG 溶液在高温和低压下再生。湿天然气经分离器后进入吸收塔底部,与塔顶注入的贫TEG 溶液逆流接触而脱除水分,脱水后的天然气由塔顶排出。吸收塔底部排出的富TEG 溶液经换热器升温后进入闪蒸罐,尽可能闪蒸出其中所溶的烃类,闪蒸气可以用作燃料气。闪蒸后的富液进入再生塔,再生的贫液经冷却后返回吸收塔。

TEG脱水装置的关键设备:原料气分离器、吸收塔、闪蒸罐、过滤器、贫/ 富液换热器、再生塔

和重沸器。

碳钢是TEG脱水装置的标准制作材料,如果天然气中含有CO2 ,则贫/ 富液换热器、再生塔和回流冷凝器等部分设备应考虑用不锈钢制作。

TEG吸收法的优点:

a.装置处理量灵活;

b.在正常操作温度下,存在少量酸性气体和氧时,溶液性质稳定;

c.蒸气压低,气相携带损失比二甘醇法小;

d.露点降比其他液体吸收法高。

TEG吸收法的缺点:

a.干气露点降比分子筛吸附法低;

b.当系统中存在轻油时,甘醇容易起泡;

c.温度过高时,甘醇溶液易氧化,生成腐蚀性的酸性物质。

5.2、分子筛脱水工艺

天然气脱水大多用固定床吸附塔,为保证连续操作,至少需要两个塔,一个塔进行脱水,另一个塔进行再生和冷却,然后切换操作。在三塔装置中一般是一塔脱水,一塔再生,另一塔冷却。图2 是典型的天然气脱水双塔流程。原料气自上而下流过吸附塔,脱水后的干气去轻烃回收装置。吸附操作进行到一定时间后,即进行吸附塔再生,再生气可以用干气或原料气,将气体在加热器内用蒸汽或燃料气直接加热,当加热到一定温度后,进入吸附塔再生。当床层出口气体温度升至预定温度后,则再生完毕。此时加热器停用,再生气经旁通入吸附塔,用于冷却再生床层。当床层温度冷却到要求温度时又可开始下一循环的吸附。

分子筛吸附脱水的优点:

a. 脱水后干气中含水量可低于1 ×10 - 6 ,露点低于- 50 ℃;

b. 对于进料气体温度、压力和流量的变化不敏感;

c.操作简单,占地面积小;

d无严重腐蚀和发泡问题。

分子筛吸附脱水的缺点:

a. 对于大装置,设备投资和操作费用高;

b.气体压降大;

c.吸附剂易中毒和破碎;

d.耗热量较高,在低处理量操作时更为显著。

6、天然气脱水工艺的选择

选择脱水工艺时,应根据脱水目的、要求、处理规模等进行技术经济比较。一般说来,分子筛吸附脱水深度高,操作灵活、适应性好,但成本较高,因而适用于处理气体量比较小、干气露点降比较高的场合。而三甘醇吸收法在处理量大时,其建设投资和运行成本都较低,因而适用于露点降要求不高,处理规模较大的场合。对于大流量高压天然气脱水,若要求的露点降仅为22 - 28 ℃,一般用三甘醇法脱水较经济;若要求的露点降为28 - 44 ℃,则三甘醇法和吸附法均可,应考虑其他因素确定;若要求的露点降超过44 ℃,应考虑使用吸附法脱水,或可采用两种方法串联的流程,即先用三甘醇法脱水,然后再用分子筛吸附脱水,以达到较高的露点降。

7、平湖油气田天然气脱水处理工艺流程

平湖油气田已于1998 年底投入正式生产,并向上海市供气,其选用的天然气处理工艺流程符合国际当今潮流,对东海春晓气田的开发具有很好的参考价值。

气井利用自身压力开采,经井口管汇,直接进入第一级分离器,经第一级分离器分离后,主天然气流经入口天然气冷却器至天然气过滤器、三甘醇脱水器,然后经贫三甘醇/ 天然气换热器后进入14 英寸海底天然气管道,该干天然气的水露点为- 5 ℃( 9MPa ) 和- 15 ℃( 3MPa ) , 含水量为01068/ m3 。

从段塞流捕集器出来的气体进入原料气过滤器以便清除其中极小的液体及固体颗粒,然后进入分子筛脱水器。当一台分子筛干燥器工作时,另一台再生。每台分子筛脱水8 小时后需进行再生。再生时,分子筛先从工作压力5MPa 降压至再生压力211MPa ,然后分子筛在再生加热器中进行加热干燥,以除去床层积聚的水分,4 小时内完全干燥,接着分子筛脱水器开始分子筛再生冷却周期,冷却周期约318 小时,一旦分子筛冷却,回复到正常操作压力,即可切换,开始另一台分子筛脱水器的再生。经分子筛干燥脱水后的原料气进入粉尘过滤器,去除从分子筛床层带出的分子筛粉尘,然后进入膨胀制冷和轻烃回收流程。

8、结束语

天然气脱水是天然气处理、输送和加工过程中非常重要的环节,该技术在国外已非常成熟。一般来说,海上气田的工艺流程是气井井流物在平台进行油气水三相分离,天然气经三甘醇脱水,以达到一定的含水量和露点降,通过海底管道输送上岸,天然气处理厂采用分子筛进行深度脱水,然后进入中冷或深冷处理流程。

天然气脱水工程设计

目录 工程设计任务书 (1) 原料气(湿基) (1) 产品 (2) 要求 (2) 第一部分说明书 (3) 1.1.总论 (3) 1.1.1项目名称、建设单位、企业性质 (3) 1.1.2编制依据 (3) 1.1.3项目背景和项目建设的必要性 (3) 1.1.4设计范围 (4) 1.1.5 编制原则 (4) 1.1.6遵循的主要标准和范围 (4) 1.1.7 工艺路线 (5) 1.1.8研究结论 (5) 1.2.基础数据 (6) 1.2.1原料气和产品 (6) 1.2.2建设规模 (7) 1.2.3三甘醇脱水工艺流程 (7) 1.3.脱水装置 (8) 1.3.1脱水工艺方法选择 (8) 1.3.2流程简述 (9) 1.3.3主要工艺设备 (10) 1.3.4消耗 (12) 1.3.5三甘醇脱水的优缺点 (13) 1.4节能 (14) 1.4.1装置能耗 (14) 1.4.2节能措施 (14) 1.5.环境保护 (17) 1.5.1主要污染源和污染物 (17)

