文档库 最新最全的文档下载
当前位置:文档库 › SiC水基流延成型制备技术研究

SiC水基流延成型制备技术研究

SiC水基流延成型制备技术研究
SiC水基流延成型制备技术研究

认识快速成型技术

教学难点与重点: 难点: 《产品逆向工程技术》教案 共 页 第 页 授课教师: 教研室: 备课日期: 年 月 日 课 题: 教 学 准 备: 教学目的与要求: 授 课 方 式: 项目四 快速成型技术认识 任务一 认识快速成型技术 PPT 掌握快速成型技术的原理、工作流程和特点。 讲授(90') 重点:快速成型技术的原理、工作流程和特点。 教 学 过 程: 上节课回顾→讲授课题→课堂小结

“ “ 张家界航院教案 第 页 上节课回顾: 讲授课题: 项目四 快速成型技术认识 通过前面的几节课我们学习了什么是逆向工程。通过逆向工程技术, 企业可以迅速的设计出符合当前流行趋势,以及符合人们消费需求的产品, 快速抢占市场。市场这块蛋糕就那么大,谁先抢到谁先吃,后来的就只能 看别人吃。现在的企业发展战略已经从以前的“如何做的更多、更好、更 便宜”转变成了“如何做的更快”。所以快速的响应市场需求,已经是制 造业发展的必经之路。 但是一件产品是不是设计出来就完事了?从设计到产品,中间还有一 个制造的过程,逆向工程解决了快速设计的问题,但是如果在制造加工阶 段耗费太长的时间,最后依然是无法快速的响应市场。尤其是在加工复杂 薄壁零件的时候,往往加工一件零件的周期要好几周,甚至几个月才能完 成,比如飞机发动机上的涡轮,加工周期要 90 天。 怎么解决这个问题呢?这就要用到今天我们这节课要讲的内容:快速 成型技术。快速成型技术就是在这种背景需求下发展起来的一种新型数字 化制造技术,利用这项技术可以快速的将设计思想转化为具有结构和功能 的原型或者是直接制造出零部件,以便可以对设计的产品进行快速评价、 修改。按照以往的技术,在生产一件样品的时候,要么开模、要么通过复 杂的机加工艺来生产,这样不管是从成本的角度还是时间的角度来讲,都 会带来成本的提高。而快速成型技术可以极大地缩短新产品的开发周期, 降低开发成本,最大程度避免产品研发失败的风险,提高了企业的竞争力。 任务一 认识快速成型技术 快速成型技术(Rapid Prototype ,简称 RP)有许多不同的叫法,比如 “3D 打印”( 3D printing)、分层制造”( layered manufacturing ,LM) 、增材制 造”( additive manufacturing ,AM) 等。同学们最熟悉的应该就是“3D 打 印”,其实刚开始的时候,3D 打印本是特指一种采用喷墨打印头的快速成 型技术,演变至今,3D 打印成了所有快速成型技术的通俗叫法,但是现在 在学术界被统一称为“增材制造”。 增材制造是一种能够不使用任何工具(模具、各种机床),直接从三 维模型快速地制作产品物理原型也就是样件的技术,可以使设计者在产品 的设计过程中很少甚至不需要考虑制造工艺技术的问题。使用传统机加的 方法来加工零件时,在设计阶段设计师就需要考虑到零件的工艺性,是不 是能够加工出来。对于快速成型技术来讲,任意复杂的结构都可以利用它 的三维设计数据快速而精确的制造出来,解决了许多过去难以制造的复杂 结构零件的成型问题,实现了“自由设计,快速制造”。 一、物体成型的方式 之所以叫“增材制造”很好理解就是通过“堆积”材料的方式进行制 造。与之相应的还有“减材制造”和“等材制造”。在现代成型学的观点 中,物体的成型方式可分以下几类:

流延膜生产线的技术要求以及基本简介

流延膜生产线的技术要求以及基本简介 流延膜生产线: 该机组生产可适应加工的原材料:PP、PE、PEVA、EVA 该机组可用于生产各类桌布及塑制手套、浴帽、西服套雨伞材料的坯膜,也可用于生产PE卫生巾底膜、尿裤尿不湿用膜及打孔底膜和各类包装膜、深压纹膜。增加拉伸机组后能生产防水透气膜。高速生产线可配备在线分切,采用高速双工位自动收卷且高速收卷时无需缠绕胶带。整机一体化、自动程度高。生产速度达到130m/min以上时,同等产量下该机型比常规流延机功耗低25%,有效节省生产成本和人工。 组成结构: 1、单层流延机生产线 该机组是由主机、换网器、模具、流延机、输送台、牵引机、收卷机等组成。 减速箱体采用铸钢件,齿轮采用合金钢并经磨齿处理。箱体内各润滑点均采用强制润滑方式,润滑油配有高效冷却系统。 螺杆机筒材料都采用38CrMoALA优质氮化钢,并经氮化处理,表面喷合金处理。 采用38CrMoALA优质氮化钢,并经氮化处理,表面喷合金处理。 2、三层流延膜生产线机组 分层结构:AB、BC、ABC 该机组生产可适应加工的原材料:PP、PE、PEVA、EVA 生产线可适合生产:制衣领域(如EVA、PP、PE雨衣)、包装领域(如包装膜)餐具领域(如桌台布),油墨仿真领域(如:油墨花、仿真花、仿真叶等) 辅助设备 配工业冷水机一套 配水塔一套 配表面电晕处理机一台 配真空自动上料机一台 目前我国流延膜行业仅引进流延膜生产线就已超过60台套,总年产能力达到20万吨以上,预计2005年仍将保持强劲的投资增势。随着我国流延膜新建和在建项目纷纷投产,2005年~2007年我国流延膜产能必将大幅提高,业内纷纷预测届时我国流延膜市场很可能像双向拉伸膜市场一样出现投资过热的现象,必将引起新一轮价格战。主要技术都已攻克我国流延膜产业经过几十年来积累,已经有了长足发展。与发达国家相比,国内CPP薄膜不管在生产工艺还是生产设备方面,均达到了国际先进水平,尤其是生产设备更是取得了长足进步,主要技术难点都已被攻克。流延膜生产线有较强的技术要求,其中T型机头是关键设备之一。一旦流延膜市场形势发生变化,势必造成巨大的投资损失,而采用价格较低的国产设备则可以大大降低投资风险。因此,国内企业不应当盲目迷信国外的大型设备,只有投入产出比相宜,尽可能在短期内能够得到良好的投资回报率,这才是最明智的投资。 这些国产流延膜生产线的面市,大大加快了我国流延膜行业的发展步伐。降风险更宜用国货流延膜的消费在我国增长很快,由于其准入门槛较低,产能增长十分迅速。

