文档库 最新最全的文档下载
当前位置:文档库 › 数据挖掘期末实验报告

数据挖掘期末实验报告

数据挖掘期末实验报告
数据挖掘期末实验报告

数据挖掘技术期末报告

理学院

姓名:

学号:

联系电话:

专业班级:

评分:优□|良□|中□|及格□|不及格□

一、实验目的

基于从UCI公开数据库中下载的数据,使用数据挖掘中的分类算法,用Weka 平台的基本功能对数据集进行分类,对算法结果进行性能比较,画出性能比较图,另外针对不同数量的训练集进行对比实验,并画出性能比较图训练并测试。

二、实验环境

实验采用Weka平台,数据使用来自从UCI公开数据库中下载,主要使用其中的Breast Cancer Wisc-onsin (Original) Data Set数据。Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。

三、实验步骤

3.1数据预处理

本实验是针对威斯康辛州(原始)的乳腺癌数据集进行分类,该表含有Sample code number(样本代码),Clump Thickness(丛厚度),Uniformity of Cell Size(均匀的细胞大小),Uniformity of Cell Shape (均匀的细胞形状),Marginal Adhesion (边际粘连),Single Epithelial Cell Size(单一的上皮细胞大小),Bare Nuclei(裸核),Bland Chromatin(平淡的染色质),Normal Nucleoli(正常的核仁),Mitoses (有丝分裂),Class(分类),其中第二项到第十项取值均为1-10,分类中2代表良性,4代表恶性。通过实验,希望能找出患乳腺癌客户各指标的分布情况。

该数据的数据属性如下:

1. Sample code number(numeric),样本代码;

2. Clump Thickness(numeric),丛厚度;

3.Uniformity of Cell Size(numeric)均匀的细胞大小;

4. Uniformity of Cell Shape(numeric),均匀的细胞形状;

5.Marginal Adhesion(numeric),边际粘连;

6.Single Epithelial Cell Size(numeric),单一的上皮细胞大小;

7.Bare Nuclei(numeric),裸核;

8.Bland Chromatin(numeric),平淡的染色质;

9. Normal Nucleoli(numeric),正常的核仁;

10.Mitoses(numeric),有丝分裂;

11.Class(enum),分类。

3.2数据分析

由UCI公开数据库得到一组由逗号隔开的数据,复制粘贴至excel表中,选择数据——分列——下一步——逗号——完成,该数据是有关乳腺癌数据集,有11个属性,分别为Sample code number(样本代码),Clump Thickness(丛厚度),Uniformity of Cell Size(均匀的细胞大小),Uniformity of Cell Shape (均匀的细胞形状),Marginal Adhesion(边际粘连),Single Epithelial Cell Size(单一的上皮细胞大小),Bare Nuclei(裸核),Bland Chromatin(平淡的染色质),Normal Nucleoli(正常的核仁),Mitoses(有丝分裂),Class(分类),因为复制粘贴过来的数据没有属性,所以手工添加一行属性名。Weka分类数据需把excel保存为一个csv文件。

图1中显示的是使用“Exploer”打开“乳腺癌数据集.csv.arff”的情况.如图1所示:

(图1)

3.2.1 数据预处理

很明显发现,所用的数据都是(numeric)数值型的,需要将数值型离

散化,将“Clump Thickness ”,“Uniformity of Cell Size ”,“Uniformity of Cell Shape”,“Marginal Adhesion ”,“Marginal Adhesion ”,“Bare Nuclei ”,“Bland Chromatin ”,“Normal Nucleoli ”,“Mitoses”,“Class”离散化。我们需要借助W eka中名为“Discretize”的Filter来完成。在区域2中点“Choose”,出现一棵“Filter树”,逐级找到“weka.filters.unsupervised.attribute.Discretize”点击,即可。

现在“Choose”旁边的文本框应该显示“Discretize -B 10 -M -0.1 -R first-last”。如图箭头所示,点击这个文本框会弹出新窗口以修改离散化的参数。我们需将第1,2,3,4,5,6,7,8,9,10项离散化,其中第一项为id,可移除。把attributeIndices右边改成“1,2,3,4,5,6,7,8,9,10”。我们把这两个属性都分成10段,于是把“bins”改成“10”。其它不变。点“OK”回到“Explorer”,可以看到“Clump Thickness ”,“Uniformity of Cell Size ”,“Uniformity of Cell Shape”,“Marginal Adhesion ”,“Marginal Adhesion ”,“Bare Nuclei ”,“Bland Chromatin ”,“Normal Nucleoli ”,“Mitoses”,已经被离散化成分类型的属性。经移除后剩10项属性,其中一项如图2所示,10项属性可视化如图3所示:

(图2)

(图3)

3.3.1决策树分类

用“Explorer”打开刚才得到的“乳腺癌数据集.csv.arff”,并切换到“Class”。点“Choose”按钮选择“tree(weka.classifiers.trees.j48)”,这是W eka中实现的决策树算法。得到结果如图4和图5所示:

(图4)

(图5)

这个是针对第一项Clump Thickness丛厚度和第九项Mitoses有丝分裂项运用C4.5决策算法得到误差分析的结果,分析可知总共有699个数据进行分类,Clump Thickness(丛厚度)其中102个为正确分类,正确分类率为26.03726%,517个为错误分类,错误分类为73.9268%。而第九项Mitoses有丝分裂项也是分析699个数据,其中正确分类有579个数据,正确率为82.8326%,错误分类的有120个,错误分类的有17.1674%。根据混淆矩阵,被错误分类实例很多如图

(图6)

3.3.2贝叶斯分类

为了与上面决策树作比较,贝叶斯也选择第一项第一项Clump Thickness 丛厚度和第九项Mitoses有丝分裂项,得到结果如下图7,8所示:

(图7)

(图8)