1.5.2污染控制 (17) 第二部分计算书 (19) 2.1参数的确定 (19) 2.1.1三甘醇循环量的确定 (19) 2.1.2物料衡算 (22) 2.1.3吸收塔 (23) 2.2.热量衡算 (30) 2.2.1重沸器 (30) 2.2.2贫/富甘醇换热器 (31) 2.2.3气体/贫甘醇换热器 (31) 2.3.设备计算及选型 (32) 2.3.1精馏柱 (32) 2.3.2甘醇泵 (32) 2.3. 3闪蒸分离器 (32) 2.3.4气体/贫甘醇换热器 (33) 2.4.设备一览表 (33) 第三部分参考文献 (35) 第四部分心得体会 (36)

三种天然气脱水方法的比较

本科毕业设计翻译题目:三种天然气脱水方法的比较 学生姓名:岳韬 学号:10122113 专业班级:油气储运工程10-1班 指导教师:王鑫 2014年6月20日

中国石油大学(华东)本科毕业设计 目录 1引言 (1) 2脱水方法 (1) 2.1吸收法 (1) 2.2吸附 (2) 2.3冷凝 (4) 3实验 (5) 4结果 (5) 5讨论 (6) 缩略词 (7) 参考文献 (7)

第1章引言 三种天然气脱水方法的比较 Michal Netusil,Pavel Ditl 捷克技术大学过程工程系,布拉格6区,16607,捷克共和国 [2011年4月6日收稿,2011年5月23日修订] 摘要 本文比较在工业中广泛应用的三种天然气脱水方法:(1)三甘醇脱水(2)固体干燥剂脱水(3)蒸馏。根据它们所需的能量和适应性进行比较。通过一个能每小时处理105Nm饱和天然气的模型进行能量计算,其中饱和天然气为30℃,压力为7—20Mpa。出口天然气湿度与于压力为4Mpa气、露点为-10℃的气体相同。 关键词:气藏;地下储气库;天然气;天然气脱水 1引言 天然气脱水的主题一直与天然气储存紧密相连。天然气储存的想法之所以如此吸引人有两个基本的原因。第一,它可以减少对供应的依赖;第二,它能最大限度利用配气管网的储量。天然气在夏季需求量低时被储存起来,冬季取暖需要大量天然气时被取出来。地下储气库是最好的大量储存天然气的选择。欧盟现在最多有约130个地下储气库,最大理论总储量大约为95亿方。根据最新数据,到2020年欧洲还将额外储存70亿方[1]。 地下储气库有三种类型:(1)含水层(2)枯竭的油气田(3)盐穴库。每一种类型都有自己特有的物理性质。通常储气库内允许存储压力达到20MPa。当气体注入时压力升高,气体采出时压力下降。外输气体压力取决于后续配气管网。门站压力通常在7MPa。天然气温度通常在20-35℃。精确的温度随着储气库的位置和储存年限变化。储气库的缺点是储存时气体被水分饱和。在枯竭的油气田型地下储气库中,重烃还会污染储存气体。输气规范规定的允许湿度用天然气的露点温度表示。4MPa天然气的露点通常是-7℃[2]。这个值大致相当于4MPa下5gH2O/m3。饱和天然气的湿度。它由储气库的温度和压力决定。这些在气体加工工程技术手册数据手册(12版)20章得图20中有详细说明。天然气平均湿度比要求值高出五倍。因此在天然气输送前脱水是必要的流程。本文通过能量消耗和适用性比较工业中应用的脱水方法。 2脱水方法 2.1吸收法 第一种脱水方法是吸收。吸收剂通常用三甘醇(TEG)。吸收过程在一个接触器(板式塔或包床)进行。在里面三甘醇顺向流动,湿天然气逆向流动。接触过程中三甘醇吸水成为富液从接触器底部流出;富三甘醇继续流入换热器,然后流入闪蒸罐。换热器在汽提塔的顶部。 在这里蒸汽被从流体中释放出来实现分离。三甘醇进入三甘醇换热器的冷端。在这之后,加热的三甘醇被过滤后喷入塔中。从那里,三甘醇进入再沸器,在再沸器中水从三甘醇中沸出。再沸器内部温度不能超过三甘醇的分解温度208℃。再生的三甘醇被泵回三甘醇换热器的热端。整个过程如图1所示[3]。

联合站电脱水器课程设计..

目录 第1章联合站及其电脱水概述 (1) 1.1联合站电脱水器简介 (1) 1.2 CAD流程图 (2) 第2章联合站电脱水系统方案设计 (3) 2.1联合站工艺系统概述 (3) 2.2 方案及方案说明 (4) 第3章联合站电脱水系统仪表选型及计算 (6) 3.1 电脱水器的选取 (6) 3.2 选型计算结果 (7) 第4章课程设计心得 (12) 参考文献 (13) 附录 (14)

第1章联合站及其电脱水概述 1.1联合站电脱水器简介 联合站,即集中处理站,是油田地面集输系统中重要组成部分。就油田的生产全局来说,油气集输是继油藏勘探、油田开发、采油工程之后的很重要的生产阶段。如果说油藏勘探是寻找原油,油田开发和采油工程是提供原料,那么油气集输则是把分散的原料集中处理,使之成为油田产品的过程。 联合站一般建在集输系统压力允许的范围内,为了不影响开发井网以及油田中后期加密井网的布置与调整,应尽量建在油田构造的边部。 联合站将来自井口的原油、伴生天然气和其他产品进行集中、运输和必要的处理、初加工,将合格的原油送往长距离输油管线首站外输,或者送往矿场油库经其他运输方式送到炼油厂或转运码头,合格的天然气则集中到输气管线首站。 联合站一般包括如下的生产功能:油气水分离、原油脱水、原油稳定、天然气脱水、轻油回收、原油储存及向矿场油库输送、污水处理、净化污水回注地层、接收计量输来的油气混合物、变配电、供热及消防等。 联合站设计是油气集输工艺设计的重要组成部分,对它的要求是使其最大限度的满足油田开发和油气开采的要求,做到集输先进、经济合理、生产安全可靠,保证为国家生产符合数量和质量的油田产品。 从地层中开采出的原油不可避免的含有大量的水,给之后的储运、加工环节带来了很多不利影响。因此必须对采出油进行脱水处理,以保证外输前原有的含水量低于0.5%。采出油中水主要以溶解水、乳化水和悬浮水为主,其中乳化水最为稳定,特别对于重质油来说,很难利用常规的重力沉降法将其脱除。人们针对乳化液脱水进行了很多研究,如静电聚合、化学破乳、微波破乳及离心分离等,其中应用最为广泛的首推静电聚合法和化学破乳法。静电聚结主要适用于W/O型乳化液,利用电场将连续相(油)中分散相(水)聚结成尺寸较大水滴,使其便于分离。电脱水技术见图。 图1-1 电脱水技术