快速成型技术的发展与应用

快速成型技术的发展与应用 摘要:快速成型技术是一项多学科交叉多技术集成的先进制造技术,本文简要介绍该技术的原理、特点,并重点研究阐述该技术在国内外应用和发展状况,并结合实际指出了该技术开发方向。 关键词:快速成型;原理;应用;开发 一引言 最近英国经济学人指出:快速成型技术(简称RP技术)市场潜力巨大,必将引领未来制造业,它将使工厂彻底告别车床、钻床等传统工具,改由更加灵巧的电脑软件主宰,这便是第三次工业革命到来的标志。虽然究竟谁能够引领第三次工业革命?目前我们要下这个结论,显得时机过早。但重视这被西方媒体誉为将带来“第三次工业革命” 的“RP技术”是非常必要的。本文就这一技术的原理及发展应用情况予以介绍。 二快速成型技术原理及特点 RP技术是20世纪90年代发展起来的一项高新技术。笼统地讲,RP技术属于堆积成形;严格地讲,它是基于离散和堆积原理,将零件的CAD模型按一定方式离散,成为可加工的离散面、离散线、离散点,而后采用物理或化学手段,将这些离散的面、线段和点堆积而形成零件的整体形状。RP技术工艺流程如图1所示。其主要工艺方法有:SLA、SLS、FDM、TDP,具体见下表: 用粉末材料为原料,按照分层信息铺好一层粉末材料计算机控制喷头有选择性地喷射粘接剂,使部分粉末粘接形成截面层。一层完成后,工作台下降一个层厚,如此循环形成三维产品。 三快速成型技术的发展现状 3.1国外的快速成型技术的发展现状 这种为现代社会带来强大冲击和震撼的新技术起源于1988年,美国3D System 公司推出的SLA-250液态光敏树脂选择性固化成形机,标志着RP技术的诞生。目前,RP技术被广泛应用于各个领域,如航天航空、医疗、军工、艺术设计等领域,应用最为广泛的是航空零部件的快速制造,包括快速精铸技术、金属直接制造零部件、风洞模型的制造。 国外主要的航空企业都在应用RP技术研制新型航空器。例如,美国军用和商用航空发动机制造商Sundstrand公司使用RP技术制作新型燃气轮发动机进风口外壳原型(φ300×250,壁厚仅1.5),节省了4个多月的加工制造时间和超过8.8万美元的费用。