这个是针对第一项Clump Thickness丛厚度和第九项Mitoses有丝分裂项运用贝叶斯算法得到误差分析的结果,分析可知总共有699个数据进行分类,Clump Thickness(丛厚度)其中198个为正确分类,正确分类率为28.3262%,501个为错误分类,错误分类为71.6738%。而第九项Mitoses有丝分裂项其中正确分类有467个数据,正确率为66.8097%,错误分类的有232个,错误分类的有33.1903%。根据混淆矩阵,被错误分类实例很多,相对来说,Clump Thickness丛厚度用两种方法混淆程度差不多,错综复杂,而Mitoses有丝分裂项用贝叶斯分类明显混淆矩阵要比用决策树方法混淆率要低,中间第六项到就第九项明显混响不是很多,如图9所示。基于以上两种分析,建议用贝叶斯分类方法分类,降低混淆率,

提高正确率。

(图9)

3.3.3K最近邻算法分类

在刚才进行决策树分类和贝叶斯分类的的的那个页面,点“Choose”按钮选择“laze->ib k”,选择Cross-Validatioin folds=10,然后点击“start”按钮:同样选择图中箭头指向选择属性,然后点击“start”按钮:为了与上面决策树和贝叶斯作比较,K最近邻算法分类也选择第一项Clump Thickness丛厚度和第九项Mitoses有丝分裂项,得到结果如下图10,11所示:

(图10)

(图11)

这个是针对第一项Clump Thickness丛厚度和第九项Mitoses有丝分裂项运用K最近邻算法得到误差分析的结果,分析可知总共有699个数据进行分类,

Clump Thickness(丛厚度)其中191个为正确分类,正确分类率为27.3247%,

508个为错误分类,错误分类为72.6753%。而第九项Mitoses有丝分裂项其中正确分类有546个数据,正确率为78.1116%,错误分类的有153个,错误分类的有21.8884%。根据混淆矩阵,被错误分类实例很多,相对来说,Clump Thickness 丛厚度与前两个算法混淆程度差不多,错综复杂,甚至比前两个更要复杂,而Mitoses有丝分裂项用K最近邻算法明显混淆矩阵要比用决策树方法和贝叶斯方法混淆率要低,中间第四项到就最后明显混响不是很多,如图12所示:

(图12)

3.4三种分类方法结果比较

如表所示:

四、三种算法在进行测试的性能比较

要进行性能比较,则需比较这10项属性的预测,同上文一样,这里只比较第一项Clump Thickness丛厚度和第九项Mitoses有丝分裂项,点“more options...”按钮,选勾选“out prediction”,其他不勾选,然后点击“OK”按钮如图13所示:

(图13)

得到性能测试结果如下,图14分别为第一项Clump Thickness丛厚度用决策树方法、贝叶斯、K最近邻算法预测的结果,图15分别为第九项Mitoses有丝分裂项用决策树方法、贝叶斯、K最近邻算法预测的结果。结果如下:

(图14)

分析第一项Clump Thickness丛厚度。性能分析应该包括两个部分,一个部分是测试速度,另一个部分是测试的质量。由于本次使用所使用的数据量一般,不是很多,在测试速度的对比上相差太少,无法进行准确的分析。而在测试质量上,可以从上述数据中很明显得到,在“error”(错误项),决策树和K最近邻算法很多加号,这说明错误率很大,从而导致分类质量的降低;而对于“probability distribution”(概率分布项),决策树和K最近邻算法分布很混乱,前六项属性的概率分布波动较大,而贝叶斯与其相比,“error”(错误项)几乎无“+”,说明其错误率相对其他两种方法,贝叶斯的错误率降低很多,而且在“probability distribution”(概率分布项),上,分布很整齐,所以从性能角度上讲,贝叶斯算法好一点。

(图15)

观察图15,分析第九项Mitoses有丝分裂项,同分析第一项Clump Thickness 丛厚度一样。在测试速度的对比上相差太少,无法进行准确的分析。而在测试质量上,可以从上述数据中很明显得到,在“error”(错误项),决策树与贝叶斯相比,明显决策树加号要多,这说明决策树算法错误率很大,从而导致分类质量的降低,而比较贝叶斯和K最近邻算法,“error”(错误项)贝叶斯错误率明显比K 最近邻算法要多,而对于“probability distribution”(概率分布项),贝叶斯与K 最近邻算法分布相对混乱,对于K最近邻算法,第一项属性Clump Thickness丛厚度的所有概率分布大致相同,对于第3、5、11、12...项数据,分布很整齐。所以从性能角度上讲,K最近邻算法好一点。

五、实验总结

以上实验是对Breast Cancer Wisconsin (Original) Data Set数据做了一些分析,通过本次数据挖掘实验,重新学习了一下数据挖掘的相关概念和知识,理解了数据挖掘的用途和使用步骤,进一步学习了WEKA开源数据挖掘工具在数据挖掘学习中的使用方法。通过本次实验,也认识到了数据挖掘对大量的数据进行探索后,能揭示出其中隐藏着的规律性内容,并且由此进一步形成模型化的分析方法。可以建立整体或某个业务过程局部的不同类型的模型,可以描述发展的现状和规律性,而且可以用来预测当条件变化后可能发生的状况。这可以为后续的研究提供更好的支持依据。

本次实验进行比较顺利,使我对如何在Weka中进行分类分析有了更深刻的了解,对Weka中进行分类分析的决策树算法、贝叶斯算法、K最近邻算法都有了进一步的理解,同时也深刻体会到数据预处理对于数据挖掘的重要性。