天然气脱水工程设计

目录1总论1 1.1 项目名称、建设单位、企业性质1 1.2 编制依据1 1.3 项目背景和项目建设的必要性1 1.4 设计范围2 1.5 编制原则2 1.6 遵循的主要标准、规范3 1.7 工艺路线3 1.8结论3 2基础数据及计算4 2.1 原料气和产品4 2.2 建设规模6 2.3 物料衡算10 2.4 热量衡算11 2.5 设备计算13 2.6 工艺流程21 3脱水装置21 3.1 脱水工艺方法选择22 3.2 流程简述23 3.3 主要工艺设备25 3.4 消耗指标25 4节能27 9.1 装置能耗27 9.2 节能措施28 5环境保护31 10.1 建设地区的环境现状31 10.2 主要污染源和污染物32 10.3 污染控制32

第一部分 1.总论 1.1项目名称、建设单位、企业性质. 1.2编制依据 参考《中华人民共和国石油天然气行业标准天然气脱水设计及规范》、《中华人民共和国标准化法》、《中华人民共和国标准化法实施条例》、《化工工业产品标准化工作管理办法》以及国家的有关规定。化工工业科技发展规划、计划及化工生产发展规划、计划。化工标准规划和化工标准体系表。跨年度的计划项目和调整后能够转入到本年度计划的项目。上级机关及生产、科研、使用、外贸等部门和单位急需制定标准的项目。天然气是目前最具有前途的新兴能源。 1.3项目背景和项目建设的必要性 1.3.1项目背景 中海油天然气珠海项目是由中国海洋石油总公司投资开发的项目,该项目主要开发南海东部的番禺30-1和惠州21-1两个油气田的天然气资源,经过海上平台预处理,通过海底长输管道,输送天然气到珠海终端进行再处理,最后通过陆地管网输送到各用户。该项目终端用地面积约33万平方米,主要用于接受海上来气和凝液,经过段塞流捕集器、分子筛脱水、膨胀制冷、凝液分馏等一系列工艺处理,从而获得天然气干气、丙丁烷、液化气、轻烃和稳定凝析油产品。终端天然气处理能力为每年16亿立方米,预计2005年年底建成投产。它的建成,将为珠海、澳门、中山甚至整个珠江三角洲地区提供良好的工业和城市用气。 据中海油有限公司高级副总裁李宁介绍,中海油天然气珠海项目是中海油在南海

天然气脱水新工艺新技术的探析论文

天然气脱水新工艺新技术的探析论文 天然气脱水新工艺新技术的探析全文如下: 随着人们对资源需求量的不断增加,传统的煤矿资源已经不能够再满足工业、生活的 需要。天然气资源的发现在极大的程度上解决了能源紧张的现状,为我国经济的发展提供 了巨大的动力。近几年来对天然气的研究逐渐深入,关于天然气的开采、净化技术得到了 很大程度的提升。天然气脱水是天然气净化过程中相当重要的一个环节,对天然气净化有 着举足轻重的作用。传统的天然气脱水主要采用固体吸附、低温分离以及溶剂吸收等方法,这些方法不仅效果较低、而且净化效果也不是太明显。近几年来对天然气脱水进行了深入 的研究,现阶段天然气脱水方法有超音速脱水技术、膜分离脱水技术。本文就将对这几种 天然气脱水技术进行分析研究,现报告如下。 1 低温分离法 1.1 工艺原理。低温分离法是传统天然气脱水的一种简单有效地方法,这种方法主要 是以低温的形式将天然气分离出来。天然气饱和含水量会随着温度的降低以及压力的升高 而相应的减少,因此可以通过此种方法对天然气进行分类。将使用水汽进行饱和的天然气 在低温下或者高压下冷却的的环境下来进行脱水。这种脱水方法比较的简单,因此所需要 的设备也较为简洁,所需要的成本较低。 1.2 存在的问题。由于工作原理主要是通过低温或者高压来使得饱和天然气分离出来,也就是说要想达到分离的目的低温或者高压是两个必须的条件。当天然气压力过低时,将 会极大地影响分离的效果。因此这个时候需要在外部引入增压设备或者是引入冷源,这样 就造成了成本的提高。对于含有较高硫的天然气,在分离时会造成污水输送、尾气排放处 理的困难。也就是说采用该种方法对天然气脱水,会造成很大程度上的污染。 2 固体吸附法 2.1 工艺原理。这是一种利用固体吸附剂的吸附张力对天然气中水分子进行吸附进而 达到分离天然气的目的。在工业上对天然气进行分离时采用的是分子筛作为吸附剂,这种 技术较为成熟,且在工业生产中应用也较为广泛。采用这种方法脱水效果较好,可以满足 管输天然气的露点要求。即使在制冷温度处于较低的状态时,也可以对乙烷进行回收。 2.2 存在的问题。分子筛脱水系统往往包含了许多的干燥器,这些干燥器处于分为脱水、再生和吹冷状态。此外还包含了再生器加热系统,这些系统综合运作确保分子脱水系 统的正常运行。而分子筛系统所存在的主要的问题就是他需要投入较高的成本,他的设备 以及操作成本都是比较高的。 3 膜分离脱水系统 3.1 工艺原理。膜分离技术采用的是生物半透膜的方法有选择的进出不同的成分,这 样就使得各种成分在压力差或者是电位差、浓度差等的差异下通过半透膜来进行物质的传