流延膜的特点及生产工艺

流延膜的特点及生产工艺 所有的热塑性塑料薄膜的性能,不仅同使用的塑料原材料粒子有密切的关系,还同薄膜的生产工艺及工艺参数有关。同一种塑料制品,例如:薄膜可以用不同的生产工艺流程来生产,即使用同一种材料同一种生产工艺,由于生产时的温度、压力、吹胀比等工艺参数的不同,所得薄膜的性能也有所差别。流延(Cast)法生产的薄膜称流延膜,用C作字头,如:流延聚丙烯薄膜,称CPP膜。流延法薄膜有挤出流延膜和溶剂流延膜两种。 1、溶剂流延法 溶剂流延法生产的薄膜具有更薄且厚度均匀性更好的优点,1~3um的超薄膜只在某些高科技材料中使用,一般在包装材料中不采用,因为设备投资大,溶剂毒性大,而且需使用大量溶剂,溶剂回收设备及操作费用均较大,只有像玻璃纸等极少数不能或很难用挤出法生产的薄膜才使用溶剂法生产。 溶剂法生产的流延膜工艺是:把热塑性塑料的溶液或使用热固性塑料的预聚体溶胶涂布在可剥离的载体上,经过一个烘道的加热干燥,进而熔融塑化成膜层冷却下来后,从载体离型面上剥离下来卷取而成膜。载体可以是钢带、涂布硅橡胶的离型纸或辊筒。美国一些需要超薄且厚度平整性特别优良的薄膜是把溶胶流延在一个加热的水银池上面,经挥发去除溶剂成膜后,从水银面上捞起薄膜卷取而成。 溶剂流延膜有以下几个特点: (1)薄膜的厚度可以很小,一般在5-8UM,使用水银为载体的薄膜,称为分子膜,其厚度可以低至3UM厚。 (2)薄膜的透明度高、内应力小,多数用于光学性能要求很高的场合下,例如:电影胶卷、安全玻璃的中间夹层膜等。 (3)薄膜厚度的均匀性好,不易掺混入杂质,薄膜质量好。 (4)溶剂流延膜由于没有受到充分的塑化挤压,分子间距离大,结构比较疏松,薄膜的强度较低。 (5)生产成本高,能耗大、溶剂用量大,生产速度低。 溶剂流延法生产的薄膜有三醋酸纤维素酯、聚乙烯醇、氯醋树脂等。此外,聚四氟乙烯和PC也常用溶剂流延法生产薄膜。热固性的合成胶液也常用于生产高耐热性的薄膜。流延三醋酸纤维素酯薄膜生产用胶液的配方如下:三醋酸纤维互酯100份(质量份),混合溶剂(三氯甲烷90%体积,10%的甲醇)700份(质量份),增塑剂三苯基磷酸酯20份(质量份)。 2、挤出流延薄膜 以CPP挤出流延薄膜的生产工艺流程为例,使用耐寒级共聚丙烯CPP粒子作流延膜的原料,MFR为6~9g/10min(例如:日本窒素工业公司的F8277就是耐寒级PP),挤出机挤出——T 型口模流延——气刀——1#冷却辊——2冷却辊——电晕处理——切废边——卷取。挤出机螺杆直径65mm,L/D=32,普通渐变型螺杆。 机筒温度:210℃、230℃、240℃、255℃、265℃共5段,连接器温度265℃,树脂温度230~237℃,T型口模温度(共2m宽)均为265℃。1#冷却辊使用自来水经冷却器热交换器冷却到0~-5℃后进入,2#冷却器冷却水温为8~10℃。T型口模使用螺栓人工调节流延膜厚度,应当指出的是,目前国内进口先进的流延膜生产线均采用R射线测厚仪(走查式)能自动测厚显示记录并反馈到T型口模上的热膨胀螺丝上,从而自动调控T型口模间隙,可以使流延膜厚度的平均误差在2%以内。人工调节螺丝调节,只能在10%以内(1m宽度)。气刀和气隙在挤出流延薄膜中有重要的作用,气刀是安装在T型口模下方的一条狭长的缝口,由此喷出压缩空气,使由T型口模流延出来的熔体薄膜能紧贴在1#冷却辊上,提高了冷却效果,且能使塑料薄膜表面平整度提高,减少流延膜二端产生的缩颈现象。 气隙是熔体塑料膜离开T型口模到达1#冷却辊表面之间的距离,气隙愈长则薄膜在熔融高温下同空气接触的时间愈长,薄膜表面气化就愈大,而且气隙愈大,薄膜二端因冷却而产生

流延膜的特点及生产工艺修订稿

流延膜的特点及生产工 艺 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

流延膜的特点及生产工艺? 所有的热塑性塑料薄膜的性能,不仅同使用的塑料原材料粒子有密切的关系,还同薄膜的生产工艺及工艺参数有关。同一种塑料制品,例如:薄膜可以用不同的生产工艺流程来生产,即使用同一种材料同一种生产工艺,由于生产时的温度、压力、吹胀比等工艺参数的不同,所得薄膜的性能也有所差别。流延(Cast)法生产的薄膜称流延膜,用C作字头,如:流延聚丙烯薄膜,称CPP 膜。流延法薄膜有挤出流延膜和溶剂流延膜两种。1、溶剂流延法 溶剂流延法生产的薄膜具有更薄且厚度均匀性更好的优点,1~3um的超薄膜只在某些高科技材料中使用,一般在包装材料中不采用,因为设备投资大,溶剂毒性大,而且需使用大量溶剂,溶剂回收设备及操作费用均较大,只有像玻璃纸等极少数不能或很难用挤出法生产的薄膜才使用溶剂法生产。 溶剂法生产的流延膜工艺是:把热塑性塑料的溶液或使用热固性塑料的预聚体溶胶涂布在可剥离的载体上,经过一个烘道的加热干燥,进而熔融塑化成膜层冷却下来后,从载体离型面上剥离下来卷取而成膜。载体可以是钢带、涂布硅橡胶的离型纸或辊筒。美国一些需要超薄且厚度平整性特别优良的薄膜是把溶胶流延在一个加热的水银池上面,经挥发去除溶剂成膜后,从水银面上捞起薄膜卷取而成。 溶剂流延膜有以下几个特点: (1)薄膜的厚度可以很小,一般在5-8UM,使用水银为载体的薄膜,称为分子膜,其厚度可以低至3UM厚。 (2)薄膜的透明度高、内应力小,多数用于光学性能要求很高的场合下,例如:电影胶卷、安全玻璃的中间夹层膜等。 (3)薄膜厚度的均匀性好,不易掺混入杂质,薄膜质量好。 (4)溶剂流延膜由于没有受到充分的塑化挤压,分子间距离大,结构比较疏松,薄膜的强度较低。 (5)生产成本高,能耗大、溶剂用量大,生产速度低。 溶剂流延法生产的薄膜有三醋酸纤维素酯、聚乙烯醇、氯醋树脂等。此外,聚四氟乙烯和PC也常用溶剂流延法生产薄膜。热固性的合成胶液也常用于生产高耐热性的薄膜。流延三醋酸纤维素酯薄膜生产用胶液的配方如下:三醋酸纤维互酯100份(质量份),混合溶剂(三氯甲烷90%体积,10%的甲醇)700份(质量份),增塑剂三苯基磷酸酯20份(质量份)。2、挤出流延薄膜 以CPP挤出流延薄膜的生产工艺流程为例,使用耐寒级共聚丙烯CPP粒子作流延膜的原料,MFR为6~9g/10min(例如:日本窒素工业公司的F8277就是耐寒级PP),挤出机挤出——T型口模流延——气刀——1#冷却辊——2冷却辊——电晕处理——切废边——卷取。挤出机螺杆直径65mm,L/D=32,普通渐变型螺杆。 机筒温度:210℃、230℃、240℃、255℃、265℃共5段,连接器温度265℃,树脂温度230~237℃,T型口模温度(共2m宽)均为265℃。1#冷却辊使用自来水经冷却器热交换器冷却到0~-5℃后进入,2#冷却器冷却水温为8~10℃。T 型口模使用螺栓人工调节流延膜厚度,应当指出的是,目前国内进口先进的流