数据挖掘实验报告

《数据挖掘》Weka实验报告 姓名_学号_ 指导教师 开课学期2015 至2016 学年 2 学期完成日期2015年6月12日

1.实验目的 基于https://www.wendangku.net/doc/835333277.html,/ml/datasets/Breast+Cancer+WiscOnsin+%28Ori- ginal%29的数据,使用数据挖掘中的分类算法,运用Weka平台的基本功能对数据集进行分类,对算法结果进行性能比较,画出性能比较图,另外针对不同数量的训练集进行对比实验,并画出性能比较图训练并测试。 2.实验环境 实验采用Weka平台,数据使用来自https://www.wendangku.net/doc/835333277.html,/ml/Datasets/Br- east+Cancer+WiscOnsin+%28Original%29,主要使用其中的Breast Cancer Wisc- onsin (Original) Data Set数据。Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 3.实验步骤 3.1数据预处理 本实验是针对威斯康辛州(原始)的乳腺癌数据集进行分类,该表含有Sample code number(样本代码),Clump Thickness(丛厚度),Uniformity of Cell Size (均匀的细胞大小),Uniformity of Cell Shape (均匀的细胞形状),Marginal Adhesion(边际粘连),Single Epithelial Cell Size(单一的上皮细胞大小),Bare Nuclei(裸核),Bland Chromatin(平淡的染色质),Normal Nucleoli(正常的核仁),Mitoses(有丝分裂),Class(分类),其中第二项到第十项取值均为1-10,分类中2代表良性,4代表恶性。通过实验,希望能找出患乳腺癌客户各指标的分布情况。 该数据的数据属性如下: 1. Sample code number(numeric),样本代码; 2. Clump Thickness(numeric),丛厚度;

数据挖掘报告

哈尔滨工业大学 数据挖掘理论与算法实验报告(2016年度秋季学期) 课程编码S1300019C 授课教师邹兆年 学生姓名汪瑞 学号 16S003011 学院计算机学院

一、实验内容 决策树算法是一种有监督学习的分类算法;kmeans是一种无监督的聚类算法。 本次实验实现了以上两种算法。在决策树算法中采用了不同的样本划分方式、不同的分支属性的选择标准。在kmeans算法中,比较了不同初始质心产生的差异。 本实验主要使用python语言实现,使用了sklearn包作为实验工具。 二、实验设计 1.决策树算法 1.1读取数据集 本次实验主要使用的数据集是汽车价值数据。有6个属性,命名和属性值分别如下: buying: vhigh, high, med, low. maint: vhigh, high, med, low. doors: 2, 3, 4, 5more. persons: 2, 4, more. lug_boot: small, med, big. safety: low, med, high. 分类属性是汽车价值,共4类,如下: class values:unacc, acc, good, vgood 该数据集不存在空缺值。

由于sklearn.tree只能使用数值数据,因此需要对数据进行预处理,将所有标签类属性值转换为整形。 1.2数据集划分 数据集预处理完毕后,对该数据进行数据集划分。数据集划分方法有hold-out法、k-fold交叉验证法以及有放回抽样法(boottrap)。 Hold—out法在pthon中的实现是使用如下语句: 其中,cv是sklearn中cross_validation包,train_test_split 方法的参数分别是数据集、数据集大小、测试集所占比、随机生成方法的可

数据挖掘实验报告(一)

数据挖掘实验报告(一) 数据预处理 姓名:李圣杰 班级:计算机1304 学号:1311610602

一、实验目的 1.学习均值平滑,中值平滑,边界值平滑的基本原理 2.掌握链表的使用方法 3.掌握文件读取的方法 二、实验设备 PC一台,dev-c++5.11 三、实验内容 数据平滑 假定用于分析的数据包含属性age。数据元组中age的值如下(按递增序):13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70。使用你所熟悉的程序设计语言进行编程,实现如下功能(要求程序具有通用性): (a) 使用按箱平均值平滑法对以上数据进行平滑,箱的深度为3。 (b) 使用按箱中值平滑法对以上数据进行平滑,箱的深度为3。 (c) 使用按箱边界值平滑法对以上数据进行平滑,箱的深度为3。 四、实验原理 使用c语言,对数据文件进行读取,存入带头节点的指针链表中,同时计数,均值求三个数的平均值,中值求中间的一个数的值,边界值将中间的数转换为离边界较近的边界值 五、实验步骤 代码 #include #include #include #define DEEP 3 #define DATAFILE "data.txt" #define VPT 10 //定义结构体 typedef struct chain{ int num; struct chain *next; }* data; //定义全局变量 data head,p,q; FILE *fp; int num,sum,count=0; int i,j; int *box; void mean(); void medain(); void boundary(); int main () { //定义头指针 head=(data)malloc(sizeof(struc t chain)); head->next=NULL; /*打开文件*/ fp=fopen(DATAFILE,"r"); if(!fp) exit(0); p=head; while(!feof(fp)){

数据挖掘课程报告

数据挖掘课程报告 学习“数据挖掘”这门课程已经有一个学期了,在这十余周的学习过程中,我对数据挖掘这门技术有了一定的了解,明确了一些以前经常容易混淆的概念,并对其应用以及研究热点有了进一步的认识。以下主要谈一下我的心得体会,以及我对数据挖掘这项课题的见解。 随着数据库技术和计算机网络的迅速发展以及数据库管理系统的广泛应用,

人们积累的数据越来越多,而数据挖掘(Data Mining)就是在这样的背景下诞生的。 简单来说,数据挖掘就是从大量的数据中,抽取出潜在的、有价值的知识、模型或规则的过程。作为一类深层次的数据分析方法,它利用了数据库、人工智能和数理统计等多方面的技术。从某种角度上来说,数据挖掘可能并不适合进行科学研究,因为从本质上来说,数据挖掘这个技术是不能证明因果的,以一个最典型的例子来说,例如数据挖掘技术可以发现啤酒销量和尿布之间的关系,但是显然这两者之间紧密相关的关系可能在理论层面并没有多大的意义。不过,仅以此来否定数据挖掘的意义,显然就是对数据挖掘这项技术价值加大的抹杀,显然,数据挖掘这项技术从设计出现之初,就不是为了指导或支持理论研究的,它的重要意义在于,它在应用领域体现出了极大地优越性。 首先有一点是我们必须要明确的,即我们为什么需要数据挖掘这门技术?这也是在开课前一直困扰我的问题。数据是知识的源泉,然而大量的数据本身并不意味信息。尽管现代的数据库技术使我们很容易存储大量的数据,但现在还没有一种成熟的技术帮助我们分析、理解这些数据。数据的迅速增加与数据分析方法的滞后之间的矛盾越来越突出,人们希望在对已有的大量数据分析的基础上进行研究,但是目前所拥有的数据分析工具很难对数据进行深层次的处理,使得人们只能望“数”兴叹。数据挖掘正是为了解决传统分析方法的不足,并针对大规模数据的分析处理而出现的。数据挖掘可以帮助人们对大规模数据进行高效的分析处理,以节约时间,将更多的精力投入到更高层的研究中,从而提高科研工作的效率。 那么数据挖掘可以做些什么呢?数据挖掘的研究领域非常广泛,主要包括数据库系统、基于知识的系统、人工智能、机器学习、知识获取、统计学、空间数据库和数据可视化等领域。具体来说,它可以做这七件事情:分类,估计,预测,关联分析,聚类分析,描述和可视化,复杂数据类型挖掘。在本学期的学习过程中,我们对大部分内容进行了较为详细的研究,并且建立了一些基本的概念,对将来从事相关方向的研究奠定了基础。由于篇幅限制,就不对这些方法一一讲解了,这里只谈一下我在学习工程中的一些见解和心得。 在学习关联规则的时候,我们提到了一个关于“尿布与啤酒”的故事:在一