CNG标准站建站方案

CNG液压标准站方案 一.前言 目前CNG汽车加气站项目市场用户主要针对的是市内公交车和出租车,市场的前景是相同的、也就是说车用燃气的供气规模是相同的。其收益也是相同的,只是由于工艺设备的不同,最初的工程造价和运营中所花费的成本不同。所以在未来收益相同的情况下,加气站工艺设备的选择和核心设备的选用决定了气站长期运营的经济效益。 二.工程简介 根据市场评估和气源情况,某市市建设一座CNG加气标准站,设计规模为3万m3/d,当年建成投产。第1年供气规模为设计规模的40%,第2年即达到设计规模。三. CNG标准站 标准站也称常规站,建在城市配气管网附近,从城市管网内直接取气,不受管网限制,运行费用低,运行可靠。场站安全性高。技术成熟可靠、设计施工、验收有规范。 3.1. 工艺流程 标准站天然气引自中压天然气管网,经过滤计量后进入脱硫系统,经脱硫处理后,再经缓冲罐进入压缩机加压,通过优先顺序控制盘为储气瓶组充装天然气,或直接输送至加气机为CNG燃料汽车加气,也可以利用储气瓶组内的天然气通

过加气机为CNG燃料汽车加气。 标准站工作流程示意图 四.标准站主要设备及工作参数 4.1压缩机 CNG标准站的供气规模一般为1.5—3万2m 3/d,每日按17小时工作,压缩机工作效率为0.90,压缩机排量一般为1000-2000 m 3/d。进口压力为0.2Mpa,出口压力为 27.5Mpa。 4.2天然气脱水装置 根据观望气质情况,一般设一台高压天然气脱水装置(风冷),设计压力为27Mpa,工作压力为25Mpa,干燥能力一般为2000/d,配备便携式露点仪。 4.3缓冲罐 设计压力2.5Mpa,工作压力为2.0Mpa,几何容积为1.23。 4.4 废气回收系统 回收罐设计压力为4.0Mpa,工作压力为2.5Mpa,几何容积为1m3。 4.5 过滤器 设计压力为2.5Mpa,工作压力为2.0Mpa,通过流量2000 m3/d,过滤精度为5μm。 4.6 大容积钢瓶储气系统

天然气脱水工程设计说明

目录 1总论 (1) 1.1 项目名称、建设单位、企业性质 (1) 1.2 编制依据 (1) 1.3 项目背景和项目建设的必要性 (1) 1.4 设计范围 (2) 1.5 编制原则 (2) 1.6 遵循的主要标准、规范 (3) 1.7 工艺路线 (3) 1.8结论 (3) 2基础数据及计算 (4) 2.1 原料气和产品 (4) 2.2 建设规模 (6) 2.3 物料衡算 (10) 2.4 热量衡算 (11) 2.5 设备计算 (13) 2.6 工艺流程 (21) 3脱水装置 (21) 3.1 脱水工艺方法选择 (22) 3.2 流程简述 (23) 3.3 主要工艺设备 (25) 3.4 消耗指标 (25)

4节能 (27) 9.1 装置能耗 (27) 9.2 节能措施 (28) 5环境保护 (31) 10.1 建设地区的环境现状 (31) 10.2 主要污染源和污染物 (32) 10.3 污染控制 (32) 第一部分 1.总论 1.1项目名称、建设单位、企业性质. 1.2编制依据 参考《中华人民共和国石油天然气行业标准天然气脱水设计及规范》、《中 华人民共和国标准化法》、《中华人民共和国标准化法实施条例》、《化工工业 产品标准化工作管理办法》以及国家的有关规定。化工工业科技发展规划、计 划及化工生产发展规划、计划。化工标准规划和化工标准体系表。跨年度的计划 项目和调整后能够转入到本年度计划的项目。上级机关及生产、科研、使用、外

贸等部门和单位急需制定标准的项目。天然气是目前最具有前途的新兴能源。 1.3项目背景和项目建设的必要性 1.3.1项目背景 中海油天然气珠海项目是由中国海洋石油总公司投资开发的项目,该项目主要开发南海东部的番禺30-1和惠州21-1两个油气田的天然气资源,经过海上平台预处理,通过海底长输管道,输送天然气到珠海终端进行再处理,最后通过陆地管网输送到各用户。该项目终端用地面积约33万平方米,主要用于接受海上来气和凝液,经过段塞流捕集器、分子筛脱水、膨胀制冷、凝液分馏等一系列工艺处理,从而获得天然气干气、丙丁烷、液化气、轻烃和稳定凝析油产品。终端天然气处理能力为每年16亿立方米,预计2005年年底建成投产。它的建成,将为珠海、澳门、中山甚至整个珠江三角洲地区提供良好的工业和城市用气。 据中海油有限公司高级副总裁李宁介绍,中海油天然气珠海项目是中海油在南海东部地区的第一个天然气项目,也是中海油实行沿海天然气发展战略的重要组成部分。珠江三角洲是我国经济最发达的地区之一,多年来,中海油一直在这一地区努力寻找天然气,为这一地区提供清洁的能源,今天中海油天然气珠海项目的签订,标志着中海油向这一地区提供清洁能源的项目正式启动。他表示,中海油今后将加大投资力度,与海洋石油LNG项目一道为这一地区提供更清洁的能源。他同时表示,该项目将按照国际标准,高质量地精心管理,把它建设成一个现代化的、安全环保的、花园式的终端。 1.3.2项目建设的必要性 天然气中含有大量的水蒸气,天然气脱水时防止水合物形成的根本措施。天然气脱水尤其是天然气集输过程中的水蒸气去除是天然气集输系统中的关键。天

天然气脱水原理及工艺流程

天然气脱水原理及工艺流程 一、天然气水合物 1、H2O存在的危害 (1)减少商品天然气管道的输送能力; (2)当气体中含有酸性气体时,液态水与酸性气体形成酸性水溶液腐蚀管道和设备; (3)液态水与天然气中的某些低分子量的烃类或非烃类气体分子结合形成天然气水合物,从而减小管路的流通断面积、增加管路压降,严重时将造成水合物堵塞管道,生产被迫中断; (4)作为燃料使用,降低天然气的热值。 2、什么是天然气水合物 天然气水合物是在一定温度和压力条件下,天然气中的甲烷、乙烷等烃类物质和硫化氢、二氧化碳等酸性组分与液态水形成的类似冰的、非化学计量的笼型晶体化合物。最大的危害是堵塞管道。 (1)物理性质 ①白色固体结晶,外观类似压实的冰雪; ②轻于水、重于液烃,相对密度为0.960.98; ③半稳定性,在大气环境下很快分解。 (2)结构 采用X射线衍射法对水合物进行结构测定发现,气体水合物是由多个填充气体分子的笼状晶格构成的晶体,晶体结构有三种类型:

I、II、H型。 3、天然气水合物生成条件 具有能形成水合物的气体分子:如小分子烃类物质和H2S、CO2等酸性组分 天然气中水的存在:液态水是生成水化物的必要条件。天然气中液态水的来源有油气层内的地层水(底水、边水)和地层条件下的汽态水。这些汽态的水蒸汽随天然气产出时温度的下降而凝析成液态水。一般而言,在井下高压高温状态下,天然气呈水水蒸气饱状态,当气体运移到井口时,特别是经过井口节流装置时,由于压力和温度的降低,使会凝析出部分的液态水,因此,在井口节流装置或处理站节流降温处往往容易形成水化物。 3、天然气水合物生成条件 足够低的温度:低温是形成水化物的重要条件。气流从井底流到井口、处理厂并经过角式节流阀、孔板等装置节流后,会因压力降低而引起温度下降。温度降低不仅使汽态水凝析(温度低于天然气露点时),也为生成水化物创造了条件。

CNG加气站中的天然气脱水

https://www.wendangku.net/doc/833973247.html,专业的论文在线写作平台 CNG加气站中的天然气脱水 CNG加气站的原料气一般为来自输气管道的商品天然气,在加气站中增压至20~25MPa并冷却至常温后,再在站内储存与加气。充装在高压气瓶(约20MPa)中的CNG,用作燃料时须从高压减压至常压或负压,再与空气混合后进入汽车发动机中燃烧。由于减压时有节流效应,气体温度将会降至-30℃以下。为防止气体在高压与常温(尤其是在寒冷环境)或节流后的低温下形成水合物和冻堵,故必须在加气站中对原料气深度脱水。 CNG加气站中的天然气脱水虽也采用吸附法,但与NGL 回收装置中的脱水系统相比,它具有以下特点:①处理量很小; ②生产过程一般不连续,而且多在白天加气;③原料气已在上游经过处理,露点通常已符合管输要求,故其相对湿度小于100%。 据了解,CNG加气站中气体脱水用的干燥剂在美国多为分子筛,俄罗斯以往多用硅胶,目前也用分子筛,我国则普遍采用分子筛。至于脱水后干气的露点或水含量,则应根据各国乃至不同地区的具体情况而异。我国GB 18047《车用压缩天然气》中规定,汽车用压缩天然气的水露点在汽车驾驶的特定地理区域内,在最高操作压力下,水露点不应高于-13℃;当最低气温低于-8℃,水露点应比最低气温低5℃。CNG的脱水深度通常也可用其在储存压力下的水含量来表示。 1. 天然气脱水装置在加气工艺流程中的位置 当进加气站的天然气需要脱水时,脱水可在增压前(前置)、增压间(级间)或增压后(后置)进行,即根据其在CNG加气工艺流程中的位置不同,又可分为低压脱水(压缩机前脱水)、中压脱水(压缩机级间)及高压脱水(压缩机后)三种。

超音速分离技术在天然气脱水脱烃的应用

超音速分离技术在天然气脱水、脱烃的应用超音速分离技术是天然气脱水、脱烃技术的重大突破。它是航天技术的空气动力学成果应用于油气田天然气处理、加工领域而研发的新型、高效分离技术。该技术及装备已在国外石油天然气行业被成功应用。它简化了工艺流程,提高系统可靠性,并降低其投资、运行费用和减少环境污染。 1.天然气脱水、脱烃的技术现状及评价 1.1天然气脱水技术 天然气的脱水方法的主要方法有低温分离法脱水、溶剂吸收法脱水、固体吸附法脱水、应用膜分离技术脱水。 (1)低温分离法脱水 低温分离法脱水是借助于天然气与水汽凝结为液体的温度差异,在一定的压力下降低含水天然气的温度,使其中的水汽与重烃冷凝为液体,再借助于液烃与水的相对密度差和互不溶解的特点进行重力分离,使水被脱出。 低温分离法通过节流膨胀降温或外部制冷,从而使天然气中水析出。脱水后天然气水露点主要取决于节流后的气体温度,若需增压或增设外部制冷时,装置的投资和操作费用较高。该方法一般用于有压力能(压力降)可利用的高压天然气脱水,可同时控制天然气水露点和烃露点。存在的主要技术问题如下: ●需注入抑制剂(常用甲醇或乙二醇)防止天然气水合物,要建设抑制剂注 入和再生系统; ●存在醇烃难于分离、抑制剂有损耗等问题; ●系统设备较多、工艺流程复杂。 (2)溶剂吸收脱水 溶剂吸收脱水是利用某些液体物质对天然气中水汽具有良好的吸收和溶解性能,将天然气中水汽脱出。脱水后的溶液蒸气压很低,且可再生和循环使用。溶剂吸收脱水法是目前天然气脱水中使用较为普遍的一种方法,其中以三甘醇脱水在天然气脱水中应用广泛,天然气水露点降可达40 ℃,可满足天然气管输、天然气凝液回收中浅冷工艺对水露点的要求。三甘醇脱水系统包括分离器、吸收塔和三甘醇再生系统。三甘醇脱水存在的主要技术问题如下: ●系统比较复杂、三甘醇溶液再生过程的能耗比较大;

某三甘醇天然气脱水工艺设计--------再生塔设计

重庆科技学院 《油气集输工程》课程设计 报告 学院:_石油与天然气工程学院专业班级: 学生姓名:学号: 设计地点:(单位): 设计题目:某三甘醇天然气脱水工艺设计--------再生塔设计 完成日期: 2012年6月20日指导教师评语: 成绩(五级记分制): 指导教师(签字):