快速成型技术的现状和发展趋势

快速成型技术的现状和发展趋势 1 快速成型技术的基本成型原理 近十几年来,随着全球市场一体化的形成,制造业的竞争十分激烈。尤其是计算机技术的迅速普遍和CAD/CAM技术的广泛应用,使得快速成型技术 (Rapid Prototyping简称RP)得到了异乎寻常的高速发展,表现出很强的生命力和广阔的应用前景。 传统的加工技术是采用去材料的加工方式,在毛坯上把多余的材料去除,得到我们想要的产品。而快速成型技术基本原理是:借助计算机或三维扫描系统构建目标零件的三维数字化模型,之后将该信息传输到计算机控制的机电控制系统,计算机将模型按一定厚度进行“切片”处理,即将零件的3D数据信息离散成一系列2D轮廓信息,通过逐点逐面的增材制造方法将材料逐层堆积,获得实体零件,最后进行必要的少量加工和热处理,使零件性能、尺寸等满足设计要求。。它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。 目前,快速成形的工艺方法已有几十种之多,大致可分为7大类,包括立体印刷、叠层实体制造、选择性激光烧结、熔融沉积成型、三维焊接、三维打印、数码累积成型等。其基本的原理如下图所示。 图1 快速成型原理示意图 2 快速成型技术在产品开发中的应用 不断提高RP技术的应用水平是推动RP技术发展的重要方面。目前,交通大学机械学院,快速成型国家工程研究中心,教育部快速成型工程研究中心快速成

型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。并且随着这一技术本身的发展,其应用领域将不断拓展。RP技术的实际应用主要集中在以下几个方面: 2.1 用于新产品的设计与试制。 (1)CAID应用: 工业设计师在短时间得到精确的原型与业者作造形研讨。 (2)机构设计应用: 进行干涉验证,及提早发现设计错误以减少后面模具修改工作。 (3)CAE功效:快速模具技术以功能性材料制作功能性模具,以进行产品功能性测试与研讨。 (4)视觉效果:设计人員能在短时间之便能看到设计的雛型,可作为进一步研发的基石。 (5)设计确认:可在短时间即可完成原型的制作,使设计人员有充分的时间对于设计的产品做详细的检证。 (6)复制于最佳化设计:可一次制作多个元件,可使每个元件针对不同的设计要求同时进行测试的工作,以在最短时间完成设计的最佳化。 (7)直接生产: 直接生产小型工具,或作为翻模工具 2.2 快速制模及快速铸造 快速模具制造传统的模具生产时间长,成本高。将快速成型技术与传统的模具制造技术相结合,可以大大缩短模具制造的开发周期,提高生产率,是解决模具设计与制造薄弱环节的有效途径。快速成形技术在模具制造方面的应用可分为直接制模和间接制模两种,直接制模是指采用RP技术直接堆积制造出模具,间接制模是先制出快速成型零件,再由零件复制得到所需要的模具 2.3 机械制造 由于RP技术自身的特点,使得其在机械制造领域,获得广泛的应用,多用于制造单件、小批量金属零件的制造。有些特殊复杂制件,由于只需单件生产,或少于50件的小批量,一般均可用RP技术直接进行成型,成本低,周期短。2.4 医疗中的快速成形技术 在医学领域的应用近几年来,人们对RP技术在医学领域的应用研究较多。以医学影像数据为基础,利用RP技术制作人体器官模型,对外科手术有极大的应用价值。 2.5 三维复制 快速成形制造技术多用于艺术创作、文物复制、数字雕塑等。 2.6 航空航天技术领域 航空航天产品具有形状复杂、批量小、零件规格差异大、可靠性要求高等特点,产品的定型是一个复杂而精密的过程,往往需要多次的设计、测试和改进,耗资大、耗时长,而快速成型技术以其灵活多样的工艺方法和技术优势而在现代航空航天产品的研制与开发中具有独特的应用前景。

(整理)快速成型技术的应用与发展前景

快速成型技术的应用与发展前景 一.什么是快速成型技术 快速成形技术又称快速原型制造(Rapid Prototyping Manufacturing,简称RPM)技术,诞生于20世纪80年代后期,是基于材料堆积法的一种高新制造技术,被认为是近20年来制造领域的一个重大成果。它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。即,快速成形技术就是利用三维CAD的数据,通过快速成型机,将一层层的材料堆积成实体原型。 二.快速成型技术的产生背景 (1)随着全球市场一体化的形成,制造业的竞争十分激烈,产品的开发速度日益成为主要矛盾。在这种情况下,自主快速产品开发(快速设计和快速工模具)的能力(周期和成本)成为制造业全球竞争的实力基础。 (2)制造业为满足日益变化的用户需求,要求制造技术有较强的灵活性,能够以小批量甚至单件生产而不增加产品的成本。因此,产品的开发速度和制造技术的柔性就十分关键。 (3)从技术发展角度看,计算机科学、CAD技术、材料科学、激光技术的发展和普及为新的制造技术的产生奠定了技术物质基础。 三.快速成形技术的特点 快速成型技术具有以下几个重要特征: l )可以制造任意复杂的三维几何实体。由于采用离散/堆积成型的原理.它将一个十分复杂的三维制造过程简化为二维过程的叠加,可实现对任意复杂形状零件的加工。越是复杂的零件越能显示出 RP 技术的优越性此外, RP 技术特别适合于复杂型腔、复杂型面等传统方法难以制造甚至无法制造的零件。 2 )快速性。通过对一个 CAD 模型的修改或重组就可获得一个新零件的设计和加工信息。从几个小时到几十个小时就可制造出零件,具有快速制造的突出特点。 3 )高度柔性。无需任何专用夹具或工具即可完成复杂的制造过程,快速制造工模具、原型或零件。 4)技术高度集成性。RP技术是计算机、数控、激光、材料和机械等技术的综合集成。CAD技术通过计算机进行精确的离散运算和繁杂的数据转换,实现零件的曲面或实体造型,数控技术为高速精确的二维扫描提供必要的基础,这又是以精确高效堆积材料为前提的,激光器件和功率控制技术使材料的固化、烧结、切割成为现实。快速扫描的高分辨率喷头为材料精密堆积提供了技术保证术产生背景。 5)快速响应性。快速原型零件制造从CAD设计到原型 (或零件 )的加工完毕,只需几个小时至几十个小时,复杂、较大的零部件也可能达到几百小时,但从总体上看,速度比传统成形方法要快得多。尤其适合于新产品的开发,RP技术已成为支持并行工程和快速反求设计及快速模具制造系统的重要技术之一