数据挖掘实验报告资料

大数据理论与技术读书报告 -----K最近邻分类算法 指导老师: 陈莉 学生姓名: 李阳帆 学号: 201531467 专业: 计算机技术 日期 :2016年8月31日

摘要 数据挖掘是机器学习领域内广泛研究的知识领域,是将人工智能技术和数据库技术紧密结合,让计算机帮助人们从庞大的数据中智能地、自动地提取出有价值的知识模式,以满足人们不同应用的需要。K 近邻算法(KNN)是基于统计的分类方法,是大数据理论与分析的分类算法中比较常用的一种方法。该算法具有直观、无需先验统计知识、无师学习等特点,目前已经成为数据挖掘技术的理论和应用研究方法之一。本文主要研究了K 近邻分类算法,首先简要地介绍了数据挖掘中的各种分类算法,详细地阐述了K 近邻算法的基本原理和应用领域,最后在matlab环境里仿真实现,并对实验结果进行分析,提出了改进的方法。 关键词:K 近邻,聚类算法,权重,复杂度,准确度

1.引言 (1) 2.研究目的与意义 (1) 3.算法思想 (2) 4.算法实现 (2) 4.1 参数设置 (2) 4.2数据集 (2) 4.3实验步骤 (3) 4.4实验结果与分析 (3) 5.总结与反思 (4) 附件1 (6)

1.引言 随着数据库技术的飞速发展,人工智能领域的一个分支—— 机器学习的研究自 20 世纪 50 年代开始以来也取得了很大进展。用数据库管理系统来存储数据,用机器学习的方法来分析数据,挖掘大量数据背后的知识,这两者的结合促成了数据库中的知识发现(Knowledge Discovery in Databases,简记 KDD)的产生,也称作数据挖掘(Data Ming,简记 DM)。 数据挖掘是信息技术自然演化的结果。信息技术的发展大致可以描述为如下的过程:初期的是简单的数据收集和数据库的构造;后来发展到对数据的管理,包括:数据存储、检索以及数据库事务处理;再后来发展到对数据的分析和理解, 这时候出现了数据仓库技术和数据挖掘技术。数据挖掘是涉及数据库和人工智能等学科的一门当前相当活跃的研究领域。 数据挖掘是机器学习领域内广泛研究的知识领域,是将人工智能技术和数据库技术紧密结合,让计算机帮助人们从庞大的数据中智能地、自动地抽取出有价值的知识模式,以满足人们不同应用的需要[1]。目前,数据挖掘已经成为一个具有迫切实现需要的很有前途的热点研究课题。 2.研究目的与意义 近邻方法是在一组历史数据记录中寻找一个或者若干个与当前记录最相似的历史纪录的已知特征值来预测当前记录的未知或遗失特征值[14]。近邻方法是数据挖掘分类算法中比较常用的一种方法。K 近邻算法(简称 KNN)是基于统计的分类方法[15]。KNN 分类算法根据待识样本在特征空间中 K 个最近邻样本中的多数样本的类别来进行分类,因此具有直观、无需先验统计知识、无师学习等特点,从而成为非参数分类的一种重要方法。 大多数分类方法是基于向量空间模型的。当前在分类方法中,对任意两个向量: x= ) ,..., , ( 2 1x x x n和) ,..., , (' ' 2 ' 1 'x x x x n 存在 3 种最通用的距离度量:欧氏距离、余弦距 离[16]和内积[17]。有两种常用的分类策略:一种是计算待分类向量到所有训练集中的向量间的距离:如 K 近邻选择K个距离最小的向量然后进行综合,以决定其类别。另一种是用训练集中的向量构成类别向量,仅计算待分类向量到所有类别向量的距离,选择一个距离最小的类别向量决定类别的归属。很明显,距离计算在分类中起关键作用。由于以上 3 种距离度量不涉及向量的特征之间的关系,这使得距离的计算不精确,从而影响分类的效果。

《数据挖掘》结课报告

《数据挖掘》结课报告 --基于k-最近邻分类方法的连衣裙属性数据集的研究报告 (2013--2014 学年第二学期) 学院: 专业: 班级: 学号: 姓名: 指导教师: 二〇一四年五月二十四日

一、研究目的与意义 (介绍所选数据反应的主题思想及其研究目的与意义) 1、目的 (1)熟悉weka软件环境; (2)掌握数据挖掘分类模型学习方法中的k-最近邻分类方法; (3)在weka中以“Dress Attribute DataSet”为例,掌握k-最近邻分类算法的相关方法; (4)取不同的K值,采用不同的预测方法,观察结果,达到是否推荐某款连衣裙的目的,为企业未来的规划发展做出依据。 2、意义 此数据集共有14个属性,500个实例,包含了连衣裙的各种属性和根据销售量的不同而出现的推荐情况,按照分类模型学习方法中的k-最近邻分类方法依据各属性推断应推广哪些种类的裙子,对发展市场的扩大及企业的发展战略具有重要意义。 二、技术支持 (介绍用来进行数据挖掘、数据分析的方法及原理) 1、原理:k-最近邻分类算法是一种基于实例的学习方法,不需要事先对训练数据建立分类模型,而是当需要分类未知样本时才使用具体的训练样本进行预测,通过在训练集中找出测试集的K个最近邻,来预测估计测试集的类标号; 2、方法:k-最近邻方法是消极学习方法的典型代表,其算法的关键技术是搜索模式空间,该方法首先找出最近邻即与测试样本相对