天然气中的水对于天然气的输送和使用都是有害的,因此,在经济条件允许的情况下,尽可能的脱去天然气中的水,不论对于天然气输送还是使用都非常的有必要。天然气中的水通常以气态和液态两种形式存在,在少数情况下也会呈固态。三甘醇在吸收塔中吸收了水分变成富液,不能再继续使用。因此,再生塔就为富甘醇进行再生,并且打入吸收塔中再次利用。三甘醇再生塔是安装在重沸器(再沸器)顶部的立式分馏塔。通过三甘醇脱水工艺流程,TEG吸收塔底部排出的三甘醇富液与TEG再生塔顶部换热后进入TEG闪蒸罐,尽可能闪蒸出其中所溶的烃类,闪蒸后的三甘醇富液经过TEG过滤器除去固体、液体杂质,进入TEG换热罐提高三甘醇进TEG再生塔的温度,从再生塔中部进料,经TEG重沸器加热再生,再生后的三甘醇贫液经TEG换热罐和TEG后冷器冷却,冷却后的三甘醇贫液由TEG 循环泵输送到干气/贫甘醇换热器与吸收塔顶部出来的天然气换热后进入吸收塔,实现三甘醇贫液的循环利用。由此可见三甘醇再生塔在三甘醇脱水工艺流程中显得尤为重要。本篇就重点介绍三甘醇再生塔在脱水工艺流程中的设计和注意事项。 关键词:三甘醇再生塔精馏柱填料塔冷却盘管三甘醇贫液的循环利用

1.设计参数 (3) 2.遵循的规范、标准 (4) 3.再生塔设计 (5) 3.1再生塔工作原理 (5) 3.2再生塔塔设备的选型 (5) 3.3三甘醇再生方法选择 (6) 3.4参数对比及方案优选 (7) 4.三甘醇再生塔的计算 (9) 4.1富液精馏柱计算 (10) 4.2贫液精馏柱工艺计算 (11) 4.3富液精馏柱顶部冷却盘管工艺计算 (11) 4.4三甘醇再生塔主要设备选型计算结果 (12) 5.结论 (13) 6.参考文献 (14)

天然气脱水

天然气脱水技术综述 摘要:目前,国内天然气行业正进入高速发展阶段,天然气的高效开发和利用已经成为未来能源发展的新课题。水分在天然气的存在是非常不利的事,因此,需要脱水的要求更为严格。所以未来天然气高效脱水将是一个重要的研究方向。本文阐述了现阶段天然气的脱水方法:低温法、吸收法、吸附法等。 关键词:天然气;脱水技术;低温法,吸收法;吸附法 引言:天然气脱水是指从天然气中脱除饱和水蒸气或从天然气凝液(NGL)中脱除溶解水的过程。脱水的目的是: ①防止在处理和储运过程中出现水合物和液态水; ②符合天然气产品的水含量(或水露点)质量指标; ③防止腐蚀。因此,在天然气露点控制(或脱油脱水)、天然气 凝液回收、液化天然气及压缩天然气生产等过程中均需进行脱水。本文对低温法、吸收法和吸附法脱水技术进行了概括分析。 1.低温法脱油脱水工艺及应用 将天然气冷却至烃露点以下某一低温,将天然气中的重烃与气体分离出来的方法,也称冷凝分离法。 1.1膨胀制冷法 将高压气体膨胀制冷获得低温,使气体中部分水蒸气和较重烃类冷凝析出,从而控制了其水、烃露点。这种方法也称为低温分离(LTS 或LTX)法,大多用于高压凝析气井井口有多余压力可供利用的场合。 如图采用乙二醇作抑制剂的低温分离(LTS或LTX)法工艺流程图。

此法多用来同时控制天然气的水、烃露点。 1.2冷剂制冷法 通过冷剂循环制冷来降低天然气的温度,使气体中部分水蒸气和较重烃类冷凝析出,从而控制了其水、烃露点。天然气需要进行露点控制却又无压差可利用时,可采用冷剂制冷法。 榆林天然气处理厂脱油脱水装置采用的工艺流程如图示: 低温分离器的分离温度需要在运行中根据干气的实际露点符合

某三甘醇天然气脱水工艺设计—重沸器设计

重庆科技学院 课程设计报告 院(系):_石油与天然气工程学院_专业班级:油气储运 学生姓名:学号: 设计地点(单位)__________K713____ __ _____ 设计题目: 某三甘醇天然气脱水工艺设计—重沸器设计 完成日期:年月日 指导教师评语: _______________________________________ __________________________________________________________________________________ __________________________________________________________________________________ ___________________________________ __________ _ 成绩(五级记分制):______ __________ 指导教师(签字):________ ________

摘要 从地层开采出来的天然气含有游离水和气态水。对于游离水,由于它是以液态方式存在的,天然气集输过程中,通过分离器就可以实现分离;但气态水,由于它在天然气中以气态方式存在,运用分离器不能完成分离。而这些气态水又会在天然气管道输送管道中随着温度压力的改变而重新凝结成液态水。液态水的存在会导致水合物的生成和液态本身堵塞管路、设备或降低它们的负荷,引起二氧化碳、硫化氢的酸液腐蚀。因此,为满足管输和用户的需求,脱出天然气中的水分是十分必要的。 目前常用的天然气脱水方法为吸收法脱水。用作脱水吸收剂的物质应对天然气中的水蒸气有很强的亲合能力,热稳定性好,脱水时不发生化学反应,容易再生,蒸汽压低,粘度小,对天然气和液烃的溶解度较低,起泡和乳化倾向小,对设备无腐蚀性,同时还应价格低廉、容易得到。目前广泛采用的是甘醇类化合物。 关键词:三甘醇重沸器再生

三甘醇脱水工艺流程流程图课程设计报告

重庆科技学院 课程设计报告 学院:石油与天然气工程学院专业班级:油气储运10-3 学生姓名:汪万茹学号: 2010440140 设计地点(单位)____ k715 _____ __ 设计题目:___ 某三甘醇天然气脱水站的工艺设计______ 完成日期: 2013 年 6 月 28 日 指导教师评语:______________________ _______________________________________________________________ _______________________________________________________________ ________________ 成绩(五级记分制):______ __________ 指导教师(签字):________

摘要 天然气还含有气态的水,仅用分离器不能将其分离出来,这些气态水又会在天然气管道输送过程中随着压力和温度的改变而重新凝结为液态水,堵塞、腐蚀管道。根据实际情况我们选用了三甘醇脱水方法来脱除这部分气态水。三甘醇脱水工艺包括甘醇吸收和再生两部分。 含水天然气经过三相分离器脱除液态水,然后进入吸收塔与贫甘醇逆流接触后从塔顶流出。然后富甘醇依次经过再生塔、三甘醇闪蒸罐、过滤器等再生为贫甘醇循环使用。 根据实际情况和石油行业相关的规范和相关的书籍设计出了合理的三甘醇脱水的工艺流程,并用AutoCAD软件绘制了工艺流程图。 关键词:三甘醇;吸收;再生;流程图