添加剂在水基凝胶流延成型中的作用_马春雷

第12卷 第2期2004年4月  材 料 科 学 与 工 艺MATERI ALS SCIENCE &TECH NOL OGY   Vol .12No .2Apr .,2004 添加剂在水基凝胶流延成型中的作用 马春雷,谢志鹏,黄 勇,向军辉 (清华大学材料科学与工程系,北京100084,E -mail :alein @tsinghua .org .cn ) 摘 要:为制备固相含量高、适合流延工艺的氧化铝陶瓷悬浮体,并保证成型坯片具有良好的强韧性能,通过分析陶瓷悬浮体的粘度、Zeta 电位、接触角等参数,研究了各种添加剂对凝胶流延工艺的影响.实验结果表明:分散剂可提高悬浮体的Zeta 电位,从而提高固相体积含量;增塑剂可明显提高坯片的柔韧性;表面活性剂可大幅度降低悬浮体与基带的接触角(从93°降低到72.2°).成功制备出固相含量超过50%的悬浮体,成型后的坯片表面平整,强度高,柔韧性好. 关键词:凝胶流延成型;流延成型;添加剂;分散剂;增塑剂;表面活性剂;除泡剂中图分类号:TQ174 文献标识码:A 文章编号:1005-0299(2004)02-0113-04 The effects of additives on aqueous gel -tape -casting MA Chun -lei ,XIE Zhi -peng ,HUANG Yong ,XI ANG Jun -hui (Department of Materials Science an d E ngineering ,Ts inghua University ,Beijing 100084,China ,E -mail :alein @tsinghua .org .cn ) A bstract :To acquire slurry with high solid content and green body with high strength and flexibility ,the influences of various additives on the process of gel -tape -casting were studied by detecting the viscosity ,Zeta potential and contact angle of slurry .It is shown that dispersant improves the Zeta potential of alumina powder ,consequently en -hances the solid content of slurr y ;plasticizer increases the flexibility of green body obviously ;surfactant can reduce the contact angle of slurr y on the carrier film (from 93°to 72.2°).Defoa mer is efficient to eliminate foams in slurry resulted from the introduction of surfactant .The slurry with more than 50%solid c ontent was prepared ,and a green tape with high strength ,flexibility and smooth surface was obtained . Key words :gel -tape -casting ;tape -casting ;additive ;dispersant ;plasticizer ;surfactant ;defoamer 收稿日期:2002-03-04. 基金项目:国家重点基础研究发展规划资助项目(973-G2000067204-01). 作者简介:马春雷(1975-),男,硕士生; 谢志鹏(1956-),男,教授,博士生导师;黄 勇(1937-),男,教授,博士生导师. 大型陶瓷基板和层状陶瓷材料在电子工业领域的应用十分广泛,如用于电路系统的薄膜以及Al 2O 3、AlN 基板,BaTiO 3陶瓷电容器等.流延成型是生产这种薄片陶瓷材料的一项主要技术[1~3].由于有机流延成型使用的有机物具有挥发性、毒性以及价格偏高等缺点[4~6],出于环境和健康因素的考虑,人们越来越倾向于开发以水为溶剂的流延成型体系 [4~8] .本课题组利用有机单体原位 聚合机理对流延成型加以发展,形成一种新的成型方法:凝胶流延成型(Gel -Tape -Casting ).与传统 的有机流延成型方法不同,该法将陶瓷粉料分散 于含有有机单体和交联剂的水中,制备出低粘度且高固相体积含量的浓悬浮体;然后加入引发剂和催化剂,在一定的温度条件和惰性气体保护下引发有机单体聚合,从而实现原位凝固成型. 陶瓷悬浮体的固相体积分数高(>50%),并且在聚合的同时完成坯片成型,成型时间短,有机物含量低,不需要专门的排胶过程,烧结后陶瓷基片的密度高、结构均匀,整个工艺的成本较低,环境污染小,具有广阔的工业应用前景.但是,相对于有机流延成型,由于凝胶流延成型使用水作为溶剂,并且固化的机理不同,所以必须解决以下问题:成型坯片比较硬、脆,无法卷曲储藏;陶瓷悬浮体不能与有机基带很好的浸润,坯片不易从基带上剥离下来;水基流延成型对外界各种因素的影