接近的所有训练样本,然后使用这些最近邻的类标号来确定测试样本的类标号。 三、数据处理及操作过程 (一)数据预处理方法 1、“remove”属性列:数据集中属性“Dress_ID”对此实验来说为无意义的属性,因此在“Attributes”选项中勾选属性“Dress_ID”并单击“remove”,将该属性列去除,并保存新的数据集; 2、离散化预处理:需要对数值型的属性进行离散化,该数据集中只有第3个属性“rating”和第13个属性“recommendation”为数值型,因此只对这两个属性离散化。 “recommendation”属性只有2个取值:0,1,因此用文本编辑器“Ultra Edit”或者写字板打开数据集并直接修改“Dress Attribute Data Set.arff”文件,把“@attribute recommendation numeric”改为“@attribute recommendation {0,1,}”,并保存;在“Explorer”中重新打开“Dress Attribute Data Set.arff”,选中“recommendation”属性后,右方的属性摘要中“Type”值变为“Nominal”。 在过滤器Filter中单击“choose”,出现树形图,单击“weka”--“Filters”--“unsupervised”--“attribute”--“discretize”,点击“Choose”右边的文本框进行参数设置,把“attribute Indices”右边改成“3”,计划将该属性分成3段,于是把“bins”改成“3”,其它参数不更改,点“OK”回到“Explorer”,单击“Apply”离散化后的数据如下所示:

数据挖掘实验报告-关联规则挖掘

数据挖掘实验报告(二)关联规则挖掘 姓名:李圣杰 班级:计算机1304 学号:1311610602

一、实验目的 1. 1.掌握关联规则挖掘的Apriori算法; 2.将Apriori算法用具体的编程语言实现。 二、实验设备 PC一台,dev-c++5.11 三、实验内容 根据下列的Apriori算法进行编程:

四、实验步骤 1.编制程序。 2.调试程序。可采用下面的数据库D作为原始数据调试程序,得到的候选1项集、2项集、3项集分别为C1、C2、C3,得到的频繁1项集、2项集、3项集分别为L1、L2、L3。

代码 #include #include #define D 4 //事务的个数 #define MinSupCount 2 //最小事务支持度数 void main() { char a[4][5]={ {'A','C','D'}, {'B','C','E'}, {'A','B','C','E'}, {'B','E'} }; char b[20],d[100],t,b2[100][10],b21[100 ][10]; int i,j,k,x=0,flag=1,c[20]={0},x1=0,i1 =0,j1,counter=0,c1[100]={0},flag1= 1,j2,u=0,c2[100]={0},n[20],v=1; int count[100],temp; for(i=0;i=MinSupCount) { d[x1]=b[k]; count[x1]=c[k]; x1++; } } //对选出的项集中的元素进行排序 for(i=0;i

数据挖掘报告(模板)

第一章:数据挖掘基本理论 数据挖掘的产生: 随着计算机硬件和软件的飞速发展,尤其是数据库技术与应用的日益普及,人们面临着快速扩张的数据海洋,如何有效利用这一丰富数据海洋的宝藏为人类服务业已成为广大信息技术工作者的所重点关注的焦点之一。与日趋成熟的数据管理技术与软件工具相比,人们所依赖的数据分析工具功能,却无法有效地为决策者提供其决策支持所需要的相关知识,从而形成了一种独特的现象“丰富的数据,贫乏的知识”。 为有效解决这一问题,自二十世纪90年代开始,数据挖掘技术逐步发展起来,数据挖掘技术的迅速发展,得益于目前全世界所拥有的巨大数据资源以及对将这些数据资源转换为信息和知识资源的巨大需求,对信息和知识的需求来自各行各业,从商业管理、生产控制、市场分析到工程设计、科学探索等。数据挖掘可以视为是数据管理与分析技术的自然进化产物。自六十年代开始,数据库及信息技术就逐步从基本的文件处理系统发展为更复杂功能更强大的数据库系统;七十年代的数据库系统的研究与发展,最终导致了关系数据库系统、数据建模工具、索引与数据组织技术的迅速发展,这时用户获得了更方便灵活的数据存取语言和界面;此外在线事务处理手段的出现也极大地推动了关系数据库技术的应用普及,尤其是在大数据量存储、检索和管理的实际应用领域。 自八十年代中期开始,关系数据库技术被普遍采用,新一轮研究与开发新型与强大的数据库系统悄然兴起,并提出了许多先进的数据模型:扩展关系模型、面向对象模型、演绎模型等;以及应用数据库系统:空间数据库、时序数据库、 多媒体数据库等;日前异构数据库系统和基于互联网的全球信息系统也已开始出现并在信息工业中开始扮演重要角色。

数据分析与挖掘实验报告

数据分析与挖掘实验报告

《数据挖掘》实验报告 目录 1.关联规则的基本概念和方法 (1) 1.1数据挖掘 (1) 1.1.1数据挖掘的概念 (1) 1.1.2数据挖掘的方法与技术 (2) 1.2关联规则 (5) 1.2.1关联规则的概念 (5) 1.2.2关联规则的实现——Apriori算法 (7) 2.用Matlab实现关联规则 (12) 2.1Matlab概述 (12) 2.2基于Matlab的Apriori算法 (13) 3.用java实现关联规则 (19) 3.1java界面描述 (19) 3.2java关键代码描述 (23) 4、实验总结 (29) 4.1实验的不足和改进 (29) 4.2实验心得 (30)