目录 第一章前言 (1) 第二章三甘醇脱水工艺设计说明 2.1设计概述 (2) 2.1.1 三甘醇脱水工艺的主要工作任务 (2) 2.2天然气基础资料 (5) 2.3设计规范 (6) 2.4遵循的规范、标准 (7) 第三章工艺流程设计 3.1 设计要求 (5) 3.2 工艺方法的选择 (5) 3.3 所设计工艺流程的特点 (6) 3.4 所设计工艺流程简述 (7) 3.5 工艺流程中设备参数 (8) 第四章总结 (9)

天然气脱水装置的工艺设计

摘要 刚从井里采出来的天然气里充满了饱和水蒸气。水蒸汽可能是天然气中最令人讨厌的杂质。天然气被压缩或冷却时,水蒸汽会转变成液态或固态。液态水会加速设备的腐蚀,降低输气效率;而固态的冰则会堵塞阀门、管件甚至输气管线。为幸免出现这些问题,在天然气进入输气管网之前,必须除掉其中的部份水蒸气。 天然气工业常用的脱水方法有膨胀冷却法、加压冷却法、固体吸附剂吸附法、溶剂汲取法等。目前世界上天然气脱水应用最多的方法是溶剂汲取法中的甘醇法, 此次设计采纳三甘醇脱水。 湿气通过入口分离器,除去液态烃和固态杂质后,进入汲取塔底部。在汲取塔内向上通过充满甘醇的填料段或一系列泡帽或阀盘和甘醇充分接触,被甘醇脱去水后,再通过汲取塔内顶部的捕露网将夹带的液体留下。最后脱水后的干气离开汲取塔,通过贫甘醇冷却器( 甘醇─干气热交换器)后进入销售输气管网。 贫甘醇沿沿不断地被泵入汲取塔顶部,在塔内经溢流管向下依次流过每一个塔盘,将在塔内向上流淌的天然气中的水蒸汽汲取。吸满了水的甘醇(富甘醇)从塔底排出,通过贫甘醇缓冲器中的大的预热盘管后,通过闪蒸罐过滤器后进入重沸器上的精馏柱顶部。 本次设计要紧是脱水要紧单体设备设计,包括汲取塔、闪蒸罐、过滤分离器、甘醇再生器等设备。设计包括各设备的尺寸、物料衡算、热量衡算及设备选材。通过此设计工艺后的天然气在设计条件下水露点≤-10℃。 关键词:天然气加工;三甘醇脱水;设备设计

Abstract Filled with saturated water vapor in the gas collected from the well out. Water vapor may be the most unpleasant impurities in natural gas. When the gas is compressed or cooled, the water vapor into a liquid or solid form. Liquid water will accelerate corrosion of the equipment, reduce the transmission efficiency; solid ice is clogged valve, pipe or gas pipeline. To avoid these problems, and must get rid of part of the water vapor before the gas into the pipeline network. Expansion cooling method commonly used in the dehydration method of the natural gas industry, pressurized cooling method, the solid sorbent assay, solvent absorption method. The world's largest natural gas dehydration applications in the solvent absorption method glycol method, the design uses a TEG dehydration. Moisture through the inlet separator to remove liquid hydrocarbons and solid impurities into the absorber at the bottom of. Glycol filler segment or a series of bubble cap or valve plate and glycol in the absorber within the full access to, glycol take off the water after capture gel network of the absorber to the top of the entrained liquid to stay the next. Finally after dehydration, the dry gas leaving absorber, after cooler of the poor glycol (DEG ─ dry gas heat exchanger) into the sales pipeline network.

天然气脱水方法

天然气脱水方法 作者:佚名 文章来源:自动化论坛 点击数: 37 更新时间:2009-7-20 1、溶剂吸收法 利用适当的液体吸收剂以除去气体混合物中的一部分水份,对吸收后的贫溶剂进行脱吸,使溶剂再生循环使用。常用的脱水剂有二甘醇、三甘醇等。 2 、固体干燥剂吸附法 利用气体在固体表面上积聚的特性,使某些气体组分吸附在固体吸附剂表面,进行脱除。气体组分不同,在固体吸附剂上的吸附能力也有差异,因而可用吸附方法对气体混合物进行净化。工业上常用的固体吸附剂有硅胶、活性氧化铝和分子筛。吸附是在固体表面张力作用下进行的,根据表面张力的性质可将吸附过程分为物理吸附和化学吸附。物理吸附是可逆过程,可用改变温度和压力的方法改变平衡方向,达到吸附剂的再生。目前广泛采用的用分子筛作吸附剂脱除天然气中水分的过程就是物理吸附过程。 3、冷冻分离法 将一定温度的混合气体在一定压力下通过干燥的、最低温度可达- 20 ℃以下的冷凝器,使混合气体中的水气变成液滴后分离。常用的设备有冷冻干燥器。 4、脱水剂 4.1、三甘醇( TEG) 脱水剂 甘醇类化合物具有很强的吸水性,其溶液水点较低,沸点高,毒性小,常温下基本不挥发,所以广泛应用于天然气脱水。最先用于天然气脱水的是二甘醇,50 年代后TEG 以良好的性能逐步取代了二甘醇成为最主要的脱水溶剂。TEG 热稳定性好,易于再生,蒸汽压低,携带损失量小,露点降通常为33 - 47 ℃。 4.2、分子筛吸附剂 分子筛具有均一微孔结构,能将不同大小的分子分离的一种高效、高选择性的固体吸附剂。分子筛是一种人工合成的无机吸附剂,天然气脱水常用的是4A 和5A ,它是具有骨架结构的碱金属或碱土金属的硅铝酸盐晶体,其分子式为: M2/ nO·Al2O3·xSiO2·yH2O 式中: M —某些碱金属或碱土金属离子, 如Li ,Na ,Mg ,Ca 等;n —M 的价数;x —SiO2 的分子数; y —H2O 的分子数。 在脱水过程中,分子筛作为吸附剂的显著优点是: 具有很好的选择吸附性,也就是说分子筛能按照物质的分子大小进行选择吸附。由于一定型号的分子筛其孔径大小一样,所以一般说来只有比分子筛孔径小的分子才能被分子筛吸附在晶体内部的孔腔内,大于孔径的分子就被筛去。经分子筛干燥后的气体, 一般含水量可达到0.1 ×10 (- 6)~10 ×10( - 6) 。 具有高效的吸附性。分子筛在低水汽分压、高温、高气体线速度等较苛刻的条件下仍保持较高的湿容量,这是因为分子筛的表面积远大于一般吸附剂,达700~900m2/ g 。 5、脱水工艺 5.1、TEG 脱水工艺 如图1 所示,TEG 脱水装置主要包括两大部分:天然气在压力和常温下脱水;富TEG 溶液在高温和低压下再生。湿天然气经分离器后进入吸收塔底部,与塔顶注入的贫TEG 溶液逆流接触而脱除水分,脱水后的天然气由塔顶排出。吸收塔底部排出的富TEG 溶液经换热器升温后进入闪蒸罐,尽可能闪蒸出其中所溶的烃类,闪蒸气可以用作燃料气。闪蒸后的富液进入再生塔,再生的贫液经冷却后返回吸收塔。