快速成型技术的发展和应用

快速成型技术的发展和应用 摘要:科技飞速发展的今天,人类对制造业也提出了更高的要求,行业竞争也日趋激烈。 快速成型技术也应运而生,并且展现了它强大的生命力和广阔的应用前景。目前,快速成型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。并且随着这一技术本身的发展,其应用领域将不断拓展。 The rapid development of science and technology today, the human is put forward higher requirements on manufacturing, industry competition is increasingly fierce. Rapid prototyping technology also arises at the historic moment, and shows its strong vitality and broad application prospects. At present, the modelling of rapid prototyping technology has been in the industry, machinery manufacturing, aerospace, military, architecture, film and television, home appliances, light industry, medicine, archaeology, cultural art, sculpture, jewelry, and other fields has been widely used. And with the development of the technology itself, and will continue to expand its application field. 关键词:快速成型,堆积法,高集成性、高柔性、高速性,自动、直接、快速、精确。 前言: 21世纪是以知识经济和信息社会为特征的时代,随着科学技术的发展和社会需求的多样化,全球统一市场和经济全球化的逐步形成,产品的竞争更加激烈。在工业化的国家中,60%—80%的财富是由制造业提供的。制造业是衡量一个国家实力水平的重要标志之一,也是创造社会财富和国民经济赖以生存发展的重要支柱产业。 现代制造已不仅仅是机械制造,而且具有大制造,全过程,多科学的新特点。大制造应包括机电产品的制造,工业流程制造,材料科学制造等等,所以它是一个广义的制造概念。 我国在先进制造技术方面和国外有比较大的差距,特别是我国制造业的自动化,信息化水平不高。大力发展和应用先进制造技术,勇气改造传统产业和形成高技术,提升我国制造业得产业结构,产品结构和组织结构,增强其技术创新能力,产品开发,和市场竞争能力。是制造业,特别是机械制造业走出困局的关键性措施。这样才能保证我们世界工厂地位的确立,实现由制造业大国向制造业强国的转变。 快速成型技术的诞生 快速成型技术作为一个专用名词在20世纪80年代末期,美国为了加强其制造业的竞争力与促进国民经济的增长,根据其制造业面临的挑战与机遇,并对其制造业存在的问题进行深刻反省提出来的。快速成型技术是集成制造技术,电子技术,信息技术,自动化技术,能源晕技术,材料科学以及现在管理技术等众多技术的交叉,融合和渗透而发展起来的,涉及到制造业中的产品设计,加工装配,检验测试,经营管理等产品生命周期全过程,已实现优质,高效,低耗,清洁,灵活生产,提高对动态多变,细分的市场的适应能力和竞争能力的一项综合技术。 快速成型技术是顺应这一潮流而出现的先进制造技术,它能自动,直接,快速,精确的将设计思想物转化具有一定功能的原型或直接制造零件,快速成型技术是先进制造技术的重要组成部分,也是制造技术在制造理论的一次革命性飞跃,快速成型技术目前在美国,欧洲,日本等地已被广泛应用,受到制造业界及各类用户的普遍重视。 世界上第一台快速成形机于自1988年诞生于美国。快速成型制造技术是国外20世纪80年

快速成型技术及其发展综述

计算机集成制造技术与系统——读书报告 题目名称: 专业班级: 学号: 学生姓名: 指导老师

快速成型技术及其发展 摘要:快速成型技术兴起于20世纪80年代,是现代工业发展不可或缺的一个重要环节。本文介绍了快速成型技术的产生、技术原理、工艺特点、设备特点等方面,同时简述快速成型技术在国内的发展历程。 关键词:快速成型烧结固化叠加发展服务 1 快速成形技术的产生 快速原型(Rapid Prototyping,RP)技术,又称快速成形技术,是当今世界上飞速发展的制造技术之一。快速成形技术最早产生于二十世纪70年代末到80年代初,美国3M公司的阿伦赫伯特于1978年、日本的小玉秀男于1980年、美国UVP公司的查尔斯胡尔1982年和日本的丸谷洋二1983年,在不同的地点各自独立地提出了RP的概念,即用分层制造产生三维实体的思想。查尔斯胡尔在UVP的继续支持下,完成了一个能自动建造零件的称之为Stereolithography Apparatus (SLA)的完整系统SLA-1,1986年该系统获得专利,这是RP发展的一个里程碑。同年,查尔斯胡尔和UVP的股东们一起建立了3D System公司。与此同时,其它的成形原理及相应的成形系统也相继开发成功。1984年米歇尔法伊杰提出了薄材叠层(Laminated Object Manufacturing,以下简称LOM)的方法,并于1985年组建Helisys 公司,1992年推出第一台商业成形系统LOM-1015。1986年,美国Texas大学的研究生戴考德提出了选择性激光烧结(Selective Laser Sintering,简称SLS)的思想,稍后组建了DTM 公司,于1992年开发了基于SLS的商业成形系统Sinterstation。斯科特科瑞普在1988年提出了熔融成形(Fused Deposition Modeling,简称FDM)的思想,1992年开发了第一台商业机型3D-Modeler。 自从80年代中期SLA光成形技术发展以来到90年代后期,出现了几十种不同的RP技术,但是SLA、SLS和FDM几种技术,目前仍然是RP技术的主流,最近几年LJP(立体喷墨打印)技术发展迅速,以色列、美国、日本等国的RP设备公司都力推此类技术设备。 2基本原理 快速成形技术是在计算机控制下,基于离散、堆积的原理采用不同方法堆积材料,最终完成零件的成形与制造的技术。 1、从成形角度看,零件可视为“点”或“面”的叠加。从CAD电子模型中离散得到“点”或“面”的几何信息,再与成形工艺参数信息结合,控制材料有规律、精确地由点到面,由面到体地堆积零件。 2、从制造角度看,它根据CAD造型生成零件三维几何信息,控制多维系统,通过激光束或其他方法将材料逐层堆积而形成原型或零件。 3快速成型技术特点 RP技术与传统制造方法(即机械加工)有着本质的区别,它采用逐渐增加材料的方法(如凝固、焊接、胶结、烧结、聚合等)来形成所需的部件外型,由于RP技术在制造产品的过程中不会产生废弃物造成环境的污染,(传统机械加工的冷却液等是污染环境的),因此在当代讲究生态环境的今天,这也是一项绿色制造技术。 RP技术集成了CAD、CAM、激光技术、数控技术、化工、材料工程等多项技术,解决了传统加工制造中的许多难题。 RP技术的基本工作原理是离散与堆积,在使用该技术时,首先设计者借助三维CAD或者