1.关联规则的基本概念和方法 1.1数据挖掘 1.1.1数据挖掘的概念 计算机技术和通信技术的迅猛发展将人类社会带入到了信息时代。在最近十几年里,数据库中存储的数据急剧增大。数据挖掘就是信息技术自然进化的结果。数据挖掘可以从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的,人们事先不知道的但又是潜在有用的信息和知识的过程。 许多人将数据挖掘视为另一个流行词汇数据中的知识发现(KDD)的同义词,而另一些人只是把数据挖掘视为知识发现过程的一个基本步骤。知识发现过程如下: ·数据清理(消除噪声和删除不一致的数据)·数据集成(多种数据源可以组合在一起)·数据转换(从数据库中提取和分析任务相关的数据) ·数据变换(从汇总或聚集操作,把数据变换和统一成适合挖掘的形式) ·数据挖掘(基本步骤,使用智能方法提取数

据模式) ·模式评估(根据某种兴趣度度量,识别代表知识的真正有趣的模式) ·知识表示(使用可视化和知识表示技术,向用户提供挖掘的知识)。 1.1.2数据挖掘的方法与技术 数据挖掘吸纳了诸如数据库和数据仓库技术、统计学、机器学习、高性能计算、模式识别、神经网络、数据可视化、信息检索、图像和信号处理以及空间数据分析技术的集成等许多应用领域的大量技术。数据挖掘主要包括以下方法。神经网络方法:神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。典型的神经网络模型主要分3大类:以感知机、bp反向传播模型、函数型网络为代表的,用于分类、预测和模式识别的前馈式神经网络模型;以hopfield 的离散模型和连续模型为代表的,分别用于联想记忆和优化计算的反馈式神经网络模型;以art 模型、koholon模型为代表的,用于聚类的自组

大数据挖掘weka大数据分类实验报告材料

一、实验目的 使用数据挖掘中的分类算法,对数据集进行分类训练并测试。应用不同的分类算法,比较他们之间的不同。与此同时了解Weka平台的基本功能与使用方法。 二、实验环境 实验采用Weka 平台,数据使用Weka安装目录下data文件夹下的默认数据集iris.arff。 Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java 写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 三、数据预处理 Weka平台支持ARFF格式和CSV格式的数据。由于本次使用平台自带的ARFF格式数据,所以不存在格式转换的过程。实验所用的ARFF格式数据集如图1所示 图1 ARFF格式数据集(iris.arff)

对于iris数据集,它包含了150个实例(每个分类包含50个实例),共有sepal length、sepal width、petal length、petal width和class五种属性。期中前四种属性为数值类型,class属性为分类属性,表示实例所对应的的类别。该数据集中的全部实例共可分为三类:Iris Setosa、Iris Versicolour和Iris Virginica。 实验数据集中所有的数据都是实验所需的,因此不存在属性筛选的问题。若所采用的数据集中存在大量的与实验无关的属性,则需要使用weka平台的Filter(过滤器)实现属性的筛选。 实验所需的训练集和测试集均为iris.arff。 四、实验过程及结果 应用iris数据集,分别采用LibSVM、C4.5决策树分类器和朴素贝叶斯分类器进行测试和评价,分别在训练数据上训练出分类模型,找出各个模型最优的参数值,并对三个模型进行全面评价比较,得到一个最好的分类模型以及该模型所有设置的最优参数。最后使用这些参数以及训练集和校验集数据一起构造出一个最优分类器,并利用该分类器对测试数据进行预测。 1、LibSVM分类 Weka 平台内部没有集成libSVM分类器,要使用该分类器,需要下载libsvm.jar并导入到Weka中。 用“Explorer”打开数据集“iris.arff”,并在Explorer中将功能面板切换到“Classify”。点“Choose”按钮选择“functions(weka.classifiers.functions.LibSVM)”,选择LibSVM分类算法。 在Test Options 面板中选择Cross-Validatioin folds=10,即十折交叉验证。然后点击“start”按钮:

数据挖掘实验报告1

实验一 ID3算法实现 一、实验目的 通过编程实现决策树算法,信息增益的计算、数据子集划分、决策树的构建过程。加深对相关算法的理解过程。 实验类型:验证 计划课间:4学时 二、实验内容 1、分析决策树算法的实现流程; 2、分析信息增益的计算、数据子集划分、决策树的构建过程; 3、根据算法描述编程实现算法,调试运行; 4、对所给数据集进行验算,得到分析结果。 三、实验方法 算法描述: 以代表训练样本的单个结点开始建树; 若样本都在同一个类,则该结点成为树叶,并用该类标记; 否则,算法使用信息增益作为启发信息,选择能够最好地将样本分类的属性; 对测试属性的每个已知值,创建一个分支,并据此划分样本; 算法使用同样的过程,递归形成每个划分上的样本决策树 递归划分步骤,当下列条件之一成立时停止: 给定结点的所有样本属于同一类; 没有剩余属性可以进一步划分样本,在此情况下,采用多数表决进行 四、实验步骤 1、算法实现过程中需要使用的数据结构描述: Struct {int Attrib_Col; // 当前节点对应属性 int Value; // 对应边值 Tree_Node* Left_Node; // 子树 Tree_Node* Right_Node // 同层其他节点 Boolean IsLeaf; // 是否叶子节点 int ClassNo; // 对应分类标号 }Tree_Node; 2、整体算法流程

主程序: InputData(); T=Build_ID3(Data,Record_No, Num_Attrib); OutputRule(T); 释放内存; 3、相关子函数: 3.1、 InputData() { 输入属性集大小Num_Attrib; 输入样本数Num_Record; 分配内存Data[Num_Record][Num_Attrib]; 输入样本数据Data[Num_Record][Num_Attrib]; 获取类别数C(从最后一列中得到); } 3.2、Build_ID3(Data,Record_No, Num_Attrib) { Int Class_Distribute[C]; If (Record_No==0) { return Null } N=new tree_node(); 计算Data中各类的分布情况存入Class_Distribute Temp_Num_Attrib=0; For (i=0;i=0) Temp_Num_Attrib++; If Temp_Num_Attrib==0 { N->ClassNo=最多的类; N->IsLeaf=TRUE; N->Left_Node=NULL;N->Right_Node=NULL; Return N; } If Class_Distribute中仅一类的分布大于0 { N->ClassNo=该类; N->IsLeaf=TRUE; N->Left_Node=NULL;N->Right_Node=NULL; Return N; } InforGain=0;CurrentCol=-1; For i=0;i