天然气分子筛脱水装置工艺设计说明书

天然气分子筛脱水装置工艺 设计说明书 1 概述 1.1 设计要求 原料气压力为4.5MPa,温度30℃,工艺流程要求脱水后含水量在1ppm以下(质),采用球形4A分子筛吸附脱水,已知4A分子筛的颗粒直径为 3.2mm,堆密度为660kg/m3,吸附周期采用8小时。 其具体内容如下: 1.绘制天然气脱水工艺流程图; 2.确定工艺流程的主要工艺参数; 3.对脱水系统中主要设备进行工艺计算,并确定主要设备的结构尺寸和型号。 4.确定流程中主要管线的规格(材质、壁厚、直径)。 5.编写工程设计书。 1.2 设计范围 分子筛吸附塔装置 导热油换热单元 过滤器 再生气分离器 连接管道 排污放空系统 安全阀,调压阀 1.3 设计原则 1)贯彻国家建设基本方针政策,遵循国家和行业的各项技术标准、规范。 2)贯彻“安全、可靠”的指导思想,紧密结合上、下游工程,以保证中央处理厂

安全、稳定地运行。 3)根据高效节能、安全生产的原则,采用先进实用的技术和自控手段,实行现代 化的管理模式,实现工艺、技术成熟可靠、节省投资、方便生产。 4)充分考虑环境保护,节约能源。 1.4 气质工况及处理规模 气体处理规模:100×104 m3/d 原料气压力:4.5 MPa 原料气温度:30 ℃ 脱水后含水量:≤1 ppm 天然气气质组成见表1-1。 表1-1 天然气组成表(干基) 组分H2 He N2 CO2 C1 C2 mol% 0.097 0.052 0.55 0.026 94.595 3.305 组分C3 iC4 nC4 iC5 nC5 C6+ mol% 0.73 0.121 0.156 0.056 0.052 0.262 1.5 分子筛脱水工艺流程 1.5.1 流程选择 本装置所处理的湿净化气流量为100×104m3/d(20℃、101.325kPa标准状态下)。对于这样规模较大的分子筛脱水装置,可以采用2个吸附塔或3个吸附塔两种方案(分别简称两塔方案、三塔方案)。而相同工艺不同方案的操作情况与投资数据却完全不同,现将两塔方案、三塔方案的操作情况与投资情况进行比较,从而选择出最佳方案。 在两塔流程中,一塔进行脱水操作,另一塔进行吸附剂的再生和冷却,然后切换操作。在三塔或多塔流程中,切换的程序有所不同,通常三塔流程采用一塔吸附、一塔再生、一塔冷吹同时进行。 表1-2 三塔方案(常规)时间分配表 吸附器0~8h 8~16h 16~24h 分子筛脱水塔A 吸附加热冷却

CNG站脱水装置工艺操作步骤

CNG站脱水装置工艺操作步骤 根据《汽车用天然气》(GB18047-2000)的规定,压缩天然气在贮存和向汽车充气过程中,在最高贮存压力下,气体中水露点应低于当地最低环境温度5℃以下,如果达不到该要求,压缩天然气可能会析出液态水。液态水的存在会严重损害汽车及加气站的安全。 在汽车的充气过程,会产生很大的温度降,如果析出的液态水会在管道和阀门产生冰堵,汽车则无法开动。 在高压状态下,液态水的存在会在贮气容器中生成水合物。压力为25MPa、密度为0.68的天然气在24℃时就可能生成水合物,同样会堵塞管道和阀门。 液态水的存在加强了酸性组分(H2S、CO2)对压力容器及管道的腐蚀,并可能导致爆炸等灾难性事故的发生。 我公司目前采用的脱水装置均为后置式高压脱水装置。高压脱水装置放置在压缩机末级出口处。 注:本手册以GZQ—1500/25型再生干燥装置为范本,其他形式的脱水装置请务必按其说明书严格执行。 1.1脱水装置工艺流程 脱水装置的工艺流程图如下图所示: 1.2再生干燥器操作规程 1.2.1主要技术参数及特征 (1)工作介质:天然气;工作压力:25MPa

(2)处理气量:1500Nm3/h (3)常压露点:≤—62℃ (4)含尘量:≤10mg/ Nm3;含尘粒径:≤5μm; (5)工作周期:8小时(吸附—再生+冷却,A、B塔交替进行); (6)再生气压力:△P=0.1~0.2MPa(与进气管线的压差);再生气耗量:20—30Nm3/h;加热再生气体温度:230~250℃(工作介质为天然气时取下限)。 1.2.2首次使用前的准备与检查 (1)拧紧地脚螺栓; (2)连接好电加热电源线(耐热电线),接头处用301硅胶进行密封,使接头不与外界气体接触,并保证加热器可靠接地; (3)连接气管,开压缩机对干燥器装置充气,置换空气。干燥器在规定压力下不得泄漏。 (4)停机、放空。 1.2.3正常使用时的操作 (1)首次工作前或设备管线拆修后开车前用天然气对系统空气进行置换 a、开启装置上的所有放空阀、排污阀。 b、检查各阀门处于正常开关状态。 c、开启冷凝分离器至压缩机进口缓冲罐截止阀,对装

相关文档