原创 多层共挤流延膜挤出技术

原创多层共挤流延膜挤出技术 多层共挤流延膜挤出技术是一种传统的薄膜挤出生产工艺。该工艺最大的优势 是具有极高的加工精度,且能够最大限度地发挥被加工材料的性能。特别是在加工 高阻隔多层共挤流延膜方面,具有无可比拟的优势。 多层共挤流延膜挤出技术特点和优势 多层共挤流延膜挤出技术是一种将两种或两种以上的不同塑料利用2台或2台 以上的挤出机通过一个多流道的复合模头,汇合生产多层结构的复合薄膜,并通过 急冷辊成型的技术。多层共挤流延膜挤出技术也是传统的生产薄膜的挤出生产工 艺。采用这种方法可生产各种不同材料的薄膜,且具有很高的加工精度,尤其是在 加工半结晶热塑性塑料时,这种加工方法能够充分地发挥被加工材料的性能,同时 又能保持最佳的尺寸精度。所制得的流延膜具有优良的光学性能和厚薄均匀度,并 且由于采用急冷辊可以获得很高的生产速度,并改善薄膜的形态结构。此法制得的 薄膜与其他薄膜(如吹膜)相比,其优点是生产速度快,产量高,有利于大批量生产;产品的厚薄控制精度较高,厚度均匀性较好;透明性和光泽性俱佳;各向平衡性能优异。某些材料,例如聚丙烯(PP)膜、聚脂(PET)膜加工的通用方法甚至是唯一的方 法就是多层共挤流延法。 挤出机单元 多层共挤流延法的主要技术特点是: 多种原料和辅助材料的混配和输送的精确控制; 2台或2台以上的挤出实现共挤; 共挤熔体经T型平模头挤出后在一个大直径的急冷辊上骤冷和重新固化后成型; 多层共挤复合模头的设计使各层熔体在模头展开后能均匀地分布,并防止各层 物料间的互窜;

既能对整体厚度进行精确监控和调整,又能对某些关键的功能层进行厚度的精确监控和调整; 设备的自动控制系统非常复杂,如原料的混配和输送、温度控制、速度控制、共挤控制、厚薄均匀度控制等,另外工艺的控制也相当复杂。 对比干法复合技术,多层共挤流延膜挤出技术能够大幅度降低生产成本,实现清洁化、安全化生产,产品的卫生可靠性更佳。 由于多层共挤流延膜是通过一步加工处理直接制得的多层复合薄膜。因此多层共挤流延膜和干法复合膜法相比,具有生产工序少、能耗小,成本低的优势。一般来说,采用多层共挤流延成膜较之最常用的干法复合成膜,生产成本可降低 20%~30%,同时可使产品的结构质量更好、更稳定。在多层共挤流延成型的生产过程中,无三废物质产生,不会污染周边环境,对环境保护的适应性好。同时由于生产过程中,不使用易燃、易爆的有机溶剂之类的物质,生产安全性也好。与之相反,常用的干法复合成膜法,在生产过程中则要使用和排放大量有机溶剂,这些溶剂或多或少地会危害人们的身体健康,而且还往往有易燃、易爆的危险,需要进行妥善处理。在多层共挤流延成型生产过程中,由于不使用有机溶剂和黏合剂,因此在多层共挤流延膜中,不会像干法复合薄膜那样出现残存溶剂的问题。加上多层共挤流延薄膜是一步到位制成,不需要事先制造复合用薄膜的中间产品,从而避免了半成品在储运过程中受到外界环境的污染而引起的卫生性能下降,因而使它具有更好的卫生可靠性。 多层共挤流延薄膜的应用 由多层共挤流延法制得的薄膜,由于它能够使多种具有不同特性的物料在挤出过程中彼此复合在一起,因而使得制品兼有不同材料的优良特性,在特性上能进行互补,从而使制品得到特殊要求的性能和外观,如防氧和防湿的阻隔性、阻渗性、

快速成型技术的发展历史

快速成型技术的发展历史 一、国外RP技术的发展历史 从历史上看,很早以前就有“材料叠加”的制造设想,例如,1892年,J.E.Blanther在他的美国专利(#473 901)中,曾建议用分层制造法构成地形图。这种方法的原理是,将地形图的轮廓线压印在一系列的蜡片上,然后按轮廓线切割蜡片,并将其粘结在一起,熨平表面,从而得到三维地形图。1902年,Carlo Baese在他的美国专利(#774 549)中,提出了用光敏聚合物制造塑料件的原理,这是现代第一种快速成型技术——“立体平板印刷术”(Stereo Lithogrphy)的初步设想。1940年,Perera提出了在硬纸板上切割轮廓线,然后将这些纸板粘结成三维地形图的方法。50年代之后,出现了几百个有关快速成型技术的专利,其中Paul L Dimatteo在他1976年的美国专利(#3932923)中,进一步明确地提出,先用轮廓跟踪器将三维物体转化成许多二维廓薄片(图1),然后用激光切割这些薄片成型,再用螺钉、销钉等将一系列薄片连接成三维物体,这些设想与现代另一种快速成型技术——“物体分层制造”(Laminated Object Manufacturing)的原理极为相似。