数据挖掘实验报告 超市商品销售分析及数据挖掘

通信与信息工程学院 课程设计说明书 课程名称: 数据仓库与数据挖掘课程设计题目: 超市商品销售分析及数据挖掘专业/班级: 电子商务(理) 组长: 学号: 组员/学号: 开始时间: 2011 年12 月29 日完成时间: 2012 年01 月 3 日

目录 1.绪论 (1) 1.1项目背景 (1) 1.2提出问题 (1) 2.数据仓库与数据集市的概念介绍 (1) 2.1数据仓库介绍 (1) 2.2数据集市介绍 (2) 3.数据仓库 (3) 3.1数据仓库的设计 (3) 3.1.1数据仓库的概念模型设计 (4) 3.1.2数据仓库的逻辑模型设计 (5) 3.2 数据仓库的建立 (5) 3.2.1数据仓库数据集成 (5) 3.2.2建立维表 (8) 4.OLAP操作 (10) 5.数据预处理 (12) 5.1描述性数据汇总 (12) 5.2数据清理与变换 (13) 6.数据挖掘操作 (13) 6.1关联规则挖掘 (13) 6.2 分类和预测 (17) 6.3决策树的建立 (18) 6.4聚类分析 (22) 7.总结 (25) 8.任务分配 (26)

数据挖掘实验报告 1.绪论 1.1项目背景 在商业领域中使用计算机科学与技术是当今商业的发展方向,而数据挖掘是商业领域与计算机领域的乔梁。在超市的经营中,应用数据挖掘技术分析顾客的购买习惯和不同商品之间的关联,并借由陈列的手法,和合适的促销手段将商品有魅力的展现在顾客的眼前, 可以起到方便购买、节约空间、美化购物环境、激发顾客的购买欲等各种重要作用。 1.2提出问题 那么超市应该对哪些销售信息进行挖掘?怎样挖掘?具体说,超市如何运用OLAP操作和关联规则了解顾客购买习惯和商品之间的关联,正确的摆放商品位置以及如何运用促销手段对商品进行销售呢?如何判断一个顾客的销售水平并进行推荐呢?本次实验为解决这一问题提出了解决方案。 2.数据仓库与数据集市的概念介绍 2.1数据仓库介绍 数据仓库,英文名称为Data Warehouse,可简写为DW或DWH,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,它并不是所谓的“大型数据库”。........ 2.2数据集市介绍 数据集市,也叫数据市场,是一个从操作的数据和其他的为某个特殊的专业人员团体服务的数据源中收集数据的仓库。....... 3.数据仓库 3.1数据仓库的设计 3.1.1数据库的概念模型 3.1.2数据仓库的模型 数据仓库的模型主要包括数据仓库的星型模型图,我们创建了四个

数据挖掘期末实验报告

数据挖掘技术期末报告 理学院 姓名: 学号: 联系电话:

专业班级: 评分:优□|良□|中□|及格□|不及格□

一、实验目的 基于从UCI公开数据库中下载的数据,使用数据挖掘中的分类算法,用Weka 平台的基本功能对数据集进行分类,对算法结果进行性能比较,画出性能比较图,另外针对不同数量的训练集进行对比实验,并画出性能比较图训练并测试。二、实验环境 实验采用Weka平台,数据使用来自从UCI公开数据库中下载,主要使用其中的Breast Cancer Wisc-onsin (Original) Data Set数据。Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 三、实验步骤 3.1数据预处理 本实验是针对威斯康辛州(原始)的乳腺癌数据集进行分类,该表含有Sample code number(样本代码),Clump Thickness(丛厚度),Uniformity of Cell Size(均匀的细胞大小),Uniformity of Cell Shape (均匀的细胞形状),Marginal Adhesion(边际粘连),Single Epithelial Cell Size(单一的上皮细胞大小),Bare Nuclei(裸核),Bland Chromatin(平淡的染色质),Normal Nucleoli(正常的核仁),Mitoses(有丝分裂),Class(分类),其中第二项到第十项取值均为1-10,分类中2代表良性,4代表恶性。通过实验,希望能找出患乳腺癌客户各指标的分布情况。

数据挖掘实验报告一

数据预处理 一、实验原理 预处理方法基本方法 1、数据清洗 去掉噪声和无关数据 2、数据集成 将多个数据源中的数据结合起来存放在一个一致的数据存储中 3、数据变换 把原始数据转换成为适合数据挖掘的形式 4、数据归约 主要方法包括:数据立方体聚集,维归约,数据压缩,数值归约,离散化和概念分层等二、实验目的 掌握数据预处理的基本方法。 三、实验内容 1、R语言初步认识(掌握R程序运行环境) 2、实验数据预处理。(掌握R语言中数据预处理的使用) 对给定的测试用例数据集,进行以下操作。 1)、加载程序,熟悉各按钮的功能。 2)、熟悉各函数的功能,运行程序,并对程序进行分析。 对餐饮销量数据进统计量分析,求销量数据均值、中位数、极差、标准差,变异系数和四分位数间距。 对餐饮企业菜品的盈利贡献度(即菜品盈利帕累托分析),画出帕累托图。 3)数据预处理 缺省值的处理:用均值替换、回归查补和多重查补对缺省值进行处理 对连续属性离散化:用等频、等宽等方法对数据进行离散化处理 四、实验步骤 1、R语言运行环境的安装配置和简单使用 (1)安装R语言 R语言下载安装包,然后进行默认安装,然后安装RStudio 工具(2)R语言控制台的使用 1.2.1查看帮助文档

1.2.2 安装软件包 1.2.3 进行简单的数据操作 (3)RStudio 简单使用 1.3.1 RStudio 中进行简单的数据处理 1.3.2 RStudio 中进行简单的数据处理