图1 Paul的分层成型法 上述早期的专利虽然提出了一些快速成型的原理,但还很不完整,更没有实现快速成型机械及其使用原材料的商品化。80年代末之后,快速成型技术有了根本性的发展,出现的专利更多,仅在1986~1998年期间注册的美国专利就有24个。这首先是Charles W Hull在他1986年的美国专利(#4 575 330)中,提出了一个用激光束照射液态光敏树脂,从而分层制作三维物体的现代快速成型机的方案。随后,美国的3D Systems公司据此专利,于1988年生产出了第一台现代快速成型机SLA-250(液态光敏树脂选择性固化成型机),开创了快速成型技术发展的新纪元。在伺候的10年中,涌现了10多种不同形式的快速成型技术和相应的快速成型机,如薄形材料选择性切割(LOM)、丝状材料选择性熔覆(FDM)和粉末材料选择性烧结(SLS)等,并且在工业、医疗及其他领域得到了广泛到的应用。1998年止,全世界已拥有快速成型机4259台,快速成型机制造公司约27个,用快速成型机进行对外服务的机构331个。

快速成型技术及其向产品化生产发展所面临的技术问题

快速成型技术及其向产品化生产发展所面临的技术问题 快速成型技术问世以来,已实现了相当大的市场,发展非常迅速。人们对材料逐层添加法这种新的制造方法已逐步适应。该技术通过与数控加工、铸造、金属冷喷涂、硅胶模等制造手段结合,已成为现代模型、模具和零件制造的强有力手段,在航空航天、汽车摩托车、家电等领域得到了广泛应用。 1快速成型技术的优点 1)快速成型作为一种使设计概念可视化的重要手段,计算机辅助设计零件的实物模型可以在很短时间内被加工出来,从而可以很快对加工能力和设计结果进行评估。 2)由于快速成型技术是将复杂的三维型体转化为两维截面来解决,因此,它能制造任意复杂型体的高精度零件,而无须任何工装模具。 3)快速成型作为一种重要的制造技术,采用适当的材料,这种原型可以被用在后续生产操作中以获得最终产品。 4)快速成型操作可以应用于模具制造,可以快速、经济地获得模具。 5)产品制造过程几乎与零件的复杂性无关,可实现自由制造,这是传统制造方法无法比拟的。 2快速成型的基本原理 基于材料累加原理的快速成型操作过程实际上是一层一层地离散制造零件。为了形象化这种操作,可以想象一整条面包的结构是一片面包落在另一片面包之上一层层累积而成的。快速成型有很多种工艺方法,但所有的快速成型工艺方法都是一层一层地制造零件,区别是制造每一层的方法和材料不同而已。 2. 1快速成型的一般工艺过程原理 三维模型的构造 在三维CAD设计软件(如P⑹E\UG\SolidWorks\SolidEdge 等)中获得描述该零件的CAD文件。目前一般快 速成型支持的文件输出格式为5TL模型,即对实体曲面近似处理,即所谓面型化仃essallation)处理,是 用平面三角面片近似模型表面。这样处理的优点是大大地简化了GAD模型的数据格式,从而便于后续的分 层处理。由于它在数据处理上较简单,而且与CAD系统无关,所以很快发展为快速成型制造领域中CAD系统与快速成型机之间数据交换的准标准,每个三角面片用4个数据项表示,即3个顶点坐标和法向矢量,而 整个CAD模型就是这样一组矢量的集合。 在三维CAD设计软件对模型进行面型化处理时,一般软件系统中有输岀精度控制参数,通过控制该参数, 可减小曲面近似处理误差。如Pro/E软件是通过选定弦高值(eh-chord height)作为逼近的精度参数,如图 1为一球体,给定的两种ch值所转化的情况。对于一个模型,软件中给定一个选取范围,一般情况下这个范围可以满足工程要求。但是,如果该值选的太小,要牺牲处理时间及存贮空间,中等复杂的零件都要数兆甚至数十兆左右的存贮空间。并且这种数据转换过程中无法避免地产生错误,如某个三角形的顶点在另一三角形边的中间、三角形不封闭等问题是实践中经常遇到的,这给后续数据处理带来麻烦,需要进一步检查修补。 三维模型的离散处理 通过专用的分层程序将三维实体模型(一般为5TL模型)分层,分层切片是在选定了制作(堆积)方向后,需 对CAD模型进行一维离散,获取每一薄层片截面轮廓及实体信息。通过一簇平行平面沿制作方向与CAD模型相截,所得到的截面交线就是薄层的轮廓信息,而实体信息是通过一些判别准则来获取的。平行平面之间的距离就是分层的厚度,也就是成型时堆积的单层厚度。在这一过程中,由于分层,破坏了切片方向CAD 模型表面的连续性,不可避免地丢失了模型的一些信息,导致零件尺寸及形状误差的产生。切片层的厚度直接影响零件的表面粗糙度和整个零件的型面精度,分层切片后所获得的每一层信息就是该层片上下轮廓信息及实体信息,而轮廓信息由于是用平面与CAD模型的STL文件(面型化后的CAD模型)求交获得的,所 以轮廓是由求交后的一系列交点顺序连成的折线段构成,所以,分层后所得到的模型轮廓已经是近似的,而层层之间的轮廓信息已经丢失,层厚大,丢失的信息多,导致在成型过程中产生了型面误差。 3快速成型技术在向产品生产化发展中所存在的主要问题 在制造业日趋国际化的状况下,缩短产品开发周期和减少开发新产品投资风险,成为企业赖以生存的关键。

相关文档