2、R语言中数据预处理 (1)加载程序,熟悉各按钮的功能。 (2)熟悉各函数的功能,运行程序,并对程序进行分析 2.2.1 销量中位数、极差、标准差,变异系数和四分位数间距。 , 2.2.2对餐饮企业菜品的盈利贡献度(即菜品盈利帕累托分析),画出帕累托图。

数据挖掘技术期末报告

. 数据挖掘技术期末报告 评分:优□|良□|中□|及格□|不及格□

一、实验目的 基于从UCI公开数据库中下载的数据,使用数据挖掘中的分类算法,用Weka平台的基本功能对数据集进行分类,对算法结果进行性能比较,画出性能比较图,另外针对不同数量的训练集进行对比实验,并画出性能比较图训练并测试。 二、实验环境 实验采用Weka平台,数据使用来自从UCI公开数据库中下载,主要使用其中的Breast Cancer Wisc-onsin (Original) Data Set数据。Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 三、实验步骤 3.1数据预处理 本实验是针对威斯康辛州(原始)的乳腺癌数据集进行分类,该表含有Sample code number(样本代码),Clump Thickness(丛厚度),Uniformity of Cell Size(均匀的细胞大小),Uniformity of Cell Shape (均匀的细胞形状),Marginal

Adhesion(边际粘连),Single Epithelial Cell Size(单一的上皮细胞大小),Bare Nuclei(裸核),Bland Chromatin(平淡的染色质),Normal Nucleoli(正常的核仁),Mitoses(有丝分裂),Class(分类),其中第二项到第十项取值均为1-10,分类中2代表良性,4代表恶性。通过实验,希望能找出患乳腺癌客户各指标的分布情况。 该数据的数据属性如下: 1. Sample code number(numeric),样本代码; 2. Clump Thickness(numeric),丛厚度; 3.Uniformity of Cell Size(numeric)均匀的细胞大小; 4. Uniformity of Cell Shape(numeric),均匀的细胞形状; 5.Marginal Adhesion(numeric),边际粘连; 6.Single Epithelial Cell Size(numeric),单一的上皮细胞大小; 7.Bare Nuclei(numeric),裸核; 8.Bland Chromatin(numeric),平淡的染色质; 9. Normal Nucleoli(numeric),正常的核仁; 10.Mitoses(numeric),有丝分裂; 11.Class(enum),分类。 3.2数据分析 由UCI公开数据库得到一组由逗号隔开的数据,复制粘贴至excel表中,选择数据——分列——下一步——逗号—

数据挖掘实验报告-实验1-Weka基础操作

数据挖掘实验报告-实验1-W e k a基础操作

学生实验报告 学院:信息管理学院 课程名称:数据挖掘 教学班级: B01 姓名: 学号:

实验报告 课程名称数据挖掘教学班级B01 指导老师 学号姓名行政班级 实验项目实验一: Weka的基本操作 组员名单独立完成 实验类型■操作性实验□验证性实验□综合性实验实验地点H535 实验日期2016.09.28 1. 实验目的和要求: (1)Explorer界面的各项功能; 注意不能与课件上的截图相同,可采用打开不同的数据文件以示区别。 (2)Weka的两种数据表格编辑文件方式下的功能介绍; ①Explorer-Preprocess-edit,弹出Viewer对话框; ②Weka GUI选择器窗口-Tools | ArffViewer,打开ARFF-Viewer窗口。(3)ARFF文件组成。 2.实验过程(记录实验步骤、分析实验结果) 2.1 Explorer界面的各项功能 2.1.1 初始界面示意

其中:explorer选项是数据挖掘梳理数据最常用界面,也是使用weka最简单的方法。 Experimenter:实验者选项,提供不同数值的比较,发现其中规律。 KnowledgeFlow:知识流,其中包含处理大型数据的方法,初学者应用较少。 Simple CLI :命令行窗口,有点像cmd 格式,非图形界面。 2.1.2 进入Explorer 界面功能介绍 (1)任务面板 Preprocess(数据预处理):选择和修改要处理的数据。 Classify(分类):训练和测试分类或回归模型。 Cluster(聚类):从数据中聚类。聚类分析时用的较多。 Associate(关联分析):从数据中学习关联规则。 Select Attributes(选择属性):选择数据中最相关的属性。 Visualize(可视化):查看数据的二维散布图。 (2)常用按钮

数据挖掘实验报告(参考)

时间序列的模型法和数据挖掘两种方法比较分析研究 实验目的:通过实验能对时间序列的模型法和数据挖掘两种方法的原理和优缺点有更清楚的认识和比较. 实验内容:选用1952-2006年的中国GDP,分别对之用自回归移动平均模型(ARIMA) 和时序模型的数据挖掘方法进行分析和预测,并对两种方法的趋势和预测结果进行比较并 给出解释. 实验数据:本文研究选用1952-2006年的中国GDP,其资料如下 日期国内生产总值(亿元)日期国内生产总值(亿元) 2006-12-312094071997-12-3174772 2005-12-311830851996-12-31 2004-12-311365151995-12-31 2003-12-311994-12-31 2002-12-311993-12-31 2001-12-311992-12-31 2000-12-31894041991-12-31 1999-12-31820541990-12-31 1998-12-31795531989-12-31 1988-12-311969-12-31 1987-12-311968-12-31 1986-12-311967-12-31 1985-12-311966-12-311868 1984-12-3171711965-12-31 1983-12-311964-12-311454 1982-12-311963-12-31 1981-12-311962-12-31 1980-12-311961-12-311220 1979-12-311960-12-311457 1978-12-311959-12-311439 1977-12-311958-12-311307 1976-12-311957-12-311068 1975-12-311956-12-311028 1974-12-311955-12-31910 1973-12-311954-12-31859 1972-12-311953-12-31824 1971-12-311952-12-31679 1970-12-31 表一 国内生产总值(GDP)是指一个国家或地区所有常住单位在一定时期内生产活动的最终成果。这个指标把国民经济全部活动的产出成果概括在一个极为简明的统计数字之中为评价和衡量国家经济状况、经济增长趋势及社会财富的经济表现提供了一个最为综合的尺度,可以说,

相关文档